EXHIBIT 6

INDEX OF SUBMITTED MEASURED DATA

This exhibit contains the measured data for this equipment as follows:

```
EXHIBIT 6A – RF Power Output (Table)
EXHIBIT 6B – Audio Frequency Response
               6B-1 -896.0125 MHz, 12.5 kHz Channel Spacing
               6B-2 -900.9875 MHz, 12.5 kHz Channel Spacing
               6B-3 -935.0125 MHz, 12.5 kHz Channel Spacing
               6B-4 -939.9875 MHz, 12.5 kHz Channel Spacing
EXHIBIT 6C – Audio Low Pass Filter Response
               6C-1 -896.0125 MHz, 12.5 kHz Channel Spacing
               6C-2 -900.9875 MHz, 12.5 kHz Channel Spacing
               6C-3 -935.0125 MHz, 12.5 kHz Channel Spacing
               6C-4 -939.9875 MHz, 12.5 kHz Channel Spacing
EXHIBIT 6D – Modulation Limiting
               6D-1 -899.0125 MHz, 12.5 kHz Channel Spacing
               6D-2 -938.0125 MHz, 12.5 kHz Channel Spacing
EXHIBIT 6E – Occupied Bandwidth
               6E-1 -896.0125 MHz, 12.5 kHz Channel Spacing (Analog Voice), 11K0F3E Mask D
               6E-2 -900.9875 MHz, 12.5 kHz Channel Spacing (Analog Voice), 11K0F3E Mask D
               6E-3 -901.9875 MHz, 12.5 kHz Channel Spacing (Analog Voice), 10K0F3E Mask 24.133 (Part 24)
               6E-4 -935.0125 MHz, 12.5 kHz Channel Spacing (Analog Voice), 11K0F3E Mask D
               6E-5 -939.9875 MHz, 12.5 kHz Channel Spacing (Analog Voice), 11K0F3E Mask D
               6E-6 -940.9875 MHz, 12.5 kHz Channel Spacing (Analog Voice), 10K0F3E Mask 24.133 (Part 24)
               6E-7 -896.0125 MHz, 12.5 kHz Channel Spacing (Digital Data), 8K10F1D Mask D
               6E-8 –900.9875 MHz, 12.5 kHz Channel Spacing (Digital Data), 8K10F1D Mask D
               6E-9 -901.9875 MHz, 12.5 kHz Channel Spacing (Digital Data), 8K10F1D Mask 24.133 (Part 24)
               6E-10 -935.0125 MHz, 12.5 kHz Channel Spacing (Digital Data), 8K10F1D Mask D
               6E-11 -939.9875 MHz, 12.5 kHz Channel Spacing (Digital Data), 8K10F1D Mask D
               6E-12 -940.9875 MHz, 12.5 kHz Channel Spacing (Digital Data), 8K10F1D Mask 24.133 (Part 24)
               6E-13 -896.0125 MHz, 12.5 kHz Channel Spacing (Digital Voice), 8K10F1E Mask D
               6E-14 -900.9875 MHz, 12.5 kHz Channel Spacing (Digital Voice), 8K10F1E Mask D
               6E-15 -901.9875 MHz, 12.5 kHz Channel Spacing (Digital Voice), 8K10F1E Mask 24.133 (Part 24)
               6E-16 -935.0125 MHz, 12.5 kHz Channel Spacing (Digital Voice), 8K10F1E Mask D
               6E-17 -939.9875 MHz, 12.5 kHz Channel Spacing (Digital Voice), 8K10F1E Mask D
               6E-18 -940.9875 MHz, 12.5 kHz Channel Spacing (Digital Voice), 8K10F1E Mask 24.133 (Part 24)
               6E-19 -896.0125 MHz, 12.5 kHz Channel Spacing (Digital TDMA), 8K10F1W Mask D
               6E-20 -900.9875 MHz, 12.5 kHz Channel Spacing (Digital TDMA), 8K10F1W Mask D
               6E-21 -901.9875 MHz, 12.5 kHz Channel Spacing (Digital TDMA), 8K10F1W Mask 24.133 (Part 24)
               6E-22 -935.0125 MHz, 12.5 kHz Channel Spacing (Digital TDMA), 8K10F1W Mask D
               6E-23 -939.9875 MHz, 12.5 kHz Channel Spacing (Digital TDMA), 8K10F1W Mask D
               6E-24 -940.9875 MHz, 12.5 kHz Channel Spacing (Digital TDMA), 8K10F1W Mask 24.133 (Part 24)
EXHIBIT 6F – Radiated Spurious Emissions
               6F-1 - Max Power 896.0125 MHz, 12.5 kHz Channel Spacing
               6F-2 - Max Power 900.9875 MHz, 12.5 kHz Channel Spacing
```

6F-3 - Max Power 935.0125 MHz, 12.5 kHz Channel Spacing 6F-4 - Max Power 939.9875 MHz, 12.5 kHz Channel Spacing

EXHIBIT 6G – Frequency Stability

6G-1 – 1.0 ppm Frequency Stability vs. Supply Voltage (899.0125 MHz)

6G-2 – 1.0 ppm Frequency Stability vs. Supply Voltage (901.9875 MHz) (Part 24)

6G-3 – 1.0 ppm Frequency Stability vs. Supply Voltage (938.0125 MHz)

6G-4 – 1.0 ppm Frequency Stability vs. Supply Voltage (940.9875 MHz) (Part 24)

6G-5 – 1.0 ppm Frequency Stability vs. Temperature (899.0125 MHz)

6G-6 – 1.0 ppm Frequency Stability vs. Temperature (901.9875 MHz) (Part 24)

6G-7 – 1.0 ppm Frequency Stability vs. Temperature (938.0125 MHz)

6G-8 – 1.0 ppm Frequency Stability vs. Temperature (940.9875 MHz) (Part 24)

EXHIBIT 6H – Conducted Spurious Emissions

6H-1 - Max Power 896.0125 MHz, 12.5 kHz Channel Spacing

6H-2 - Max Power 899.0125 MHz, 12.5 kHz Channel Spacing

6H-3 - Max Power 900.9875 MHz, 12.5 kHz Channel Spacing

6H-4 - Max Power 935.0125 MHz, 12.5 kHz Channel Spacing

6H-5 - Max Power 938.0125 MHz, 12.5 kHz Channel Spacing

6H-6 - Max Power 939.9875 MHz, 12.5 kHz Channel Spacing

** Please note that the above data were taken following the procedures and limits outlined in TIA 603-D and RSS 119 and 134 during the month of August 2013. See Table 2 in Ex07 test procedures

Radio model tested: AAH81WCN9NB2AN

Important Note: The data in this test report meets or exceeds the technical requirements of FCC Rule Parts 24 and 90

EXHIBIT 6A

RF Conducted Power Output Data -- Pursuant 47 CFR 2.1046(a), 2.1033(c)(6), 2.1033(c)(7) and 2.1033(c)(8)

<u>Frequency = 896.0125 MHz:</u>

Output RF power	1.0 Watts
DC Voltage	7.50 Volts
DC Current	0.99 Amps
Output RF power	2.50 Watts
DC Voltage	7.50 Volts
DC Current	1.43 Amps

Output RF power 3.0 Watts
DC Voltage 7.50 Volts
DC Current 1.55 Amps

Frequency = 900.9875 MHz:

Output RF power DC Voltage	1.0 Watts 7.50 Volts
DC Current	0.98 Amps
Output RF power DC Voltage DC Current	2.50 Watts 7.50 Volts 1.41 Amps
Output RF power DC Voltage DC Current	3.0 Watts 7.50 Volts 1.53 Amps

Frequency = 901.9875 MHz (Part 24) :

Output RF power DC Voltage DC Current	1.00 Watts 7.50 Volts 0.95 Amps
Output RF power DC Voltage DC Current	2.50 Watts 7.50 Volts 1.37 Amps
Output RF power DC Voltage DC Current	3.00 Watts 7.50 Volts 1.50 Amps

Frequency = 935.0125 MHz:

Output RF power	1.0 Watts
DC Voltage	7.50 Volts
DC Current	0.92 Amps

Output RF power 2.50 Watts
DC Voltage 7.50 Volts
DC Current 1.34 Amps

Output RF power 3.0 Watts
DC Voltage 7.50 Volts
DC Current 1.46 Amps

Frequency = 939.9875 MHz:

Output RF power	1.0 Watts
DC Voltage	7.50 Volts
DC Current	0.92 Amps

Output RF power2.50 WattsDC Voltage7.50 VoltsDC Current1.32 Amps

Output RF power 3.0 Watts
DC Voltage 7.50 Volts
DC Current 1.45 Amps

Frequency = 940.9875 MHz (Part 24):

Output RF power	1.00 Watts
DC Voltage	7.50 Volts
DC Current	0.87 Amps

Output RF power2.50 WattsDC Voltage7.50 VoltsDC Current1.26 Amps

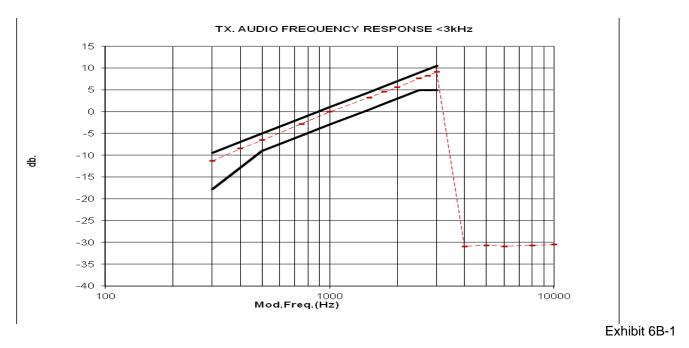
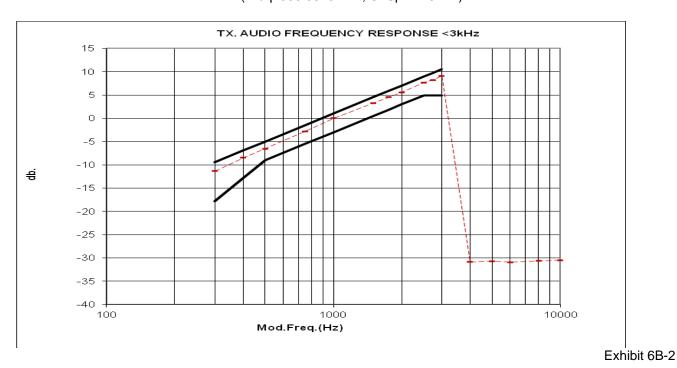
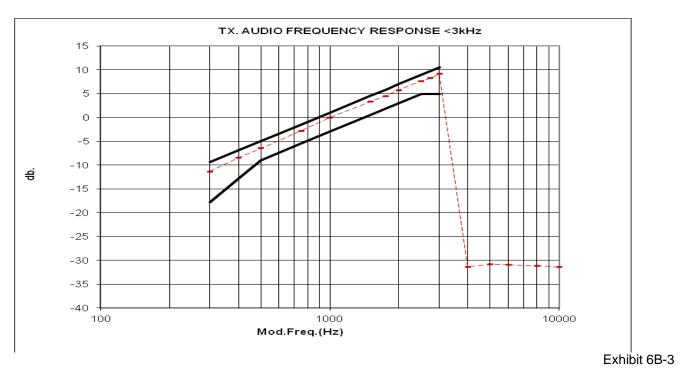

Output RF power3.00 WattsDC Voltage7.50 VoltsDC Current1.40 Amps

EXHIBIT 6B


Transmit Audio Response - Pursuant 47 CFR 2.1047 and 2.1033(c) (13)

Audio Frequency Response

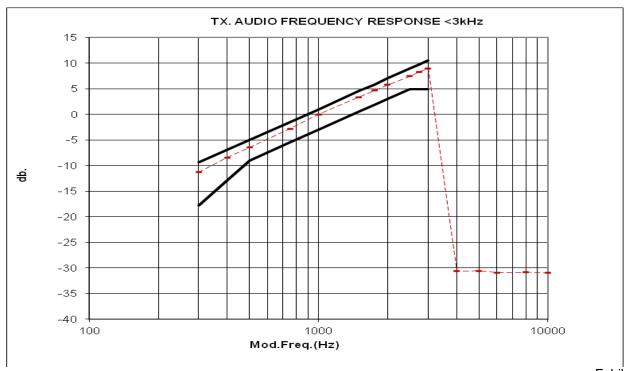

(Freq: 896.0125MHz, ChSp: 12.5 kHz)

<u>Audio Frequency Response</u> (Freq: 900.9875MHz, ChSp: 12.5kHz)

<u>Audio Frequency Response</u> (Freq: 935.0125MHz, ChSp: 12.5 kHz)

Audio Frequency Response

(Freq: 939.9875MHz, ChSp: 12.5kHz)



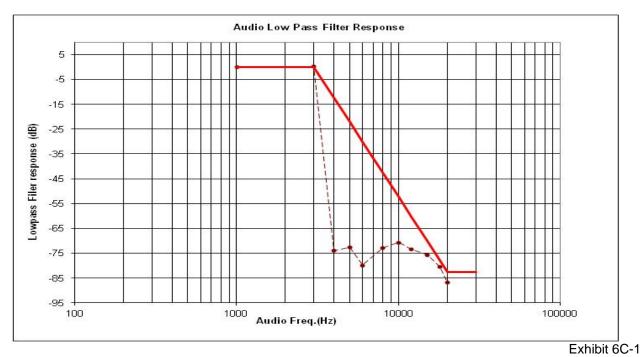

Exhibit 6B-4

EXHIBIT 6 SHEET 6 OF 34

EXHIBIT 6C Audio Low Pass Filter Response- Pursuant 47 CFR 2.1047 and 2.1033(c)(13)

Transmit Low Pass Filter Frequency Response

(Freq: 896.0125MHz, ChSp: 12.5 kHz)

Transmit Low Pass Filter Frequency Response

(Freq: 900.9875MHz, ChSp: 12.5 kHz)

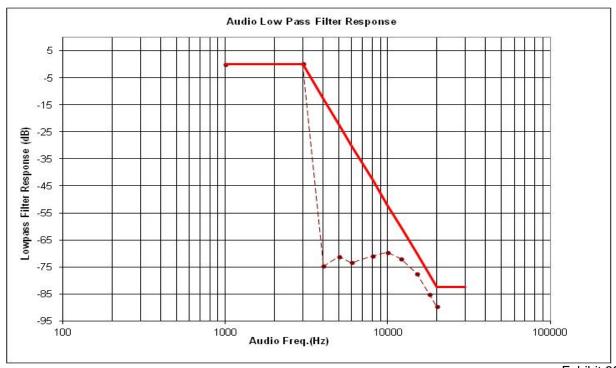
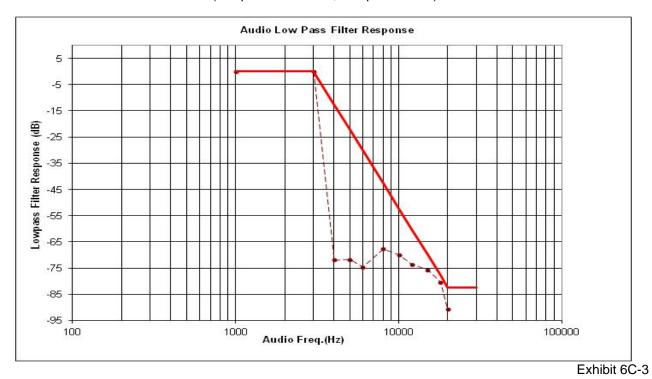
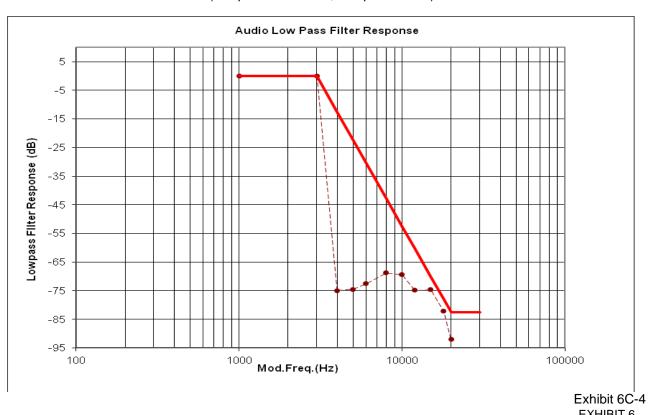



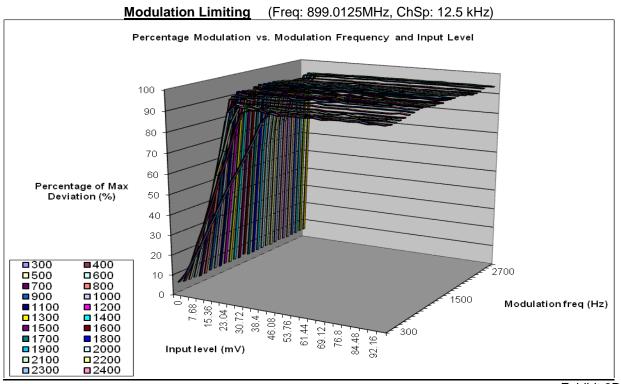
Exhibit 6C-2

EXHIBIT 6 SHEET 7 OF 34


Transmit Low Pass Filter Frequency Response

(Freq: 935.0125MHz, ChSp: 12.5 kHz)

Transmit Low Pass Filter Frequency Response


(Freq: 939.9875MHz, ChSp: 12.5 kHz)

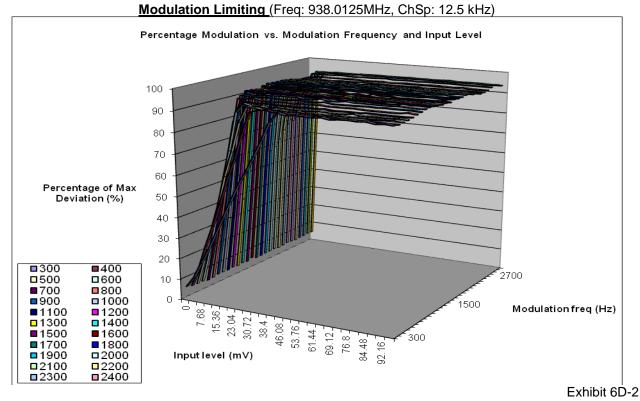


EXHIBIT 6

SHEET 8 OF 34

EXHIBIT 6D Modulation Limiting - Pursuant 47 CFR 2.1047 and 2.1033(c)(13)

Applicant: Motorola Solutions Inc.

BANDWIDTH CALCULATIONS:

Carson's Rule for FM modulation is utilized to compute the bandwidth shown in the FCC emission designator.

Carson's Rule is: BW = 2 * (M + D) where: BW = Bandwidth

M= Maximum modulating frequency

FCC ID: AZ489FT5861 / IC: 109U-89FT5864

D = Deviation

Shown below are the calculations required for FCC ID: AZ489FT5861

EXHIBIT 6E-1

Standard Audio Modulation (12.5 kHz Channelization, Analog Voice):

Emission Designator 11K0F3E

In this case, the maximum modulating frequency is 3.0 kHz with a 2.5 kHz deviation.

BW = $2(M+D) = 2*(3.0 \text{ kHz} + 2.5 \text{ kHz}) = 11 \text{ kHz} = 3 \times 11 \text{ kHz}$

F3E portion of the designator indicates voice.

Therefore, the entire designator for 12.5 kHz channelization analog voice is 11K0F3E.

EXHIBIT 6E-2

Digital (12.5 kHz Channelization, Digital Data):

Emission Designator 8K10F1D

The 99% energy rule (title 47CFR 2.989) was used for digital mode and is more accurate than Carson's rule. It basically states that 99% of the modulation energy falls within X kHz, in this case, 8.10 kHz Measurements were performed in accordance with TIA/EIA TSB102.CAAB Section 2.2.5.2. The emission mask was obtained from 47CFR 90.210(d).

F1D portion of the designator indicates digital data.

Therefore, the entire designator for 12.5 kHz channelization digital data is 8K10F1D.

EXHIBIT 6E-3

Digital (12.5 kHz Channelization, Digital Voice):

Emission Designator 8K10F1E

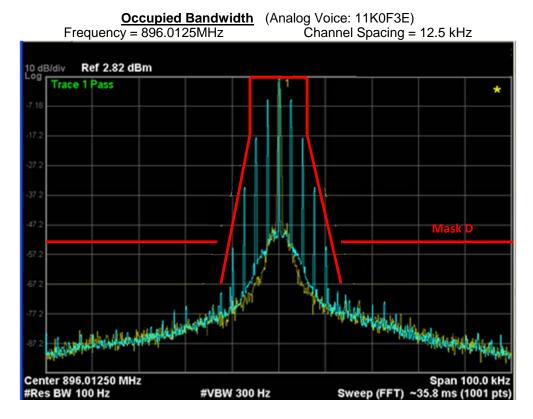
The 99% energy rule (title 47CFR 2.989) was used for digital mode and is more accurate than Carson's rule. It basically states that 99% of the modulation energy falls within X kHz, in this case, 8.10 kHz. Measurements were performed in accordance with TIA/EIA TSB102.CAAB Section 2.2.5.2. The emission mask was obtained from 47CFR 90.210(d).

F1E portion of the designator indicates digital voice.

Therefore, the entire designator for 12.5 kHz channelization digital voice is 8K10F1E.

EXHIBIT 6E-4

Digital (12.5 kHz Channelization, Digital TDMA):


Emission Designator 8K10F1W

The 99% energy rule (title 47CFR 2.989) was used for digital mode and is more accurate than Carson's rule. It basically states that 99% of the modulation energy falls within X kHz, in this case, 8.10 kHz Measurements were performed in accordance with TIA/EIA TSB102.CAAB Section 2.2.5.2. The emission mask was obtained from 47CFR 90.210(d).

F1W portion of the designator indicates digital TDMA.

Therefore, the entire designator for 12.5 kHz channelization digital TDMA is 8K10F1W.

EXHIBIT 6E Occupied Bandwidth Data -- Pursuant 47 CFR 2.1049, 90.210(d) and 90.691

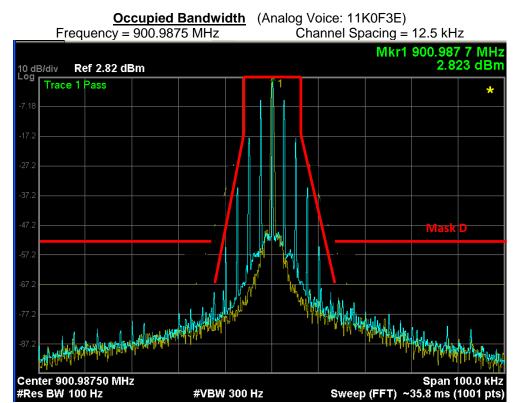


Exhibit 6E-2 EXHIBIT 6 SHEET 11 OF 34

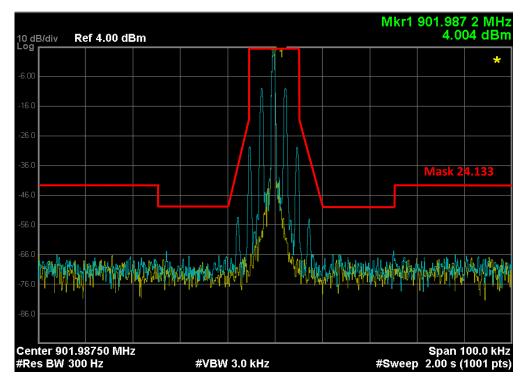


Exhibit 6E-3

<u>Occupied Bandwidth</u> (Analog Voice: 11K0F3E) Frequency = 935.0125MHz Channel Spacing = 12.5 kHz

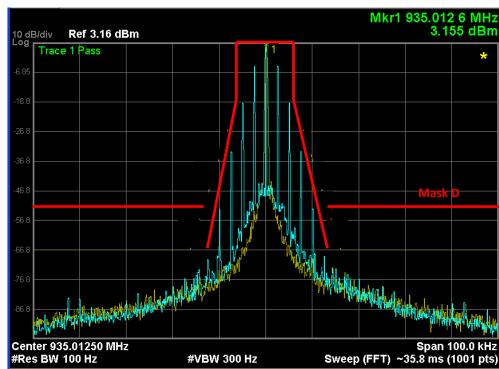


Exhibit 6E-4
EXHIBIT 6
SHEET 12 OF 34

<u>Occupied Bandwidth</u> (Analog Voice: 11K0F3E) Frequency = 939.9875 MHz Channel Spacing = 12.5 kHz

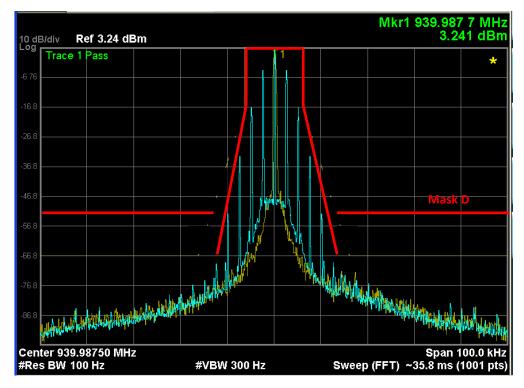
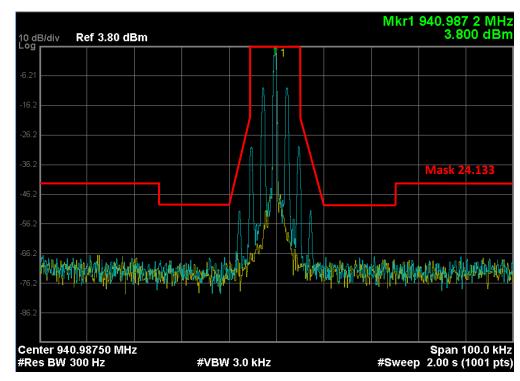



Exhibit 6E-5

<u>Occupied Bandwidth</u> (Digital Data: 8K10F1D) Frequency = 896.0125 MHz Channel Spacing = 12.5 kHz

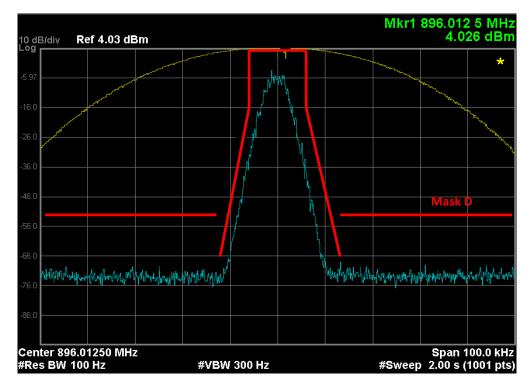
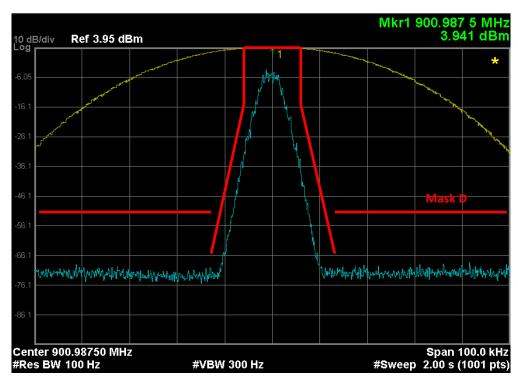
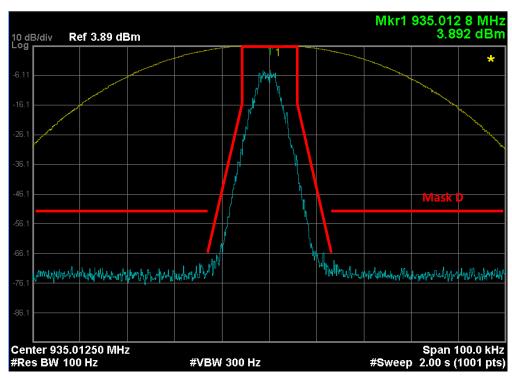



Exhibit 6E-7


<u>Occupied Bandwidth</u> (Digital Data: 8K10F1D) Frequency = 900.9875 MHz Channel Spacing = 12.5 kHz

<u>Occupied Bandwidth</u> (Digital Data: 8K10F1D) Frequency = 901.9875 MHz Channel Spacing = 12.5 kHz

Exhibit 6E-9

<u>Occupied Bandwidth</u> (Digital Data: 8K10F1D) Frequency = 939.9875 MHz Channel Spacing = 12.5 kHz

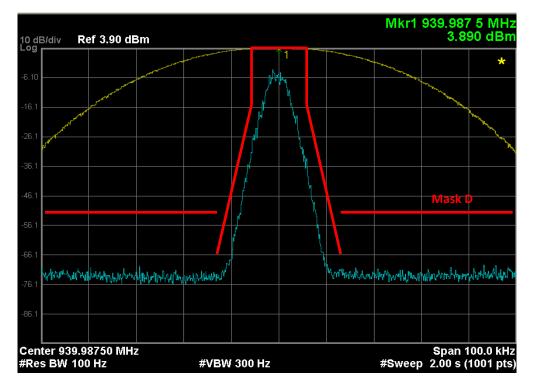
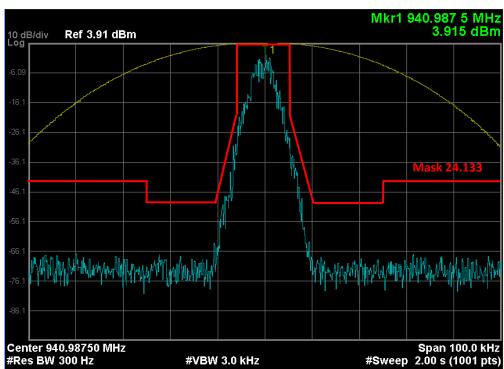



Exhibit 6E-11

<u>Occupied Bandwidth</u> (Digital Data: 8K10F1D)
Frequency = 940.9875 MHz Channel Spacing = 12.5 kHz

<u>Occupied Bandwidth</u> (Digital Voice: 8K10F1E) Frequency = 896.0125 MHz Channel Spacing = 12.5 kHz

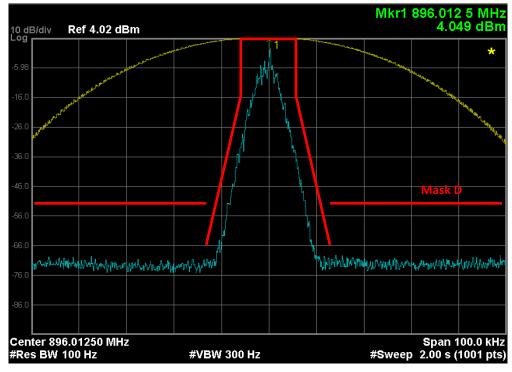
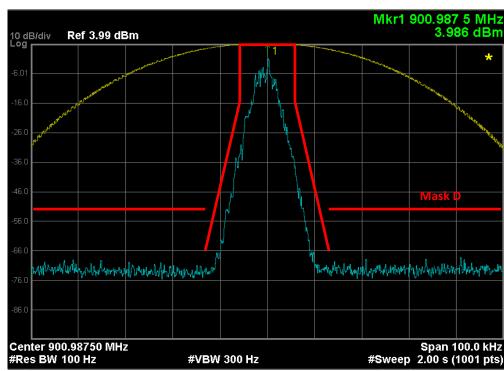



Exhibit 6E-13

<u>Occupied Bandwidth</u> (Digital Voice: 8K10F1E) Frequency = 900.9875 MHz Channel Spacing = 12.5 kHz

<u>Occupied Bandwidth</u> (Digital Voice: 8K10F1E) Frequency = 901.9875 MHz Channel Spacing = 12.5 kHz

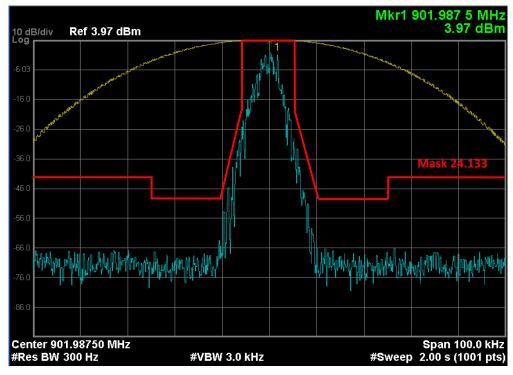


Exhibit 6E-15

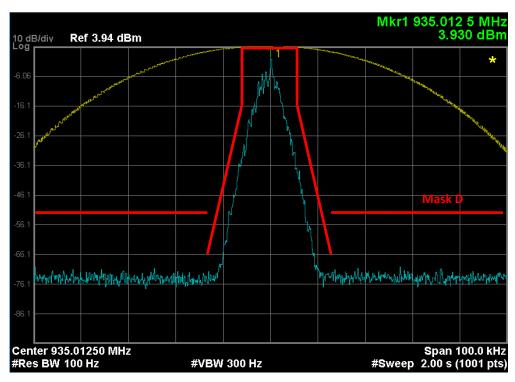


Exhibit 6E-16

<u>Occupied Bandwidth</u> (Digital Voice: 8K10F1E) Frequency = 939.9875 MHz Channel Spacing = 12.5 kHz

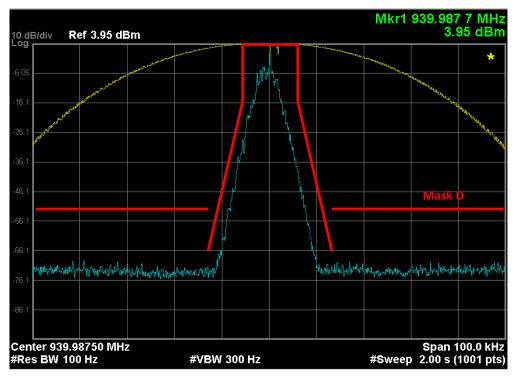


Exhibit 6E-17

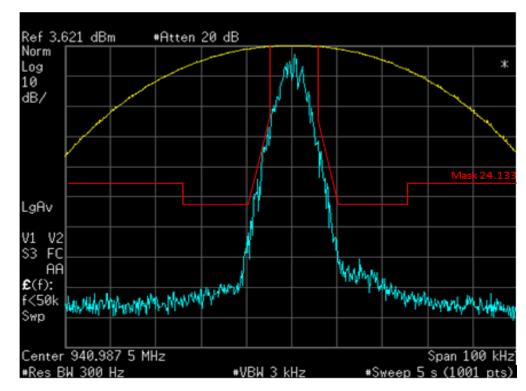


EXHIBIT 6 SHEET 19 OF 34

<u>Occupied Bandwidth</u> (Digital TDMA: 8K10F1W) Frequency = 896.0125 MHz Channel Spacing = 12.5 kHz

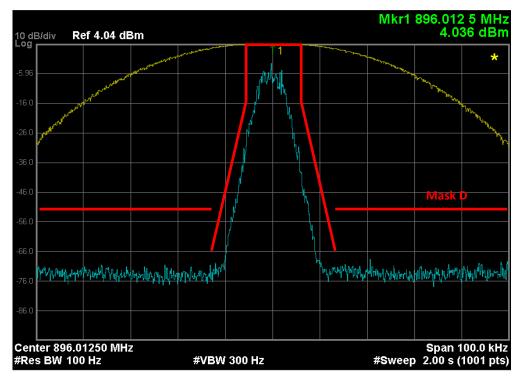
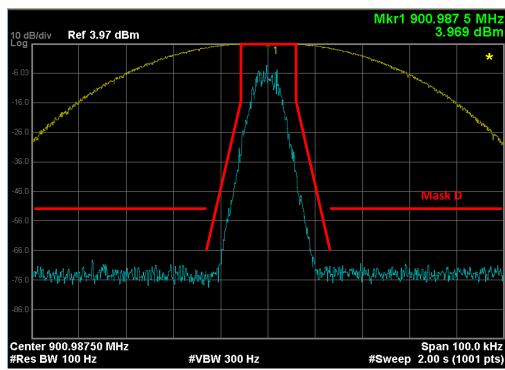



Exhibit 6E-19

<u>Occupied Bandwidth</u> (Digital TDMA: 8K10F1W) Frequency = 900.9875 MHz Channel Spacing = 12.5 kHz

<u>Occupied Bandwidth</u> (Digital TDMA: 8K10F1W) Frequency = 901.9875 MHz Channel Spacing = 12.5 kHz

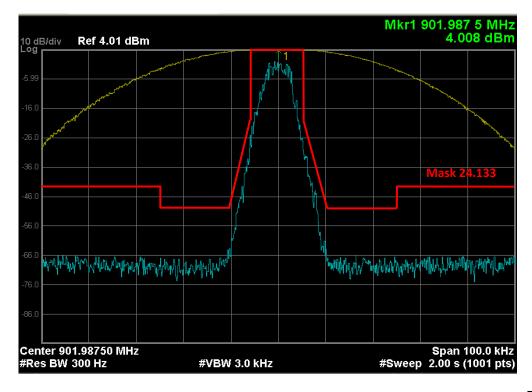
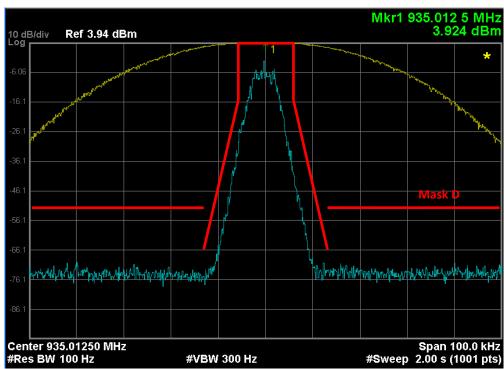



Exhibit 6E-21

<u>Occupied Bandwidth</u> (Digital TDMA: 8K10F1W) Frequency = 935.0125 MHz Channel Spacing = 12.5 kHz

<u>Occupied Bandwidth</u> (Digital TDMA: 8K10F1W) Frequency = 939.9875 MHz Channel Spacing = 12.5 kHz

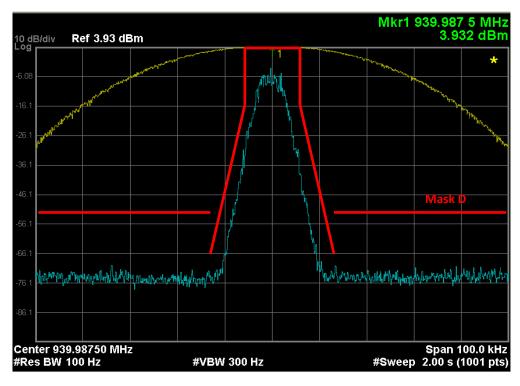



Exhibit 6E-23

<u>Occupied Bandwidth</u> (Digital TDMA: 8K10F1W) Frequency = 940.9875 MHz Channel Spacing = 12.5 kHz

**NOTE:-

- All measurements of Occupied Bandwidth which are shown on the above plots are measured using a Spectrum Analyzer
- Measurement using a Spectrum Analyzer must use a 30dB attenuation in order to avoid damage to it
- Therefore the reference power level (Ref) shown on each plot refers to its true power level
- Mask D is conservatives and stringent compared to Mask I, hence Mask D were used in the measurement.

EXHIBIT 6F

Transmitter Radiated Spurious Emissions - Pursuant 47 CFR 2.1047 and 2.1033(c)(13) Transmitter Radiated Spurious Emissions: APX4000 900MHz 896-901 MHz, 935-940MHz 3.0W MODEL #: PMUF1608A

00761-EMC-00001 Batt: NNTN8129A

896.0125 MHz	12.5 kHz	3 Watt(s)/Max Power	S/N: 426TNP0258
Frequency (MHz)	FCC Failing Limit	Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
1792.0250	-20	-81.34	-53.77
	1		
	1		
	1		
S 0 -	RADIATED SPUR	RIOUS EMISSIONS	■Hortzontal Measured
Emission Level (dBm) -20 -40 -80 -100 -100	_		Emission Equiv
= -40			Pwr Into Ideal Dinnie (dHm)
\$ 60 -			■Vertica Measured Emission Equiv
-80 - -100 -			Puvr Into Ideal
	•		Digude (dBm)
	68	incy (MHz)	− FCC Falling Limit
	792		E-III IL
	Freque	incy (MHz)	

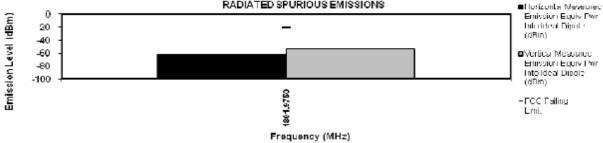
^{*} Indicates the spurious emission could not be detected due to noise limitations or ambients.

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document.

Motorola Penang EMC Lab - Test Performed by: Azil

FCC Registration: ~NA~

Industry Canada: ~NA~


July 24, 2012

Remarks: Passed Results Marginal Results Failed Results

Transmitter Radiated Spurious Emissions: APX4000 900MHz 896-901 MHz, 935-940MHz 3.0W MODEL #: PMUF1608A

Batt: NNTN8129A 00761-EMC-00001

900.9875 MHz	12.5 kHz	3 Watt(s)/Max Power	S/N: 426TNP0258
Frequency (MHz)	FCC Failing Limit	Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)	Vertical Measured Emissio Equiv Pwr Into Ideal Dipole (dBm)
1801.9750	-20	-61.48	-54.04
		+	
		+	
	DADIATED OD	URIOUS EMISSIONS	-11.1.1.1.1
0	KADIA I ED SF	OLIOO2 EMISSIONS	■Horizonta Measun Emission Equiv Ps Inhabits (Dipul

^{*} Indicates the spurious emission could not be detected due to noise limitations or ambients. The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Azil FCC Registration: ~NA~ Industry Canada: ~NA~

July 24, 2012

Marginal Results Failed Results Passed Results Remarks:

Transmitter Radiated Spurious Emissions: APX4000 900MHz 896-901 MHz, 935-940MHz 3.0W MODEL #: PMUF1608A

00761-EMC-00001 Batt: NNTN8129A

935.0125 MHz	12.5 kHz	3 Watt(s)/Max Power	S/N: 426TNP0258
Frequency (MHz)	FCC Failing Limit	Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
1870.0250	-20	-68.03	-62.29
4675.0620	-20	-35.82	-38.27
ê 0 1	RADIATED SP	URIOUS EMISSIONS	■Horizontal Measured Emission Equiview
Emission Level 149 - 40 - 40 - 40 - 40 - 400 - 100			Into Ideal Dipole (dBri) Percal Messured I mission i guverer Into Ideal Dipole (dBri)
	1873.0250	4675.0820	-F2C Falling Limit

^{*} Indicates the spurious emission could not be detected due to noise limitations or ambients.

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document.

Motorola Penang EMC Lab - Test Performed by: Azil

FCC Registration: ~NA~ Industry Canada: ~NA~

July 24, 2012

Remarks: Passed Results Marginal Results Failed Results

Frequency (MHz)

Transmitter Radiated Spurious Emissions: APX4000 900MHz 896-901 MHz, 935-940MHz 3.0W MODEL #; PMUF1608A Batt: NNTN8129A

939.9875 MHz	12.5 kHz	3 Watt(s)/Max Power	S/N: 426TNP0258
Frequency (MHz)	FCC Failing Limit	Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)	Vertical Measured Emissior Equiv Pwr Into Ideal Dipole (dBm)
4699.9370	-20	-31.67	-32.76
	BADIATEDODI	DIOTIO EMIGOIONIO	
≧ 0 ┌────	KADIATEDSPO	RIOUS EMISSIONS	■Horizontal Measured Emissio
.20 - 40 -			Equiv Por Into Ide Dipole (d.im)
-40 - 			Werdeal Measured
-00			Embolan EyoN Fv
0 -20 -40 -60 -100	9		Into Ideal Dipale (31 m)
5	02:0370		=FGC Halling

* Indicates the spurious emission could not be detected due to noise limitations or ambients.

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document.

Motorola Penang EMC Lab - Test Performed by: Azil

FCC Registration: ~NA~

Industry Canada: ~NA~

July 24, 2012

Limit

Remarks: Passed Results Marginal Results Failed Results

Frequency (MHz)

EXHIBIT 6G Frequency Stability - Pursuant 47 CFR 2.1047 and 2.1033(c)(13)

Frequency Stability (899.0125 MHz) vs. Supply Voltage

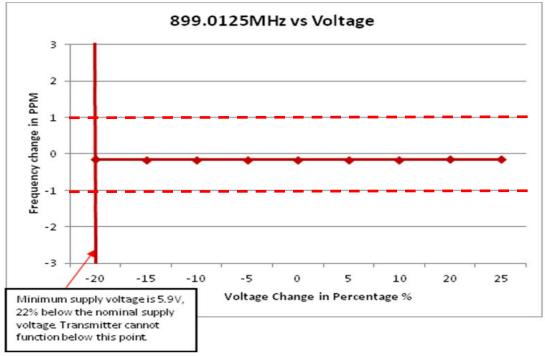
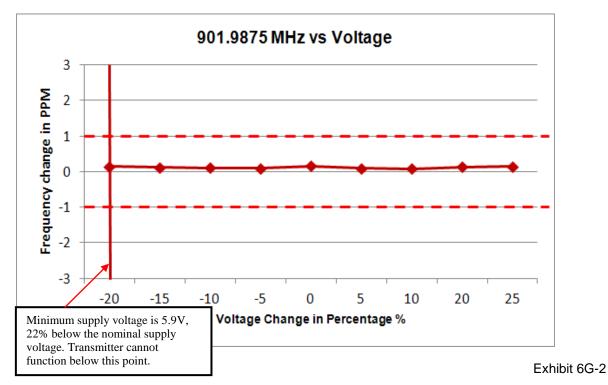



Exhibit 6G-1

Frequency Stability (901.9875 MHz) vs. Supply Voltage (Part 24)

Frequency Stability (938.0125 MHz) vs. Supply Voltage

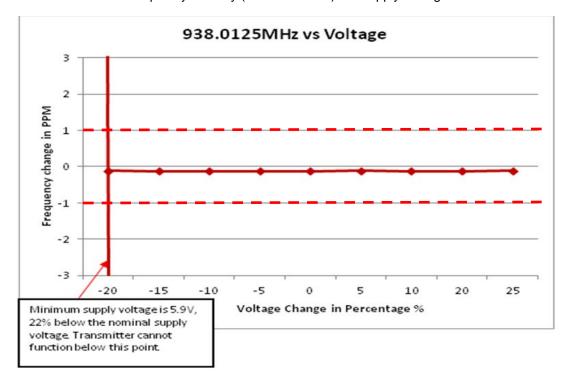
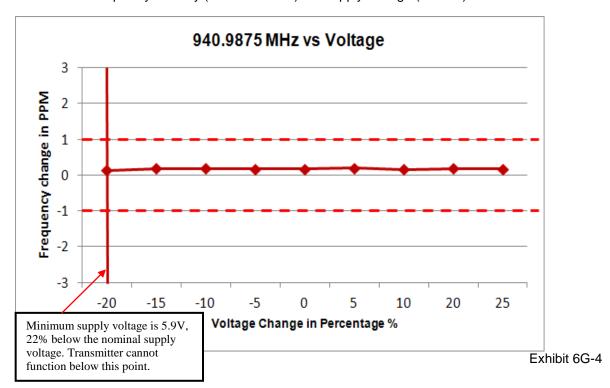
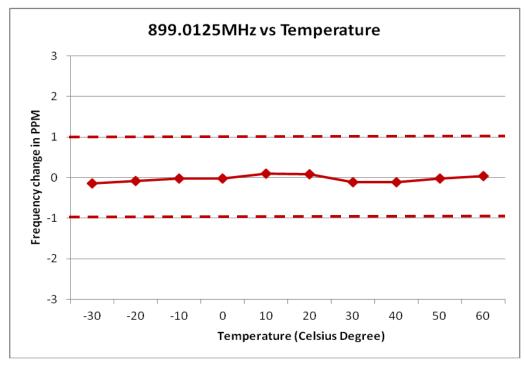




Exhibit 6G-3
Frequency Stability (940.9875 MHz) vs. Supply Voltage (Part 24)

Frequency Stability (899.0125 MHz) vs. Temperature

Frequency Stability (901.9875 MHz) vs. Temperature

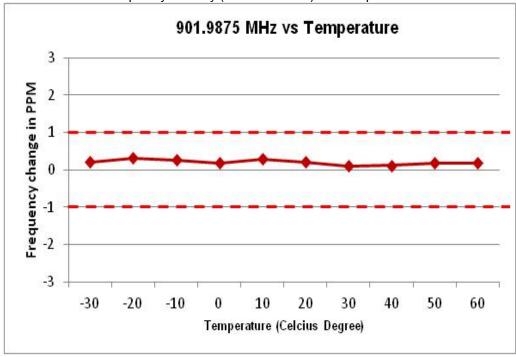


Exhibit 6G-6

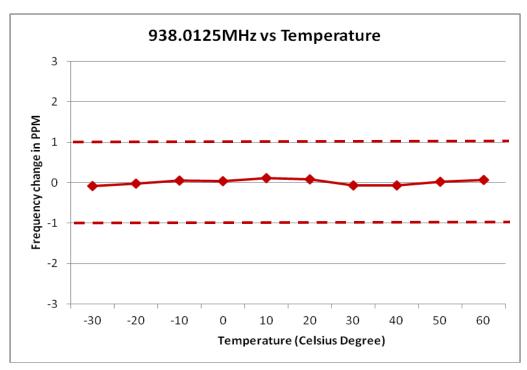
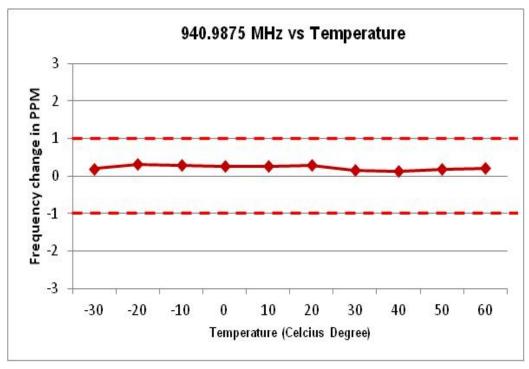
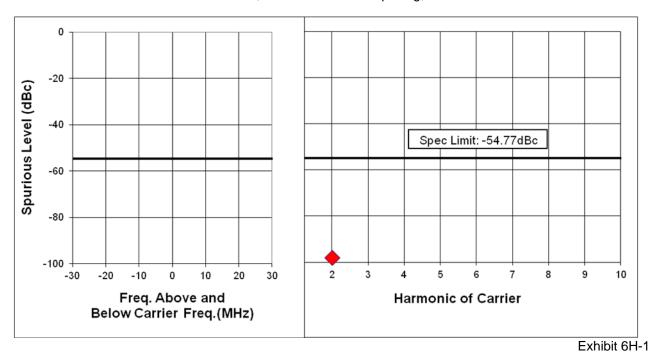



Exhibit 6G-7

Frequency Stability (940.9875 MHz) vs. Temperature


EXHIBIT 6H

Transmitter Conducted Spurious Emissions - Pursuant 47 CFR 2.1047 and 2.1033(c) (13)

Note: Lines on graphs correspond to the FCC limit of -13dBm.

Spurs which are not shown is less than 100dB

896.0125 MHz, 12.5 kHz Channel Spacing, 3.0Watts

899.0125 MHz, 12.5 kHz Channel Spacing, 3.0Watts

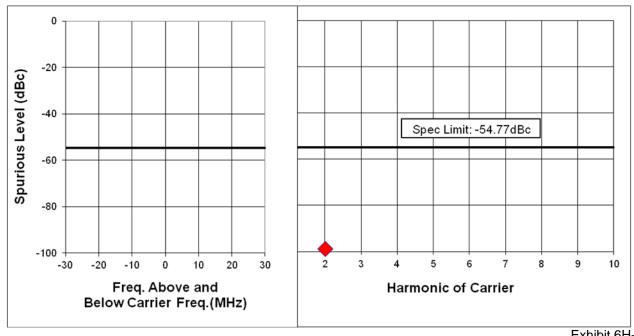
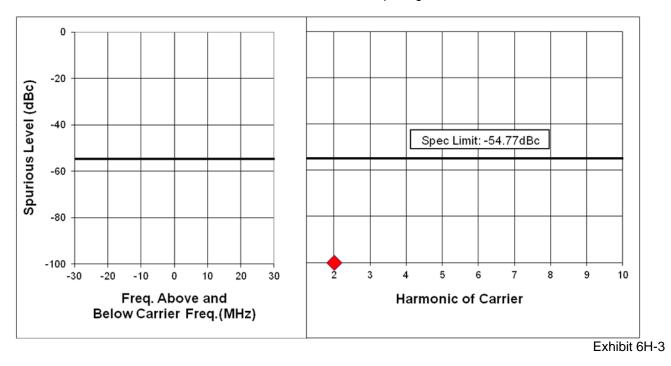
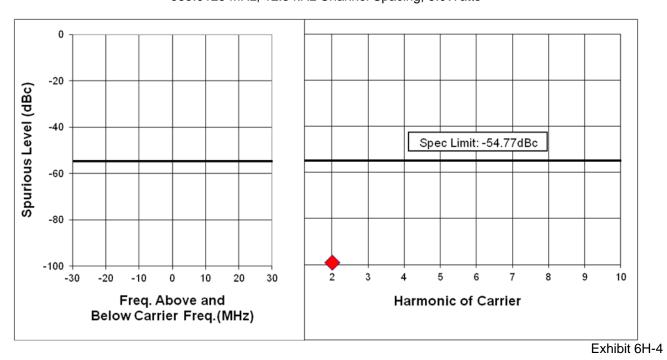
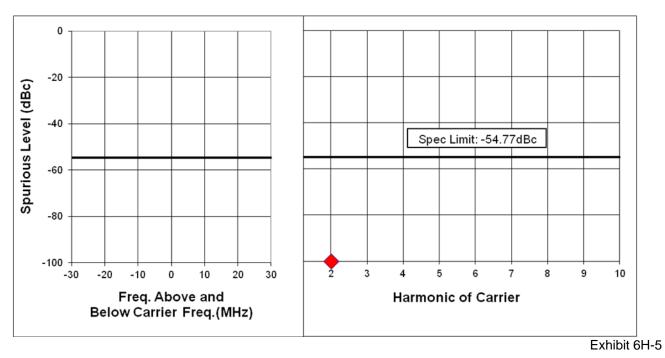
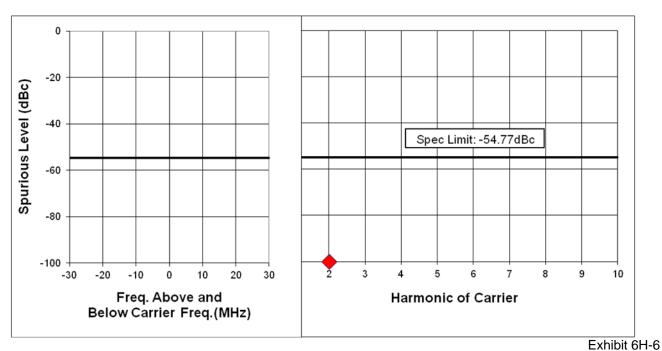




Exhibit 6H-2


900.9875 MHz, 12.5 kHz Channel Spacing, 3.0Watts


935.0125 MHz, 12.5 kHz Channel Spacing, 3.0Watts

938.0125 MHz, 12.5 kHz Channel Spacing, 3.0Watts

939.9875 MHz, 12.5 kHz Channel Spacing, 3.0Watts

