

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2

Enterprise Mobility Solutions EME Test Laboratory 8000 West Sunrise Blvd Fort Lauderdale, FL. 33322. Date of Report: 11/22/10 Report Revision: A

Report ID: SAR rpt_H98UCD9PW5AN_Rev.A

_101122_SR8654

Responsible Engineer: Michael Sailsman (Senior Staff Eng.) **Report Author:** Michael Sailsman (Senior Staff Eng.) **Date/s Tested:** 7/22/10 – 8/18/10; 10/1/10-10/20/10

Manufacturer/Location: Motorola, Plantation

Sector/Group/Div.: G&PS **Date submitted for test:** 7/23/10

DUT Description: 764-775 MHz and 794-805 MHz at 2.5 W, 806 -824 MHz and 851-870 MHz at 3 W,

6.25K/12.5K/25K, Basic Top Display Model. Capable of digital and analog FM

transmission. Also capable of TDMA transmission.

Test TX mode(s): CW (PTT)

Max. Power output: 2.99 W (764 - 805 MHz), 3.6 W (806 - 870 MHz) **Nominal Power:** 2.5 W (764 - 805MHz), 3.0 W (806 - 870 MHz)

Tx Frequency Bands: 764-775 MHz, 794-805 MHz, 806-824 MHz, 851-870 MHz

Signaling type: FM and TDMA

Model(s) Tested: H98UCD9PW5AN (MNUF1002A)
Model(s) Certified: H98UCD9PW5AN (MNUF1002A)

Serial Number(s): NUF1003A0048

Classification: Occupational/Controlled

FCC ID: AZ489FT5859

FCC Rule Part(s): 90; 764-775 MHz, 794-805 MHz, 806-824 MHz, 851-870 MHz

IC: 109U-89FT5859

IC standard(s): RSS 102 issue 4; Safety Code 6

* Refer to section 15 of part 1 for highest SAR summary results.

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of 47 CFR 2.1093(d). The 10 grams result is not applicable to FCC filing. The test results clearly demonstrate compliance with ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Physics 74, 494-522 RF Exposure limits of 10 W/kg averaged over 10grams of contiguous tissue.

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 3.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola EME Laboratory.

I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Signature on file – Deanna Zakharia

Deanna Zakharia EMS EME Lab Senior Resource Manager, Laboratory Director

Approval Date: 11/22/2010

Certification Date: 11/22/2010

Certification No.: L1101127P

Part 1 of 2

1.0	Introduction	4
2.0	Abbreviations / Definitions	4
3.0	Referenced Standards and Guidelines	4
4.0	SAR Limits	5
5.0	SAR Result Scaling Methodology	5
6.0	Description of Device Under Test (DUT)	6
7.0	Optional Accessories and Test Criteria	6
	7.1 Antennas	7
	7.2 Batteries	7
	7.3 Body worn Accessories	7
	7.4 Audio Accessories	
8.0	Description of Test System	
	8.1 Description of Robotics/Probes/Readout Electronics	8
	8.2 Description of Phantom(s)	
	8.2.1 Dual Flat Phantom	
	8.2.2 SAM Phantom	9
	8.2.3 Elliptical Flat Phantom	
	8.3 Description of Simulated Tissue	9
9.0	Additional Test Equipment	10
10.0		
	10.1 Equivalent Tissue Test Results	
	10.2 System Check Test Results	12
	Environmental Test Conditions	
12.0	DUT Test Methodology	
	12.1 Measurements	
	12.2 DUT Configuration(s)	
	12.3 Device Positioning Procedures	
	12.3.1 Body	
	12.3.2 Head	
	12.3.3 Face	
	12.4 DUT Test Channels	
	12.5 DUT Test Plan	
	12.5.1 General Test Flowchart	
13.0	DUT Test Data	
	13.1 764-775 MHz Test Data	
	13.2 794-824 MHz Test Data	
	13.3 851-870 MHz Test Data	
	13.4 Shorten Scan Assessment	
14.0		
15.0	Conclusion	47

	APF	PENDICES	
	A	Measurement Uncertainty	48
	В	Probe Calibration Certificates	51
	C	Dipole Calibration Certificates	78
Part 2 of 2			
	APF	PENDICES	
	D	Test System Verification Scans	2
	E	DUT Scans (Shortened Scan and Highest SAR configurations)	26
	F	DUT Scans	30
	G	DUT Supplementary Data (Power Slump)	83
	Н	DUT Test Position Photos	84
	I	DUT and Body worn Accessory Photos	85

Report Revision History

Date	Revision	Comments
8/25/10	О	Initial release
11/22/10	A	Modified several Sections and Appendices

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the EMS EME Test Laboratory for model number H98UCD9PW5AN (MNUF1002A) FCC ID: AZ489FT5859.

2.0 Abbreviations / Definitions

CNR: Calibration Not Required

CQPSK: Compatible Quadrature Phase-Shift Keying

CW: Continues Wave DUT: Device Under Test FM: Frequency Modulation

NA: Not Applicable PTT: Push to Talk

RSM: Remote Speaker Microphone TDMA: Time Division Multiple Access

SAR: Specific Absorption Rate

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of

Maximum Power: Defined as the upper limit of the production line final test station.

3.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1*(2005) Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- United States Federal Communications Commission, Code of Federal Regulations; Rule Part 47CFR § 2.1093 sub-part J:1999
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- IEEE 1528*(2003), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998

- Ministry of Health (Canada) Safety Code 6 (1999), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- Australian Communications Authority Radio communications (Electromagnetic Radiation Human Exposure) Standard (2003)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
 - * The IEC62209-1 and IEEE 1528 are applicable for hand-held devices used in close proximity to the ear only.

4.0 SAR Limits

TABLE 1

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population /	(Occupational /		
	Uncontrolled Exposure	Controlled Exposure		
	Environment)	Environment)		
Spatial Average - ANSI -				
(averaged over the whole body)	0.08	0.4		
Spatial Peak - ANSI -				
(averaged over any 1-g of tissue)	1.6	8.0		
Spatial Peak – ICNIRP/ANSI -				
(hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0		
Spatial Peak - ICNIRP -				
(Head and Trunk 10-g)	2.0	10.0		

5.0 SAR Result Scaling Methodology:

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" in the data tables is determined by scaling the measured SAR to account for power leveling variations and power slump. A table and graph of output power versus time is provided in APPENDIX H. For this device the "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

P_max = Maximum Power (W) P int = Initial Power (W)

```
Drift = DASY drift results (dB)
SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg)
DC = Transmission mode duty cycle in % where applicable
50% duty cycle is applied for PTT operation
```

```
Note: for conservative results, the following are applied:

If P_int > P_max, then P_max/P_int = 1.

Drift = 1 for positive drift
```

Additional SAR scaling was applied using the methodologies outlined in FCC KDB450824 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target.

6.0 Description of Device Under Test (DUT):

FCC ID: AZ489FT5859 operates using digital and analog frequency modulation (FM) as well as TDMA signaling incorporating traditional simplex two-way radio transmission protocol.

Time Division Multiple Access (TDMA) is used to allocate portions of the RF signal by dividing time into two slots. Time allocation enables each unit to transmit its voice information without interference from other transmitting units. Transmission from a unit or base station is accommodated during two time-slot lengths of 30 milliseconds with frame length of 60 milliseconds. C4FM CQPSK modulation is used and includes 12.5kHz channel spacing. The TDMA technique requires sophisticated algorithms and a digital signal processor (DSP) to perform voice compressions/decompressions and RF modulation/demodulation. The maximum duty cycle for TDMA is 2:1 and is controlled by software. The FM signal is continuous. However, because of hand shaking or Push-To-Talk (PTT) between users and/or base stations a conservative 50% duty cycle is applied. The TDMA mode was not tested because its duty cycle is inherently 50% and would include an additional 50% duty cycle for PTT.

The model represented under this filing utilizes a removable antenna and is capable of transmitting in the 764-775 MHz, 794-805 MHz, 806-824 MHz and 851-870 MHz bands. The nominal output power is 2.5 watts (764-805 MHz) and 3.0 watts (806-870MHz) with maximum output powers of 2.99 watts (764-805 MHz) and 3.6 watts (806-870MHz) as defined by upper limit of the production line final test station. The intended operating positions are "at the face" with the DUT at least 1 inch from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

7.0 Optional Accessories and Test Criteria:

FCC ID: AZ489FT5859 is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required. The following sections identify the test criteria and details for each accessory category.

7.1 Antennas:

All offered antennas were tested. The table below lists the antennas and their descriptions.

TABLE 2

Antenna Models	Description	*Tested
NAR6595A	700/800 stubby; 764-870MHz; ¹ / ₄ wave; -10dBd gain	Yes
NAF5085A	700/800/GPS whip; 764-870, 1575MHz; ¹ / ₄ wave; -2dBd gain	Yes

^{*}Refer to Exhibit 7B for antenna separation distances.

7.2 Batteries:

All offered batteries were tested. The table below lists the batteries, and there descriptions.

TABLE 3

Battery Models Description		*Tested	Comments
PMNN4403A	Impres Li Ion slim 2150mAh	Yes	Height = 85mm
NNTN7038A	Hi Cap Impres Li Ion 2900mAh	Yes	Height = 85mm

^{*}Refer to Exhibit 7B for antenna separation distances.

7.3 Body worn Accessories:

All offered body worn accessories were tested. The table below lists the body worn accessories, and their descriptions.

TABLE 4

Body worn Models	Description	*Tested	Comments
NTN8266B	NTN8266B 2.5" Belt Clip		NA
NTN5243A	NTN5243A Carry strap		NA
Leather fixed belt loop works			
	with 2150 and 2900 mAh Li Ion		
PMLN5658A	batteries	Yes	NA
	Leather D ring swivel belt loop		
	works with 2150 and 2900 mAh		
PMLN5657A	Li Ion batteries	Yes	NA

^{*}Refer to Exhibit 7B for antenna separation distances.

7.4 Audio Accessories:

All audio accessories were tested. The table below lists the audio accessories and their descriptions.

TABLE 5

Audio Acc. Models	Description	Comments
PMMN5049A	PSM 18" IP55, 3.5mm jack TX/RX	
PMMN4060A	PSM 24" IP55, 3.5mm jack TX/RX	
PMMN4061A	PSM 30" IP55, 3.5mm jack TX/RX	
HMN4104A	RSM - IMPRES Display Submersible RSM w/jack & Channel Selector	

8.0 Description of Test System:

8.1 Descriptions of Robotics/Probes/Readout Electronics:

The laboratory utilizes a Dosimetric Assessment System (DASY4TM) SAR measurement system Version 4.7 build 80 manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. The test system consists of a Stäubli RX90L robot, DAE3, and ES3DV3 E-field probe. The DASY4TM system is operated per the instructions in the DASY4TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess EME SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 Description of Phantom(s)

8.2.1 Dual Flat Phantom

Not Applicable

8.2.2 SAM Phantom

Not Applicable

8.2.3 Elliptical Flat Phantom

TABLE 6

Phantom ID (s)	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)
OVAL1020	300MHz -6GHz; Er = 4+/- 1,	600400100	2mm	Wasi	< 0.05
OVAL1021	$Er = 4+/-1,$ $Loss Tangent = $ ≤ 0.05	600x400x190	+/- 0.2mm	Wood	< 0.05

8.3 Description of Simulated Tissue:

The simulated tissue used is compliant to that specified in FCC Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01) and IEEE Std 1528 - 2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". The simulated tissue used is also compliant to that specified in IEC62209-1 (2005) and adopted by CENELEC as EN62209-1 (2006).

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

Simulated Tissue Composition (by mass)

TABLE 7

% of listed ingredient	835MHz		
S	Head	Body	
Sugar	57.0	44.9	
Diacetin	0	0	
De ionized			
-Water	40.45	53.06	
Salt	1.45	0.94	
HEC	1.0	1.0	
Bact.	0.1	0.1	

Reference section 10.1 for target parameters

9.0 Additional Test Equipment:

The table below lists additional test equipment used during the SAR assessment.

TABLE 8

I ABLE 8							
Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date			
Power Meter (Agilent)	E4418B	US39251266	2/23/2010	2/23/2011			
Power Meter (Agilent)	E4419B	MY45103725	4/19/2010	4/19/2011			
Power Meter (Agilent)	E4418B	US39251267	2/23/2010	2/23/2011			
Power Meter (Agilent)	E4418B	US39251150	4/12/2010	4/12/2011			
Power Meter (Agilent)	E4419B	MY50000505	9/2/2010	9/2/2011			
Power Sensor (Agilent)	8481B	3318A10982	3/5/2010	3/5/2011			
Power Sensor (Agilent)	8482B	3318A06773	5/7/2010	5/7/2011			
E-Series Avg. Power Sensor (Agilent)	E9301B	MY41495593	2/12/2010	2/12/2011			
E-Series Avg. Power Sensor (Agilent)	E9301B	MY41495730	4/13/2010	4/13/2011			
E-Series Avg. Power Sensor (Agilent)	E9301B	MY41495733	4/13/2010	4/13/2011			
E-Series Avg. Power Sensor (Agilent)	E9301B	MY41495594	2/12/2010	2/12/2011			
E-Series Avg. Power Sensor (Agilent)	E9301B	MY50290001	8/3/2010	8/3/2011			
Bi-Directional Coupler (NARDA)	3020A	40296	2/5/2010	2/5/2012			
Bi-Directional Coupler (NARDA)	3020A	40295	6/3/2010	6/3/2012			
Signal Generator (Agilent)	E4421B	US40051446	8/12/2010	8/21/2012			
Signal Generator (Agilent)	E4438C	MY42082269	2/18/2010	2/18/2012			
AMP (Amplifier Research)	1W1000	16625	N/A	CNR			
AMP (Amplifier Research)	10WD1000	28782	N/A	CNR			
Dickson Temperature Recorder	TM125	1195889	2/16/2010	2/16/2011			
Omega Digital Thermometer with J Type TC Probe	HH202A	18800	11/10/2009	11/10/2010			
Omega Digital Thermometer with J Type TC Probe	HH202A	18801	4/19/2010	4/19/2011			
Omega Digital Thermometer with J Type TC Probe	HH202A	18812	3/24/2010	3/24/2011			
	Tissue Sta	tion					
Agilent PNA-L Network Analyzer	N5230A	MY45001092	6/10/2010	6/10/2011			
Dielectric Probe Kit (HP)	85070C	US99360076	N/A	CNR			
	Dipole						
SPEAG Dipole	D835V2	435	9/22/2008	9/17/2010			
SPEAG Dipole	D835V2	427	1/14/2010	1/14/2012			

10.0 SAR Measurement System Verification:

The SAR measurements were conducted with probe model/serial number ES3DV3/SN3185. The system performance check was conducted daily and within 24 hours prior to testing. DASY output files of the probe/dipole calibration certificates and system performance test results are included in appendices B, C, D respectively.

Dipole validation scans using head tissue equivalent medium are provided in APPENDIX D. The EMS EME lab validated the dipole to the applicable IEEE 1528-2003 system performance targets. Within the same day system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. The results of the EMS EME system performance validation are provided herein.

10.1 Equivalent Tissue Test Results:

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The table below summarizes the measured tissue parameters used for the SAR assessment.

			Dielectric			
		Conductivity	Constant		Dielectric	
Frequency	Tissue	Target &	Target &	Conductivity	Constant	
(MHz)	Type	Range (S/m)	Range	Meas. (S/m)	Meas.	Tested Date
				1.00	56.10	7/22/10
				1.00	55.80	7/23/10
				0.99	55.70	7/24/10
				0.99	54.90	7/26/10
				0.99	54.80	7/27/10
				0.99	54.90	7/28/10
835	FCC	0.97	55.2	1.01	54.40	7/29/10
833	Body	(0.92-1.02)	(52.44-57.96)	1.00	54.00	8/1/10
				1.01	53.70	8/2/10
				1.00	53.10	8/4/10
				0.97	52.8	10/01/10
				0.99	53.5	10/05/10
				0.99	52.9	10/07/10
				0.98	52.8	10/20/10
				0.91	42.40	7/31/10
				0.94	42.90	8/3/10
835	IEEE/IE C Head		41.5 (39.43-43.58)	0.94	42.00	8/12/10
833				0.94	42.60	8/13/10
				0.92	42.50	8/17/10
				0.92	43.00	8/18/10
				0.93	54.3	7/31/10
769.5	FCC	0.96	55.5	0.94	54.80	8/1/10
/09.3	Body	(0.91-1.01)	(52.73-58.28)	0.94	54.50	8/2/10
				0.95	54.30	8/3/10

TABLE 9 (cont)

		IADLE	Dielectric			
		Conductivity	Constant		Dielectric	
Frequency	Tissue	Target &	Target &	Conductivity	Constant	
(MHz)	Type	Range (S/m)	Range	Meas. (S/m)	Meas.	Tested Date
(IVIIIZ)	Турс	Tunge (5/m)	Runge	0.86	43.2	7/30/10
				0.86	43.3	7/31/10
769.5	IEEE/	0.89	41.8	0.87	43.5	8/13/10
, , , , ,	IEC Head	(0.85-0.93)	(39.71-43.89)	0.86	43.3	8/17/10
				0.86	43.90	8/18/19
				0.00		0/10/19
				0.96	55.10	7/26/10
				0.95	55.00	7/27/10
				0.96	55.10	7/28/10
	7.00			0.98	54.60	7/29/10
809	FCC	0.97	55.3	0.96	53.70	7/31/10
	Body	(0.92-1.02)	(52.54-58.07)	0.96	53.30	8/4/10
				0.97	53.8	10/5/10
				0.96	53.2	10/7/10
				0.95	53.1	10/20/10
				0.88	42.60	7/30/10
				0.88	42.70	7/31/10
	HEEE/	0.00	41.6	0.92	42.30	8/12/10
809	IEEE/ IEC Head	0.90 (0.86-0.95)	41.6 (39.52-43.68)	0.89	42.8	8/17/10
	IEC Head	(0.80-0.93)	(39.32-43.08)	0.89	43.30	8/18/10
				0.88	42.6	10/1/10
				0.87	41.2	10/20/10
				1.04	55.90	7/22/10
				1.03	55.70	7/23/10
	FCC	1.00	55.1	1.03	55.60	7/24/10
860.5	Body	(0.95-1.05)	(52.35-57.86)	1.02	54.70	7/26/10
	Body	(0.93-1.03)	(32.33-37.80)	1.05	54.30	7/29/10
				1.03	53.30	7/31/10
				1.03	52.90	8/4/10
				0.95	42.00	7/30/10
	IEEE/	0.02	41.5	0.94	42.10	7/31/10
860.5	860.5 IEEE/ IEC Head	0.93 (0.88-0.98)	(39.43-43.58)	0.97	42.70	8/3/10
	1EC HEAU	(0.00-0.50)	(33.43-43.36)	0.97	41.70	8/12/10
				0.95	42.2	8/17/10

10.2 System Check Test Results:

System performance checks were conducted each day during the SAR assessment. The results are normalized to 1W. APPENDIX D explains how the targets were set and includes DASY plots for each day during the SAR assessment. The table below summarizes the daily system check results used for the SAR assessment.

TABLE 10

					System Check Test Results when	
Probe		Probe Cal	Dipole Kit /		normalized to 1W	Tested
Serial #	Tissue Type	Date	Serial #	@ 1W (W/kg)	(W/kg)	Date
					10.80	7/22/10
					10.16	7/23/10
					10.28	7/24/10
					9.64	7/26/10
					10.08	7/27/10
2105	ECC D - 4-	11/22/00	SPEAG	10.04+/ 100/	10.08	7/28/10
3185	FCC Body	11/23/09	D835V2 /435	10.04+/- 10%	10.64	7/29/10
					10.56	7/30/10
					10.56	8/1/10
					10.60	8/2/10
					10.40	8/4/10
					9.32	10/20/10
			CDEAC		9.32	10/1/10
3185	FCC Body	11/23/09	SPEAG D835V2 /427	10.04+/- 10%	9.68	10/5/10
			D033 V 2 / 42 /		9.32	10/7/10
					10.28	7/31/10
					10.04	8/3/10
3185	IEEE/ IEC	11/23/09	SPEAG	9.51 +/- 10%	9.44	8/12/10
3103	Head	11/23/09	D835V2 /435	7.51 1/- 10/0	9.32	8/13/10
					9.16	8/17/10
					9.24	8/18/10

Note: See APPENDIX D for an explanation of the reference SAR targets stated above.

11.0 Environmental Test Conditions:

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The table below presents the range and average environmental conditions during the SAR tests reported herein:

TABLE 11

	Target	Measured
		Range: 21.2 -22.1°C
Ambient Temperature	18 - 25 °C	Avg. 21.6°C
		Range: 49.9 – 61.6%
Relative Humidity	30 - 70 %	Avg. 54.9%
		Range: 20.4-21.8°C
Tissue Temperature	NA	Avg. 21.12C

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using coarse and 5x5x7 zoom scan. Elliptical flat phantoms filled with applicable simulated tissue were used for body and face testing.

12.2 **DUT Configuration(s)**

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were used to test all possible accessory combinations.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in APPENDIX H.

12.3.1 Body:

The DUT and PSM were positioned in the intended use configuration against the phantom with the offered body worn and audio accessories where applicable.

- 2.5cm testing performed to satisfy the conditions noted in the user manual safety section. 2.5cm tests included the following considerations:
- Back of the device facing the phantom, positioned at 2.5cm from the phantom surface. Depending on the hot spot location this configuration may or may not be included herein since hot spot on the antenna would present a closer separation distance.
- Back of the device facing the phantom with antenna positioned at 2.5cm from the phantom surface. Depending on the hot spot location this configuration may or may not be included herein.
- Front of the device facing the phantom, positioned at 2.5cm from the phantom surface.

12.3.2 Head:

Not applicable.

12.3.3 Face:

The DUT was positioned with its' front and back side separated 2.5cm from the phantom. Note that this product has two microphones, one on the front and one on the back of the DUT and therefore both sides were assessed. The offered PSMs were also tested with 2.5cm separation from the phantom.

12.4 DUT Test Channels:

The number of test channels was determined by the following equation.

$$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$

Where

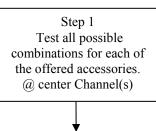
 N_c = Number of channels

 $F_{high} = Upper channel$

 $F_{low} = Lower channel$

 F_c = Center channel

12.5 DUT Test Plan:


All modes of operation identified in section 6.0 were considered during the development of the test plan. All accessories listed in section 7.0 of this report were evaluated and only those identified for testing were used to develop the SAR test plan for this product. Tests were performed in each band at the center frequency(s) for all possible combinations of offered accessories. All other applicable frequencies were tested for any configurations that were within 70% of the specification limit as recommended by the FCC. If the 70% threshold is not required then the highest SAR configurations from the center channel assessments were tested at all other applicable frequencies. Assessments at the face with the back of the DUT facing the phantom were performed using the highest SAR configuration for each offered antenna per band. Note that per FCC guidelines the 794-805MHz and 806-824MHz bands were assessed as one contiguous band with center frequency of 809MHz. Note that test results that are outside the relevant FCC frequency allocations are presented herein in blue font.

12.5.1 General Test Flowchart

The following flowcharts identify the general approach to the test sequences for body and face positions.

DUT Body Test Methodology (General flowchart)

Flowchart Objectives Body

Step 1 - The objective is to determine the highest SAR configuration at the center channel(s) for all combinations of offered accessories at the body.

Step 2 Test all other applicable frequencies if any of the configurations from step 1 within 70% of the limit.

Step 2 – The objective is to determine the highest SAR configurations for all possible combinations of offered accessories.

Step 3
Test all other applicable channels using the highest SAR configuration per band from step 1 if step 2 is not required.

Step 3 - Determine the highest SAR performance across all applicable channels if the SAR results from Step 1 is below the recommended 70% threshold. Refer to section 12.4 and 12.5 for additional channels test consideration details.

Step 4
2.5cm test using the highest SAR configuration from step 1-

Step 4 - Determine the highest SAR performance at 2.5cm separation distance to satisfy the safety manuals guidelines for non approved body worn accessories.

DUT Face Test Methodology (General flowchart)

Step 1 Test all possible combinations for each of the offered accessories. @ center Channel(s)

Step 2
Test all other applicable frequencies if any of the configurations from step 1 are within 70% of the limit.

Step 3
Test all other applicable channels using the highest SAR configuration per band from step 1 if step 2 is not required.

Flowchart Objectives Face

Step 1 - The objective is to determine the highest SAR configuration at the center channel(s) for all combinations of offered accessories at the body. Refer to section 12.4 and 12.5 for additional channels test consideration details.

Step 2 – The objective is to determine the highest SAR configurations for all possible combinations of offered accessories. Refer to section 12.4 and 12.5 for additional channels test consideration details.

Step 3 - Determine the highest SAR performance across all applicable channels if the SAR results from Step 2 is below the recommended 70% threshold. Refer to section 12.4 and 12.5 for additional channels test consideration details.

DUT PSM Body Test Methodology (General flowchart)

Step 1 Test all possible combinations for each of the PSM accessories. @ Center Channel(s)

Step 2
Test all other applicable frequencies if any of the configurations from step 1 are within 70% of the limit.

Step 3
Test all other applicable channels using the highest SAR configuration per band from step 1 if step 2 is not required.

DUT PSM Face Test Methodology (General flowchart)

Step 1 PSM Face
Test all possible
combinations for each of
the PSM accessories.

@ Center Channel(s)

Step 2 PSM Face Test all other applicable frequencies if any of the configurations from step 1 are within 70% of the limit.

Step 3 PSM Face
Test all other applicable
channels using the highest
SAR configuration per
band from step 1 if step 2
is not required.

Flowchart Objectives PSM Body

Step 1 - The objective is to determine the highest SAR configuration at the center channel(s) for all combinations of offered accessories at the body.

Step 2 – The objective is to determine the highest SAR configurations for all possible combinations of offered accessories. Refer to section 12.4 and 12.5 for additional channels test consideration details.

Step 3 - Determine the highest SAR performance across all applicable channels if the SAR results from Step 1 is below the recommended 70% threshold. Refer to section 12.4 and 12.5 for additional channels test consideration details.

Flowchart Objectives PSM Face

Step 1 - The objective is to determine the highest SAR configuration at the center channel(s) for all combinations of offered accessories at the body. Refer to section 12.4 and 12.5 for additional channels test consideration details.

Step 2 – The objective is to determine the highest SAR configurations for all possible combinations of offered accessories. Refer to section 12.4 and 12.5 for additional channels test consideration details.

Step 3 - Determine the highest SAR performance across all applicable channels if the SAR results from Step 1 is below the recommended 70% threshold. Refer to section 12.4 and 12.5 for additional channels test consideration details.

13.0 DUT Test Data

13.1 764-775 MHz Test Data:

Assessments at the Body (CW mode):

Assessment of the offered antenna NAF5085A using body worn accessories NTN8266B, PMLN5658A and PMLN5657A, audio cable HMN4104A and batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

TABLE 12

	Assessm	ent of antenna	NAF5085A wi	th offered	batteries, body v	worn and	audio acc	essories (C	Center Chan	nel)		
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
JsT-Ab-100801-	344750054	N 177 17020 1	NAME AND A COLOR	Against	VD 0741041	7.00.000	2.05	0.202	6.200	4.700	2.45	2.51
09/NUF1003A0048	NAF5085A	NNTN7038A	NTN8266B	phantom	HMN4104A	769.000	3.07	-0.392	6.300	4.590	3.45	2.51
JsT-Ab-100801- 12/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5658A	Against phantom	HMN4104A	769.000	3.08	-0.373	2.560	1.900	1.39	1.04
CM-Ab-100801- 15/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5657A	Against phantom	HMN4104A	769.000	3.08	-0.274	1.870	1.390	1.00	0.74
JsT-Ab-100801-				Against								
11/NUF1003A0048	NAF5085A	PMNN4403A	NTN8266B	phantom	HMN4104A	769.000	3.07	-0.404	6.380	4.660	3.50	2.56
JsT-Ab-100801-				Against								
13/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5658A	phantom	HMN4104A	769.000	3.08	-0.416	2.550	1.890	1.40	1.04
CM-Ab-100801-				Against								
14/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5657A	phantom	HMN4104A	769.000	3.07	-0.268	1.730	1.290	0.92	0.69

Assessments at the Body (CW mode):

Assessment at 2.5cm separation distance using the highest SAR configuration from the table above at the center channel per section 12.3.1.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

TABLE 13

			Assessm	ent at 2.5c	m separation. (C	enter Ch	annel)					
											Max	
						Test	Initial	SAR	Meas. 1g-	Meas.	Calc.1g-	Max Calc.
				Test	Additional	Freq.	Power	Drift	SAR	10g-SAR	SAR	10g-SAR
Run number/SN	Antenna	Battery	Carry Case	position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
				DUT								
CM-Ab-100801-				back								
17/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	HMN4104A	769.000	3.09	-0.333	2.820	2.100	1.52	1.13
				DUT								
CM-Ab-100801-				front								
18/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	HMN4104A	769.000	3.09	-0.378	2.530	1.890	1.38	1.03

Assessment of offered antenna NAF5085A using body worn accessories NTN5243A PMLN5657A along with offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

Assessi	ment of antenna	NAF5085A wit	h offered carı	ry strap/bo	ody worn PML	N5657A, ba	atteries a	nd audio a	accessories.	(Center Ch		
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
				DUT								
				back								
CM-Ab-100801-	374750054	3 D 1773 170 20 1	NTN5243A/	against	TD 6741644	7 (0,000	2.05	0.601	2.740	2.700	2.10	1.50
19/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5657A		HMN4104A	769.000	3.07	-0.691	3.740	2.700	2.19	1.58
				DUT								
				accessory side								
CM-Ab-100801-			NTN5243A/	against								
21/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5657A	_	HMN4104A	769.000	3.08	-0.195	2.430	1.710	1.27	0.89
				DUT								
				PTT side								
CM-Ab-100801-			NTN5243A/		********							
22/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5657A	phantom	HMN4104A	769.000	3.09	-0.419	3.580	2.590	1.97	1.43
	T	T	T	DUT			T		T	I	I	l
				back								
CM-Ab-100801-			NTN5243A/	against								
24/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5657A		HMN4104A	769.000	3.06	-0.302	3.810	2.790	2.04	1.50
				DUT								
				accessory								
				side								
JsT-Ab-100802-	NIATEONE A	DMDD14402 4	NTN5243A/	against	11N/N1/10/14	760,000	2.07	0.520	2.060	1 420	1 17	0.00
02/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5657A	DUT	HMN4104A	769.000	3.07	-0.538	2.060	1.420	1.17	0.80
				PTT side								
JsT-Ab-100802-			NTN5243A/	against								
03/NUF1003A0048	NAF5085A	PMNN4403A			HMN4104A	769.000	3.07	-0.177	2.950	2.130	1.54	1.11

Assessment of offered antenna NAF5085A using body worn accessories NTN5243A PMLN5658A along with offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

TABLE 15

					111222							
Assessi	ment of antenna	NAF5085A wit	h offered carı	ry strap/bo	ody worn PML	N5658A, ba	atteries a	nd audio a	accessories.	(Center Ch	annel)	
		_		Test	Additional	Test Freq.	Initial Power	SAR Drift	Meas. 1g- SAR	Meas. 10g-SAR	SAR	Max Calc. 10g-SAR
Run number/SN	Antenna	Battery	Carry Case		attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
				DUT								
				back								
JsT-Ab-100802-			NTN5243A/	against	********							
0/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5658A	1	HMN4104A	769.000	3.07	-0.254	2.330	1.730	1.24	0.92
				DUT								
				accessory								
I T A1 100003			NITNICO 42 A /	side								
JsT-Ab-100802- 05/NUF1003A0048	NAF5085A	NNTN7038A	NTN5243A/ PMLN5658A	against	HMN4104A	769.000	3.08	-0.351	1.830	1.290	0.99	0.70
05/NUF1003A0048	NAF5085A	NNTN/038A	PMLN3038A	DUT	HMN4104A	/69.000	3.08	-0.331	1.830	1.290	0.99	0.70
				PTT side								
JsT-Ab-100802-			NTN5243A/									
06/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5658A		HMN4104A	769.000	3.07	-0.266	2.830	1.990	1.50	1.06
00/1101 1005/100 10	14711 2 0 0 2 7 1	1111111705011	I WENGOON	phantom	11111111111111	707.000	3.07	0.200	2.030	1.770	1.50	1.00
			I	DUT								
				back								
JsT-Ab-100802-			NTN5243A/	against								
09/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5658A	phantom	HMN4104A	769.000	3.07	-0.351	2.310	1.720	1.25	0.93
				DUT								
				accessory								
				side								
JsT-Ab-100802-			NTN5243A/	U								
08/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5658A		HMN4104A	769.000	3.07	-0.372	1.770	1.240	0.96	0.68
				DUT								
				PTT side								
JsT-Ab-100802-			NTN5243A/	against								
07/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5658A	phantom	HMN4104A	769.000	3.07	-0.218	3.070	2.140	1.61	1.13

Assessments at the Body (CW mode):

Assessment of other applicable frequencies using the highest SAR configuration from the tables above in accordance with section 12.4 and 12.5.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

				Assessme	ent of other frequ	iencies.						
						Test	Initial	SAR	Meas. 1g-	Meas.	Max Calc.1g-	Max Calc.
				Test	Additional	Freq.	Power	Drift	SAR	10g-SAR	SAR	10g-SAR
Run number/SN	Antenna	Battery	Carry Case	position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
JsT-Ab-100802-				Against								
10/NUF1003A0048	NAF5085A	PMNN4403A	NTN8266B	phantom	HMN4104A	764.0125	3.08	-0.264	7.140	5.230	3.79	2.78
JsT-Ab-100802-				Against								
11/NUF1003A0048	NAF5085A	PMNN4403A	NTN8266B	phantom	HMN4104A	775.000	3.07	-0.470	5.510	4.020	3.07	2.24

Assessment of the offered antenna NAR6595A using body worn accessories NTN8266B, PMLN5658A and PMLN5657A, audio cable HMN4104A and batteries NNTN7038A and PMNN4403A at the center channel. Other applicable frequencies tested in accordance with section 12.4 and 12.5.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

TABLE 17

					TABLE II							
	Assessm	ent of antenna	NAR6595A w	ith offered	batteries, body	worn and a	audio acc	essories (C	Center Chan	nel)		
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
JsT-Ab-100802- 12/NUF1003A0048	NAR6595A	NNTN7038A	NTN8266B	Against phantom	HMN4104A	769.000	3.08	-0.304	12.790	9.350	6.86	5.01
JsT-Ab-100802- 14/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5658A	Against phantom	HMN4104A	769.000	3.08	-0.261	6.050	4.480	3.21	2.38
CM-Ab-100802- 15/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5657A	Against phantom	HMN4104A	769.000	3.08	-0.262	3.730	2.780	1.98	1.48
JsT-Ab-100802- 13/NUF1003A0048	NA P. (505 A	D O D 14 402 A	NENIOZCO	Against	HMN4104A	769.000	3.08	-0.319	12.990	9.500	6.99	5.11
CM-Ab-1003A0048 CM-Ab-100802- 16/NUF1003A0048	NAR6595A NAR6595A	PMNN4403A PMNN4403A	NTN8266B PMI N5658A	Against phantom	HMN4104A	769.000	3.08	-0.319	5.720	4.240	3.04	2.26
CM-Ab-100802- 17/NUF1003A0048		PMNN4403A		Against	HMN4104A	769.000	3.08	-0.308	4.050	3.030	2.17	1.63
			Other Freq	uencies for	configurations v	vith SAR >	>5.6mW/g					
CM-Ab-100802- 19/NUF1003A0048	NAR6595A	NNTN7038A	NTN8266B	Against phantom	HMN4104A	764.0125	3.08	-0.412	12.700	9.280	6.98	5.10
CM-Ab-100802- 20/NUF1003A0048	NAR6595A	NNTN7038A	NTN8266B	Against phantom	HMN4104A	775.000	3.06	-0.270	12.200	8.030	6.49	4.27
			1						1			1
CM-Ab-100802- 22/NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	Against phantom	HMN4104A	764.0125	3.07	-0.168	13.400	8.680	6.96	4.51
CM-Ab-100802- 24/NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	Against phantom	HMN4104A	775.000	3.07	-0.212	13.400	8.540	7.04	4.48

Assessments at the Body (CW mode):

Assessment at 2.5cm separation distance using the highest SAR configuration from the table above at the center channel per section 12.3.1.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

TABLE 18

	Assessment at 2.5cm separation. (Center Channel)													
				Test	Additional	Test Freq.	Initial Power	SAR Drift		10g-SAR	SAR	Max Calc. 10g-SAR		
Run number/SN	Antenna	Battery	Carry Case	position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)		
JsT-Ab-100803-				DUT back										
06/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	HMN4104A	769.000	3.07	-0.298	5.300	3.950	2.84	2.12		
JsT-Ab-100803-				DUT front										
07/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	HMN4104A	769.000	3.07	-0.147	4.870	3.670	2.52	1.90		

Assessment of offered antenna NAR6595A using body worn accessories NTN5243A PMLN5657A along with offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

Assessi	ment of antenna	NAR6595A wit	h offered car	ry strap/bo	ody worn PML	N5657A, b	atteries a	nd audio a	accessories.	(Center Ch	nannel)	
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
				DUT								
				back								
CM-Ab-100803-			NTN5243A/	against								
15/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5657A	1	HMN4104A	769.000	3.07	0.151	9.780	7.270	4.89	3.64
				DUT								
				accessory								
CM-Ab-100803-			NTN5243A/	side against								
16/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5657A	_	HMN4104A	769.000	3.08	-0.0979	7.900	5.740	4.04	2.94
10/11/01 1005/100 10	14/1103/3/1	1111111703011	11/12/13/03/11	DUT	111111111111111	707.000	3.00	0.0777	7.500	3.710	1.01	2.51
				PTT side								
CM-Ab-100803-			NTN5243A/	against								
17/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5657A	phantom	HMN4104A	769.000	3.08	-0.0356	8.750	6.280	4.41	3.17
				DUT								
				back								
CM-Ab-100803-	NARCEOSA	D. D. D. I. 4.02 A	NTN5243A/	against	TD 0141044	7.00.000	2.07	0.622	0.700	6.520	- 0=	2.77
18/NUF1003A0048	NAR6595A	PMNN4403A	PMLN5657A	DUT	HMN4104A	769.000	3.07	-0.622	8.790	6.530	5.07	3.77
				_								
				accessory side								
CM-Ab-100803-			NTN5243A/	against								
19/NUF1003A0048	NAR6595A	PMNN4403A	PMLN5657A		HMN4104A	769.000	3.08	0.0481	4.940	3.560	2.47	1.78
				DUT		-						
				PTT side								
CM-Ab-100803-			NTN5243A/	against								
20/NUF1003A0048	NAR6595A	PMNN4403A	PMLN5657A	phantom	HMN4104A	769.000	3.08	-0.215	7.790	5.640	4.09	2.96

Assessment of offered antenna NAR6595A using body worn accessories NTN5243A PMLN5658A along with offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

TABLE 20

nent of antenna	NAR6595A wit	h offered carı	ry strap/bo	ody worn PML	N5658A, ba	atteries a	nd audio a	accessories.	(Center Ch	annel)	
Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
			DUT back								
NA D6505 A	NINITNI7029A	NTN5243A/	against	HMNI4104A	760,000	2.07	0.200	5.040	2 750	2.64	1.97
NAKOJ9JA	ININTIN/US6A	PMLN3038A	DUT	HWIN4104A	709.000	3.07	-0.209	3.040	3.730	2.04	1.97
			accessory side								
NAR6505A	NNTN7038 A	NTN5243A/	against	HMN//10// A	769 000	3.06	-0.218	5 370	3.810	2 82	2.00
NAKOSYSA	INITITY/050A	I WILIYJOJOA	DUT	IIIVIINTIOTA	707.000	3.00	-0.216	3.370	3.010	2.02	2.00
		NTN5243A/	PTT side against								
NAR6595A	NNTN7038A	PMLN5658A	phantom	HMN4104A	769.000	3.07	-0.0577	7.660	5.380	3.88	2.73
			DUT								
		NTN5243A/	back against								
NAR6595A	PMNN4403A	PMLN5658A	•	HMN4104A	769.000	3.07	-0.258	5.780	4.310	3.07	2.29
			_								
		NTN5243A/	side								
NAR6595A	PMNN4403A		phantom	HMN4104A	769.000	3.06	-0.356	5.170	3.650	2.81	1.98
			DUT PTT side								
NAR6595A	PMNN4403 A	NTN5243A/	against	HMN4104 A	769 000	3.06	-0.230	9.020	6 330	476	3.34
	Antenna NAR6595A NAR6595A NAR6595A	Antenna Battery NAR6595A NNTN7038A NAR6595A NNTN7038A NAR6595A NNTN7038A NAR6595A PMNN4403A NAR6595A PMNN4403A	Antenna Battery Carry Case NAR6595A NNTN7038A NTN5243A/PMLN5658A NAR6595A NNTN7038A NTN5243A/PMLN5658A NAR6595A NNTN7038A NTN5243A/PMLN5658A NAR6595A PMNN4403A NTN5243A/PMLN5658A NAR6595A PMNN4403A NTN5243A/PMLN5658A NAR6595A PMNN4403A NTN5243A/PMLN5658A	NAR6595A NNTN7038A NTN5243A/ NAR6595A NNTN7038A PMLN5658A phantom	Antenna Battery Carry Case position Test position attachments Additional attachments NAR6595A NNTN7038A NTN5243A/ PMLN5658A phantom phantom side against NTN5243A/ PMLN5658A phantom PTT side against NTN5243A/ PMLN5658A phantom PTT side against phantom PMLN5658A phan	NAR6595A NNTN7038A PMLN5658A PMLN5	NAR6595A	NAR6595A NNTN7038A NNTN7038A PMLN5658A PMNN403A PMLN5658A PMNN4403A PMLN5658A PMNN4104A PMLN5658A PMNN4104A PMLN5658A PMNN4104A PMLN5658A PMNN4403A PMLN5658A PMNN44	NAR6595A NNTN7038A PMLN5658A PMLN5	NAR6595A NNTN7038A PMLN5658A phantom DUT back NTN5243A/ against NAR6595A NNTN7038A PMLN5658A phantom DUT back NTN5243A/ against NAR6595A NNTN7038A PMLN5658A phantom DUT DUT	NAR6595A NNTN7038A PMLN5658A PMLN5

Assessments at the Body (CW mode):

Assessment of other applicable frequencies using the highest SAR configuration from the tables above in accordance with section 12.4 and 12.5.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

TABLE 21

				Assessmo	ent of other frequ	iencies.						
						Test	Initial	SAR	Meas. 1g-	Meas.	Max Calc.1g-	Max Calc.
				Test	Additional	Freq.	Power	Drift	SAR	10g-SAR	SAR	10g-SAR
Run number/SN	Antenna	Battery	Carry Case	position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
CM-Ab-100802-22/				Against		764.012						
NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	phantom	HMN4104A	5	3.07	-0.168	13.400	8.680	6.96	4.51
CM-Ab-100802-24/				Against	•							
NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	phantom	HMN4104A	775.000	3.07	-0.212	13.400	8.540	7.04	4.48

Note: Table 21 scans are the same as the frequency search scans in table 17 in accordance with section 12.4 and 12.5.

Assessment of offered PSMs PMMN4059A, PMMN4060A, PMMN4061A and PSM belt clip 4205823V01 with antenna NAR6595A using offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

TABLE 22

	Assessment	t of offered PSM	Is and belt cli	p with ant	enna NAR6595	A using th	e offered	batteries ((Center Cha	nnel)		
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
CM-Ab-100731-26/		_	4205823V01			,						
NUF1003A0048	NAR6595A	NNTN7038A	PSM belt clip	phantom	PMMN4059A	769.000	3.07	-0.174	3.450	2.160	1.80	1.12
JsT-Ab-100801-04/			4205823V01	Against								
NUF1003A0048	NAR6595A	NNTN7038A	PSM belt clip	phantom	PMMN4060A	769.000	3.08	-0.139	3.240	2.090	1.67	1.08
JsT-Ab-100801-06/			4205823V01	Against								
NUF1003A0048	NAR6595A	NNTN7038A	PSM belt clip	phantom	PMMN4061A	769.000	3.08	-0.156	3.460	2.240	1.79	1.16
JsT-Ab-100801-02/			4205823V01	Against								
NUF1003A0048	NAR6595A	PMNN4403A	PSM belt clip	phantom	PMMN4059A	769.000	3.08	-0.165	3.400	2.120	1.77	1.10
JsT-Ab-100801-03/			4205823V01									
NUF1003A0048	NAR6595A	PMNN4403A	PSM belt clip	phantom	PMMN4060A	769.000	3.08	-0.160	3.240	2.090	1.68	1.08
JsT-Ab-100801-07/			4205823V01	Against								
NUF1003A0048	NAR6595A	PMNN4403A	PSM belt clip	phantom	PMMN4061A	769.000	3.07	-0.120	3.460	2.240	1.78	1.15

Assessments at the Body (CW mode):

Assessment of other applicable frequencies using the highest SAR configuration from the table above in accordance with section 12.4 and 12.5.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

				Assessmo	ent of other frequ	encies.						
				Test	Additional	Test Freq.	Initial Power	SAR Drift	Meas. 1g- SAR	Meas. 10g-SAR	Max Calc.1g- SAR	Max Calc. 10g-SAR
Run number/SN	Antenna	Battery	Carry Case	position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
			4205823V01									
JsT-Ab-100803-04/			PSM belt	Against								
NUF1003A0048	NAR6595A	NNTN7038A	clip	phantom	PMMN4059A	764.0125	3.07	-0.143	3.640	2.310	1.88	1.19
			4205823V01									
JsT-Ab-100803-05/			PSM belt	Against								
NUF1003A0048	NAR6595A	NNTN7038A	clip	phantom	PMMN4059A	775.000	3.06	-0.134	3.370	2.040	1.74	1.05

Assessment of the offered antenna NAF5085A using batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

TABLE 24

		Assessi	ment of anten	na NAF50	85A and offered	batteries.	(Center (Channel)				
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
				DUT								
JsT-Face-100730-				front								
09/ NUF1003A0048	NAF5085A	NNTN7038A	None	2.5cm	None	769.000	3.08	-0.274	2.250	1.640	1.20	0.87
				DUT								
JsT-Face-100730-				front								
10/ NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	None	769.000	3.08	-0.253	2.590	1.910	1.37	1.01

Assessments at the Face(CW mode):

Assessment of other applicable frequencies using the highest SAR configuration from the table above in accordance with section 12.4 and 12.5. Assessment of DUT with back 2.5cm separation was also performed using the highest SAR configuration for this antenna.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

TABLE 25

					TIDEE 10							
				Assessment	t of other frequ	encies.						
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
JsT-Face-100813-		_		DUT front								
03/ NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	None	764.0125	3.07	-0.220	2.83	2.12	1.49	1.12
JsT-Face-100813- 04/ NUF1003A0048	NAF5085A	PMNN4403A	None	DUT front 2.5cm	None	775.000	3.06	-0.258	2.51	1.87	1.33	0.992
CM-Face-100818- 03/ NUF1003A0048	NAF5085A	PMNN4403A	None	DUT back 2.5cm	None	764.0125	3.05	-0.296	2.89	2.14	1.55	1.15

Assessments at the Face (CW mode):

Assessment of the offered antenna NAR6595A using batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

	Assessment of antenna NAR6595A and offered batteries, (Center Channel)													
		.	2	Test	Additional	Test Freq.	Initial Power	SAR Drift	Meas. 1g- SAR	10g-SAR	SAR	Max Calc. 10g-SAR		
Run number/SN	Antenna	Battery	Carry Case	position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)		
JsT-Face-100730-				DUT front										
11/ NUF1003A0048	NAR6595A	NNTN7038A	None	2.5cm	None	769.000	3.07	-0.166	4.120	3.030	2.14	1.57		
JsT-Face-100730-				DUT front										
12/ NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	None	769.000	3.07	-0.134	4.540	3.350	2.34	1.73		

Assessment of other applicable frequencies using the highest SAR configuration from the table above in accordance with section 12.4 and 12.5. Assessment of DUT with back 2.5cm separation was also performed using the highest SAR configuration for this antenna.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

TABLE 27

				Assessment	t of other frequ	encies.						
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
JsT-Face-100813-	12110021111	Duccery	curry cuse	DUT front	week carries	(11222)	(11)	(42)	(11/2-8/	(11/2-8/	(11/228)	(, , , , , , ,
05/ NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	None	764.0125	3.07	-0.181	4.80	3.58	2.50	1.87
JsT-Face-100813-				DUT front								
06/ NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	None	775.0000	3.06	-0.157	4.79	3.56	2.48	1.85
CM-Face-100818-				DUT back								
04/ NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	None	764.0125	3.04	-0.245	4.90	3.63	2.59	1.92

Assessments at the Face (CW mode):

Assessment of offered PSMs PMMN4059A, PMMN4060A, PMMN4061A and PSM belt clip 4205823V01 with antenna NAR6595A using offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

	Assessmen	t of offered PSM	Is and belt clip	p with ant	tenna NAR6595	A using th	e offered	batteries ((Center Cha	nnel)		
								a. p			Max	
				TD 4	A 1 1141 1	Test	Initial	SAR	Meas. 1g-			Max Calc.
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Freq. (MHz)	Power (W)	Drift (dB)	SAR (W/kg)	10g-SAR (W/kg)	SAR (W/kg)	10g-SAR (W/kg)
Kun number/514	Antenna	Dattery	Carry Case	PSM	attacimicitis	(171112)	(**)	(ub)	(W/Kg)	(W/Kg)	(W/Kg)	(W/Kg)
CM-Face-100730-				front								
21/ NUF1003A0048	NAR6595A	NNTN7038A	None	2.5cm	PMMN4059A	769.000	3.09	-0.420	1.070	0.772	0.59	0.43
				PSM								
CM-Face-100730-				front								
22/ NUF1003A0048	NAR6595A	NNTN7038A	None	2.5cm	PMMN4060A	769.000	3.09	-0.140	1.520	1.090	0.78	0.56
CD 4 E 100720				PSM								
CM-Face-100730- 23/ NUF1003A0048	NAR6595A	NNTN7038A	None	front	PMMN4061A	769.000	3.08	-0.132	1.280	0.922	0.66	0.48
23/ NUF1003A0048	NAK0393A	ININTIN/US6A	None	2.5cm	PIVIIVIN4001A	/69.000	3.08	-0.132	1.280	0.922	0.00	0.48
		Ι	Ι	PSM	Ι			1		1		
CM-Face-100730-				front								
24/ NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	PMMN4059A	769.000	3.07	-0.107	1.260	0.915	0.65	0.47
				PSM								
CM-Face-100730-				front								
25/ NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	PMMN4060A	769.000	3.08	-0.106	1.210	0.868	0.62	0.44
				PSM								
CM-Face-100730-	NIAD (505 :	D 0 D 14402 :		front	D. O. O. M. O. C.	760.000	2.00	0.0703	1.002	0.720	0.51	0.27
26/ NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	PMMN4061A	769.000	3.08	-0.0706	1.002	0.720	0.51	0.37

Assessment of other applicable frequencies using the highest SAR configuration from the table above in accordance with section 12.4 and 12.5.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 1.0.

TABLE 29

					111222							
				Assessme	ent of other frequ	encies.						
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
			•	PSM					. 8/			
JsT-Face-100731-				front								
04/ NUF1003A0048	NAR6595A	NNTN7038A	None	2.5cm	PMMN4060A	764.0125	3.09	-0.154	1.590	1.140	0.82	0.59
				PSM								
JsT-Face-100731-				front								
05/ NUF1003A0048	NAR6595A	NNTN7038A	None	2.5cm	PMMN4060A	775.0000	3.08	-0.118	1.270	0.908	0.65	0.47

13.2 794-824 MHz Test Data:

Assessments at the Body (CW mode):

Assessment of the offered antenna NAF5085A using body worn accessories NTN8266B, PMLN5658A and PMLN5657A, audio cable HMN4104A and batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

TABLE 30

	Assessme	ent of antenna l	NAF5085A wi	th offered	batteries, body v	vorn and	audio acc	essories (C	Center Chan	nel)		
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
JsT-Ab-100726- 11/NUF1003A0048	NAF5085A	NNTN7038A	NTN8266B	Against phantom	HMN4104A	809.000	3.74	-0.293	3.540	2.580	1.89	1.38
JsT-Ab-100726- 12/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5658A	Against phantom	HMN4104A	809.000	3.74	-0.549	1.780	1.310	1.01	0.74
JsT-Ab-100726- 13/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5657A	Against phantom	HMN4104A	809.000	3.74	-0.335	1.120	0.835	0.60	0.45
CM-Ab-100726- 15/NUF1003A0048	NAF5085A	PMNN4403A	NTN8266B	Against phantom	HMN4104A	809.000	3.74	-0.305	3.690	2.690	1.98	1.44
CM-Ab-100726- 16/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5658A	Against phantom	HMN4104A	809.000	3.73	-0.385	1.710	1.260	0.93	0.69
CM-Ab-100726- 17/NUF1003A0048	NAF5085A	PMNN4403A		Against	HMN4104A	809.000	3.76	-0.365	1.330	0.993	0.72	0.54

Assessment at 2.5cm separation distance using the highest SAR configuration from the table above at the center channel per section 12.3.1.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

TABLE 31

			Assessm	ent at 2.5cm	separation. (C	enter Ch	annel)					
				Test	Additional	Test Freq.	Initial Power	SAR Drift	Meas. 1g- SAR	Meas. 10g-SAR	Max Calc.1g- SAR	Max Calc. 10g-SAR
Run number/SN	Antenna	Battery	Carry Case	position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
				DUT back								
CM-Ab-100726-				w/ antenna								
18/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	HMN4104A	809.000	3.75	-0.326	5.730	4.080	3.09	2.20
CM-Ab-100726-				DUT front								
20/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	HMN4104A	809.000	3.76	-0.833	1.550	1.150	0.94	0.70

Assessments at the Body (CW mode):

Assessment of offered antenna NAF5085A using body worn accessories NTN5243A PMLN5657A along with offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

Assessi	ment of antenna	NAF5085A wit	h offered carr	y strap/bo	ody worn PML	N5657A, ba	atteries a	nd audio a	ccessories.	(Center Ch	annel)	
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
				DUT								
CM-Ab-100726-			NTN5243A/	back against								
21/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5657A	_	HMN4104A	809.000	3.74	-0.369	3.590	2.500	1.95	1.36
				DUT								
				accessory								
I T A1 100707			NTTN 150 40 4 /	side								
JsT-Ab-100727- 02/NUF1003A0048	NAF5085A	NNTN7038A	NTN5243A/ PMLN5657A	against phantom	HMN4104A	809.000	3.74	-0.0816	1.650	1.160	0.84	0.59
02/1101 1003/40046	IVAI 3003A	NIVIIV/030A	I WIENSOS/A	DUT	IIIVIIIIII	807.000	3.74	-0.0010	1.050	1.100	0.04	0.57
				PTT side								
JsT-Ab-100727-			NTN5243A/	against								
03/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5657A	phantom	HMN4104A	809.000	3.74	-0.454	3.210	2.180	1.78	1.21
		Τ	I	DUT		l	I	l	I	l		
				back								
JsT-Ab-100727-			NTN5243A/	against								
11/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5657A	phantom	HMN4104A	809.000	3.74	-0.0286	3.640	2.490	1.83	1.25
				DUT								
				accessory side								
JsT-Ab-100727-			NTN5243A/	against								
04/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5657A		HMN4104A	809.000	3.73	-0.525	1.330	0.948	0.75	0.53
				DUT								
				PTT side								
JsT-Ab-100727-	NIA EGOOG A	DMDD14402 4	NTN5243A/	against	ID (D) (4104 A	000 000	2.72	0.101	2.070	1 420	1.00	0.74
06/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5657A	pnantom	HMN4104A	809.000	3.73	-0.181	2.070	1.420	1.08	0.74

Assessment of offered antenna NAF5085A using body worn accessories NTN5243A PMLN5658A along with offered batteries NNTN7038A and PMNN4403A at the center channel. The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

TABLE 33

					TINDLIL							
Assessi	ment of antenna	NAF5085A wit	h offered carı	ry strap/bo	dy worn PML	N5658A, ba	atteries a	nd audio a	accessories.	(Center Ch	annel)	
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
				DUT								
JsT-Ab-100727- 12/NUF1003A0048	NAF5085A	NNTN7038A	NTN5243A/ PMLN5658A	back against	HMN4104A	809.000	3.74	-0.416	1.470	1.080	0.81	0.59
12/11/01/1005/A0048	NAF5085A	ININTIN/038A	I WILINGOSOA	DUT	IIIVIIN4104A	809.000	3.74	-0.410	1.470	1.000	0.61	0.39
JsT-Ab-100727-			NTN5243A/	accessory side against								
07/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5658A		HMN4104A	809.000	3.75	-0.410	1.100	0.816	0.60	0.45
				DUT PTT side								
JsT-Ab-100727-	NATSONSA	NINTENTOOOA	NTN5243A/		ID 014104A	000 000	2.74	0.260	1.000	1 220	1.02	0.72
08/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5658A	pnantom	HMN4104A	809.000	3.74	-0.360	1.900	1.330	1.03	0.72
				DUT			Ι					
CM-Ab-100727- 13/NUF1003A0048	NAF5085A	PMNN4403A	NTN5243A/ PMLN5658A	back against phantom	HMN4104A	809.000	3.75	-0.461	1.290	0.957	0.72	0.53
				DUT accessory side								
JsT-Ab-100727- 09/NUF1003A0048	NAF5085A	PMNN4403A	NTN5243A/ PMLN5658A		HMN4104A	809.000	3.73	-0.386	0.981	0.733	0.54	0.40
	INAFSUOSA	FIVIININ44U3A		DUT PTT side	HWIN41U4A	009.000	3./3	-0.360	0.981	0.733	0.34	0.40
JsT-Ab-100727- 10/NUF1003A0048	NAF5085A	PMNN4403A	NTN5243A/ PMLN5658A		HMN4104A	809.000	3.73	-0.385	1.880	1.320	1.03	0.72

Assessments at the Body (CW mode):

Assessment of other applicable frequencies using the highest SAR configuration from the tables above in accordance with section 12.4 and 12.5. The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

				Assessmo	ent of other freq	uencies.						
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
				DUT								
				back w/								
CM-Ab-101005-				antenna								
06/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	HMN4104A	794.0125	3.01	-0.256	4.360	3.160	2.31	1.68
				DUT								
				back w/								
CM-Ab-100727-				antenna								
14/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	HMN4104A	806.0125	3.75	-0.321	6.550	4.620	3.53	2.49
				DUT								
				back w/								
CM-Ab-100727-				antenna								
15/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	HMN4104A	823.9875	3.74	-0.281	6.200	4.390	3.31	2.34

Assessment of the offered antenna NAR6595AA using body worn accessories NTN8266B, PMLN5658A and PMLN5657A, audio cable HMN4104A and batteries NNTN7038A and PMNN4403A at the center channel. Other applicable frequencies tested in accordance with section 12.4 and 12.5.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

TABLE 35

					TABLE 33							
	Assessm	ent of antenna	NAR6595A w	ith offered	batteries, body	worn and	audio acc	essories (C	Center Char	nel)		
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
CM-Ab-100728-				Against								
06/NUF1003A0048	NAR6595A	NNTN7038A	NTN8266B	phantom	HMN4104A	809.000	3.72	-0.348	13.160	7.980	7.13	4.32
CM-Ab-100727- 17/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5658A	Against phantom	HMN4104A	809.000	3.75	-0.328	7.440	5.490	4.01	2.96
CM-Ab-100727- 18/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5657A	Against phantom	HMN4104A	809.000	3.76	-0.403	4.360	3.240	2.39	1.78
CM-Ab-100727- 19/NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	Against phantom	HMN4104A	809.000	3.77	-0.676	13.040	7.790	7.62	4.55
CM-Ab-100727-				Against								
20/NUF1003A0048	NAR6595A	PMNN4403A	PMLN5658A	phantom	HMN4104A	809.000	3.76	-0.418	6.330	4.680	3.48	2.58
CM-Ab-100727- 21/NUF1003A0048	NAR6595A	PMNN4403A	PMLN5657A	Against phantom	HMN4104A	809.000	3.75	-0.331	4.300	3.210	2.32	1.73
					configurations v	with SAR :	>5.6mW/9	,				
CM-Ab-100727-				Against								
22/NUF1003A0048	NAR6595A	NNTN7038A	NTN8266B	phantom	HMN4104A	806.0125	3.76	-0.533	13.240	8.000	7.48	4.52
CM-Ab-100728- 02/NUF1003A0048	NAR6595A	NNTN7038A	NTN8266B	Against phantom	HMN4104A	823.9875	3.72	-0.699	10.850	6.540	6.37	3.84
02/NOT1003A0048	NAKOSSSA	INIVIIN/036A	N1N8200B	phantom	IIIVIN4104A	823.9873	3.12	-0.099	10.650	0.540	0.37	3.04
HvH-Ab-101007-		I		Against		l	T					
07/NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	phantom	HMN4104A	794.0125	3.03	-0.322	12.560	7.920	6.76	4.26
CM-Ab-100728-				Against								
04/NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	phantom	HMN4104A	806.0125	3.75	-0.531	13.470	8.470	7.61	4.79
CM-Ab-100728- 05/NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	Against phantom	HMN4104A	823.9875	3.74	-0.652	10.650	6.440	6.19	3.74

Assessments at the Body (CW mode):

Assessment at 2.5cm separation distance using the highest SAR configuration from the table above at the center channel per section 12.3.1.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

TABLE 36

			Assessm	ent at 2.5cm	separation. (C	enter Ch	annel)					
						Test	Initial	SAR	Meas. 1g-	Meas.	Max Calc.1g-	Max Calc.
				Test	Additional	Freq.	Power	Drift	SAR	10g-SAR	SAR	10g-SAR
Run number/SN	Antenna	Battery	Carry Case	position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
CM-Ab-100728-				DUT back								
08/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	HMN4104A	809.000	3.77	-0.218	5.690	4.230	2.99	2.22
CM-Ab-100728-				DUT front								
09/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	HMN4104A	809.000	3.74	-0.0892	5.380	4.020	2.75	2.05

Assessment of offered antenna NAR6595A using body worn accessories NTN5243A PMLN5657A along with offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

Assessi	ment of antenna	NAR6595A wit	h offered carı	ry strap/bo	ody worn PML	N5657A, b	atteries a	nd audio a	accessories.	(Center Ch	nannel)	
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
				DUT								
				back								
JsT-Ab-100729-	3717065051	3 D Y T T T T T T T T T T T T T T T T T T	NTN5243A/	against	TD DY4104	000 000	2.52	0.550	7.5 00	5.100	4.22	201
04/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5657A	phantom	HMN4104A	809.000	3.73	-0.570	7.580	5.100	4.32	2.91
				DUT								
				accessory side								
JsT-Ab-100729-			NTN5243A/	against								
10/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5657A	U	HMN4104A	809.000	3.76	-1.09	3.330	2.410	2.14	1.55
	- 11 22 20 27 27 2			DUT				2,07				1.00
				PTT side								
CM-Ab-100729-			NTN5243A/	against								
13/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5657A	phantom	HMN4104A	809.000	3.73	-0.169	5.780	3.920	3.00	2.04
												•
				DUT								
I T A1 100720			NITNICO 42 A /	back								
JsT-Ab-100729- 05/NUF1003A0048	NAR6595A	PMNN4403A	NTN5243A/ PMLN5657A	against	HMN4104A	809.000	3.75	-0.111	8.200	5.770	4.21	2.96
03/NUF1003A0048	NAK0393A	PIVIININ4403A	PMLN303/A	DUT	HIMIN4104A	809.000	3.73	-0.111	8.200	3.770	4.21	2.90
				accessory								
				side								
JsT-Ab-100729-			NTN5243A/	against								
11/NUF1003A0048	NAR6595A	PMNN4403A		phantom	HMN4104A	809.000	3.72	-0.673	3.280	2.370	1.91	1.38
				DUT								
				PTT side								
CM-Ab-100729-			NTN5243A/	against								
14/NUF1003A0048	NAR6595A	PMNN4403A	PMLN5657A	phantom	HMN4104A	809.000	3.72	-0.445	5.860	4.250	3.25	2.35

Assessment of offered antenna NAR6595A using body worn accessories NTN5243A PMLN5658A along with offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

TABLE 38

										.a a.		
Assessi	ment of antenna	NAR6595A wit	h offered carı	ry strap/bo	ody worn PML	N5658A, b	atteries a	nd audio a	accessories.	(Center Cl		
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
				DUT								
GN 6 44 400 GO				back								
CM-Ab-100728- 10/NUF1003A0048	NAR6595A	NNTN7038A	NTN5243A/ PMLN5658A	against	HMN4104A	809.000	3.74	-0.384	6.230	4.610	3.40	2.52
10/NOT1003A0046	NAKOJ9JA	ININTIN/US6A	FIVILINGUSOA	DUT	HWHN4104A	809.000	3.74	-0.364	0.230	4.010	3.40	2.32
				accessory								
				side								
CM-Ab-100728-			NTN5243A/	against								
11/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5658A		HMN4104A	809.000	3.74	-0.579	7.410	5.200	4.23	2.97
				DUT								
CM-Ab-100728-			NTN5243A/	PTT side against								
12/NUF1003A0048	NAR6595A	NNTN7038A			HMN4104A	809.000	3.72	-0.462	8.370	5.870	4.65	3.26
				DUT								
V.T. 11 100500				back								
JsT-Ab-100729- 02/NUF1003A0048	NAR6595A	PMNN4403A	NTN5243A/ PMLN5658A	against	HMN4104A	809.000	3.72	-0.768	3.950	2.920	2.36	1.74
02/NOT1003A0046	NAKOJ9JA	FIVININ4403A	FIVILINGUSOA	DUT	HWHN4104A	809.000	3.12	-0.708	3.930	2.920	2.30	1./4
				accessory								
				side								
JsT-Ab-100729-			NTN5243A/	against								
06/NUF1003A0048	NAR6595A	PMNN4403A	PMLN5658A	1	HMN4104A	809.000	3.72	-0.318	5.380	3.760	2.89	2.02
				DUT PTT side								
JsT-Ab-100729-			NTN5243A/	against								
12/NUF1003A0048	NAR6595A	PMNN4403A	PMLN5658A		HMN4104A	809.000	3.72	-0.710	7.590	5.290	4.47	3.11

Assessments at the Body (CW mode):

Assessment of other applicable frequencies using the highest SAR configuration from the tables above in accordance with section 12.4 and 12.5.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

TABLE 39

	Assessment of other frequencies.														
				Test	Additional	Test Freg.	Initial Power	SAR Drift	Meas. 1g- SAR	Meas. 10g-SAR	Max Calc.1g- SAR	Max Calc. 10g-SAR			
			~ ~			-		-							
Run number/SN	Antenna	Battery	Carry Case	position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)			
CM-Ab-100728-				Against											
04/NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	phantom	HMN4104A	806.0125	3.75	-0.531	13.470	8.470	7.61	4.79			
CM-Ab-100728-				Against											
05/NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	phantom	HMN4104A	823.9875	3.74	-0.652	10.650	6.440	6.19	3.74			

Note: Table 39 scans are the same as the frequency search scans in table 35 in accordance with section 12.4 and 12.5.

Assessment of offered PSMs PMMN4059A, PMMN4060A, PMMN4061A and PSM belt clip 4205823V01 with antenna NAR6595A using offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

TABLE 40

	Assessment	t of offered PSM	Is and belt clip	p with ant	enna NAR6595	A using th	e offered	batteries (Center Cha	nnel)		
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
CM-Ab-100729-			4205823V01	_								
16/NUF1003A0048	NAR6595A	NNTN7038A	PSM belt clip	1	PMMN4059A	809.000	3.73	-0.446	2.490	1.530	1.38	0.85
CM-Ab-100729-			4205823V01	Against								
17/NUF1003A0048	NAR6595A	NNTN7038A	PSM belt clip	phantom	PMMN4060A	809.000	3.74	-0.741	2.750	1.720	1.63	1.02
CM-Ab-100729-			4205823V01	Against								
18/NUF1003A0048	NAR6595A	NNTN7038A	PSM belt clip	phantom	PMMN4061A	809.000	3.76	-0.770	3.350	2.150	2.00	1.28
CM-Ab-100729-			4205823V01	Against								
19/NUF1003A0048	NAR6595A	PMNN4403A	PSM belt clip	phantom	PMMN4059A	809.000	3.74	-0.687	2.550	1.600	1.49	0.94
CM-Ab-100729-			4205823V01	Against								
20/NUF1003A0048	NAR6595A	PMNN4403A	PSM belt clip		PMMN4060A	809.000	3.73	-0.849	2.530	1.580	1.54	0.96
CM-Ab-100729-			4205823V01	Against								
21/NUF1003A0048	NAR6595A	PMNN4403A	PSM belt clip	phantom	PMMN4061A	809.000	3.75	-0.781	3.260	2.060	1.95	1.23

Assessments at the Body (CW mode):

Assessment of other applicable frequencies using the highest SAR configuration from the table above in accordance with section 12.4 and 12.5.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

				Assessme	ent of other frequ	iencies.						
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
			4205823V01									
HvH-Ab-101020-			PSM belt	Against								
02/NUF1003A0048	NAR6595A	NNTN7038A	clip	phantom	PMMN4061A	794.0125	3.02	-0.0968	2.780	1.760	1.42	0.90
			4205823V01									
CM-Ab-100731-			PSM belt	Against								
23/NUF1003A0048	NAR6595A	NNTN7038A	clip	phantom	PMMN4061A	806.0125	3.73	-0.638	3.230	2.090	1.87	1.21
			4205823V01									
CM-Ab-100731-			PSM belt	Against								
25/NUF1003A0048	NAR6595A	NNTN7038A	clip	phantom	PMMN4061A	823.9875	3.75	-0.446	4.200	2.650	2.33	1.47

Assessment of the offered antenna NAF5085A using batteries NNTN7038A and PMNN4403A at the center channel. Assessment of DUT with back 2.5cm separation was also performed using the highest SAR configuration for this antenna. The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

TABLE 42

		Assessi	nent of anten	na NAF5085	A and offered	batteries.	(Center (Channel)				
				Test	Additional	Test Freq.	Initial Power	SAR Drift	Meas. 1g- SAR	Meas. 10g-SAR	Max Calc.1g- SAR	Max Calc. 10g-SAR
Run number/SN	Antenna	Battery	Carry Case	position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
JsT-Face-100730-				DUT front								
07/NUF1003A0048	NAF5085A	NNTN7038A	None	2.5cm	None	809.000	3.76	-0.373	2.190	1.590	1.19	0.87
JsT-Face-100730-				DUT front								
08/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	None	809.000	3.75	-0.498	2.390	1.730	1.34	0.97
CM-Face-100817-				DUT back								
06/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	None	809.000	3.71	-0.345	2.41	1.76	1.30	0.953

Assessments at the Face (CW mode):

Assessment of other applicable frequencies using the highest SAR configuration from the table above in accordance with section 12.4 and 12.5.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

TABLE 43

					TIDEE 10										
	Assessment of other frequencies.														
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)			
CM-Face-101001-				DUT front											
14/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	None	794.0125	3.00	-0.0871	1.87	1.35	0.95	0.69			
CM-Face-100812-				DUT front											
06/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	None	806.0125	3.72	-0.352	1.96	1.43	1.06	0.775			
CM-Face-100812-				DUT front											
07/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	None	823.9875	3.75	-0.240	2.24	1.63	1.18	0.861			

Assessments at the Face (CW mode):

Assessment of the offered antenna NAR6595A using batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

		Asse	ssment of a	ntenna NAR	6595A and offe	ered batteries. ((Center Cl	nannel)				
											Max	
							Initial	SAR	Meas. 1g-	Meas.	Calc.1g-	Max Calc.
			Carry	Test	Additional	Test Freq.	Power	Drift	SAR	10g-SAR	SAR	10g-SAR
Run number/SN	Antenna	Battery	Case	position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
JsT-Face-100730-				DUT front								
13/NUF1003A0048	NAR6595A	NNTN7038A	None	2.5cm	None	809.000	3.76	-0.146	4.630	3.400	2.39	1.76
CM-Face-100730-				DUT front								
14/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	None	809.000	3.75	-0.129	5.08	3.73	2.62	1.92

Assessment of other applicable frequencies using the highest SAR configuration from the table above in accordance with section 12.4 and 12.5. Assessment of DUT with back 2.5cm separation was also performed using the highest SAR configuration for this antenna.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

TABLE 45

Assessment of other frequencies.												
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
CM-Face-101001-				DUT front								
15/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	None	794.0125	3.00	-0.145	4.39	3.26	2.27	1.69
CM-Face-100812-				DUT front								
08/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	None	806.0125	3.73	-0.173	5.62	4.17	2.92	2.17
CM-Face-100812-				DUT front								
09/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	None	823.9875	3.76	-0.328	4.94	3.65	2.66	1.97
CM-Face-100818-				DUT back								
02/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	None	806.0125	3.71	-0.224	5.47	4.05	2.88	2.13

Assessments at the Face (CW mode):

Assessment of offered PSMs PMMN4059A, PMMN4060A, PMMN4061A and PSM belt clip 4205823V01 with antenna NAR6595A using offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

Assessment of offered PSMs and belt clip with antenna NAR6595A using the offered batteries (Center Channel)												
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
				PSM								
CM-Face-100730-				front								
15/NUF1003A0048	NAR6595A	NNTN7038A	None	2.5cm	PMMN4059A	809.0000	3.75	-0.328	0.792	0.569	0.43	0.31
CM-Face-100730-				PSM front								
16/NUF1003A0048	NAR6595A	NNTN7038A	None	2.5cm	PMMN4060A	809.0000	3.76	-0.514	0.896	0.639	0.50	0.36
CM-Face-100730-				PSM front								
17/NUF1003A0048	NAR6595A	NNTN7038A	None	2.5cm	PMMN4061A	809.0000	3.75	-0.729	0.955	0.689	0.56	0.41
CM-Face-100730-				PSM front								
19/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	PMMN4059A	809.0000	3.79	-0.431	1.001	0.730	0.55	0.40
CM-Face-100730-	NARCSOSA	DVD D 14402 A	N	PSM front	DIA DIA COA	000 0000	2.70	0.555	0.000	0.614	0.40	0.25
18/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	PMMN4060A	809.0000	3.78	-0.555	0.860	0.614	0.49	0.35
CM-Face-100730- 20/NUF1003A0048	NAR6595A	PMNN4403A	None	PSM front 2.5cm	PMMN4061A	800 0000	3.76	-0.669	1.015	0.728	0.59	0.42

Assessment of other applicable frequencies using the highest SAR configuration from the table above in accordance with section 12.4 and 12.5.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 2.0.

TABLE 47

				Assessmo	ent of other frequ	encies.						
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
				PSM								
HvH-Face-101020-				front								
03/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	PMMN4061A	794.0125	3.02	-0.173	0.976	0.704	0.51	0.37
				PSM								
JsT-Face-100731-				front								
02/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	PMMN4061A	806.0125	3.74	-0.598	1.060	0.763	0.61	0.44
				PSM								
JsT-Face-100731-				front								
03/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	PMMN4061A	823.9875	3.77	-0.518	1.190	0.852	0.67	0.48

13.3 851-870 MHz Test Data:

Assessments at the Body (CW mode):

Assessment of the offered antenna NAF5085A using body worn accessories NTN8266B, PMLN5658A and PMLN5657A, audio cable HMN4104A and batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

TABLE 48

	Assessmen	nt of antenna N	AF5085A with	n offered b	atteries, body wo	rn and a	udio acces	sories (Ce	nter Chann	el)		
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
CM-Ab-100723- 12/NUF1003A0048	NAF5085A	NNTN7038A	NTN8266B	Against phantom	HMN4104A	860.500	3.72	-0.261	4.900	2.970	2.60	1.58
CM-Ab-100722- 03/NUF1003A0048	NAF5085A	NNTN7038A		Against	HMN4104A	860.500		-0.307	1.590	1.130	0.85	0.61
CM-Ab-100722- 04/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5657A	Against phantom	HMN4104A	860.500	3.67	-0.441	1.050	0.746	0.58	0.41
CN 41 100722	1	I	ı			1		ı	ı	I		
CM-Ab-100723- 13/NUF1003A0048	NAF5085A	PMNN4403A	NTN8266B	Against phantom	HMN4104A	860.500	3.74	-0.344	5.140	3.110	2.78	1.68
CM-Ab-100722- 06/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5658A	Against phantom	HMN4104A	860.500	3.73	-0.369	1.690	1.200	0.92	0.65
CM-Ab-100722- 07/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5657A	Against phantom	HMN4104A	860.500	3.71	-0.901	0.822	0.585	0.51	0.36

Assessment at 2.5cm separation distance using the highest SAR configuration from the table above at the center channel per section 12.3.1.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

TABLE 49

			Assessm	ent at 2.5c	m separation. (C	enter Ch	annel)					
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
				DUT								
CM-Ab-100723-				back								
14/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	HMN4104A	860.500	3.73	-0.319	7.260	5.100	3.91	2.74
				DUT								
JsT-Ab-100723-				front								
03/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	HMN4104A	860.500	3.71	-0.424	2.100	1.500	1.16	0.83

Assessments at the Body (CW mode):

Assessment of offered antenna NAF5085A using body worn accessories NTN5243A PMLN5657A along with offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

Assessi	ment of antenna	NAF5085A wit	h offered carı	ry strap/bo	ody worn PML	N5657A, ba	atteries a	nd audio a	ccessories.	(Center Ch	annel)	
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
		•		DUT				` ,				3/
CM-Ab-100723-			NTN5243A/	back against								
17/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5657A	phantom	HMN4104A	860.500	3.75	-0.267	4.060	2.080	2.16	1.11
				DUT								
				accessory side								
CM-Ab-100723-			NTN5243A/	against								
18/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5657A	_	HMN4104A	860.500	3.75	-0.0748	1.790	1.260	0.91	0.64
				DUT								
JsT-Ab-100724-			NTN5243A/	PTT side against								
02/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5657A		HMN4104A	860.500	3.76	-0.0941	2.450	1.690	1.25	0.86
				DUT								
JsT-Ab-100724-			NTN5243A/	back against								
06/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5657A	phantom	HMN4104A	860.500	3.76	0.0345	3.330	2.330	1.67	1.17
				DUT								
				accessory side								
JsT-Ab-100724-			NTN5243A/	against								
05/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5657A	_	HMN4104A	860.500	3.75	-0.220	1.760	1.270	0.93	0.67
				DUT								
JsT-Ab-100724-			NTN5243A/	PTT side								
03/NUF1003A0048	NAF5085A	PMNN4403A		against phantom	HMN4104A	860.500	3.75	0.0636	1.770	1.250	0.89	0.63

Assessment of offered antenna NAF5085A using body worn accessories NTN5243A PMLN5658A along with offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

TABLE 51

Assessi	ment of antenna	NAF5085A wit	h offered carr	y strap/bo	ody worn PML	N5658A, ba	atteries a	nd audio a	accessories.	(Center Ch	annel)	
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
				DUT back								
JsT-Ab-100723-			NTN5243A/	against								
04/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5658A		HMN4104A	860.500	3.72	-0.0445	0.935	0.666	0.47	0.34
JsT-Ab-100723-			NTN5243A/	DUT accessory side against								
05/NUF1003A0048	NAF5085A	NNTN7038A	PMLN5658A	1	HMN4104A	860.500	3.73	-0.297	1.210	0.831	0.65	0.44
CM-Ab-100723-			NTN5243A/	DUT PTT side against								
15/NUF1003A0048	NAF5085A	NNTN7038A			HMN4104A	860.500	3.75	-0.185	2.700	1.870	1.41	0.98
			•									
JsT-Ab-100723-			NTN5243A/	DUT back against								
09/NUF1003A0048	NAF5085A	PMNN4403A	PMLN5658A		HMN4104A	860.500	3.73	-0.173	1.230	0.859	0.64	0.45
				DUT accessory side								
JsT-Ab-100723- 08/NUF1003A0048	NAF5085A	PMNN4403A	NTN5243A/ PMLN5658A	against phantom	HMN4104A	860.500	3.73	-0.274	1.25	0.859	0.67	0.46
		22.21.21.10.311		DUT PTT side		200.200	3.75	0.271	1.20		0.07	0.10
CM-Ab-100723- 11/NUF1003A0048	NAF5085A	PMNN4403A	NTN5243A/ PMLN5658A	against phantom	HMN4104A	860.500	3.73	-0.199	2.680	1.840	1.40	0.96

Assessments at the Body (CW mode):

Assessment of other applicable frequencies using the highest SAR configuration from the tables above in accordance with section 12.4 and 12.5.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

				Assessm	ent of other free	uencies.						
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	8	Max Calc. 10g-SAR (W/kg)
				DUT								
				back w/								
JsT-Ab-100724-				antenna								
07/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	HMN4104A	851.0125	3.74	-0.215	6.360	4.480	3.34	2.35
				DUT								
				back w/								
JsT-Ab-100724-				antenna								
08/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	HMN4104A	869.9875	3.76	-0.290	7.290	5.110	3.90	2.73

Assessment of the offered antenna NAR6595AA using body worn accessories NTN8266B, PMLN5658A and PMLN5657A, audio cable HMN4104A and batteries NNTN7038A and PMNN4403A at the center channel. Other applicable frequencies tested in accordance with section 12.4 and 12.5.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

TABLE 53

	Assessm	ent of antenna	NAR6595A w	ith offered	l batteries, body	worn and	audio acc	essories (C	Center Chan	nel)		
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
JsT-Ab-100724- 09/NUF1003A0048	NAR6595A	NNTN7038A	NTN8266B	Against phantom	HMN4104A	860.500	3.77	-0.326	9.640	5.720	5.20	3.08
JsT-Ab-100724- 10/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5658A	Against phantom	HMN4104A	860.500	3.77	-0.479	5.270	3.840	2.94	2.14
JsT-Ab-100724- 11/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5657A	Against phantom	HMN4104A	860.500	3.77	-0.425	2.980	2.210	1.64	1.22
CM-Ab-100724- 12/NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	Against phantom	HMN4104A	860.500	3.75	-0.519	10.250	5.970	5.78	3.36
CM-Ab-100724- 13/NUF1003A0048	NAR6595A	PMNN4403A	PMLN5658A	Against phantom	HMN4104A	860.500	3.75	-0.661	5.810	4.240	3.38	2.47
CM-Ab-100724- 14/NUF1003A0048	NAR6595A	PMNN4403A	PMLN5657A	Against	HMN4104A	860.500	3.75	-0.607	2.690	2.000	1.55	1.15
					uencies for high							
CM-Ab-100804- 02/NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	Against phantom	HMN4104A	851.0125	3.73	-0.487	11.100	6.370	6.21	3.56
CM-Ab-100804- 03/NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	Against phantom	HMN4104A	869.9875	3.76	-0.361	10.200	5.840	5.54	3.17

Assessments at the Body (CW mode):

Assessment at 2.5cm separation distance using the highest SAR configuration from the table above at the center channel per section 12.3.1.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

TABLE 54

			Assessm	ent at 2.50	em separation. (C	enter Ch	annel)					
											Max	
				m .		Test	Initial	SAR	Meas. 1g-		Calc.1g-	
		- ·		Test	Additional	Freq.	Power	Drift	SAR	10g-SAR		10g-SAR
Run number/SN	Antenna	Battery	Carry Case	position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
				DUT								
CM-Ab-100724-				back								
16/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	HMN4104A	860.500	3.74	-0.529	4.670	3.440	2.64	1.94
				DUT								
CM-Ab-100724-				front								
17/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	HMN4104A	860.500	3.76	-0.711	4.250	3.140	2.50	1.85

Assessment of offered antenna NAR6595A using body worn accessories NTN5243A PMLN5657A along with offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

Assessi	ment of antenna	NAR6595A wit	h offered carı	ry strap/bo	ody worn PML	N5657A, ba	atteries a	nd audio a	accessories.	(Center Cl	nannel)	
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
				DUT								
				back								
JsT-Ab-100726-			NTN5243A/	against								
09/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5657A	phantom	HMN4104A	860.500	3.74	-0.790	5.670	3.980	3.40	2.39
				DUT								
				accessory side								
JsT-Ab-100726-			NTN5243A/	against								
04/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5657A	U	HMN4104A	860.500	3.74	-0.332	3.160	2.240	1.71	1.21
				DUT								
				PTT side								
JsT-Ab-100726-			NTN5243A/	against								
05/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5657A	phantom	HMN4104A	860.500	3.74	-0.138	4.480	3.260	2.31	1.68
	ı	T	ı				_	ı	1	1	1	1
				DUT								
JsT-Ab-100726-			NTN5243A/	back against								
10/NUF1003A0048	NAR6595A	PMNN4403A	PMLN5657A	_	HMN4104A	860.500	3.73	-0.276	5.570	3.780	2.97	2.01
10/1101 1003/10040	14/1103/3/1	1 1411111111111111111111111111111111111	I WIENSOSTI	DUT	111111111111111111111111111111111111111	000.500	3.73	0.270	3.370	3.700	2.71	2.01
				accessory								
				side								
JsT-Ab-100726-			NTN5243A/	against								
07/NUF1003A0048	NAR6595A	PMNN4403A	PMLN5657A	phantom	HMN4104A	860.500	3.75	-0.519	2.270	1.640	1.28	0.92
				DUT								
I T A1 10072 (NED 150 40 1 1	PTT side								
JsT-Ab-100726- 08/NUF1003A0048	NAR6595A	DMNIN14402 A	NTN5243A/	against	HMN4104A	860.500	2 72	-0.442	4.640	3.290	2.57	1.82
08/NOF1003A0048	NAKOS9SA	PMNN4403A	PIVILINOO5/A	phantom	IIIVIIN4104A	800.300	3.73	-0.442	4.040	3.290	2.37	1.82

Assessment of offered antenna NAR6595A using body worn accessories NTN5243A PMLN5658A along with offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

TABLE 56

Assessr	nent of antenna	NAR6595A wit	h offered carı	ry strap/bo	ody worn PML	N5658A, ba	atteries a	nd audio a	accessories.	(Center Ch	annel)	
Run number/SN	Antenna	Battery	Carry Case	Test	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max	Max Calc. 10g-SAR (W/kg)
				DUT back								
CM-Ab-100724- 21/NUF1003A0048	NAR6595A	NNTN7038A	NTN5243A/ PMLN5658A	against phantom	HMN4104A	860.500	3.77	-0.637	3.570	2.610	2.07	1.51
CM-Ab-100724-	V. D. (70.7.)		NTN5243A/	DUT accessory side against	VII 0 V 4 1 0 4 4	0.00 500		0.470	5.000	2 (00	201	• 10
22/NUF1003A0048	NAR6595A	NNTN7038A	PMLN5658A	phantom DUT	HMN4104A	860.500	3.77	-0.672	5.200	3.600	3.04	2.10
CM-Ab-100724- 23/NUF1003A0048	NAR6595A	NNTN7038A	NTN5243A/ PMLN5658A	PTT side against phantom	HMN4104A	860.500	3.76	-0.359	5.340	3.700	2.90	2.01
				DUT								
CM-Ab-100724- 24/NUF1003A0048	NAR6595A	PMNN4403A	NTN5243A/ PMLN5658A	back against phantom	HMN4104A	860.500	3.77	-0.721	4.330	3.160	2.56	1.87
JsT-Ab-100726-			NTN5243A/	DUT accessory side against								
02/NUF1003A0048	NAR6595A	PMNN4403A	PMLN5658A	phantom	HMN4104A	860.500	3.74	-0.454	3.470	2.390	1.93	1.33
JsT-Ab-100726- 03/NUF1003A0048	NAR6595A	PMNN4403A	NTN5243A/ PMLN5658A	DUT PTT side against	HMN4104A	860.500	3.74	-0.329	5.150	3.540	2.78	1.91

Assessments at the Body (CW mode):

Assessment of other applicable frequencies using the highest SAR configuration from the 851-870MHz band tables above in accordance with section 12.4 and 12.5. The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

TABLE 57

					TITELLE									
	Assessment of other frequencies.													
						Test	Initial		Meas. 1g-			Max Calc.		
				Test	Additional	Freq.	Power	Drift	SAR	10g-SAR	SAR	10g-SAR		
Run number/SN	Antenna	Battery	Carry Case	position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)		
CM-Ab-100804-				Against										
02/NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	phantom	HMN4104A	851.0125	3.73	-0.487	11.100	6.370	6.21	3.56		
CM-Ab-100804-				Against										
03/NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	phantom	HMN4104A	869.9875	3.76	-0.361	10.200	5.840	5.54	3.17		

Note: Table 57 scans are the same as the frequency search scans in table 53 in accordance with section 12.4 and 12.5.

Assessment of offered PSMs PMMN4059A, PMMN4060A, PMMN4061A and PSM belt clip 4205823V01 with antenna NAR6595A using offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

TABLE 58

	Assessment	t of offered PSM	Is and belt clip	p with ant	enna NAR6595	A using th	e offered	batteries (Center Cha	nnel)		
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
CM-Ab-100729-			4205823V01	_								
22/NUF1003A0048	NAR6595A	NNTN7038A	PSM belt clip	phantom	PMMN4059A	860.500	3.77	-0.685	3.620	2.140	2.12	1.25
CM-Ab-100729-			4205823V01	Against								
23/NUF1003A0048	NAR6595A	NNTN7038A	PSM belt clip	phantom	PMMN4060A	860.500	3.76	-0.164	2.380	1.430	1.24	0.74
CM-Ab-100731-			4205823V01	Against								
16/NUF1003A0048	NAR6595A	NNTN7038A	PSM belt clip	phantom	PMMN4061A	860.500	3.75	-0.875	2.770	1.700	1.69	1.04
CM-Ab-100731-			4205823V01	Against								
17/NUF1003A0048	NAR6595A	PMNN4403A	PSM belt clip	phantom	PMMN4059A	860.500	3.77	-0.692	3.680	2.190	2.16	1.28
CM-Ab-100731-			4205823V01	Against								
18/NUF1003A0048	NAR6595A	PMNN4403A	PSM belt clip	phantom	PMMN4060A	860.500	3.76	-0.194	2.340	1.510	1.22	0.79
CM-Ab-100731-			4205823V01	Against								
19/NUF1003A0048	NAR6595A		PSM belt clip		PMMN4061A	860.500	3.76	-0.926	2.880	1.730	1.78	1.07

Assessments at the Body (CW mode):

Assessment of other applicable frequencies using the highest SAR configuration from the table above in accordance with section 12.4 and 12.5.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

				Assessm	ent of other frequ	encies.						
											Max	
						Test	Initial	SAR	Meas. 1g-	Meas.	Calc.1g-	Max Calc.
				Test	Additional	Freq.	Power	Drift	SAR	10g-SAR	SAR	10g-SAR
Run number/SN	Antenna	Battery	Carry Case	position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
			4205823V01									
CM-Ab-100731-			PSM belt	Against								
21/NUF1003A0048	NAR6595A	PMNN4403A	clip	phantom	PMMN4059A	851.0125	3.75	-0.745	3.140	1.950	1.86	1.16
			4205823V01									
CM-Ab-100731-			PSM belt	Against								
22/NUF1003A0048	NAR6595A	PMNN4403A	clip	phantom	PMMN4059A	869.9875	3.75	-0.236	3.250	1.870	1.72	0.99

Assessment of the offered antenna NAF5085A using batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

TABLE 60

		Assessr	nent of anten	na NAF5085	5A and offered	batteries.	(Center (Channel)				
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
JsT-Face-100730-			·	DUT front			Ì					
03/NUF1003A0048	NAF5085A	NNTN7038A	None	2.5cm	None	860.500	3.77	-0.443	2.390	1.730	1.32	0.96
JsT-Face-100730-				DUT front								
04/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	None	860.500	3.76	-0.510	2.890	2.080	1.63	1.17

Assessments at the Face (CW mode):

Assessment of other applicable frequencies using the highest SAR configuration from the table above in accordance with section 12.4 and 12.5. Assessment of DUT with back 2.5cm separation was also performed using the highest SAR configuration for this antenna.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

TABLE 61

	Assessment of other frequencies.													
Deep and best (SN	A 4	D-44	C C	T-4	Additional	Test Freq.	Initial Power	SAR Drift	Meas. 1g- SAR	Meas. 10g-SAR		10g-SAR		
Run number/SN	Antenna	Battery	Carry Case	Test position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)		
CM-Face-100812-				DUT front										
02/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	None	851.0125	3.68	-0.278	3.23	2.31	1.72	1.23		
CM-Face-100812-				DUT front										
03/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	None	869.9875	3.70	-0.279	2.97	2.13	1.58	1.14		
JsT-Face-100817-				DUT back	•									
04/NUF1003A0048	NAF5085A	PMNN4403A	None	2.5cm	None	851.0125	3.68	-0.196	2.37	1.72	1.24	0.900		

Assessments at the Face (CW mode):

Assessment of the offered antenna NAR6595A using batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

		Assessr	nent of anten	na NAR6595	5A and offered	batteries.	(Center (Channel)				
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
JsT-Face-100730-	NA D 6505 A	ND 177 17020 A	2.7	DUT front	N	060.500	2.76	0.552	2.710	2.700	2.11	1.52
05/NUF1003A0048	NAR6595A	NNTN7038A	None	2.5cm	None	860.500	3.76	-0.552	3.710	2.700	2.11	1.53
I-T E 100720	I		1	DUT for and		1 1		1	1			1
JsT-Face-100730-	NADOSOSA	D) (D) (1402 A	N	DUT front	N	060.500	2.77	0.570	4.110	2 000	2.25	1.71
06/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	None	860.500	3.77	-0.578	4.110	2.990	2.35	1.71

Assessment of other applicable frequencies using the highest SAR configuration from the table above in accordance with section 12.4 and 12.5. Assessment of DUT with back 2.5cm separation was also performed using the highest SAR configuration for this antenna.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

TABLE 63

				Assessmen	t of other frequ	encies.						
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	0	Max Calc. 10g-SAR (W/kg)
CM-Face-100812-				DUT front								
04/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	None	851.0125	3.70	-0.461	4.57	3.36	2.54	1.87
CM-Face-100812-				DUT front								
05/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	None	869.9875	3.70	-0.419	4.65	3.40	2.56	1.87
CM-Face-100817-				DUT back								
05/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	None	869.9875	3.70	-0.500	4.76	3.49	2.67	1.96

Assessments at the Face (CW mode):

Assessment of offered PSMs PMMN4059A, PMMN4060A, PMMN4061A and PSM belt clip 4205823V01 with antenna NAR6595A using offered batteries NNTN7038A and PMNN4403A at the center channel.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

	Assessmen	t of offered PSM	Is and belt cli	p with ant	enna NAR6595	A using th	e offered	batteries	(Center Cha	nnel)		
Run number/SN	Antenna	Battery	Carry Case	Test position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc.1g- SAR (W/kg)	Max Calc 10g-SAR (W/kg)
				PSM								
JsT-Face-100731- 08/NUF1003A0048	NAR6595A	NNTN7038A	None	front 2.5cm	PMMN4059A	860.500	3.77	-0.640	1.240	0.878	0.72	0.51
				PSM								
JsT-Face-100731-				front								
06/NUF1003A0048	NAR6595A	NNTN7038A	None	2.5cm	PMMN4060A	860.500	3.78	-0.323	0.806	0.571	0.43	0.31
				PSM								
JsT-Face-100731-	NA D 6505 A	ND ITN 17020 A	N. 1	front	D) 0 0 140 (14	0.60.500	2.70	0.242	0.717	0.510	0.20	0.20
11/NUF1003A0048	NAR6595A	NNTN7038A	None	2.5cm	PMMN4061A	860.500	3.78	-0.342	0.717	0.512	0.39	0.28
				PSM								_
JsT-Face-100731-				front								
10/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	PMMN4059A	860.500	3.78	-0.824	1.240	0.882	0.75	0.53
				PSM								
JsT-Face-100731-				front								
13/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	PMMN4060A	860.500	3.78	-0.310	0.743	0.525	0.40	0.28
				PSM								
JsT-Face-100731-				front								
12/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	PMMN4061A	860.500	3.78	-0.613	0.738	0.529	0.42	0.30

Assessment of other applicable frequencies using the highest SAR configuration from the table above in accordance with section 12.4 and 12.5.

The highest SAR results (bolded) from the tables below are included in APPENDIX F Section 3.0.

TABLE 65

				Assessmen	it of other freque	ncies.						
											Max	
							Initial	SAR	Meas. 1g-	Meas.	Calc.1g-	Max Calc.
				Test	Additional	Test Freq.	Power	Drift	SAR	10g-SAR	SAR	10g-SAR
Run number/SN	Antenna	Battery	Carry Case	position	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
				PSM								
JsT-Face-100803-				front								
02/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	PMMN4059A	851.0125	3.75	-0.790	1.080	0.764	0.65	0.46
				PSM								
JsT-Face-100803-				front								
03/NUF1003A0048	NAR6595A	PMNN4403A	None	2.5cm	PMMN4059A	869.9875	3.77	-0.337	1.270	0.892	0.69	0.48

13.4 Shorten Scan Assessment

Short scan assessment: A "shortened" scan was performed to validate the SAR drift of the full DASY4TM coarse and 5x5x7 zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a 5x5x7 zoom scan only was performed. The results of the shortened cube scan presented in APPENDIX E demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The both SAR results from the table below are provided in APPENDIX E.

TABLE 66

Run #/SN	Antenna	Battery	Carry Case	Test Position	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
				F	ull scan							
CM-Ab-100727-				Against								
19/NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	phantom	HMN4104A	809.000	3.77	-0.676	13.040	7.790	7.62	4.55
				Shor	tened scan							
CM-Ab-100804-				Against								
09/NUF1003A0048	NAR6595A	PMNN4403A	NTN8266B	phantom	HMN4104A	809.000	3.73	-0.201	13.6	8.12	7.12	4.25

14.0 Simultaneous Transmission Exclusion:

Not applicable.

15.0 Conclusion:

The highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for this filing: FCC ID: AZ489FT5859, model H98UCD9PW5AN (MNUF1002A):

TABLE 67: FCC Part 90 RF Exposure Results

	Max Calc at 1	Body (W/kg)	Max Calc at	Face (W/kg)
Frequency Range (MHz)	1g-SAR	10g-SAR	1g-SAR	10g-SAR
764 -775	7.04	4.48	2.50	1.87
794-824	7.62	4.55	2.92	2.17
851-869.00	6.21	3.56	2.54	1.87

TABLE 68: RF Exposure Results 869-870 MHz

	Max Calc at 1	Body (W/kg)	Max Calc at	Face (W/kg)
Frequency Range (MHz)	1g-SAR	10g-SAR	1g-SAR	10g-SAR
869.00-879.00	5.54	3.17	2.67	1.96

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of **8 W/kg** per the requirements of 47 CFR 2.1093(d).

APPENDIX A Measurement Uncertainty

The Measurement Uncertainty tables indicated in this APPENDIX are applicable to the DUT and Dipole test frequencies ranging from 800MHz to 3 GHz. The highest tolerance for the probe calibration uncertainty is indicated.

Table A1:

Uncertainty Budget for System Validation (dipole & flat phantom) for 800 MHz to 3 GHz

			<u> </u>						
а	ь	с	đ	e = f(d, k)	£	a	h = cxf/e	i= cxg/e	k
u	U			e - J(u,n)	J	g			n
	IEEE 1528	Tol.	Prob.		c_i	c_i	l g	10 g	
	ILLE IN	(± %)	Dist.		(1 g)	(10 g)	u_i	u_i	
Uncertainty Component	section			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	00
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	00
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	- 00
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	00
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	00
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	00
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	00
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	00
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	00
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	00
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	- 00
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	8
Combined Standard Uncertainty			RSS				9	9	99999
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				18	17	

FCD-0558, Rev.7

Table A2:
Uncertainty Budget for Device Under Test, for 800 MHz to 3 GHz

Duaget 191 De							h =	<i>i</i> =	
а	ь	с	d	e = f(d,k)	f	g	cxf/e	cxg/e	k
	IEEE	Tol.	Prob		C;	<i>C</i> ,	l g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	u,	u;	
Uncertainty Component	section	(,		Div.	(- 8/	(== 8)	(±%)	(±%)	v_{j}
Measurement System							, ,		
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	œ
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	œ
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	œ
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	00
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	00
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	00
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	00
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	00
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	00
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	00
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	00
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	00
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	00
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	00
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	00
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	00
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	00
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	00
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	00
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	00
Combined Standard Uncertainty			RSS				11	11	411
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				22	22	

FCD-0558, Rev.7

Notes for Tables 1, 2, 3 and 4

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

APPENDIX B Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Motorola CGISS Client

Accreditation No.: SCS 108

S

C

S

Certificate No: ES3-3185_Nov09 CALIBRATION CERTIFICATE Object ES3DV3 - SN:3185 Calibration procedure(s) QA CAL-01.v6, QA CAL-12.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes November 23, 2009 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41495277 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41498087 1-Apr-09 (No. 217-01030) Apr-10 Reference 3 dB Attenuator SN: S5054 (3c) 31-Mar-09 (No. 217-01026) Mar-10 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-09 (No. 217-01028) Mar-10 Reference 30 dB Attenuator SN: S5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 Reference Probe ES3DV2 SN: 3013 2-Jan-09 (No. ES3-3013_Jan09) Jan-10 DAE4 SN: 660 29-Sep-09 (No. DAE4-660_Sep09) Sep-10 Secondary Standards ID# Check Date (in house) Scheduled Check US3642U01700 RF generator HP 8648C 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name Function Signature Calibrated by: Katja Pokovic Technical Manager Approved by: Niels Kuster Quality Manager Issued: November 23, 2009

Certificate No: ES3-3185_Nov09

Page 1 of 11

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3185_Nov09 Page 2 of 11

Probe ES3DV3

SN:3185

Manufactured: March 25, 2008
Last calibrated: November 18, 2008
Recalibrated: November 23, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3185_Nov09

Page 3 of 11

DASY - Parameters of Probe: ES3DV3 SN:3185

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.36	1.27	1.11	± 10.1%
DCP (mV) ^B	93.1	92.7	92.9	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	х	0.00	0.00	1.00	300	± 1.5%
			Y	0.00	0.00	1.00	300	
			Z	0.00	0.00	1.00	300	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3185_Nov09

[^] The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁹ Numerical linearization parameter; uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY - Parameters of Probe: ES3DV3 SN:3185

Calibration Parameter Determined in Head Tissue Simulating Media

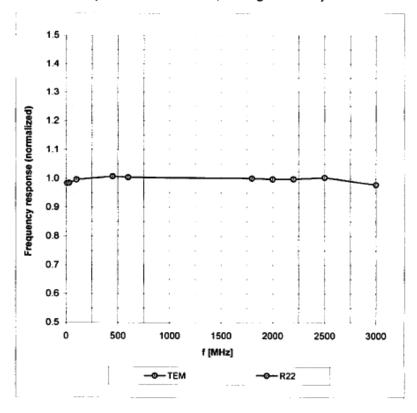
f [MHz]	Validity (MHz) ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
300	±50/±100	45.3 ± 5%	$0.87 \pm 5\%$	6.68	6.68	6.68	0.24	0.92 ± 13.3%
450	±50/±100	43.5 ± 5%	$0.87 \pm 5\%$	6.08	6.08	6.08	0.22	1.49 ± 13.3%
750	±50/±100	41.9 ± 5%	$0.89 \pm 5\%$	5.96	5.96	5.96	0.92	1.04 ± 11.0%
900	±50/±100	41.5 ± 5%	$0.97 \pm 5\%$	5.63	5.63	5.63	0.64	1.21 ± 11.0%
1810	±50/±100	$40.0 \pm 5\%$	1.40 ± 5%	4.83	4.83	4.83	0.41	1.71 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.65	4.65	4.65	0.55	1.44 ± 11.0%
2300	± 50 / ± 100	39.5 ± 5%	1.67 ± 5%	4.53	4.53	4.53	0.40	1.83 ± 11.0%
2450	±50/±100	39.2 ± 5%	1.80 ± 5%	4.22	4.22	4.22	0.41	1.87 ± 11.0%
2600	±50/±100	39.0 ± 5%	1.96 ± 5%	4.17	4.17	4.17	0.44	1.89 ± 11.0%
3500	±50/±100	37.9 ± 5%	2.91 ± 5%	3.99	3.99	3.99	0.85	1.21 ± 13.1%
3700	± 50 / ± 101	37.7 ± 5%	3.12 ± 5%	3.64	3.64	3.64	0.85	1.21 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3185_Nov09 Page 5 of 11

DASY - Parameters of Probe: ES3DV3 SN:3185

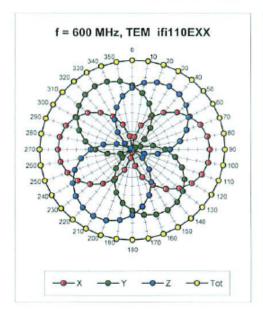
Calibration Parameter Determined in Body Tissue Simulating Media

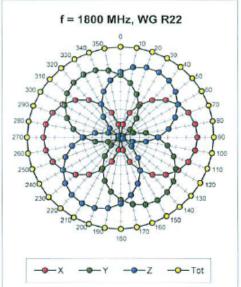

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X Co	onvFY (ConvF Z	Alpha	Depth Unc (k=2)
450	±50/±100	56.7 ± 5%	0.94 ± 5%	6.55	6.55	6.55	0.17	1.00 ± 13.3%
750	±50/±100	55.5 ± 5%	0.96 ± 5%	5.60	5.60	5.60	0.76	1.15 ± 11.0%
900	± 50 / ± 100	$55.0 \pm 5\%$	1.05 ± 5%	5.48	5.48	5.48	0.94	1.10 ± 11.0%
1810	±50/±100	$53.3 \pm 5\%$	1.52 ± 5%	4.57	4.57	4.57	0.29	2.39 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.52	4.52	4.52	0.30	2.70 ± 11.0%
2300	± 50 / ± 100	52.8 ± 5%	1.85 ± 5%	4.21	4.21	4.21	0.46	1.74 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.02	4.02	4.02	0.58	1.44 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	3.92	3.92	3.92	0.82	1.20 ± 11.0%
3500	± 50 / ± 100	51.3 ± 5%	3.31 ± 5%	3.33	3.33	3.33	0.90	1.32 ± 13.1%
3700	± 50 / ± 101	51.0 ± 5%	$3.55 \pm 5\%$	3.26	3.26	3.26	0.90	1.46 ± 13.1%

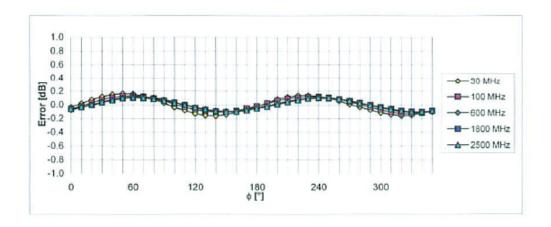
^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3185_Nov09 Page 6 of 11

Frequency Response of E-Field

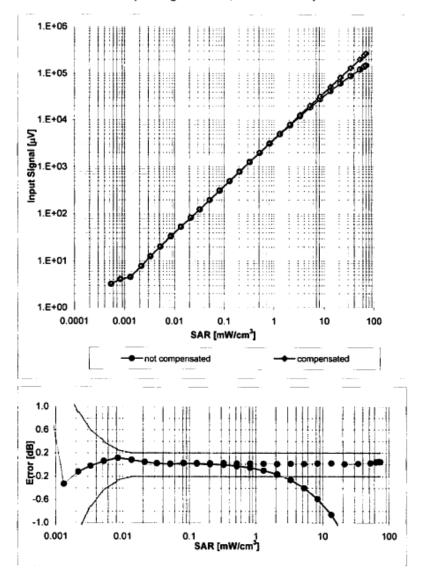

(TEM-Cell:ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3185_Nov09

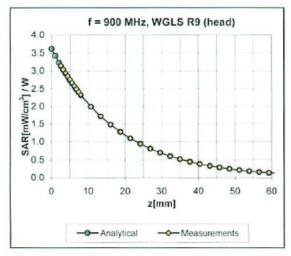
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

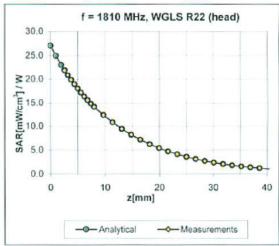


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3185_Nov09

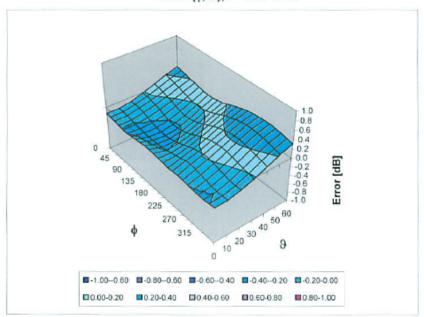
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3185_Nov09 Page 9 of 11


Conversion Factor Assessment

Deviation from Isotropy in HSL

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3185_Nov09

Page 10 of 11

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3185_Nov09 Page 11 of 11

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV3
Serial Number:	3185
Place of Assessment:	Zurich
Date of Assessment:	November 26, 2009
Probe Calibration Date:	November 23, 2009

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1810 MHz.

Assessed by:

Zeughausstrasse 43, 8004 Zurich. Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV3 SN:3185

Conversion factor (± standard deviation)

150 MHz	ConvF	$7.7 \pm 10\%$	$\epsilon_r = 52.3$ $\sigma = 0.76 \text{ mho/m}$ (head tissue)
250 MHz	ConvF	$7.0\pm10\%$	$\epsilon_r = 47.6$ $\sigma = 0.83 \text{ mho/m}$ (head tissue)
150 MHz	ConvF	$7.4 \pm 10\%$	$\epsilon_r = 61.9$ $\sigma = 0.80 \text{ mho/m}$ (body tissue)
250 MHz	ConvF	$7.0\pm10\%$	$\varepsilon_r = 59.4$ $\sigma = 0.88 \text{ mho/m}$ (body tissue)
300 MHz	ConvF	6.9 ± 9 %	$\epsilon_r = 58.2$ $\sigma = 0.92 \text{ mho/m}$ (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola EME

Accreditation No.: SCS 108

C

Certificate No: ES3-3163_Apr10

	ES3DV3 - SN:3 QA CAL-01.v6, QA CAL-25.v2		
bject alibration procedure(s)	QA CAL-01.v6, QA CAL-25.v2		
Calibration procedure(s)	QA CAL-25.v2	QA CAL-12.v6, QA CAL-14.v3, Q	
Calibration procedure(s)	QA CAL-25.v2	QA CAL-12.v6, QA CAL-14.v3, Q	
	Cambration proc	edure for dosimetric E-field probe	
Calibration date:	April 23, 2010		
	ucted in the closed laborat	probability are given on the following pages an ory facility: environment temperature $(22 \pm 3)^{\circ}$	17
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
ower meter E4419B	GB41293874	1-Apr-10 (No. 217-01136)	Apr-11
ower sensor E4412A	MY41495277	1-Apr-10 (No. 217-01136)	Apr-11
ower sensor E4412A	MY41498087	1-Apr-10 (No. 217-01136)	Apr-11
eference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
eference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
eference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11
eference Probe ES3DV2 AE4	SN: 3013 SN: 660	30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09)	Dec-10 Sep-10
econdary Standards	ID#	Check Date (in house)	Scheduled Check
F generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
etwork Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct10
	Name	Function	Signature
alibrated by:	Katja Pokovic	Technical Manager	A lls
pproved by:	Fin Bomholt	R&D Director	F Banlielt
			Issued: April 27, 2010

Certificate No: ES3-3163_Apr10

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3163_Apr10 Page 2 of 11

Probe ES3DV3

SN:3163

Manufactured: October 8, 2007 Last calibrated: April 21, 2009 Recalibrated: April 23, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3163_Apr10 Page 3 of 11

DASY - Parameters of Probe: ES3DV3 SN:3163

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.33	1.16	1.06	± 10.1%
DCP (mV) ^B	93.5	93.1	93.3	-

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	х	0.00	0.00	1.00	300.0	± 1.5%
			Y	0.00	0.00	1.00	300.0	
			z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3163_Apr10

[^] The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY - Parameters of Probe: ES3DV3 SN:3163

Calibration Parameter Determined in Head Tissue Simulating Media

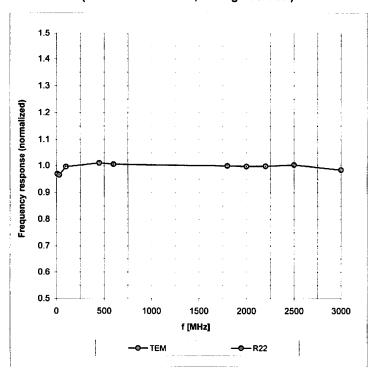
f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X C	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	43.5 ± 5%	0.87 ± 5%	6.37	6.37	6.37	0.14	1.67 ± 13.3%
750	± 50 / ± 100	$41.5 \pm 5\%$	0.90 ± 5%	6.30	6.30	6.30	0.99	1.03 ± 11.0%
900	± 50 / ± 100	41.5 ± 5%	0.97 ± 5%	5.93	5.93	5.93	0.90	1.08 ± 11.0%
1810	± 50 / ± 100	$40.0 \pm 5\%$	1.40 ± 5%	5.01	5.01	5.01	0.46	1.54 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.83	4.83	4.83	0.36	1.76 ± 11.0%
2300	± 50 / ± 100	$39.5 \pm 5\%$	1.67 ± 5%	4.65	4.65	4.65	0.45	1.69 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.38	4.38	4.38	0.39	1.88 ± 11.0%
2600	± 50 / ± 100	39.0 ± 5%	1.96 ± 5%	4.29	4.29	4.29	0.47	1.72 ± 11.0%
3500	± 50 / ± 100	37.9 ± 5%	2.91 ± 5%	4.00	4.00	4.00	0.90	1.19 ± 13.1%
3700	± 50 / ± 100	37.7 ± 5%	3.12 ± 5%	3.58	3.58	3.58	0.90	1.50 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3163_Apr10

DASY - Parameters of Probe: ES3DV3 SN:3163

Calibration Parameter Determined in Body Tissue Simulating Media

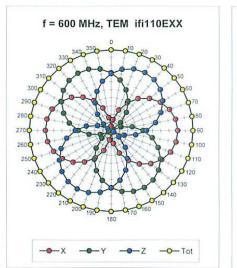

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X C	onvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	56.7 ± 5%	0.94 ± 5%	6.96	6.98	6.96	0.09	1.00 ± 13.3%
750	± 50 / ± 100	55.5 ± 5%	0.96 ± 5%	6.05	6.05	6.05	0.87	1.15 ± 11.0%
900	± 50 / ± 100	55.0 ± 5%	1.05 ± 5%	5.95	5.95	5.95	0.87	1.15 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.66	4.66	4.66	0.33	2.25 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.64	4.64	4.64	0.30	2.75 ± 11.0%
2300	± 50 / ± 100	52.8 ± 5%	1.85 ± 5%	4.35	4.35	4.35	0.52	1.60 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.26	4.26	4.26	0.64	1.33 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	4.15	4.15	4.15	0.86	1.16 ± 11.0%
3500	± 50 / ± 100	51.3 ± 5%	3.31 ± 5%	3.45	3.45	3.45	0.95	1.31 ± 13.1%
3700	± 50 / ± 100	51.0 ± 5%	3.55 ± 5%	3.37	3.37	3.37	0.95	1.44 ± 13.1%

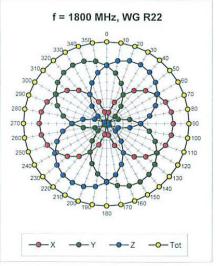
^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

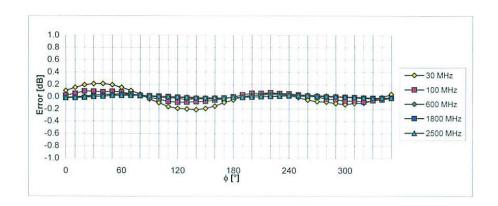
Certificate No: ES3-3163_Apr10

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)



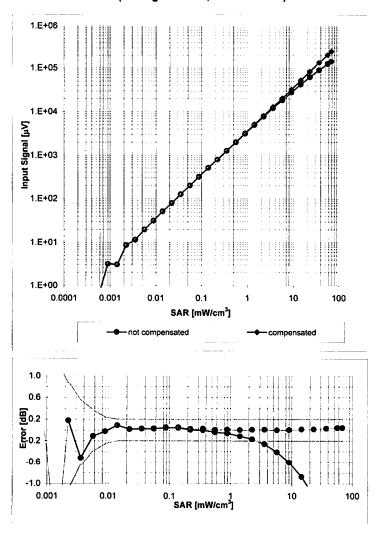

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ES3-3163_Apr10

Page 7 of 11

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

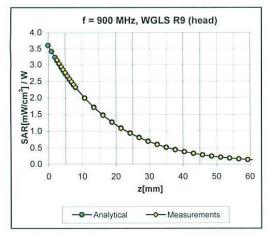

Certificate No: ES3-3163_Apr10

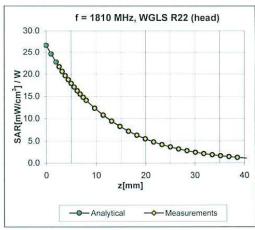
Page 8 of 11

ES3DV3 SN:3163 April 23, 2010

Dynamic Range f(SAR_{head})

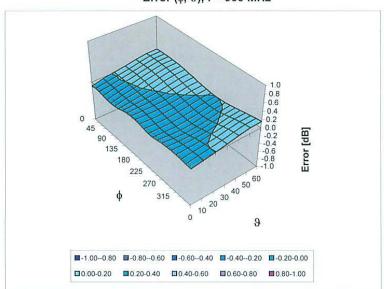
(Waveguide R22, f = 1800 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ES3-3163_Apr10

Page 9 of 11

ES3DV3 SN:3163 April 23, 2010


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3163_Apr10

Page 10 of 11

ES3DV3 SN:3163 April 23, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV3	
Serial Number:	3163	
Place of Assessment:	Zurich	
Date of Assessment:	April 28, 2010	
Probe Calibration Date:	April 23, 2010	

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1810 MHz.

Assessed by:

ES3DV3-SN:3163 Page 1 of 2 April 28, 2010

Schmid & Partner Engineering AG s p e a \boldsymbol{q} Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com Dosimetric E-Field Probe ES3DV3 SN:3163 Conversion factor (± standard deviation) 150 MHz ConvF $8.1 \pm 10\%$ $\varepsilon_r = 52.3$ $\sigma = 0.76 \text{ mho/m}$ (head tissue) 250 MHz ConvF $7.5 \pm 10\%$ $\varepsilon_r = 47.6$ $\sigma = 0.83 \text{ mho/m}$ (head tissue) **300 MHz** ConvF $7.2 \pm 9\%$ $\varepsilon_r = 45.3$ $\sigma = 0.87 \text{ mho/m}$ (head tissue) 150 MHz ConvF $7.8 \pm 10\%$ $\varepsilon_r = 61.9$ $\sigma = 0.80 \text{ mho/m}$ (body tissue) 250 MHz ConvF $7.4 \pm 10\%$ $\varepsilon_r = 59.4$ $\sigma = 0.88 \text{ mho/m}$ (body tissue) 300 MHz $7.2 \pm 9\%$ ConvF $\varepsilon_r = 58.2$

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

 $\sigma = 0.92 \text{ mho/m}$

(body tissue)

Please see also Section 4.7 of the DASY4 Manual.

APPENDIX C Dipole Calibration Certificates

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

Client

Motorola CGISS

Certificate No: D835V2-435_Sep08

Object	D835V2 - SN: 43	5	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	September 22, 20	008	
Condition of the calibrated item	In Tolerance		E
All calibrations have been conduc		y facility: environment temperature (22 ± 3)°0	C and humidity < 70%.
and a factor of the same of th			
* 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1	ID#	Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards	1	Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736)	Scheduled Calibration Oct-08
rimary Standards ower meter EPM-442A	ID#		
rimary Standards lower meter EPM-442A lower sensor HP 8481A	ID # GB37480704	04-Oct-07 (No. 217-00736)	Oct-08 Oct-08 Jul-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867)	Oct-08 Oct-08 Jul-09 Jul-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025	04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08)	Oct-08 Oct-08 Jul-09 Jul-09 Apr-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867)	Oct-08 Oct-08 Jul-09 Jul-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025	04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08)	Oct-08 Oct-08 Jul-09 Jul-09 Apr-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601	04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08)	Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 Mar-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Recondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601	04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house)	Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317	04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07)	Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Decondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005	04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07)	Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005 US37390585 S4206	04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07)	Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07)	Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08

Certificate No: D835V2-435_Sep08 Page 1 of 6

Schweizerischer Kallbrierdienst Service suisse d'étalonnage

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-435_Sep08

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.2 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature during test	(22.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 mW / g
SAR normalized	normalized to 1W	9.56 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.51 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.57 mW / g
SAR normalized	normalized to 1W	6.28 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.24 mW /g ± 16.5 % (k=2)

Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.0 Ω -8.9 jΩ
Return Loss	- 21.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.392 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 15, 2000	

Certificate No: D835V2-435_Sep08 Page 4 of 6

DASY5 Validation Report for Head TSL

Date/Time: 22.09.2008 10:19:42

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:435

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.901$ mho/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

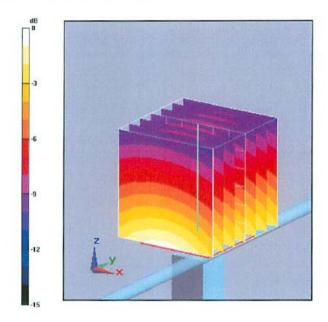
Probe: ES3DV2 - SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008

Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

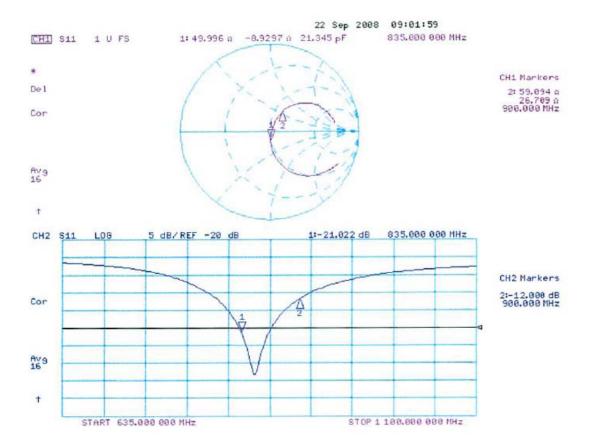
Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87


Pin=250mW; dip=15mm; dist=3.4mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 56 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 3.48 W/kg


SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.57 mW/gMaximum value of SAR (measured) = 2.69 mW/g

0 dB = 2.69 mW/g

Page 5 of 6

Impedance Measurement Plot for Head TSL

S

C

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Motorola EME Certificate No: D835V2-427_Jan10

CALIBRATION CERTIFICATE D835V2 - SN: 427 Object QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: January 14, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-09 (No. 217-01086) Power sensor HP 8481A US37292783 06-Oct-09 (No. 217-01086) Oct-10 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 26-Jun-09 (No. ES3-3205_Jun09) Reference Probe ES3DV3 SN: 3205 Jun-10 07-Mar-09 (No. DAE4-601_Mar09) SN: 601 DAE4 Mar-10 ID# Secondary Standards Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: January 18, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Page 1 of 6

Certificate No: D835V2-427_Jan10

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-427_Jan10 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.2 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.4 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 mW / g
SAR normalized	normalized to 1W	9.56 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.63 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.56 mW / g
SAR normalized	normalized to 1W	6.24 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.27 mW /g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.2 Ω - 2.7 jΩ
Return Loss	- 30.6 dB

General Antenna Parameters and Design

	· · · · · · · · · · · · · · · · · · ·
Electrical Delay (one direction)	1.423 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 20, 2000

Page 4 of 6

Certificate No: D835V2-427_Jan10

DASY5 Validation Report for Head TSL

Date/Time: 11.01.2010 11:14:03

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:427

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 26.06.2009

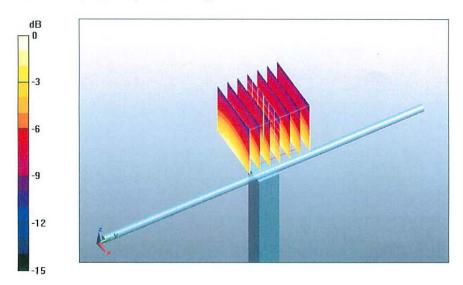
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

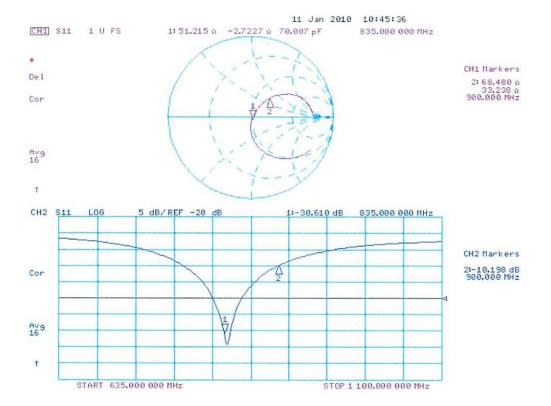

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.4 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.56 mW/g

Maximum value of SAR (measured) = 2.77 mW/g



0 dB = 2.77 mW/g

Certificate No: D835V2-427_Jan10

Page 5 of 6

Impedance Measurement Plot for Head TSL

