EXHIBIT 6

INDEX OF SUBMITTED MEASURED DATA

This exhibit contains the measured data for this equipment as follows:

EXHIBIT 6A - RF Power Output

EXHIBIT 6B - Transmit Audio Response

6B-1 - 467.775 MHz, 12.5 kHz Channel Spacing

6B-2 - 467.775 MHz, 25 kHz Channel Spacing

EXHIBIT 6C - Transmit Audio Low pass Filter Response

6C-1 - 467.775 MHz,12.5 kHz Transmit Audio LPF Response

6C-2 - 467.775 MHz,25 kHz Transmit Audio LPF Response

EXHIBIT 6D - Modulation Limiting Characteristics

6D-1 - 467.775 MHz,12.5 kHz Carrier Squelch Mode

6D-2 - 467.775 MHz,25 kHz Carrier Squelch Mode

EXHIBIT 6E – Modulation Techniques and Occupied Bandwidth

6E-1: 406.2 MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, 11K0F3E Mask D

6E-2: 406.2 MHz, O.153 Test Pattern 4FSK Voice and Data Modulation, 7K60F1W Mask D

6E-3: 406.2 MHz, O.153 Test Pattern 4FSK Data Modulation only, 7K60F1D Mask D

6E-4: 406.2 MHz, O.153 Test Pattern 4FSK Voice Modulation only, 7K60F1E Mask D

6E-5: 450.65 MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, 11K0F3E Mask D

6E-6: 450.65 MHz, O.153 Test Pattern 4FSK Voice and Data Modulation, 7K60F1W Mask D

6E-7: 450.65 MHz, O.153 Test Pattern 4FSK Data Modulation only, 7K60F1D Mask D

6E-8: 450.65 MHz, O.153 Test Pattern 4FSK Voice Modulation only, 7K60F1E Mask D

6E-9: 459.125 MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, 11K0F3E Mask D

6E-10: 467.775 MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, 11K0F3E Mask D

6E-11: 469.9875 MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, 11K0F3E Mask D

6E-12: 469.9875 MHz, O.153 Test Pattern 4FSK Voice and Data Modulation, 7K60F1W Mask D

6E-13: 469.9875 MHz, O.153 Test Pattern 4FSK Data Modulation only, 7K60F1D Mask D

6E-14: 469.9875 MHz, O.153 Test Pattern 4FSK Voice Modulation only, 7K60F1E Mask D

6E-15: 406.2 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B (Not for FCC Review)

6E-16: 450.65 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B, Mask 74.462(c)

6E-17: 459.125 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B, FCC Part 22 Limit

6E-18: 467.775 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B, Mask 80.211(f)

6E-19: 469.9875 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B (Not for FCC Review)

6E-20: 467.775 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask 80.211(c)

EXHIBIT 6F - Conducted Spurious Emissions

6F-1 - 30 Watts, 406.2 MHz, 25 kHz Channel Spacing (Not for FCC Review)

6F-2 - 30 Watts, 450.025 MHz, 25 kHz Channel Spacing

6F-3 - 30 Watts, 459.125 MHz, 25 kHz Channel Spacing

6F-4 -30 Watts, 467.775 MHz, 25 kHz Channel Spacing

6F-5 - 1 Watts, 450.025 MHz, 25 kHz Channel Spacing

6F-6 - 1 Watts, 467.775 MHz, 25 kHz Channel Spacing

6F-7 - 30 Watts, 406.2 MHz, Digital 12.5 kHz Channel Spacing

6F-8 - 30 Watts, 450.025 MHz, Digital 12.5 kHz Channel Spacing

6F-9 - 30 Watts, 459.125 MHz, Digital 12.5 kHz Channel Spacing

6F-10 - 30 Watts, 467.775 MHz, Digital 12.5 kHz Channel Spacing

6F-11 - 1 Watts, 450.025 MHz, Digital 12.5 kHz Channel Spacing

6F-12 - 1 Watts, 467.775 MHz, Digital 12.5 kHz Channel Spacing

EXHIBIT 6G - Radiated Spurious Emissions

- 6G-1 30 Watts, 406.2 MHz, 12.5 kHz Channel Spacing
- 6G-2 30 Watts, 450.65 MHz, 12.5 kHz Channel Spacing
- 6G-3 30 Watts, 459.125 MHz, 12.5 kHz Channel Spacing
- 6G-4 30 Watts, 467.775 MHz, 12.5 kHz Channel Spacing
- 6G-5 1 Watts, 450.65 MHz, 12.5 kHz Channel Spacing
- 6G-6 1 Watts, 467.775 MHz, 12.5 kHz Channel Spacing
- 6G-7 30 Watts, 406.2 MHz, 25 kHz Channel Spacing (Not for FCC Review)
- 6G-8 30 Watts, 450.65 MHz, 25 kHz Channel Spacing
- 6G-9 30 Watts, 459.125 MHz, 25 kHz Channel Spacing
- 6G-10 30 Watts, 467.775 MHz, 25 kHz Channel Spacing
- 6G-11 1 Watts, 450.65 MHz, 25 kHz Channel Spacing
- 6G-12 1 Watts, 467.775 MHz, 25 kHz Channel Spacing

EXHIBIT 6H – Frequency Stability

- 6H-1 467.775 MHz Frequency Stability vs. Temperature
- 6H-2 467.775 MHz Frequency Stability vs. Voltage

EXHIBIT 6I – Transient Frequency Behavior

- 6I-1 467.775 MHz, 12.5 kHz Channel Spacing Key-Up Attack Time
- 6I-2 467.775 MHz, 12.5 kHz Channel Spacing De-Key Decay Time
- 6I-3 467.775MHz, 25 kHz Channel Spacing Key-Up Attack Time
- 6I-4 467.775MHz, 25 kHz Channel Spacing De-Key Decay Time

Radio model tested: AAM28QNN9RA1AN

Important Note: The data in this test report meets or exceeds the technical requirements of FCC Rule Parts 22, 74, 80 and 90.

^{**} Please note that the above data were taken following the procedures and limits outlined in TIA 603-D and RSS 119 during the month of October 2015. See Table 2 in Ex07_test_procedures

EXHIBIT 6A - RF POWER OUTPUT

HIGH POWER SETTING, FREQUENCY 406.2 MHz

Measured RF Output Power:29.5 WattsMeasured DC Voltage:13.2 VoltsMeasured DC Input Current:5.03 Amperes

LOW POWER SETTING, FREQUENCY 406.2 MHz

Measured RF Output Power:

Measured DC Voltage:

Measured DC Input Current:

0.96 Watts

13.2 Volts

1.53 Amperes

HIGH POWER SETTING, FREQUENCY 450.65 MHz

Measured RF Output Power:29.9 WattsMeasured DC Voltage:13.2 VoltsMeasured DC Input Current:5.0 Amperes

LOW POWER SETTING, FREQUENCY 450.65 MHz

Measured RF Output Power:0.97 WattsMeasured DC Voltage:13.2 VoltsMeasured DC Input Current:1.61 Amperes

HIGH POWER SETTING, FREQUENCY 459.125 MHz

Measured RF Output Power:29.8 WattsMeasured DC Voltage:13.2 VoltsMeasured DC Input Current:5.57 Amperes

LOW POWER SETTING, FREQUENCY 459.65 MHz

Measured RF Output Power:0.97 WattsMeasured DC Voltage:13.2 VoltsMeasured DC Input Current:1.63 Amperes

HIGH POWER SETTING, FREQUENCY 467.775 MHz

Measured RF Output Power: 29.9 Watts
Measured DC Voltage: 13.2 Volts
Measured DC Input Current: 5.4 Amperes

LOW POWER SETTING, FREQUENCY 467.775 MHz

Measured RF Output Power:0.97 WattsMeasured DC Voltage:13.2 VoltsMeasured DC Input Current:1.62 Amperes

HIGH POWER SETTING, FREQUENCY 469.9875 MHz

Measured RF Output Power:29.6 WattsMeasured DC Voltage:13.2 VoltsMeasured DC Input Current:5.32 Amperes

LOW POWER SETTING, FREQUENCY 469.9875 MHz

Measured RF Output Power:0.98 WattsMeasured DC Voltage:13.2 VoltsMeasured DC Input Current:1.61 Amperes

EXHIBIT 6B - Transmit Audio Response

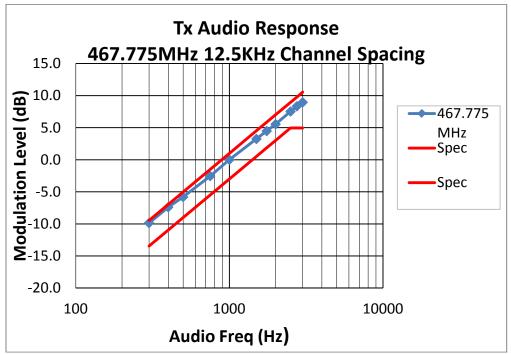


Figure 6B-1: 467.775 MHz, 12.5 kHz Channel Spacing, Transmit Audio Frequency Response

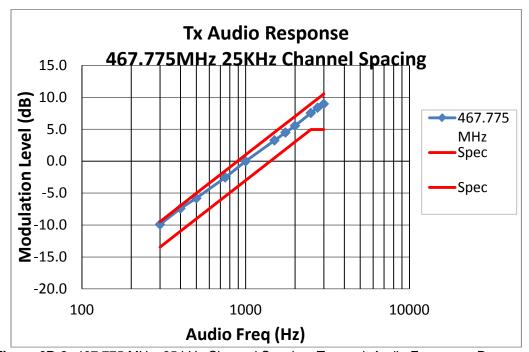


Figure 6B-2: 467.775 MHz, 25 kHz Channel Spacing, Transmit Audio Frequency Response

EXHIBIT 6C - Transmit Audio Post Limiter Low Pass Filter Response

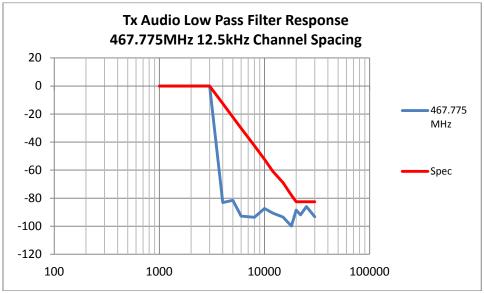


Figure 6C-1: 467.775 MHz, 12.5 kHz Channel Spacing, Transmit Audio Low Pass Filter Response

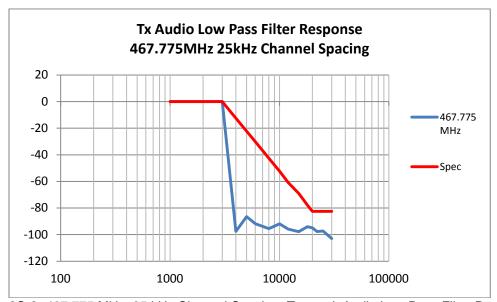


Figure 6C-2: 467.775 MHz, 25 kHz Channel Spacing, Transmit Audio Low Pass Filter Response

EXHIBIT 6D – Modulation Limiting Characteristic

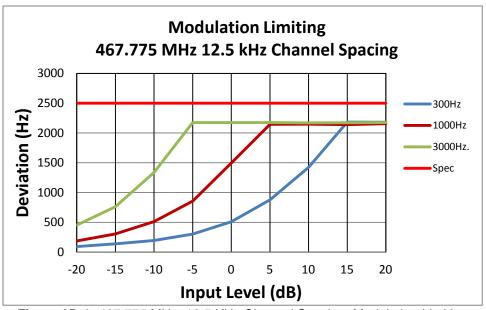


Figure 6D-1: 467.775 MHz, 12.5 KHz Channel Spacing, Modulation Limiting

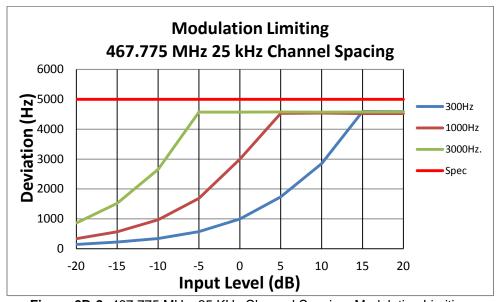


Figure 6D-2: 467.775 MHz, 25 KHz Channel Spacing, Modulation Limiting

EXHIBIT 6E - Modulation Techniques

The transmitter is capable of the following types of modulation:

- i) Modulation of PL (Private Line) Direct FM tone modulation of 67 Hz to 250.3 Hz at 15% of full system deviation. Also referred to as TPL (Tone Private Line).
- ii) Modulation of DPL (Digital Private Line) Direct FM modulation at 134 bps at 15% of full system deviation.
- iii) Modulation of 2000/3000 Hz FSK Data FM modulation at nominally 60% of full system deviation.
- iv) Modulation of DTMF (Dual Tone Multi Frequency) FM modulation at nominally 60% of full system deviation
- v) Modulation of 9600 bps 4 level FSK Data

Standard Audio Modulation (25 kHz Channelization, Analog Voice) (Not for FCC Review)

Per CFR Title 47, Part 2, Section 2.201, the Carson's Rule calculation for necessary bandwidth, BW = 2M + 2DK, where M = maximum modulating frequency in Hz, D = peak deviation in Hz, and K=1, is as follows:

In this case the maximum modulating frequency is 3.0 kHz with a 5.0 kHz deviation.

BW = 2(M+D) = 2*(3.0 kHz + 5.0 kHz) = 16 kHz (16K0 designator)

Per CFR Title 47, Part 2, Section 2.201:

Frequency Modulation I	F
A single channel containing analogue information	3
Telephony (including sound broadcasting) I	Ε

The complete emissions designator for this transmitter is **16K0F3E**.

Standard Audio Modulation (12.5 kHz Channelization, Analog Voice)

Per CFR Title 47, Part 2, Section 2.201, the Carson's Rule calculation for necessary bandwidth, BW = 2M +2DK, where M = maximum modulating frequency in Hz, D = peak deviation in Hz, and K=1, is as follows:

In this case the maximum modulating frequency is 3.0 kHz with a 2.5 kHz deviation.

BW = 2(M+D) = 2*(3.0 kHz + 2.5 kHz) = 11 kHz (11K0 designator)

Per CFR Title 47, Part 2, Section 2.201:

Frequency Modulation	F
A single channel containing analogue information	
Telephony (including sound broadcasting)	Ε

The complete emissions designator for this transmitter is 11K0F3E.

4 Level FSK Digital Modulation Techniques

The modulation sends 4800 symbols/sec with each symbol conveying 2 bits of information for a data rate of 9600 bps in a 12.5 kHz channel, which is equivalent to 4800 bps per 6.25kHz. The maximum deviation $\,D$, of the symbol is defined as:

$$D = 3h/2T$$

where:

h is the deviation index defined for the modulation

T is the symbol time (1/4800) in seconds

The deviation index, h, is 0.27. This yields a symbol deviation of 1.944 kHz at the symbol center. The mapping between symbols and bits is shown below:

Informati	on Bits	Cympal	4FCK Doviction			
Bit 1	Bit 0	Symbol	4FSK Deviation			
0	1	+3	+1.944 kHz			
0	0	+1	+0.648 kHz			
1	0	-1	-0.648 kHz			
1	1	-3	-1.944 kHz			

A Square Root Raised Cosine Filter is implemented for the modulation low pass filter. The input to the modulation low pass filter consists of a series of impulses separated in time by 208.33 microseconds (1/4800 sec). The group delay of the filter is flat over the passband for |f| < 2880 Hz. The magnitude response of the filter is given by the following formula.

|F(f)| = magnitude response of the Square Root Raised Cosine Filter

|F(f)| = 1 for $|f| \le 1920$ Hz

 $|F(f)| = |\cos(\pi \Box f / 1920)| \text{ for } 1920 \text{ Hz} < |\xi| 2880 \text{ Hz}$

 $|F(f)|=0 \ for \ |f|>2880 \ Hz$

where f = frequency in hertz.

The 4FSK modulator consists of a Square Root Raised Cosine Filter, cascaded with a frequency modulator.

Dibits	F (f)	Frequency	4FSK
Input	Filter	Modulator	Output

4 Level FSK Digital Modulation (12.5 kHz Channelization, Digital Data)

Measurement's per Rule Part 2.202(c)(4) where employed because Part 2.202(g) Table III A formulation produces an excessive result using the value of K recommended in the Table. Therefore, the 99% energy rule (Title 47 CFR 2.989) was used for digital mode and is more accurate than Carson's rule. It states that 99% of the modulation energy falls within X kHz, which in this case is 7.6 kHz (**7K60** designator).

Per CFR Title 47, Part 2, Section 2.201:

Frequency Modulation	F
A single channel containing quantized or digital information	n without the use of a modulating sub-carrier
excluding time-division multiplex	1
Data Transmission, telemetry, telecommand	D

Note: This product utilizes a Time Division Multiple Access (TDMA) protocol.

The complete emissions designator for this transmitter is **7K60F1D**.

4 Level FSK Digital Modulation (12.5 kHz Channelization, Digital Voice)

Measurement's per Rule Part 2.202(c)(4) where employed because Part 2.202(g) Table III A formulation produces an excessive result using the value of K recommended in the Table. Therefore the 99% energy rule

(title 47CFR2.989) was used for digital mode and is more accurate than Carson's rule. It states that 99% of the modulation energy falls within X kHz, which in this case is 7.6 kHz (**7K60** designator).

Per CFR Title 47, Part 2, Section 2.201:

Frequency Modulation	F
A single channel containing quantized or digital	al information without the use of a modulating sub-carrier
excluding time-division multiplex	1
Telephony (including sound broadcasting)	E

Note: This product utilizes a Time Division Multiple Access (TDMA) protocol.

The complete emissions designator for this transmitter is **7K60F1E**.

Digital (12.5 kHz Channelization, Digital TDMA)

Measurement's per Rule Part 2.202(c)(4) where employed because Part 2.202(g) Table III A formulation produces an excessive result using the value of K recommended in the Table. Therefore the 99% energy rule (title 47CFR2.989) was used for digital mode and is more accurate than Carson's rule. It states that 99% of the modulation energy falls within X kHz, which in this case is 7.6 kHz (**7K60** designator).

Per CFR Title 47, Part 2, Section 2.201:

Frequency Modulation	F
A single channel containing quantized or digital informati	on without the use of a modulating sub-carrie
excluding time-division multiplex	1
Combination of Data Transmission, telemetry, telecomma	and (D), and Telephony (E) W

Note: This product utilizes a Time Division Multiple Access (TDMA) protocol.

The complete emissions designator for this transmitter is 7K60F1W.

<u>Digital Modulation (12.5 kHz Channelization, Digital Data)</u>

Measurement's per Rule Part 2.202(c)(4) where employed because Part 2.202(g) Table III A formulation produces an excessive result using the value of K recommended in the Table. Therefore, the 99% energy rule (Title 47 CFR 2.989) was used for digital mode and is more accurate than Carson's rule. It states that 99% of the modulation energy falls within X kHz, which in this case is 7.6 kHz (**7K60** designator).

Per CFR Title 47, Part 2, Section 2.201:

Frequency Modulation I	F
Case not otherwise covered	X
Data Transmission, telemetry, telecommand	D

Note: This product utilizes a Time Division Multiple Access (TDMA) protocol.

The complete emissions designator for this transmitter is **7K60FXD**.

Digital Modulation (12.5 kHz Channelization, Digital Voice)

Measurement's per Rule Part 2.202(c)(4) where employed because Part 2.202(g) Table III A formulation produces an excessive result using the value of K recommended in the Table. Therefore the 99% energy rule (title 47CFR2.989) was used for digital mode and is more accurate than Carson's rule. It states that 99% of the modulation energy falls within X kHz, which in this case is 7.6 kHz (**7K60** designator).

Per CFR Title 47, Part 2, Section 2.201:

Frequency Modulation	F
Case not otherwise covered	X
Telephony (including sound broadcasting)	Ε

Note: This product utilizes a Time Division Multiple Access (TDMA) protocol.

The complete emissions designator for this transmitter is **7K60FXE**.

OCCUPIED BANDWIDTH MEASUREMENT

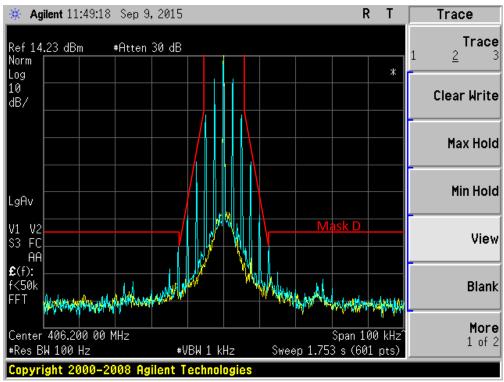


Figure 6E-1: 406.2 MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, 11K0F3E Mask D

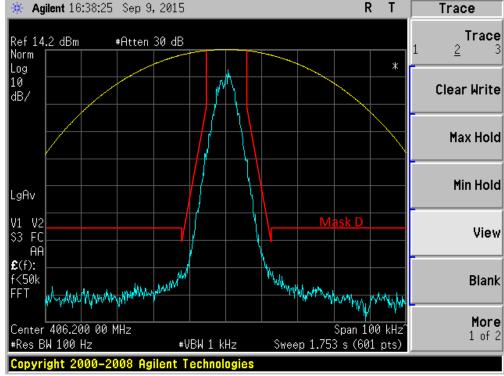


Figure 6E-2: 406.2 MHz, O.153 Test Pattern 4FSK Voice and Data Modulation, 7K60F1W Mask D

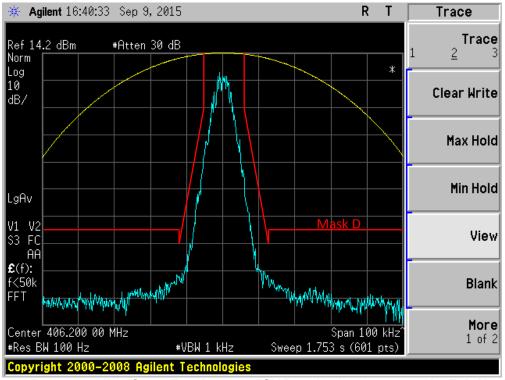


Figure 6E-3: 406.2 MHz, O.153 Test Pattern 4FSK Data Modulation only, 7K60F1D Mask D

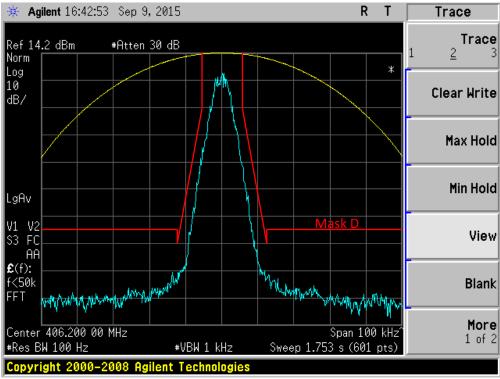


Figure 6E-4: 406.2 MHz, O.153 Test Pattern 4FSK Voice Modulation only, 7K60F1E Mask D

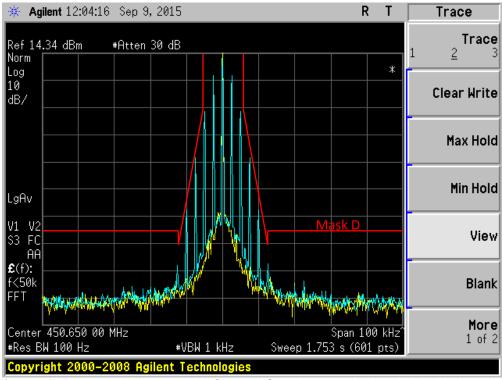


Figure 6E-5: 450.65 MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, 11K0F3E Mask D

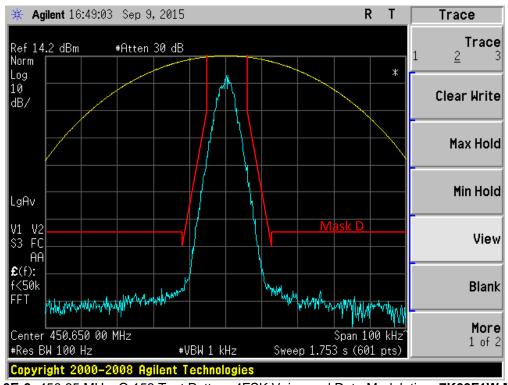


Figure 6E-6: 450.65 MHz, O.153 Test Pattern 4FSK Voice and Data Modulation, 7K60F1W Mask D

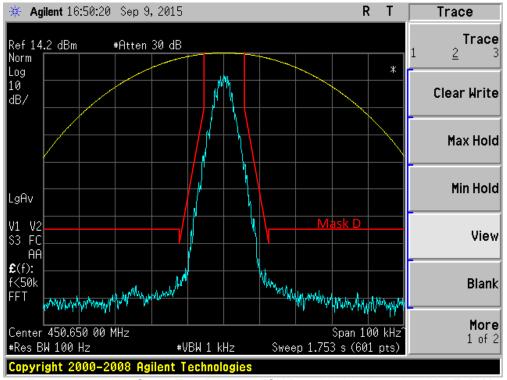


Figure 6E-7: 450.65 MHz, O.153 Test Pattern 4FSK Data Modulation only, 7K60F1D Mask D

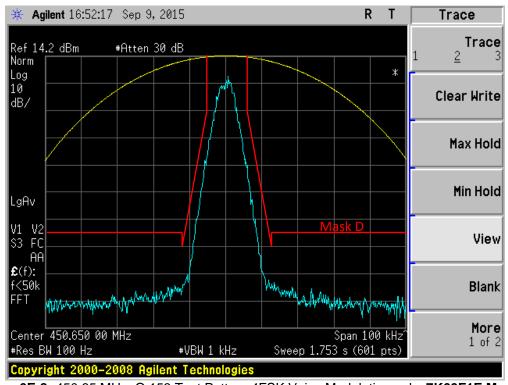


Figure 6E-8: 450.65 MHz, O.153 Test Pattern 4FSK Voice Modulation only, 7K60F1E Mask D

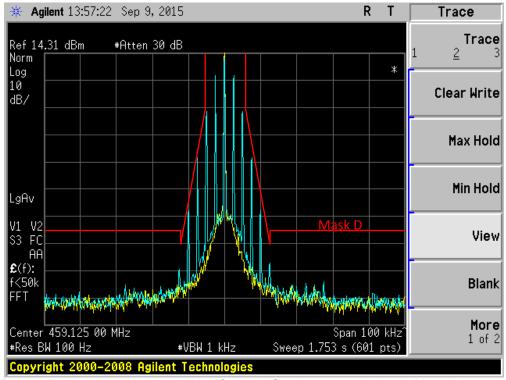


Figure 6E-9: 459.125 MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, 11K0F3E Mask D

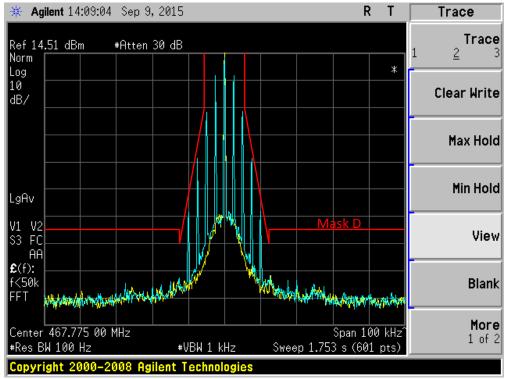


Figure 6E-10: 467.775 MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, 11K0F3E Mask D

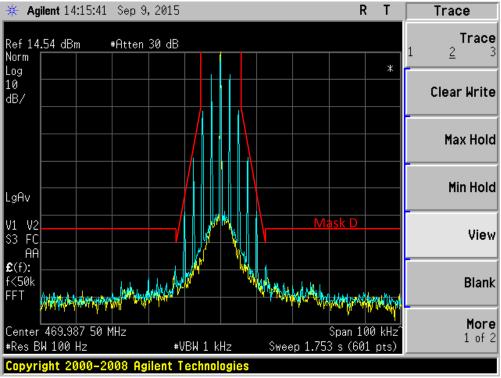


Figure 6E-11: 469.9875 MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, 11K0F3E Mask D

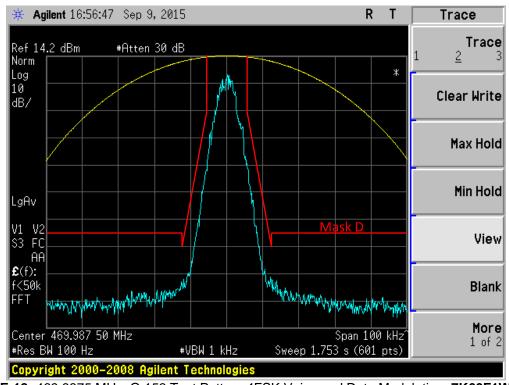


Figure 6E-12: 469.9875 MHz, O.153 Test Pattern 4FSK Voice and Data Modulation, 7K60F1W Mask D

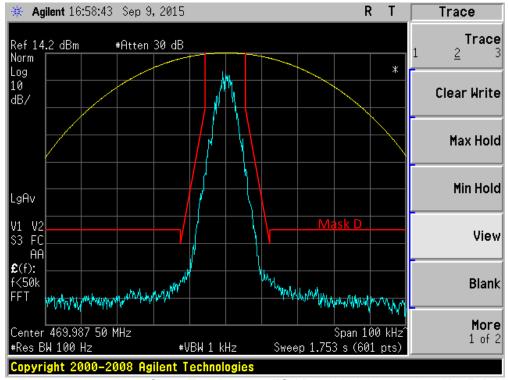


Figure 6E-13: 469.9875 MHz, O.153 Test Pattern 4FSK Data Modulation only, 7K60F1D Mask D

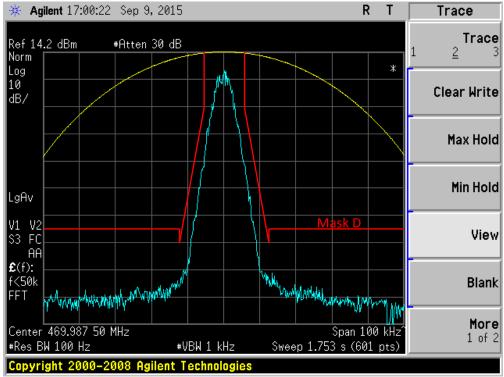


Figure 6E-14: 469.9875 MHz, O.153 Test Pattern 4FSK Voice Modulation only, 7K60F1E Mask D

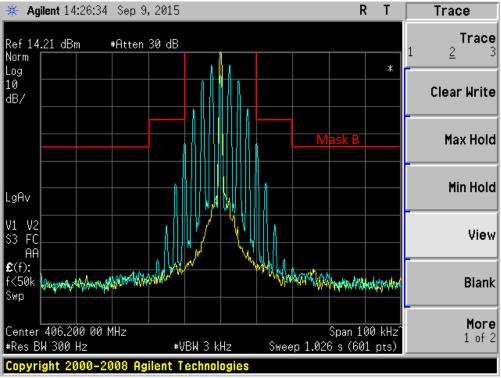


Figure 6E-15: 406.2 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B (Not for FCC Review)

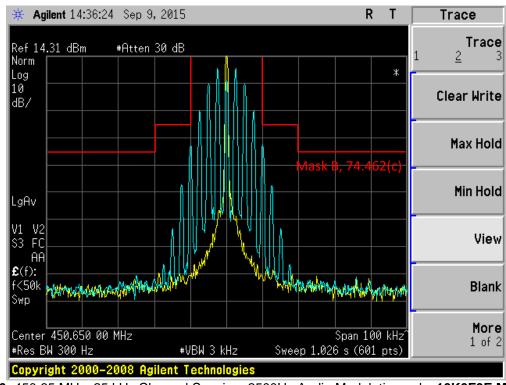


Figure 6E-16: 450.65 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B, Mask 74.462(c)

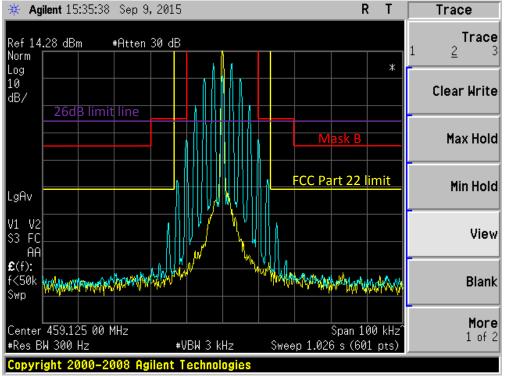


Figure 6E-17: 459.125 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B, FCC Part 22 Limit

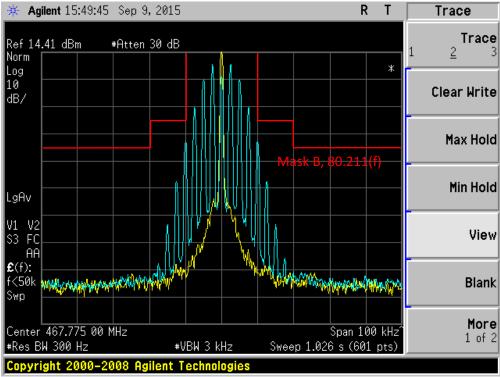


Figure 6E-18: 467.775 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B, Mask 80.211(f)

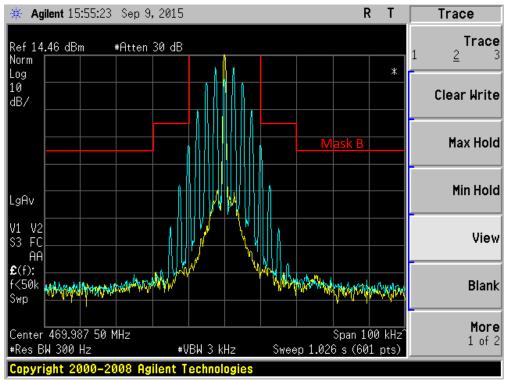


Figure 6E-19: 469.9875 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B (Not for FCC Review)

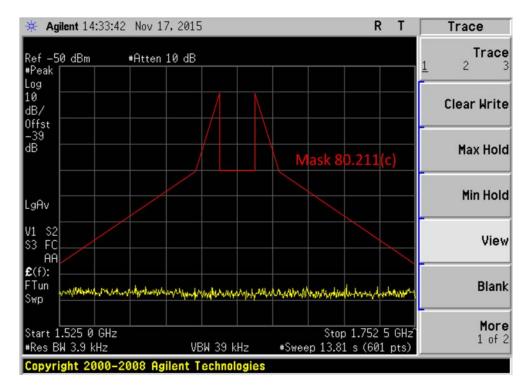


Figure 6E-20: 467.775 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask 80.211(c)

**NOTE:-

- For 4FSK Digital Modulation, 12.5 kHz Data 7K60F1D & 7K60FXD would be the same. Therefore only measurements with 7K60F1D shown above.
- For 4FSK Digital Modulation, 12.5 kHz Voice 7K60F1E & 7K60FXE would be the same. Therefore only measurements with 7K60F1E shown above.
- All measurements of Occupied Bandwidth which are shown on the above plots are measured using a Spectrum Analyzer
- Measurement using a Spectrum Analyzer must use a 30dB attenuation in order to avoid damage to it
- Therefore the reference power level (Ref) shown on each plot refers to its true power level

EXHIBIT 6F - Transmitter Conducted Spurious Emissions

Note: Display lines on graphs correspond to the FCC limit of – 13dBm (25 kHz) & -20dBm (12.5 kHz).

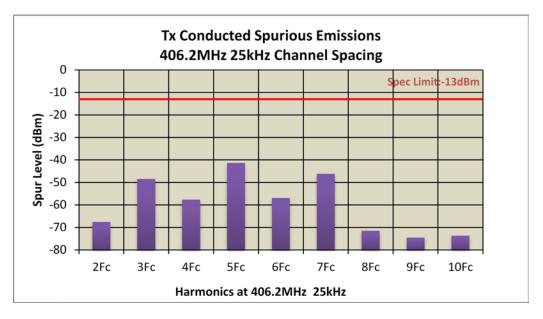


Figure 6F-1: 30 W Harmonic of Carrier 406.2 MHz, 25 kHz Channel Spacing (Not for FCC Review)

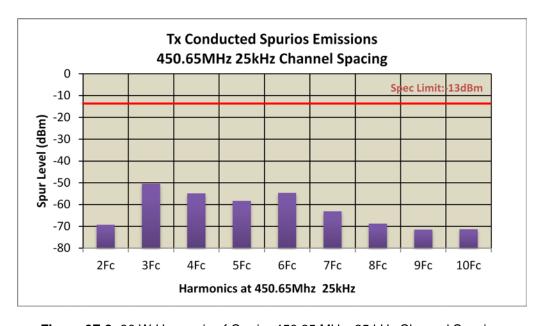


Figure 6F-2: 30 W Harmonic of Carrier 450.65 MHz, 25 kHz Channel Spacing

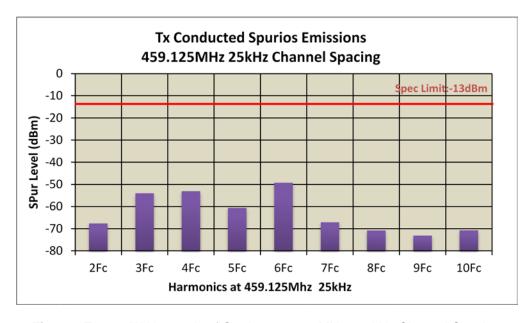


Figure 6F-3: 30 W Harmonic of Carrier 459.125 MHz, 25 kHz Channel Spacing

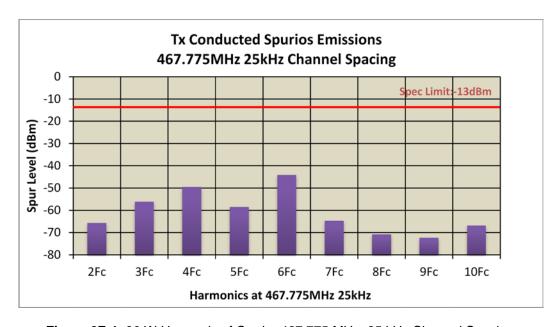


Figure 6F-4: 30 W Harmonic of Carrier 467.775 MHz, 25 kHz Channel Spacing

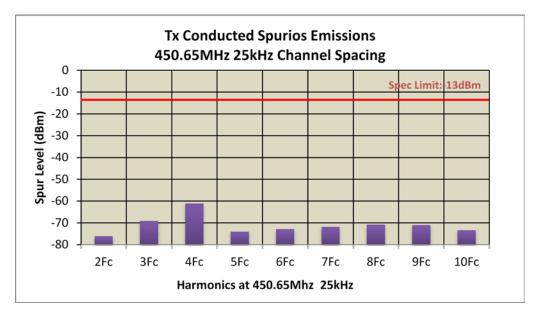


Figure 6F-5: 1W Harmonic of Carrier 450.65 MHz, 25 kHz Channel Spacing

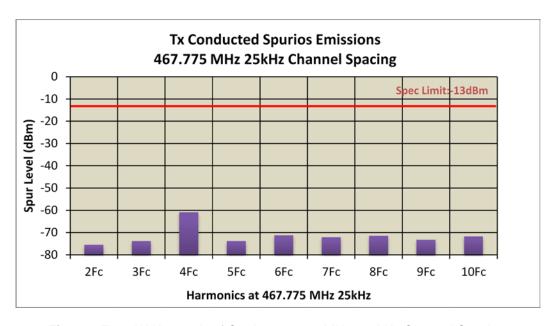


Figure 6F-6: 1W Harmonic of Carrier 467.775 MHz, 25 kHz Channel Spacing

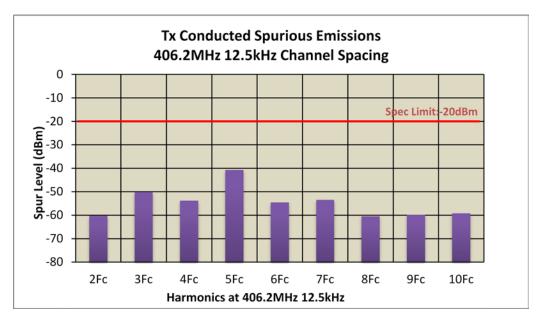


Figure 6F-7: 30 W Harmonic of Carrier 406.2 MHz, Digital 12.5 kHz Channel Spacing

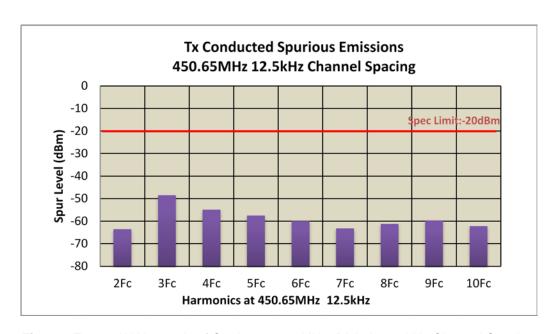


Figure 6F-8: 30 W Harmonic of Carrier 450.65 MHz, Digital 12.5 kHz Channel Spacing

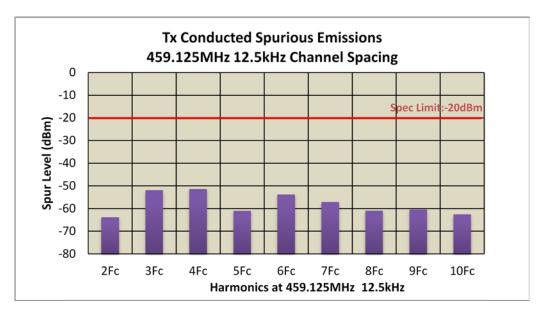


Figure 6F-9: 30 W Harmonic of Carrier 459.125 MHz, Digital 12.5 kHz Channel Spacing

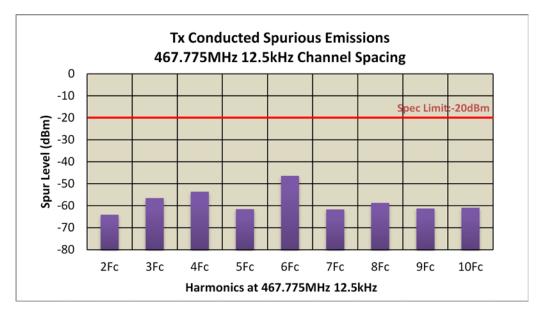


Figure 6F-10: 30 W Harmonic of Carrier 467.775 MHz, Digital 12.5 kHz Channel Spacing

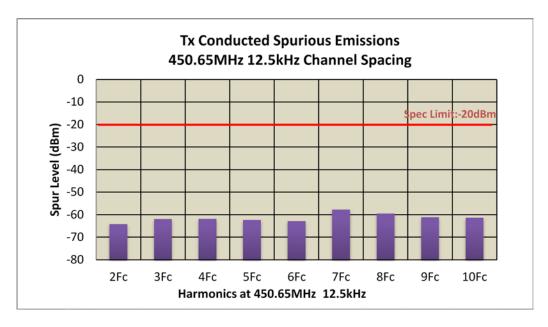


Figure 6F-11: 1W Harmonic of Carrier 450.65 MHz, Digital 12.5 kHz Channel Spacing

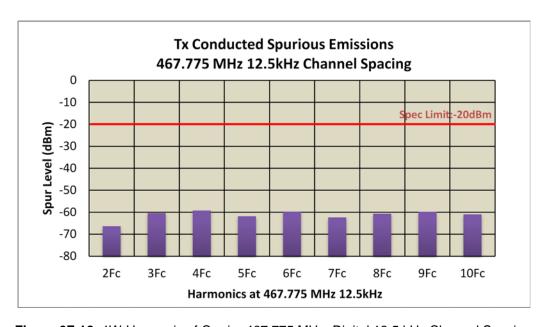


Figure 6F-12: 1W Harmonic of Carrier 467.775 MHz, Digital 12.5 kHz Channel Spacing

Remarks:

EXHIBIT 6G Transmitter Radiated Spurious Emissions

FCC ID: AZ492FT7080 IC ID: 109U-92FT7080 Motorola Solutions. TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 403-470MHZ 1-25W MODEL #: XPR 5550e TX DIGITAL Audio Accy (PPT) - RMN5127C 02806-EMC-00002 406.2 MHz 12.5 kHz 30 Watt(s)/Max Power S/N: 511TRMB909 **FCC Failing** Horizontal Measured Emission Vertical Measured Emission Equiv (MHz) Limit Equiv Pwr Into Ideal Dipole (dBm) Pwr Into Ideal Dipole (dBm) -20 ** 812.4000 1218.6000 -20 1624 8000 -20 ** 2031.0000 -20 2437.2000 -20 2843.4000 -20 3249.6000 -20 ** 3655.8000 -20 4062.0000 -20 RADIATED SPURIOUS EMISSIONS Emission Level (dBm -20 ■Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dB -40 3249.6000 3655.8000 2031.0000 FCC Failing Limit Frequency (MHz) The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin August 28, 2015 FCC Registration: 772092 Industry Canada: 109AK Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients. *Pursuant to CFR 47 Part 2:1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported Temp(Deg): 23.4 Hum(%RH): 71.2 Passed Results Marginal Results Failed Results

FCC ID: AZ492FT7080 Motorola Solutions. IC ID: 109U-92FT7080 TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 403-470MHZ 1-25W MODEL #: XPR 5550e TX DIGITAL Audio Accy (PPT) - RMN5127C 02806-EMC-00002 450.65 MHz 12.5 kHz 30 Watt(s)/Max Power S/N: 511TRMB909 Vertical Measured Emission FCC Failing Horizontal Measured Emission Frequency (MHz) Equiv Pwr Into Ideal Dipole (dBm) Limit Equiv Pwr Into Ideal Dipole (dBm) 901.3000 -20 1351.9500 -20 1802.6000 -20 2253.2500 -20 2703.9000 -20 3154.5500 -20 ** ** 3605,2000 -20 4055.8500 -20 4506.5000 -20 ×× xx RADIATED SPURIOUS EMISSIONS Emission Level (dBm) -20 Vertical Measured
 Emission Equiv Pwr Into Ideal Dipole (dBm) -40

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document.

Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin

FCC Registration: 772092

Industry Canada: 109AK

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Temp(Deg): 23.4 Hum(%RH): 71.2

Marginal Results

Passed Results

Remarks:

Failed Results

02806-EMC-00002

FCC ID: AZ492FT7080 Motorola Solutions. IC ID: 109U-92FT7080

TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 403-470MHZ 1-25W MODEL #: XPR 5550e TX DIGITAL Audio Accy (PPT) - RMN5127C

	5 MHz	_	12.5 kH	Z	30 W	/att(s)/Ma	x Power		S/N:	: 511TRMB909		
Frequ (MF	equency FCC Failing (MHz) Limit					tal Measur r Into Ideal			Vertical Measured Emissi Equiv Pwr Into Ideal Dipole (
918.2	500		-20			**				**		
1377.	3750		-20			**						
1836.	5000		-20			**				**		
2295.	3250		-20			**				**		
2754.	7500		-20			**						
3213.	8750		-20			**				**		
3673.	0000		-20			***				**		
4132.	1250		-20			**				**		
4591.	2500		-20							**		
		_										
		-										
₽ 0 7				RADIA	ATED SPUR	IOUS EMIS	SIONS			■Horizontal Measured		
,										Emission Equiv Pwr In Ideal Dipole (dBm)		
-20 -	-	-	-	-	-	-	-	-	-	DiVertical Measured Emission Equiv Pwr In Ideal Dipole (dBm)		
-40	8	8	8	8	8		8	8	8	4		
-	918.2500	1377.3750	1836.5000	2295.6250	2754.7500	3213.8750	3673.0000	41321250	4591.2500	-FCC Faling Limit		
	2	137	38	229		듗 ncy (MHz)	367	413	459			
					. requei	j (minz)						
		4-l	n using th	a cuhetit	ution metho	d as found	in the TIA	IEIN ena 4	ooument			
e data pres	entea neri	e was take				u as iound	in the tim	IEIM-BUS U				

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients. *Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Temp(Deg): 23.4 Hum(%RH): 71.2 Failed Results Marginal Results Remarks: Passed Results

**

**

3274.4250

3742.2000

4209.9750

4677.7500

FCC ID: AZ492FT7080 Motorola Solutions. IC ID: 109U-92FT7080 TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 403-470MHZ 1-25W MODEL #: XPR 5550e TX DIGITAL Audio Accy (PPT) - RMN5127C 02806-EMC-00002 467.775 MHz 12.5 kHz 30 Watt(s)/Max Power S/N: 511TRMB909 Vertical Measured Emission FCC Failing Horizontal Measured Emission Frequency (MHz) Equiv Pwr Into Ideal Dipole (dBm) Equiv Pwr Into Ideal Dipole (dBm) Limit 935.5500 -20 1403.3250 -20 1871.1000 -20 2338.8750 -20 2806.6500 -20

**

××

-20

-20

-20

-20

Figure 6G-4 - 30 Watts, 467.775 MHz, 12.5 kHz Channel Spacing

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Industry Canada: 109AK

Marginal Results

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document.

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin

Passed Results

FCC Registration: 772092

Remarks:

August 28, 2015

Temp(Deg): 23.4 Hum(%RH): 71.2

Failed Results

FCC ID: AZ492FT7080 Motorola Solutions. IC ID: 109U-92FT7080 TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 403-470MHZ 1-25W TX DIGITAL MODEL #: XPR 5550e Audio Accy (PPT) - RMN5127C 02806-EMC-00002

_	450).65 MHz		12.5 kHz	Z	1 W	att(s)/Low	Power		S/N: 5	11TRMB909
	Fr	equency (MHz)		FCC Failin Limit	ng	Horizon Equiv Pw	tal Measure r Into Ideal	ed Emissior Dipole (dBr	n) Equ	Vertical Me uiv Pwr Int	easured Emission o Ideal Dipole (dBm)
	9	01.3000	\neg	-20			**				**
	13	51.9500		-20			**				**
	18	02.6000		-20			**				
	22	253.2500		-20			**				**
	27	03.9000		-20			**				
	31	54.5500		-20			**				
	36	05.2000		-20			**				**
	40	55.8500		-20			**				
	45	06.5000		-20			**				
╌											
	Emission Level (dBm)	0			RADIA	ATED SPUR	IOUS EMIS	SIONS			■Hortzontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
	9										
	9.0	20	_	_	_	_	_	-	_	-	©Vertical Measured
	-										Emission Equiv Pwr Into
	.Q	40									Ideal Dipole (dBm)
	il.		8	8	8	8	8	8	8	8	
	ш	901.3000	1351.9500	1802.6000	2253.2500	2703.9000	3154.5500	3605.2000	4055.8500	4506.5000	FCC Faling Limit
		8	8	8	525	270	318	8	406	8	
						Frequer	ncy (MHz)				

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin August 28, 2015

FCC Registration: 772092 Industry Canada: 109AK

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Temp(Deg): 23.4 Hum(%RH): 71.2 Marginal Results Failed Results Remarks: Passed Results

Audio Accy (PPT) - RMN5127C

FCC ID: AZ492FT7080 Motorola Solutions. IC ID: 109U-92FT7080

TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 403-470MHZ 1-25W MODEL #: XPR 5550e TX DIGITAL

02806-EMC-00002

467.775 MHz S/N: 511TRMB909 12.5 kHz 1 Watt(s)/Low Power FCC Failing Frequency (MHz) Horizontal Measured Emission Vertical Measured Emission Limit Equiv Pwr Into Ideal Dipole (dBm) Equiv Pwr Into Ideal Dipole (dBm) 935.5500 ×× 1403.3250 -20 1871,1000 -20 ** ** 2338.8750 -20 2806.6500 -20 3274.4250 ** ** -20 3742.2000 -20 4209.9750 -20 4677.7500 -20 RADIATED SPURIOUS EMISSIONS Emission Level (dBm) -20 ■ Vertical Measured Emission Equiv Pwr -40 Into Ideal Dipole (dBm) 935,5500 1871.1000 2806.6500 3274,4250 37422000 4209.9750 Frequency (MHz) The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. August 28, 2015

Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin FCC Registration: 772092 Industry Canada: 109AK

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Temp(Deg): 23.4 Hum(%RH): 71.2 Failed Results Marginal Results Remarks: Passed Results

TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 403-470MHZ 1-25W MODEL #: XPR 5550e TX ANALOG Audio Accy (PPT) - RMN5127C

02806-EMC-00002 406.2 MHz 25 kHz 30 Watt(s)/Max Power S/N: 511TRMB909 FCC Failing Vertical Measured Emission Equiv Frequency (MHz) Horizontal Measured Emission Pwr Into Ideal Dipole (dBm) Limit Equiv Pwr Into Ideal Dipole (dBm) 812.4000 ** 1218.6000 1624.8000 -13 ** ** 2031.0000 -13 2437.2000 -13 2843.4000 -13 ** ** 3249.6000 -13 3655.8000 -13 ** 4062.0000 ×× -13 RADIATED SPURIOUS EMISSIONS Emission Level (dBm) -20 ■Vertical Measured Emission Equiv Per Into Ideal Dipole (dBm) -40 8 8000 812,4000 800 800 8 8 8000 4062,0000 2437 3249 3655 FCC Failing Limit 8 Frequency (MHz) The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. August 28, 2015 Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin FCC Registration: 772092 Industry Canada: 109AK

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Temp(Deg): 23.4 Hum(%RH): 71.2 Marginal Results Failed Results Remarks: Passed Results

TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 403-470MHZ 1-25W MODEL #: XPR 5550e TX ANALOG Audio Accy (PPT) - RMN5127C 02806-EMC-00002

450.65	MHz		25 kHz		30 W	Vatt(s)/Ma:	x Power		S/N:	511TRMB909
Freque (MH			FCC Failin Limit	ng		tal Measure r Into Ideal				Measured Emission nto Ideal Dipole (dBn
901.3	000	\top	-13			**				**
1351.9	9500		-13			**				**
1802.6	3000		-13			**				**
2253.2	2500		-13			**				**
2703.9	9000		-13			**				**
3154.5	5500		-13			**				**
3605.2	2000		-13			**				**
4055.8	3500		-13			**				**
4506.5	000		-13			"				"
		_								
		#								
		+						_		
		+-						_		
		+-			-			_		
		+-						_		
		+-						-		
		+-								
		+-								
		+-								
		+-								
		\bot								
		_								
- 0-				RADIA	ATED SPURI	IOUS EMIS	SIONS	•		■Horizontal Measured
	_	_	_	_	_	_	_	-	_	Emission Equiv Pwr Into Ideal Dipole (dBm)
-20 -										□Vertical Measured Emission Equiv Pwr Into
-40 -			•					•		Ideal Dipole (dBm)
	901.3000	8	8	8	8	88	8	88	8	■FCC Falling
•	8	1351.9500	1802.6000	2253.2500	2703.9000	호 ncy (MHz)	3605.2000	4055,8500	4506.5000	Limit
					rrequen	ioy (miriz)				

Industry Canada: 109AK

FCC Registration: 772092

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Temp(Deg): 23.4 Hum(%RH): 71.2 Remarks: Passed Results Marginal Results Failed Results

TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 403-470MHZ 1-25W MODEL #: XPR 5550e TX ANALOG Audio Accy (PPT) - RMN5127C 02806-EMC-00002

459.125 MHz		25 kHz			30 Watt(s)/Max Power				S/N: 511TRMB909		
Frequency (MHz)		FCC Failing Limit		Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)				Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)			
918.2500		-13			**				11		
1377.3750		-13			***				**		
1836.5000		-13			***				**		
2295.6250		-13			×						
2754.7500		-13			***				**		
3213.8750		-13			**				**		
3673.0000		-13			***				**		
4132.1250		-13			***				**		
4591.2500		-13			**						
0 			RADIA	ATED SPUR	IOUS EMIS	SIONS			■Horizontal Measured Emission Equiv Per Into		
_	-	-	-	-	-	-	-	-	Ideal Dipole (dBm)		
-20 -									■Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)		
40 +	377.3750	836, 5000	2295, 6250	2754.7500	3213.8750	9673.0000	4132 1250	4591.2500	FCC Failing		
8	1377	1836	2295		뛽 ncy (MHz)	3673	4132	4591			
data presented here			1.00								
		n using the	e substit	uuon metho	ici as found	iin the IIAVE	1 A-6U3 0	ocument			

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Temp(Deg): 23.4 Hum(%RH): 71.2 Failed Results Marginal Results Remarks: Passed Results

Figure 6G-9 - 30 Watts, 459.125 MHz, 25 kHz Channel Spacing

FCC ID: AZ492FT7080 Motorola Solutions. IC ID: 109U-92FT7080 TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 403-470MHZ 1-25W TX ANALOG MODEL #: XPR 5550e Audio Accy (PPT) - RMN5127C 02806-EMC-00002 467.775 MHz 25 kHz 30 Watt(s)/Max Power S/N: 511TRMB909 FCC Failing Horizontal Measured Emission Vertical Measured Emission Frequency (MHz) Equiv Pwr Into Ideal Dipole (dBm) Equiv Pwr Into Ideal Dipole (dBm) Limit 935.5500 -13 1403.3250 XX ** -13 1871.1000 -13 2338.8750 -13 ×× 2806 6500 -133274.4250 -13 3742.2000 -13 4209.9750 -13 XX ** 4677.7500 -13 RADIATED SPURIOUS EMISSIONS Emission Level (dBm) Emission Equiv Pwr Into Ideal Dipole (dBm) -20 -40 5500 1250 200 FCC Failing Limit 2806 Frequency (MHz) The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin August 28, 2015 FCC Registration: 772092 Industry Canada: 109AK Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients. *Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Remarks: Passed Results Marginal Results Failed Results

Figure 6G-10 - 30 Watts, 467.775 MHz, 25 kHz Channel Spacing

FCC ID: AZ492FT7080

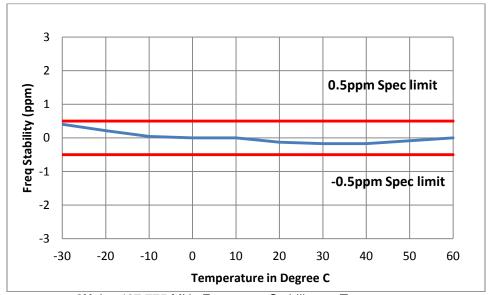
Motorola Solutions. IC ID: 109U-92FT7080 TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 403-470MHZ 1-25W MODEL #: XPR 5550e TX ANALOG Audio Accy (PPT) - RMN5127C 02806-EMC-00002 450.65 MHz 25 kHz 1 Watt(s)/Low Power S/N: 511TRMB909 Frequency (MHz) FCC Failing Vertical Measured Emission Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm) Equiv Pwr Into Ideal Dipole (dBm) -13 901.3000 1351.9500 -13 1802.6000 -13 ×× 2253.2500 -13 2703.9000 -13 XX TX 3154.5500 -13 ** TX 3605.2000 -13 77 4055.8500 -13 4506.5000 -13 RADIATED SPURIOUS EMISSIONS Emission Level (dBm) Emission Equiv Pwr Into Ideal Dipole (dBm) -20 Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm) 8 288 8 1802,6000 -FCC Failing 2253. 3154 6055 줎 2703 Frequency (MHz) The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin August 28, 2015 FCC Registration: 772092 Industry Canada: 109AK Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients. *Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported Temp(Deg): 23.4 Hum(%RH): 71.2 Remarks: Passed Results Marginal Results Failed Results

Figure 6G-11 - 1 Watts, 450.65 MHz, 25 kHz Channel Spacing

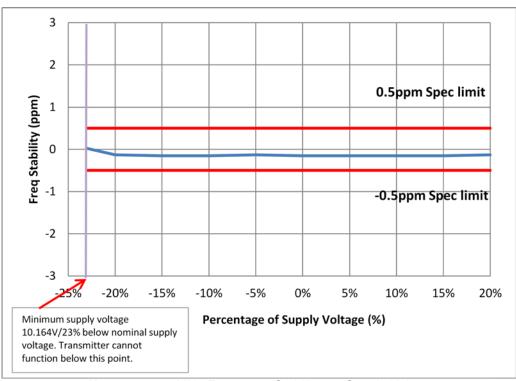
TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 403-470MHZ 1-25W TX ANALOG MODEL #: XPR 5550e Audio Accy (PPT) - RMN5127C 02806-EMC-00002

46	467.775 MHz 25 kHz			1 Watt(s)/Low Power				S/N: 511TRMB909				
	Freque (MH	ency z)	FCC Failing Limit			Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)				Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)		
	935.5	500		-13			***				11	
	1403.3			-13			**				**	
	1871.1	000		-13			***				11	
	2338.8	3750		-13			**					
	2806.6	500		-13			**				**	
	3274.4	250		-13			***				**	
	3742.2			-13			***				**	
	4209.9	750		-13			***				**	
	4677.7	500		-13			***				**	
$\overline{}$			_						_			
	0 -				KADIA	NED SPURI	OUS EMISS	IONS				
Emission Level (dBm)	" T										Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)	
B		_	_	_	_	_	_	_	_	_	Into Ideal Dipole (dBm)	
9	-20 -											
3											□Vertical Measured	
8											Emission Equiv Pwr Into Ideal Dipole (dBm)	
60	-40 +	8	8	8	8	8	8	8	8		1	
E		935.5500	8	ě	8	8	4	8	6	78	■FCC Failing	
_		935	403, 3250	1871.1000	2338. 8750	2806. 6500	3274. 4250	3742.2000	4209.9750	677.7500	FCC Falling Limit	
			-	-	64		ncy (MHz)	es	4	4		
						eque	j (inz)					

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin Industry Canada: 109AK FCC Registration: 772092

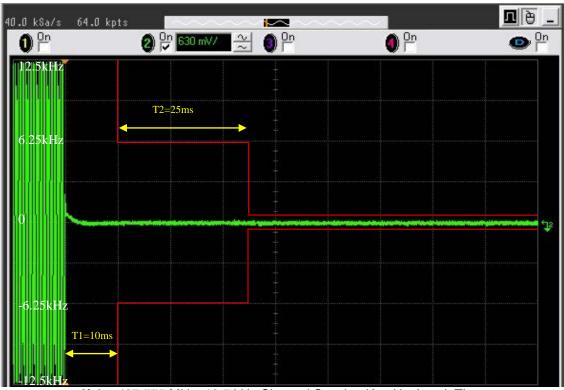

August 28, 2015

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

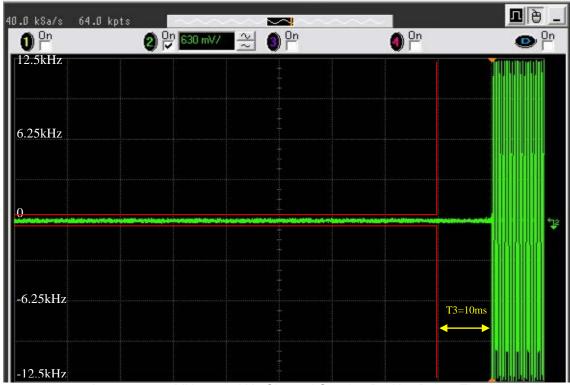

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Temp(Deg): 23.4 Hum(%RH): 71.2 Remarks: Passed Results Marginal Result Failed Results

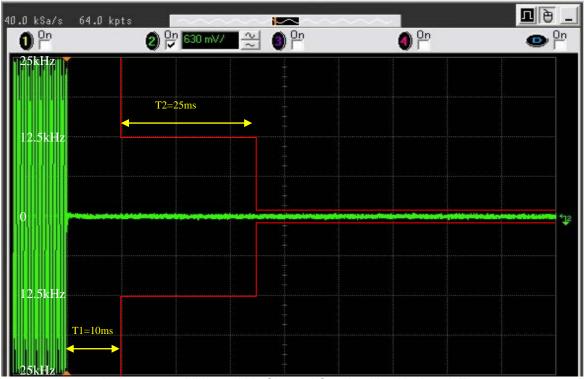
EXHIBIT 6H – Frequency Stability

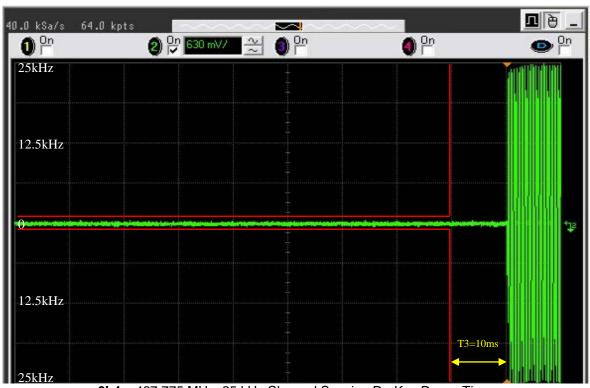


6H-1 - 467.775 MHz Frequency Stability vs. Temperature



6H-2 - 467.775 MHz Frequency Stability vs. Supply Voltage


EXHIBIT 6I – Transient Frequency Behavior


6I-1 - 467.775 MHz, 12.5 kHz Channel Spacing Key-Up Attack Time

6I-2 - 467.775 MHz, 12.5 kHz Channel Spacing De-Key Decay Time

61-3 - 467.775 MHz, 25 kHz Channel Spacing Key-Up Attack Time

61-4 - 467.775 MHz, 25 kHz Channel Spacing De-Key Decay Time