Certificate Number: 1449-02

CGISS EME Test Laboratory

8000 West Sunrise Blvd Fort Lauderdale, FL. 33322

S.A.R. EME Compliance Test Report Part 2 of 2

Attention: FCC

Date of Report: March 17, 2003

Report Revision: Rev. O

Manufacturer: Motorola South - ARAD **Product Description:** Data Terminal w/ 0.6W iDEN

TDMA, 16 QAM; 1mW Bluetooth: Frequency Hopping Spread Spectrum

(FHSS)

FCC ID: AZ489FT7007

Device Model: F4415A (VA00010AB)

Test Period: 2/21/03 - 3/12/03

EME Tech: Ed Church

EME Eng.: Deanna Zakharia (Sr. Principle Staff Eng.)

Author: Michael Sailsman

Global EME Regulatory Affairs Liaison

Note: Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 2.0 of this report.

Signature on File	3/17/03
Ken Enger	Date Approved
Senior Resource Manager, Laboratory Director, CGISS EME Lab	

Note: This report shall not be reproduced without written approval from an officially designated representative of the Motorola EME Laboratory.

Form-SAR-Rpt-Rev. 1.00 Page 1 of 46

APPENDIX A

Power Slump Data/Shortened Scan

Form-SAR-Rpt-Rev. 1.00 Page 2 of 46

DUT Power versus time data (FNN5105A battery)

HDT600 with iDEN iO1000 Power Measurements for EME

Model F4415A					
Initial Power Measurements iDEN				iDEN	
	HDT600		Power Slui	mp @ 813.5 MI	dz (Ch. 600)
iO1000 IMEI 000200047164130				. 0	,
Frequency (MHz)	Power (W)	Power (dBm)	Time (min)	Power (W)	Power (dBm)
806.0000	0.707	28.49	0	0.702	28.46
813.5000	0.703	28.47	1	0.713	28.53
820.9875	0.690	28.39	2	0.719	28.57
			3	0.721	28.58
			4	0.726	28.61
			5	0.728	28.62
			6	0.708	28.50
Power output me			7	0.722	28.58
HP438A Power	,		8	0.720	28.57
with HP8482H P			9	0.698	28.44
Calibration date:			10	0.701	28.46
Next calibration:			11	0.702	28.46
Data recorded w			12	0.701	28.46
HP34970 Data A			13	0.704	28.47
Calibration date:			14	0.705	28.48
Next calibration:	31.12.03		15	0.703	28.47
П			16	0.706	28.49
		l	17	0.707	28.49
		ς	18	0.706	28.49
Test Mode: TDN	/IA 67.5%		19	0.709	28.50
H		_	20	0.709	28.51
			21	0.707	28.50
			22	0.710	28.51
			23	0.710	28.51
			24	0.708	28.50
			25	0.711	28.52
			26	0.712	28.52
			27	0.711	28.52
			28	0.695	28.42
			29	0.599	27.77
			30	0.711	28.52
			31	0.607	27.83
			32	0.658	28.18
			33	0.710	28.51
			34	0.586	27.68
			35	0.637	28.04
			36	0.693	28.41
			37	0.619	27.92
			38	0.620	27.92
			39	0.703	28.47
			40	0.674	28.29
			70	0.074	20.20

Form-SAR-Rpt-Rev. 1.00 Page 3 of 46

Shortened Scan Results

FCC ID: AZ489FT7007; Test Date: 3/12/03 Motorola CGISS EME Laboratory

Run #: EC-Ab-R1-030312-04

Model #: F4415A (VA00010AB); SN:296SDA0286

SIM TEMP: 21.3 C TX Freq: 813.5 MHz

Antenna: FAF5214A internal Battery Kit: FNN5105A

Carry: None Audio Acc. None

Shortened scan reflect highest S.A.R. producing configuration; Run time 15 minutes.

Representative "normal" scan run time was 30 minutes

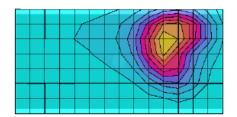
"Shortened" scan max calculated S.A.R. using S.A.R. drift = 2.60 mW/g

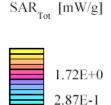
"Normal" scan max calculated S.A.R. using S.A.R. drift = 2.52 mW/g (see section 7.1 run # EC-Ab-R3-030312-02)

DUT display towards phantom

Flat Phantom; Position: (90°,90°);

Probe: ET3DV6 - SN1383 (Cal Date 02-26-2003); ConvF(6.50,6.50,6.50); Probe cal date: 26/02/03; Crest factor: 1.5; FCC


Body 813: σ = 0.94 mho/m ε = 52.5 ρ = 1.00 g/cm3; DAE CAL DATE: 02-19-03


Cube 5x5x7: SAR (1g): 2.60 mW/g, SAR (10g): 1.75 mW/g * Max outside, (Worst-case extrapolation)

Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0; SAR (1g): 2.60 mW/g, SAR (10g): 1.75 mW/g * Max outside

Power drift: 0.08 dB

Note: "Max outside" has been identified by SPEAG as an unresolved intermittent occurrence with the DASY 3 application even when the entire peak area is captured.

Form-SAR-Rpt-Rev. 1.00 Page 4 of 46

APPENDIX B Data Results

Form-SAR-Rpt-Rev. 1.00 Page 5 of 46

FCC ID: AZ489FT7007; Test Date: 2/21/03 Motorola CGISS EME Laboratory

RUN #: EC-Ab-R3-030221-02

Model #: F4415A (VA00010AB); SN: 296SDA0292

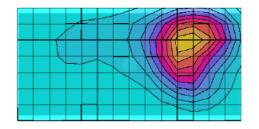
SIM TEMP: 22.0 C TX Freq: 813.5 MHz

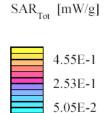
Antenna: FAF5214A internal Battery Kit: FNN5105A

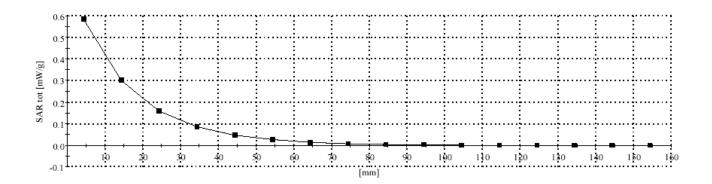
Carry: None Audio Acc. None

DUT display towards phantom

Flat Phantom; Position: (90°,90°);


Probe: ET3DV6 - SN1393 (Cal Date 03-22-2002); ConvF(6.90,6.90,6.90); Probe cal date: 3/22/02; Crest factor: 6.0; FCC


Body 813: σ = 0.99 mho/m ϵ = 53.0 ρ = 1.00 g/cm3; DAE CAL DATE: 02-19-03


Cube 7x7x7: SAR (1g): 0.562 mW/g, SAR (10g): 0.388 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 31.5, 157.5, 4.4

Power drift: 0.35 dB

Form-SAR-Rpt-Rev. 1.00 Page 6 of 46

FCC ID: AZ489FT7007; Test Date: 3/09/03 Motorola CGISS EME Laboratory

Run #: EC-Ab-R3-030309-07

Model #: F4415A (VA00010AB); SN: 296SDA0286

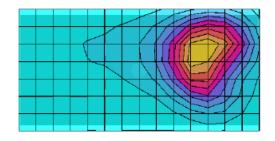
SIM TEMP: 19.1 C TX Freq: 813.5 MHz

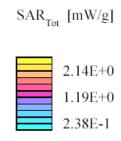
Antenna: FAF5214A internal Battery Kit: FNN5105A

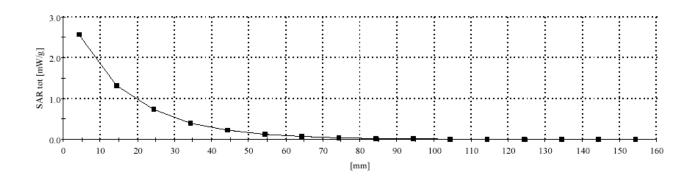
Carry: None Audio Acc. None

DUT display against phantom

Flat Phantom; Position: (90°,90°);


Probe: ET3DV6 - SN1393 (Cal Date 03-22-2002); ConvF(6.90,6.90,6.90); Probe cal date: 3/22/02; Crest factor: 1.5; FCC


Body 813: σ = 0.98 mho/m ϵ = 54.5 ρ = 1.00 g/cm3; DAE CAL DATE: 11-11-02


Cube 7x7x7: SAR (1g): 2.47 mW/g, SAR (10g): 1.71 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 36.0, 157.5, 4.4

Power drift: 0.23 dB

Form-SAR-Rpt-Rev. 1.00 Page 7 of 46

FCC ID: AZ489FT7007; Test Date: 3/09/03 Motorola CGISS EME Laboratory

Run #: EC-Ab-R3-030224-04

Model #: F4415A (VA00010AB); SN: 296SDA0292

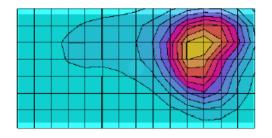
Sim Temp: 21.2 C TX Freq: 813.5 MHz

Antenna: FAF5214A internal Battery Kit: FNN5105A Carry: carry case FHN6396A

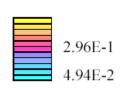
Audio Acc. None

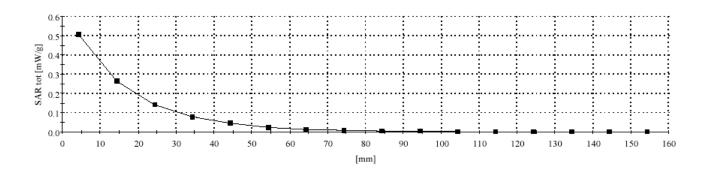
DUT display towards phantom

Flat Phantom; Position: (90°,90°);


Probe: ET3DV6 - SN1393 (Cal Date 03-22-2002); ConvF(6.90,6.90,6.90); Probe cal date: 3/22/02; Crest factor: 6.0; FCC

Body 813: σ = 0.98 mho/m ϵ = 52.9 ρ = 1.00 g/cm3; DAE CAL DATE: 11-11-02


Cube 7x7x7: SAR (1g): 0.489 mW/g, SAR (10g): 0.340 mW/g, (Worst-case extrapolation)


Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 33.0, 159.0, 4.4

Power drift 0.07

Form-SAR-Rpt-Rev. 1.00 Page 8 of 46

FCC ID: AZ489FT7007; Test Date: 3/09/03 Motorola CGISS EME Laboratory

Run #: EC-Ab-R3-030309-04

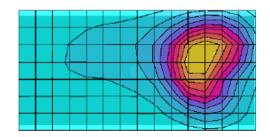
Model #: F4415A (VA00010AB); SN: 296SDA0292

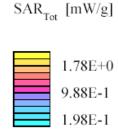
SIM TEMP: 19.1 C TX Freq: 813.5 MHz

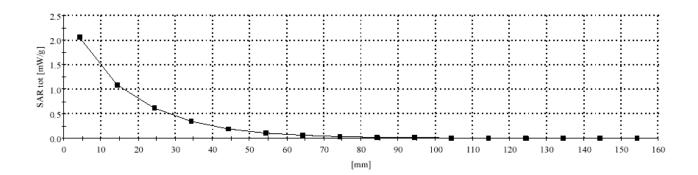
Antenna: FAF5214A internal Battery Kit: FNN5105A Carry: FMN6396A Audio Acc. None

DUT display towards phantom

Flat Phantom; Position: (90°,90°);


Probe: ET3DV6 - SN1393 (Cal Date 03-22-2002); ConvF(6.90,6.90,6.90); Probe cal date: 3/22/02; Crest factor: 1.5; FCC


Body 813: σ = 0.98 mho/m ϵ = 54.5 ρ = 1.00 g/cm3; DAE CAL DATE: 11-11-02


Cube 7x7x7: SAR (1g): 2.07 mW/g, SAR (10g): 1.44 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 40.5, 159.0, 4.4

Power Drift: -0.13 dB

Form-SAR-Rpt-Rev. 1.00 Page 9 of 46

FCC ID: AZ489FT7007; Test Date: 3/4/03 Motorola CGISS EME Laboratory

Run #: EC-Ab-R3-030304-10

Model #: F4415A (VA00010AB); SN: 296SDA0292

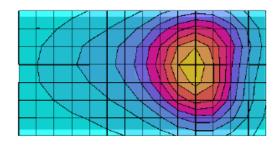
SIM TEMP: 22.3 C TX Freq: 813.5 MHz

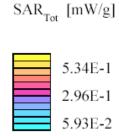
Antenna: FAF5214A internal Battery Kit: FNN5105A

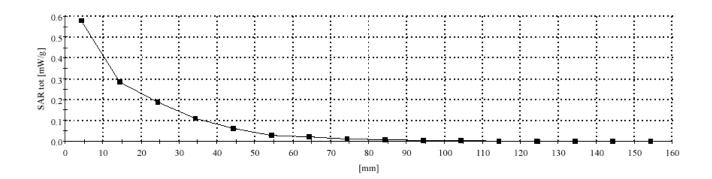
Carry: None Audio Acc. None

DUT display towards phantom w/ 2.5 cm separation

Flat Phantom; Position: (90°,90°);


Probe: ET3DV6 - SN1393 (Cal Date 03-22-2002); ConvF(6.90,6.90,6.90); Probe cal date: 3/22/02; Crest factor: 1.5; FCC


Body 814: $\sigma = 0.99$ mho/m $\varepsilon = 53.4 \rho = 1.00$ g/cm³; DAE CAL DATE: 02-19-03


Cube 7x7x7: SAR (1g): 0.584 mW/g, SAR (10g): 0.411 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 46.5, 148.5, 4.4

Power drift: -0.15 dB

Form-SAR-Rpt-Rev. 1.00 Page 10 of 46

APPENDIX C

Dipole System Performance Check Results

Form-SAR-Rpt-Rev. 1.00 Page 11 of 46

SPEAG 835 MHz Dipole; Model D835V2, SN 426; Test Date: 2/21/03 Motorola CGISS EME Lab

Run #: Sys Perf R3 030221 01

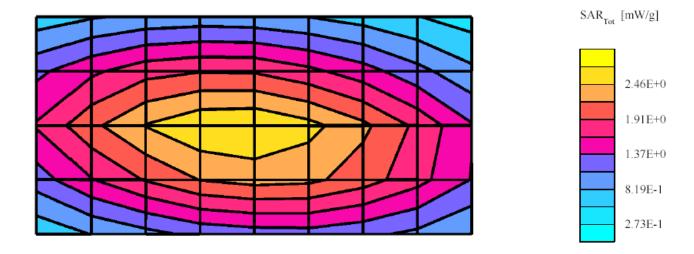
TX Freq: 835 MHz

Sim Tissue Temp: 22.0 (Celsius)

Start Power; 250mW

Target at 1W is 10.65 mW/g (1g)

SAR calculated is 10.75 mW/g, Percent from target (including drift) for 1g is 0.98 %


Flat; Probe: ET3DV6 - SN1393 (Cal Date 03-22-2002); Probe Cal Date: 3/22/02ConvF(6.90,6.90,6.90); Crest factor: 1.0; FCC

Body 835: $\sigma = 1.01$ mho/m $\epsilon = 52.9$ $\rho = 1.00$ g/cm₃; DAE Cal Date: 02/08/02

Cubes (2): Peak: $4.16 \text{ mW/g} \pm 0.04 \text{ dB}$, SAR (1g): $2.67 \text{ mW/g} \pm 0.04 \text{ dB}$, SAR (10g): $1.71 \text{ mW/g} \pm 0.05 \text{ dB}$, (Worst-case

extrapolation) Penetration depth: 12.4 (11.3, 13.9) [mm]

Power drift: -0.03 dB

Form-SAR-Rpt-Rev. 1.00 Page 12 of 46

SPEAG 835 MHz Dipole; Model D835V2, SN 426; Test Date: 2/24/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-03024-01

TX Freq: 835 MHz

Sim Tissue Temp: 21.0 (Celsius)

Start Power; 250mW

Target at 1W is 10.65 mW/g (1g)

SAR calculated is 10.50 mW/g, Percent from target (including drift) for 1g is 1.37 %

Flat; Probe: ET3DV6 - SN1393 (Cal Date 03-22-2002); Probe Cal Date: 3/22/02ConvF(6.90,6.90,6.90); Crest factor: 1.0; FCC

Body 835: $\sigma = 1.00 \text{ mho/m} \ \epsilon = 52.7 \ \rho = 1.00 \text{ g/cm}_3; DAE Cal Date: 02/08/02$

Cubes (2): Peak: $4.08 \text{ mW/g} \pm 0.05 \text{ dB}$, SAR (1g): $2.62 \text{ mW/g} \pm 0.05 \text{ dB}$, SAR (10g): $1.68 \text{ mW/g} \pm 0.06 \text{ dB}$, (Worst-case

extrapolation) Penetration depth: 12.4 (11.3, 13.9) [mm]

Power drift: -0.01 dB

Form-SAR-Rpt-Rev. 1.00 Page 13 of 46

SPEAG 835 MHz Dipole; Model D835V2, SN 426; Test Date:3/03/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030303-10

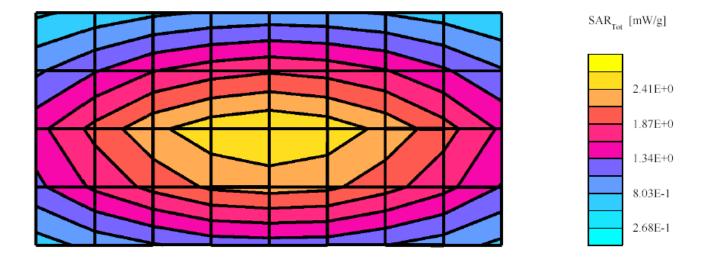
TX Freq: 835 MHz

Sim Tissue Temp: 22.3 (Celsius)

Start Power; 250mW

Target at 1W is 10.65 mW/g (1g)

SAR calculated is 10.54 mW/g, Percent from target (including drift) for 1g is 0.99 %


Flat; Probe: ET3DV6 - SN1393 (Cal Date 03-22-2002); Probe Cal Date: 3/22/02ConvF(6.90,6.90,6.90); Crest factor: 1.0; FCC

Body 835: $\sigma = 1.00$ mho/m $\epsilon = 53.2$ $\rho = 1.00$ g/cm₃; DAE Cal Date: 02/08/02

Cubes (2): Peak: $4.09 \text{ mW/g} \pm 0.05 \text{ dB}$, SAR (1g): $2.63 \text{ mW/g} \pm 0.05 \text{ dB}$, SAR (10g): $1.68 \text{ mW/g} \pm 0.05 \text{ dB}$, (Worst-case

extrapolation) Penetration depth: 12.5 (11.3, 14.0) [mm]

Power drift: -0.01 dB

Form-SAR-Rpt-Rev. 1.00 Page 14 of 46

SPEAG 835 MHz Dipole; Model D835V2, SN 426; Test Date: 3/04/02 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030304-01

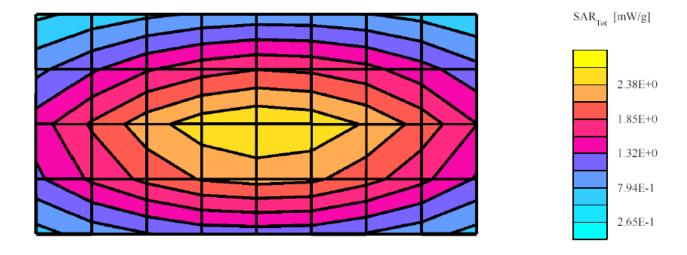
TX Freq: 835 MHz

Sim Tissue Temp: 22.5 (Celsius)

Start Power; 250mW

Target at 1W is 10.65 mW/g (1g)

SAR calculated is 10.38 mW/g, Percent from target (including drift) for 1g is - 2.50 %


Flat; Probe: ET3DV6 - SN1393 (Cal Date 03-22-2002); Probe Cal Date: 3/22/02ConvF(6.90,6.90,6.90); Crest factor: 1.0; FCC

Body 835: $\sigma = 1.01$ mho/m $\epsilon = 53.1$ $\rho = 1.00$ g/cm₃; DAE Cal Date: 02/08/02

Cubes (2): Peak: $4.04 \text{ mW/g} \pm 0.05 \text{ dB}$, SAR (1g): $2.59 \text{ mW/g} \pm 0.06 \text{ dB}$, SAR (10g): $1.67 \text{ mW/g} \pm 0.06 \text{ dB}$, (Worst-case

extrapolation) Penetration depth: 12.5 (11.3, 14.0) [mm]

Power drift: -0.01 dB

Form-SAR-Rpt-Rev. 1.00 Page 15 of 46

SPEAG 835 MHz Dipole; Model D835V2, SN 426; Test Date: 3/09/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030309-01

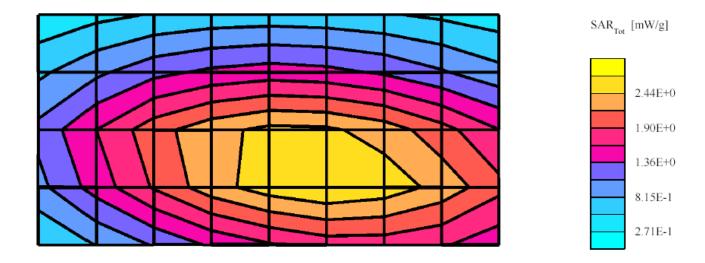
TX Freq: 835 MHz

Sim Tissue Temp: 19.1 (Celsius)

Start Power; 250mW

Target at 1W is 10.65 mW/g (1g)

SAR calculated is 10.98 mW/g, Percent from target (including drift) for 1g is 3.06 %


Flat; Probe: ET3DV6 - SN1393 (Cal Date 03-22-2002); Probe Cal Date: 3/22/02ConvF(6.90,6.90,6.90); Crest factor: 1.0; FCC

Body 835: σ = 1.01 mho/m ϵ = 54.3 ρ = 1.00 g/cm₃; DAE Cal Date: 02/08/02

Cubes (2): Peak: $4.16 \text{ mW/g} \pm 0.03 \text{ dB}$, SAR (1g): $2.70 \text{ mW/g} \pm 0.04 \text{ dB}$, SAR (10g): $1.75 \text{ mW/g} \pm 0.04 \text{ dB}$, (Worst-case

extrapolation) Penetration depth: 12.7 (11.6, 14.1) [mm]

Power drift: -0.07 dB

Form-SAR-Rpt-Rev. 1.00 Page 16 of 46

SPEAG 835 MHz Dipole; Model D835V2, SN 426; Test Date: 3/10/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030310-01

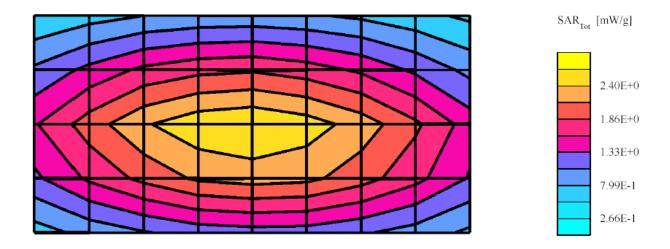
TX Freq: 835 MHz

Sim Tissue Temp: 20.9 (Celsius)

Start Power; 250mW

Target at 1W is 10.65 mW/g (1g)

SAR calculated is 10.51 mW/g, Percent from target (including drift) for 1g is - 1.29 %


Flat; Probe: ET3DV6 - SN1393 (Cal Date 03-22-2002); Probe Cal Date: 3/22/02ConvF(6.90,6.90,6.90); Crest factor: 1.0; FCC

Body 835: $\sigma = 1.01$ mho/m $\epsilon = 54.8$ $\rho = 1.00$ g/cm₃; DAE Cal Date: 11/11/02

Cubes (2): Peak: $4.04 \text{ mW/g} \pm 0.05 \text{ dB}$, SAR (1g): $2.61 \text{ mW/g} \pm 0.05 \text{ dB}$, SAR (10g): $1.68 \text{ mW/g} \pm 0.05 \text{ dB}$, (Worst-case

extrapolation) Penetration depth: 12.7 (11.5, 14.2) [mm]

Power drift: -0.03 dB

Form-SAR-Rpt-Rev. 1.00 Page 17 of 46

SPEAG 835 MHz Dipole; Model D835V2, SN 427; Test Date: 3/12/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030312-01

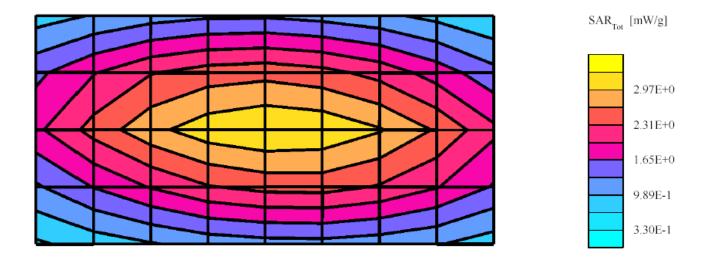
TX Freq: 835 MHz

Sim Tissue Temp: 22.0 (Celsius)

Start Power; 250mW

Target at 1W is 11.09 mW/g (1g)

SAR calculated is 11.11 mW/g, Percent from target (including drift) for 1g is + 0.17 %


Probe: ET3DV6 - SN1383 (Cal Date 02-26-2003);Probe Cal Date: 26/02/03ConvF(6.30,6.30,6.30); Crest factor: 1.0; FCC

Body 835: σ = 0.97 mho/m ε= 52.5 ρ = 1.00 g/cm₃; DAE Cal Date: 02-19-2003

Cubes (2): Peak: $4.69 \text{ mW/g} \pm 0.05 \text{ dB}$, SAR (1g): $2.79 \text{ mW/g} \pm 0.03 \text{ dB}$, SAR (10g): $1.76 \text{ mW/g} \pm 0.03 \text{ dB}$, (Worst-case

extrapolation) Penetration depth: 11.9 (9.5, 15.3) [mm]

Power drift: 0.02 dB

Form-SAR-Rpt-Rev. 1.00 Page 18 of 46

SYSTEM PERFORMANCE CHECK TARGET SAR

Date: Lab Location: Robot System: Probe Serial #: DAE Serial #:	5/20/02 CGISS 	Frequency (MHz Mixture Type Ambient Tem Tissue Temp.	p.(°C):	835 FCC Body 21.9 21.0
Tissue Characteristics Permitivity: Conductivity:	53.2 0.97	Phantom Type/SN: Distance (mm):	ACL4	40232002B
Reference Source: Reference SN:	835 (Dipole)	•		
Power to Dipole:	<u>250</u> mW			
Measured SAR Value Power Drift:	2.65 mW/ 0.02 dB	g <u>, 1.69</u> mW/g (10g a	avg.)	
New Target/Measured SAR Value: (normalized to 1.0 W, with drift compensation	_10,65 _ m\	W/g, <u>6.79</u> mW/	′g (10g a	ivg.)
Test performed by:	Kim Uong	Initial:		

Form-SAR-Rpt-Rev. 1.00 Page 19 of 46

Dipole D835V2 SN426; Test date:05/20/02

Run #: 02052001 Phantom #AC

Phantom #ACL40232002B/S11

Model#: SPEAG dipole D835V2 SN426

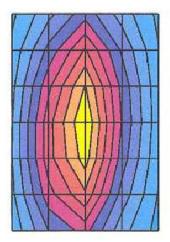
Robot#; CGISS-2 DAE:

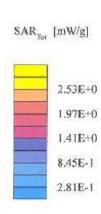
DAE: DAE3V1 SN374 (2/11/02) Simulated tissue temp: 21.0C Tester: Kim Uong

Tx Freq: 835MHz Start power: 250mW

Target:

10.5mW/g for 1g-SAR, 6.8mW/g for 10g-SAR, +/-12.1% from SPEAG Dipole certificate 2/11/02


Flat; Probe: ET3DV6 - SN1383; ConvF(6.50,6.50,6.50); Crest factor: 1.0; FCC Body 835: $\sigma = 0.97$ mho/m $\epsilon_{\rm r} = 53.2$ $\rho = 1.00$


g/cm3

Cube 7x7x7: Peak: 4.25 mW/g, SAR (1g): 2.65 mW/g, SAR (10g): 1.69 mW/g, (Worst-case extrapolation)

Penetration depth: 12.1 (10.6, 14.1) [mm]

Powerdrift: -0.02 dB

Motorola CGISS EME Lab

Form-SAR-Rpt-Rev. 1.00 Page 20 of 46

SYSTEM PERFORMANCE CHECK TARGET SAR

Date:	11/20/2002	Frequency (MHz):	835MHz	
Lab Location:	CGISS	Mixture Type:	FCC Body	
Robot System:	CGISS R1	Ambient Temp.(°C):	22.1	
Probe Serial #:	ET3DV6-1545	Tissue Temp.(°C):	20.6	
DAE Serial #:	363			
Tissue Characteristics	S			
Permitivity:	53.3	Phantom Type/SN:	80302002A	
Conductivity:	1.01	Distance (mm):	15 (tissue/dipole cnt)	
Reference Source:	D835V2	(Dipole)		
Reference SN:	427			
Power to Dipole:	250 mW			
Measured SAR Value	e: 2.	78 mW/g, 1.79	mW/g (10g avg.)	
Power Drift:	0.	01 d B		
New Target/Measure	d			
SAR Value:	11.	09 mW/g, 7.14	mW/g (10g avg.)	
(normalized to 1.0 W, include	ling drift)			
Test performed by:	s	.Whalen	Initial: Sew	

Sys. Per. Chk. Form: 021024

SPEAG Dipole 835MHz. Test Date:11/20/02

Run #: Sys Perf-R1-021120-02

Phantom #: 80302002A / S8

Model #: D835V2

SN: 427

Robot: CGISS-1

Tester: S. Whalen

TX Freq: 835 MHz

Start Power; 250m W

Sim Tissue Temp: 20.6 (Celsius)

DAE3: SN363-V1

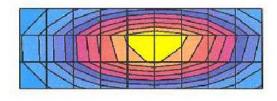
DAE Cal Date: 05/23/02

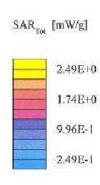
- Comments-

New Target at 1W is mW/g (including drift) (1g)

Flat Phantom; Device

Probe; ET3DV6R(cal date 5-21-02) - SN1545; Probe Cal Date: 21/05/02ConvF(6.00,6.00,6.00); Crest factor: 1.0; FCC Body 835


MHz: $\sigma = 1.01 \text{ mho/m } \epsilon_r = 53.3 \text{ } \rho = 1.00 \text{ g/cm}^3$


Cubes (2): Peak: 4.31 mW/g ± 0.06 dB, SAR (1g): 2.78 mW/g ± 0.07 dB, SAR (10g): 1.79 mW/g ± 0.07 dB, (Worst-case

extrapolation)

Penetration depth: 12.5 (11.4, 13.9) [mm]

Powerdrift: 0.01 dB

Motorola CGISS EME Lab

APPENDIX D

Calibration Certificates

Form-SAR-Rpt-Rev. 1.00 Page 23 of 46

Schmid & Partner Engineering AG

Zeughausstrasso 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1393
Place of Calibration:	Zurich
Date of Calibration:	March 22, 2002
Calibration Interval:	12 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

N. Vellato

Approved by:

Sleonic Kat-

ET3DV6 SN:1393 March 22, 2002

DASY3 - Parameters of Probe: ET3DV6 SN:1393

Sensitivity in Free Space		Diode Compress	ion		
	NormX	1.80 μV/(V/m) ²	DCP X	95	mV
	NormY	1.49 μV/(V/m) ²	DCP Y	95	mV
	NormZ	1.80 μV/(V/m) ²	DCP Z	95	mV

Sensitivity in Tissue Simulating Liquid

Head	900 MHz		ε, = 41.5 ± 5%	$\sigma = 0.97$	± 5% mho/m	
Head	835 MHz		$\varepsilon_r = 41.5 \pm 5\%$	$\sigma = 0.90$	± 5% mho/m	
	ConvF X	7.1 ± 9.	5% (k=2)	Bour	dary effect:	
	ConvF Y	7.1 ± 9.	5% (k=2)	Alph	a 0.32	
	ConvF Z	7.1 ± 9.	5% (k=2)	Dept	h 2.56	,
Head	1800 MHz		ϵ_{r} = 40.0 ± 5%	σ = 1.40	± 5% mho/m	
Head	1900 MHz		$\varepsilon_{\rm r}$ = 40.0 ± 5%	$\sigma = 1.40$	± 5% mho/m	
	ConvF X	5.5 ± 9.	5% (k=2)	Bour	ndary effect:	
	ConvF Y	5.5 ± 9.	5% (k=2)	Alpha	a 0.44	
	ConvF Z	5.5 ± 9.	5% (k=2)	Dept	h 2.49	

Boundary Effect

Head	900 MI	Hz Typical SAR gradient: 5 9	% per mm	
	Probe Tip to Bo	bundary	1 mm	2 mm
	SAR _{be} [%] W	ithout Correction Algorithm	8.4	4.8
	SAR _{be} [%] W	ith Correction Algorithm	0.3	0.5
Head	1800 MI	Hz Typical SAR gradient: 10	% per mm	
	Probe Tip to Bo	oundary	1 mm	2 mm
	SAR _{be} [%] W	ithout Correction Algorithm	10.7	7.3
	SAR _{be} [%] W	ith Correction Algorithm	0.2	0.3

Sensor Offset

Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.7 ± 0.2	mm

Page 2 of 7

Form-SAR-Rpt-Rev. 1.00 Page 25 of 46

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1393
Place of Assessment:	Zurich
Date of Assessment:	April 24, 2002
Probe Calibration Date:	March 22, 2002

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Page 1 of 4 April 24, 2002

Form-SAR-Rpt-Rev. 1.00 Page 26 of 46

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6	
Serial Number:	1393	
Place of Assessment:	Zurich	
Date of Assessment:	March 25, 2002	
Probe Calibration Date:	March 22, 2002	

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Page 1 of 2

March 22, 2002

Dosimetric E-Field Probe ET3DV6 SN:1393

Conversion factor (± standard deviation)

835 MHz	ConvF	$7.2\pm8\%$	$\varepsilon_r = 41.5$ $\sigma = 0.90 \text{ mho/m}$ (head tissue)
835 MHz	ConvF	$6.9 \pm 8\%$	$\varepsilon_r = 55.2$ $\sigma = 0.97 \text{ mho/m}$ (body tissue)
900 MHz	ConvF	$6.8\pm8\%$	$\varepsilon_r = 55.0$ $\sigma = 1.05 \text{ mho/m}$ (body tissue)
1800 MHz	ConvF	5.1 ± 8%	$\varepsilon_r = 53.3$ $\sigma = 1.52 \text{ mho/m}$ (body tissue)
1950 MHz	ConvF	4. 9 ± 8%	$\varepsilon_r = 53.3$ $\sigma = 1.52 \text{ mho/m}$ (body tissue)
2450 MHz	ConvF	$4.2\pm10\%$	$\varepsilon_r = 52.7$ $\sigma = 1.95 \text{ mho/m}$ (body tissue)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Motorola CGISS

	ET3DV6 - SN:138	3	
Calibration procedure(s)	QA CAL-01.v2 Calibration proced	ure for desimetric E-field probes	
Calibration date;	February 26, 2003		
Condition of the calibrated item	In Tolerance (acco	ording to the specific calibration	document)
his calibration statement docum- 7025 international standard.	ents traceability of M&TE used i	n the calibration procedures and conformity of the	ne procedures with the ISO/IEC
all calibrations have been conduc	ted in the closed laboratory faci	lity: environment temperature 22 +/- 2 degrees 0	Celsius and humidity < 75%.
alibration Equipment used (M&T	E-critical for calibration)		
	and of the state o		
Model Type	ID#	Cal Date	Scheduled Calibration
	Surple to de transporte de la composition de la contraction de la	Cal Date 4-Aug-99 (in house check Aug-02)	Scheduled Calibration
Model Type	ID#		
flodel Type RF generator HP 8684C ower sensor E4412A	ID# US3642U01700	4-Aug-99 (in hause check Aug-02)	In house check: Aug-05
Model Type RF generator HP 8684C	ID# US3642U01700 MY41495277	4-Aug-99 (in house check Aug-02) 8-Mar-02	In house check; Aug-05 Mar-03
Nodel Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A	ID# US3642U01700 MY41495277 MY41092180	4-Aug-99 (in house check Aug-02) 8-Mar-02 18-Sep-02	In house check: Aug-05 Mar-03 Sep-03
Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B	ID # US3642U01700 MY41495277 MY41092180 GB41293874 US38432426	4-Aug-99 (in house check Aug-02) 8-Mar-02 18-Sep-02 13-Sep-02	In house check: Aug-05 Mar-03 Sep-03 Sep-03
Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Letwork Analyzer HP 8753E	ID # US3642U01700 MY41495277 MY41092180 GB41293874 US38432426	4-Aug-99 (in house check Aug-02) 8-Mar-02 18-Sep-02 13-Sep-02 3-May-00	In house check: Aug-05 Mar-03 Sep-03 Sep-03 In house check: May 03
Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Letwork Analyzer HP 8753E	ID # US3642U01700 MY41495277 MY41092180 GB41293874 US38432426 2 SN: 6295803	4-Aug-99 (in house check Aug-02) 8-Mar-02 18-Sep-02 13-Sep-02 3-May-00 3-Sep-01	In house check: Aug-05 Mar-03 Sep-03 Sep-03 In house check: May 03 Sep-03
Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Letwork Analyzer HP 8753E Fluke Process Calibrator Type 70	ID # U\$3642U01700 MY41495277 MY41092180 GB41293874 U\$38432426 2 SN: 6295803	4-Aug-99 (in house check Aug-02) 8-Mar-02 18-Sep-02 13-Sep-02 3-May-00 3-Sep-01	In house check: Aug-05 Mar-03 Sep-03 Sep-03 In house check: May 03 Sep-03

Form-SAR-Rpt-Rev. 1.00 Page 29 of 46

DASY - Parameters of Probe: ET3DV6 SN:1383

Sensitivity in Free Space

Diode Compression

NormX	1.80 μV/(V/m) ²	DCP X	93	mV
NormY	1.55 $\mu V/(V/m)^2$	DCPY	93	mV
NormZ	1.62 μV/(V/m) ²	DCP Z	93	mV

Sensitivity in Tissue Simulating Liquid

Head	900 MHz		$\epsilon_r = 41.5 \pm 5\%$	σ=	0.97 ± 5% i	mho/m
Head	835 MHz		$\epsilon_{\rm r}$ = 41.5 ± 5%	σ=	0.90 ± 5% r	mho/m
	ConvF X	6.5	± 9.5% (k=2)		Boundary e	effect:
	ConvF Y	6.5	± 9.5% (k=2)		Alpha	0.59
	ConvF Z	6.5	± 9.5% (k=2)		Depth	1.97
Head	1800 MHz		ϵ_r = 40.0 ± 5%	σ=	1.40 ± 5% r	nho/m
Head	1900 MHz		$\varepsilon_r = 40.0 \pm 5\%$	o =	1.40 ± 5% r	nho/m
	ConvF X	5.2	±9.5% (k=2)		Boundary e	effect:
	ConvF Y	5.2	± 9.5% (k=2)		Alpha	0.57
	ConvF Z	5.2	±9.5% (k=2)		Depth	2.54

Boundary Effect

Head	900) MHz	Typical SAR gradient: 5	% per mm	
	Probe Tip to	o Bounda	iry	1 mm	2 mm
	SAR _{be} [%]	Without	Correction Algorithm	10.0	5.2
	SAR _{be} [%]	With Co	prrection Algorithm	0.1	0.5
Head	1800	MHz	Typical SAR gradient: 10	% per mm	
	Probe Tip to	o Bounda	iry	1 mm	2 mm
	SAR _{be} [%]	Without	Correction Algorithm	15.1	9.9
	SAR _{be} [%]	With Co	prrection Algorithm	0.2	0.0

Sensor Offset

Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	0.5 ± 0.2	mm

Page 2 of 10

Dosimetric E-Field Probe ET3DV6 SN:1383

Conversion factor (± standard deviation)

150 MHz ×	ConvF	$8.1\pm8\%$	$\varepsilon_r = 61.9$ $\sigma = 0.80 \text{ mho/m}$ (body tissue)
236 MHz	ConvF	$7.9\pm8\%$	$\varepsilon_r = 59.8$ $\sigma = 0.87 \text{ mho/m}$ (body tissue)
300 MHz -	ConvF	7.8 ± 8%	$\epsilon_r = 58.2$ $\sigma = 0.92 \text{ mho/m}$ (body tissue)
350 MHz	ConvF	7.8 ± 8%	$\epsilon_r = 57.7$ $\sigma = 0.93 \text{ mho/m}$ (body tissue)
450 MHz	ConvF	$7.5 \pm 8\%$	$\epsilon_r = 56.7$ $\sigma = 0.94 \text{ mho/m}$ (body tissue)
784 MHz 🗸	ConvF	6.5 ± 8%	$\varepsilon_r = 55.4$ $\sigma = 0.97 \text{ mho/m}$ (body tissue)
1450 MHz	ConvF	$5.3\pm8\%$	$\epsilon_r = 54.0$ $\sigma = 1.30 \text{ mho/m}$ (body tissue)

Dosimetric E-Field Probe ET3DV6 SN:1383

Conversion factor (± standard deviation)

		The state and the state of the	
150 MHz V	ConvF	$9.0\pm8\%$	$\epsilon_r = 52.3$ $\sigma = 0.76 \text{ mho/m}$ (head tissue)
236 MHz 🗸	ConvF	$8.2\pm8\%$	$\epsilon_r = 48.3$ $\sigma = 0.82 \text{ mho/m}$ (head tissue)
300 MHz V	ConvF	$7.7\pm8\%$	$\varepsilon_r = 45.3$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
350 MHz V	ConvF	$7.7 \pm 8\%$	$\epsilon_r = 44.7$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
400 MHz	ConvF	$7.5\pm8\%$	$\epsilon_r = 44.4$ $\sigma = 0.87 \text{ mho/m}$ (head tissue - CENELEC)
450 MHz ✓	ConvF	$7.5\pm8\%$	$\epsilon_r = 43.5$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
784 MHz ✓	ConvF	6.7 ± 8%	$\varepsilon_r = 41.8$ $\sigma = 0.90 \text{ mho/m}$ (head tissue)

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

835 MHz System Validation Dipole

Type:	D835V2
Serial Number:	426
Place of Calibration:	Zurich
Date of Calibration:	February 11, 2002
Calibration Interval:	24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

Form-SAR-Rpt-Rev. 1.00 Page 33 of 46

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 835 MHz:

Relative Dielectricity 41.9 $\pm 5\%$ Conductivity 0.89 mho/m $\pm 5\%$

The DASY3 System (Software version 3.1d) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.5) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1W input power.

2. SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 1. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm³ (1 g) of tissue: 10.2 mW/g

averaged over 10 cm³ (10 g) of tissue: 6.56 mW/g

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well.

Form-SAR-Rpt-Rev. 1.00 Page 34 of 46

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.375 ns (one direction)

Transmission factor: 0.997 (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 835 MHz: $Re\{Z\} = 50.3 \Omega$

Im $\{Z\} = -2.1 \Omega$

Return Loss at 835 MHz -33.8 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating solution of the following electrical parameters at 835 MHz:

Relative Dielectricity 55.4 \pm 5% Conductivity 0.96 mho/m \pm 5%

The DASY3 System (Software version 3.1d) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.2) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1W input power.

Form-SAR-Rpt-Rev. 1.00 Page 35 of 46

5. SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 4. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm³ (1 g) of tissue: 10.5 mW/g

averaged over 10 cm³ (10 g) of tissue: 6.80 mW/g

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 835 MHz: $Re\{Z\} = 46.0 \Omega$

Im $\{Z\} = -4.6 \Omega$

Return Loss at 835 MHz -24.1 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

9. Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Form-SAR-Rpt-Rev. 1.00 Page 36 of 46

02/11/02

Validation Dipole D835V2 SN:426, d = 15 mm

Cubes (2): Peak: 4.09 mW/g ± 0.04 dB, SAR (1g): 2.56 mW/g ± 0.03 dB, SAR (10g): 1.64 mW/g ± 0.02 dB, (Worst-case extrapolation) Penetration depth: 11.9 (10.5, 13.8) [mm] Frequency: 835 MHz; Antenna Input Power: 250 [mW] SAM Phantom; Flat Section; Grid Spacing: Dx = 20.0, Dy = 20.0, Dz = 10.0 Probe; ET3DV6.- SN1507; ConvF(6.50,6.50,6.50) at 900 MHz; IEEE1528.835 MHz; σ = 0.89 mho/m ϵ_r = 41.9 ρ = 1.00 g/cm³

1.00E+0

7.50E-1

5.00E-1

2.50E-1

1.25E+0

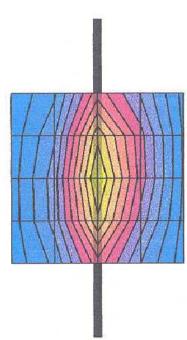
2.00E+0

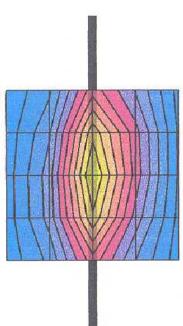
1.75E+0

1.50E+0

2.25E+0

2.50E+0


SAR_{Tot} [mW/g]


Schmid & Partner Engineering AG, Zurich, Switzerland

02/11/02

Validation Dipole D835V2 SN:426, d = 15 mm

Frequency: 835 MHz; Antenna Input Power: 250 [mW]
SAM Phantom; Flat Section; Grid Spacing: Dx = 20.0, Dy = 20.0, Dz = 10.0
Probe: ET3DV6.- SN1507; ConvF(6.20,6.20) at 900 MHz; Muscle 835 MHz; σ = 0.96 mho/m ε, = 55.4 ρ = 1.00 g/cm³
Cubes (2): Peak: 4.16 mW/g ± 0.01 dB, SAR (1g): 2.63 mW/g ± 0.00 dB, SAR (10g): 1.70 mW/g ± 0.01 dB, (Worst-case extrapolation)
Penetration depth: 12.5 (11.0, 14.4) [mm]

1,25E+0

1.75E+0

2.00E+0

1,50E+0

2.25E+0

2.50E+0

SAR_{Tot} [mW/g]

1.00E+0

7.50E-1

5.00E-1

2.50E-1

Schmid & Partner Engineering AG, Zurich, Switzerland

Page 38 of 46

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

835 MHz System Validation Dipole

Type:	D835V2
Serial Number:	427
Place of Calibration:	Zurich
Date of Calibration:	October 15, 2002
Calibration Interval:	24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

Approved by:

Approved by:

1. Measurement Conditions

The measurements were performed in the flat section of the new SAM twin phantom filled with head simulating solution of the following electrical parameters at 835 MHz:

Relative Dielectricity 41.3 $\pm 5\%$ Conductivity 0.88 mho/m $\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.6 at 835 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1 W input power.

2 SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue: 9.64 mW/g

averaged over 10 cm³ (10 g) of tissue: 6.20 mW/g

Form-SAR-Rpt-Rev. 1.00 Page 40 of 46

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.420 ns

(one direction)

Transmission factor:

0.992

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 835 MHz:

 $Re{Z} = 52.1 \Omega$

 $Im \{Z\} = 0.4 \Omega$

Return Loss at 835 MHz.

-33.3 dB

4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

5. Design

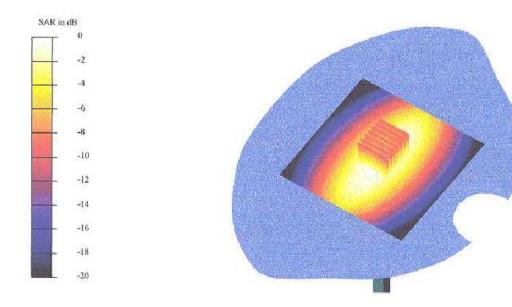
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

6. Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Form-SAR-Rpt-Rev. 1.00 Page 41 of 46

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN427_SN1507_HSL835_151002,da4


DUT: Dipole 835 MHz Type & Serial Number: D835V2 - SN427 Program: Dipole Calibration; Pin = 250 mW; d = 10 mm

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL 835 MHz (σ = 0.88 mho/m, ϵ = 41.3, ρ = 1000 kg/m3) Phantom section: FlatSection

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.6, 6.6, 6.6); Calibrated: 1/24/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN410; Calibrated: 7/18/2002
- Phantom: SAM 4.0 TP:1006
- Software: DASY4, V4.0 Build 35

Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm Reference Value = 56.3 V/m Peak SAR = 3.61 mW/g SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.55 mW/g Power Drift = 0.01 dB

Form-SAR-Rpt-Rev. 1.00 Page 42 of 46

APPENDIX E Illustration of Body-Worn Accessories

Form-SAR-Rpt-Rev. 1.00 Page 43 of 46

The purpose of this appendix is to illustrate the body-worn carry accessories for FCC ID: AZ489FT7007. The sample that was used in the following photos represents the product used to obtain the results presented herein and was used in this section to demonstrate the different body-worn accessories.

Photo 1. Model FHN6394A Back View

Photo 2. Model FHN6394A Front View

Photo 3. Model FHN6394A Side View

Photo 4. Model FHN6395A Back View

Photo 5. Model FHN6395A Front View

Photo 6. Model FHN6395A Side View

Form-SAR-Rpt-Rev. 1.00 Page 44 of 46

Photo 7. Model FHN6396A Back View

Photo 8. Model FHN6396A Front View

Photo 9. Model FHN6396A Side View

Form-SAR-Rpt-Rev. 1.00 Page 45 of 46

Appendix F Accessories and options test status and separation distances

The following table summarizes the body spacing distance provided by each of the body-worn accessories:

Carry Case Model	Tested ?	Separation distances between device and phantom surface. Range (mm)	Comments
			Similar to FHN6395A;
			No opening for the
FHN6394A	No	11- 40	display and keypad
FHN6395A	Yes	11 - 40	NA
FHN6396A	Yes	12 - 16	NA

Form-SAR-Rpt-Rev. 1.00 Page 46 of 46