

CGISS EME Test Laboratory

8000 West Sunrise Blvd Fort Lauderdale, FL. 33322

S.A.R. EME Compliance Test Report Part 1 of 2

Date of Report:	October 12, 2004
Date of Keport:	October 12, 2004

Report Revision: Rev. O **Manufacturer:** Motorola

Product Description: iDEN i740; 1:6, 1:3, 81:120, 1:12 TDMA; 64 QAM, 16 QAM &

QPSK Modulation; 0.6 W Pulse average; GPS capable; MOTOtalk

(114:120 8FSK; 0.74W nominal)

FCC ID: AZ489FT5841 Device Model: H61XAN6RR4AN

Test Period: 9/13/04 – 9/29/04 & 10/7/04 -10/8/04

Technician: Clint Miller (EME Technician Electronics II)

Responsible Eng: Jim Fortier (Elect. Principle Staff Eng.)

Author: Michael Sailsman (Global EME Regulatory Affairs Liaison)

Note: This report shall not be reproduced without written approval from an officially designated representative of the Motorola EME Laboratory. Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 2.0 of this report.

Signature on file	10/13/04
Ken Enger	Date Approved
Senior Resource Manager, Laboratory Director, CGISS EME Lab	

TABLE OF CONTENTS

P	art	1	of	2

- 1.0 Introduction
- 2.0 Reference Standards and Guidelines
- 3.0 Description of Test Sample
 - 3.1 Test Signal
 - 3.2 Test Output Power
- 4.0 Description of Test Equipment
 - 4.1 Description of S.A.R Measurement System
 - 4.2 Description of Phantom
 - 4.2.1 Flat Phantom
 - 4.2.2 SAM phantom
 - 4.3 Simulated Tissue Properties
 - 4.3.1 Type of Simulated Tissue
 - 4.3.2 Simulated Tissue Composition
 - 4.4 Test conditions
- 5.0 Probe Scan Procedures
 - 5.1 Shortened scan rationale
 - 5.2 Description of Test Procedure
 - 5.3 Device Test Positions
 - 5.3.1 Body
 - 5.3.2 Head
 - 5.3.3 Face
 - 5.4 Test Position Photographs
- 6.0 Measurement Uncertainty
- 7.0 S.A.R. Test Results
 - 7.1 S.A.R. results
 - 7.2 Peak S.A.R. location
 - 7.3 Highest S.A.R. results calculation methodology
- 8.0 Conclusion

Part 2 of 2

- Appendix A: Power Slump Data/Shortened scan
- Appendix B: Data Results
- Appendix C: Dipole System Performance Check Results
- Appendix D: Probe/Dipole Calibration Certificates
- Appendix E: Illustration of Body-worn Accessories
- Appendix F: Accessories and options test status and separation distances

REVISION HISTORY

Date	Revision	Comments	
10/11/04	О	Release of Prototype results	

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (S.A.R.) measurements performed at the CGISS EME Test Lab for model number H61XAN6RR4AN, FCC ID: AZ489FT5841.

The applicable exposure environment is General Population/Uncontrolled.

2.0 Reference Standards and Guidelines

This product is designed to comply with the following national and international standards and guidelines.

- United States Federal Communications Commission, Code of Federal Regulations; 47CFR part 2 sub-part J
- IEEE 1528, 2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- American National Standards Institute (ANSI) / Institute of Electrical and Electronic Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronic Engineers (IEEE) C95.1-1999 Edition
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6. Limits of Human Exposure to Terminal frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, 1999
- Australian Communications Authority Radiocommunications (Electromagnetic Radiation -Human Exposure) Standard 2003
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9KHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"

Page 4 of 27

3.0 Description of Test Sample

(Horizontal and vertical reference lines intersecting at the acoustic output are marked on the DUT)

FCC ID: AZ489FT5841 is a digital multi-service data capable device that employs time division multiplexing transmission technology with a duty cycle ranging from 16.67% to 33.33% using M16-QAM modulation for voice or circuit data transmission. There is a Split 1:3 mode that operates using a 16.67% transmission duty cycle. Two 7.5ms pulses occur during the six time slots within the 90-msec frame format. This mode is available in both the 806-825MHz and 896-902MHz bands in the telephone interconnect mode only. Packet data transmission is supported up to a maximum duty cycle of 67.5% using quad QPSK modulation. MOTOtalk transmission is also supported and employs a frequency hopping digital spread spectrum format operating in the 900 MHZ ISM band. MOTOtalk has a transmission duty cycle of 114:120 using 8 FSK modulation. MOTOtalk operates only in PTT mode in front of the face or at the abdomen with the applicable offered audio accessories.

This device will be marketed to and used by the general population. This device may be used while held against the head in voice mode, in front of the face in PTT mode, and against the body in voice, PTT and data modes.

FCC ID: AZ489FT5841 is capable of operating in the 806-825 MHz and 896-902MHz bands. Packet data transmission is not available while transmitting in the 896-902 MHz band. MOTOtalk operates in the 902-928MHz band. The rated power is 0.60 watts pulsed averaged in 806-825MHz and 896-902MHz bands and 0.743 watts in the MOTOtalk band. The maximum output is 0.64 watts pulsed average and 0.763 watts respectively as defined by the upper limit of the production line final test station.

FCC ID: AZ489FT5841 is offered with the following options and accessories:

Antenna	Description
8585081F01	806 – 941 MHz ½ wave retractable antenna; 9.9cm Worst case antenna gain –1.3 dBd @ 813MHz, 0.86dBd @ 896 MHz
Batteries	,
SNN5705C	Hi performance 750mAh Lithium Ion battery
SNN5704C	5-mm 700mAh Lithium Ion battery
SNN5683A	High capacity Li Ion cell EZX 4MM battery pack
SNN5685A	High capacity Li Ion Cell EZX 6MM battery pack Universal Label
NNTN4655A	Max capacity 1450 mAh
NNTN4767A	Battery cover
NNTN5404A	Battery cover

Body-worn Accessories

NNTN4682A	Holster
NNTN4747A	Belt clip

Applicable Audio accessories

SYN8390B	Privacy Earpiece and Mic
NNTN4033A	Privacy earpiece and Mic w/ PTT
NSN6066A	Remote speaker Mic
NNTN4620A	Silver Earbud
SYN8146C	Lightweight over the ear headset w/boom Mic
SYN7875C	Hearing Aid Neck loop
NTN8496A	Lightweight Headset w/mic
NTN8513B	Lightweight Headband
NNTN5004A	PTT headset (Over-the-ear)
NNTN5005A	PTT headset (Over the head)
NNTN5006A	PTT headset (Ear bud)
NNTN5330A	Ear Bud Audio Accessory
NNTN5211A	KTL Surveillance Kit

Other applicable options:

RS232 Data Cable
USB Data Cable
USB Data cable w/charging
RS232 Data cable w/charging
Palm Pilot III/iV adaptor
Palm Pilot V adaptor

ACCREDITED

Certificate Number: 1449-01

3.1 Test Signal

Test Mode	X	Call Simulator	Simulator

Test Signal mode:

Transmission Mode:

CW	
Native Transmission	X
TDMA	X
Other	

3.2 Test Output Power

A table of the characteristic power slump versus time is provided in Appendix A for all tested batteries.

4.0 Description of Test Equipment

4.1 Descriptions of S.A.R. Measurement System

The laboratory utilizes a Dosimetric Assessment System (DASY3TM) S.A.R. measurement system manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. The test system consists of a Stäubli RX90L robot with ET3DV6 and EX3DV3 E-Field probes. Please reference the SPEAG user manual and application notes for detailed probe, robot, and S.A.R. computational procedures.

The S.A.R. measurements were conducted with probe model/serial number ET3DV6/SN1383. The system performance check was conducted daily and within 24 hours prior to testing. DASY output files of the system performance test results and the probe/dipole calibration certificates are included in appendices C and D respectively. The table below summarizes the system performance check results normalized to 1W.

Probe Serial	Tissue Type	Probe Cal Date	Dipole Kit / Serial #	System Perf. 1-g S.A.R. Result when normalized to 1W (mW/g)	Reference 1-g S.A.R @ 1W (mW/g)	Test Date(s)
						9/13/04 - 9/17/04
	FCC Body	2/25/04	D900V2/084	12.09 +/- 0.32	11.75 +/- 10%	4 test days
1383	TCC Body	2/23/04	D900 V 2/064	12.09 +/- 0.32	11.73 +/- 1070	4 lest days
1383	IEEE	2/23/04	D900 V 2/084	12.09 +/- 0.32	11.73 +/- 1070	9/20/04 – 10/08/04

Note: System performance results reflects the median performance +/- ½ of the test date(s) performance ranges

Page 7 of 27

The DASY3TM system is operated per the instructions in the DASY3TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess S.A.R. EME compliance was calibrated according to 17025 A2LA guidelines.

4.2 Description of Phantom

4.2.1 Flat Phantom

A rectangular shaped box made of high density polyethylene (HDPE) material. The

phantom is mounted on a wooden supporting structure that has a loss tangent of < 0.05. The structure has a 68.58 cm x 20.32 cm opening at its center to allow positioning the DUT to the phantom's surface. The flat phantom dimensions used for S.A.R. performance assessment are L = 80cm, W = 30cm, H = 20cm, Surface Thickness = 0.2cm.

4.2.2 SAM Phantom

A SAM TP1234 phantom supplied by SPEAG was used to assess S.A.R. performance at the head.

4.3 Simulated Tissue Properties

4.3.1 Type of Simulated Tissue

The simulated tissue used is compliant to that specified in FCC Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01) and IEEE 1528, 2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"

Simulated Tissue	Body Position	
FCC Body	Torso	
IEEE Head	Head/Face	

4.3.2 Simulated Tissue Composition

% of listed	9001	МНz	835MHz			
ingredients	Head	Body	Head	Body		
Sugar	56.50	44.90	NA	NA		
DGBE (Glycol)	NA	NA	NA	NA		
Diacetin	NA	NA	NA	NA		
De ionized -Water	40.95	53.06	NA	NA		
Salt	1.45	0.94	NA	NA		
HEC	1	1	NA	NA		

Bact.	0.1	0.1	NA	NA	
-------	-----	-----	----	----	--

Characterization of simulated tissue materials and ambient conditions:

Simulated tissue prepared for S.A.R. measurements is measured daily and within 24 hours prior to actual S.A.R. testing to verify that the tissue is within 5% of target parameters at the center of the transmit band. This measurement is done using the Agilent (HP) probe kit model 85070C and a HP8753D Network Analyzer.

Target tissue parameters

FCC Body											
Frequency (MHz)	Di-electric Constant Target	Di-electric Constant Meas. (Range)	Conductivity Target S/m	Conductivity Meas. (Range) S/m							
900	55.0	52.6-53.7	1.05	1.04-1.06							
915	55.0	52.4-53.6	1.06	1.06-1.08							
813	55.3	53.5-54.6	0.97	0.95-0.96							
899	55.0	52.6-53.7	1.05	1.04-1.06							

IEEE Head											
Frequency (MHz)	Di-electric Constant Target	Di-electric Constant Meas. (Range)	Conductivity Target S/m	Conductivity Meas. (Range) S/m							
900	41.5	40.6-41.5	0.97	1.01-1.01							
915	41.5	40.5-41.0	1.00	1.02-1.02							
813	41.6	41.7-42.4	0.90	0.93-0.93							
899	41.5	40.6-41.5	0.97	1.01-1.01							

4.4 Test conditions

The EME Laboratory ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/- 2°C of the temperature at which the dielectric properties were determined. The liquid depth in the phantom used for measurements was 15cm +/- 0.5cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The table below presents the range and average environmental conditions during the S.A.R. tests reported herein:

	Target	Measured
		Range: 20.6-23.1°C
Ambient Temperature	20 - 25 °C	Avg. 22.03°C
		Range: 46.6-62.00%
Relative Humidity	30 - 70 %	Avg. 51.48%
		Range: 19.2-21.1°C
Tissue Temperature	NA	Avg. 20.14°C

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the S.A.R scans are repeated. However, the lab environment is sufficiently protected such that no S.A.R. impacting interference has been experienced to date.

5.0 Probe Scan Procedures

The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum S.A.R. distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

5.1 Shortened scan rationale

APPENDIX A presents relevant shortened S.A.R. cube scan to assess the validity of the calculated results presented herein. The results of the shortened cube scans demonstrate that the scaling methodology used to determine the calculated S.A.R. results presented herein are valid.

5.2 Device test positions

Reference Figure 1 for the device orientation and position which exhibited the highest S.A.R. performance.

5.2.1 Body

The DUT was positioned such that the carry case was centered against the flat phantom with and without the applicable accessory attachments. The DUT was positioned with its' front, and back separated 2.5cm from the flat phantom.

5.2.2 Head

The DUT was placed in the cheek touch and 15° tilt positions at the left and right ears of the SAM phantom

5.2.3 Face

The DUT was placed with 2.5cm separation from the flat area of the SAM phantom.

5.3 Description of Test Procedure

All options and accessories listed in section 3.0 were considered in order to develop the S.A.R. test plan for this product. S.A.R. measurements were performed using a flat phantom with applicable tissue simulant to assess performance at the body and a SAM phantom with applicable tissue simulant to assess performance at the side of the head and in front of the face using the applicable transmission modes.

Note that a coarse-to-cube approximation methodology was utilized to determine the worst-case S.A.R. performance configuration for each applicable body location. The test configurations that produced the highest S.A.R. results for each body position using the coarse-to-cube approximation methodology were assessed using the full DASY3TM coarse and 5x5x7 cube scans.

The coarse-to-cube approximation is determined using a Motorola derived and SPEAG accepted software tool to predict a mass average S.A.R. value based on measured coarse scans. Note also that this software tool is part of the latest proposal by Motorola for inclusion into the IEC 62209 part II standard.

Assessments at the head (800MHz band) [Page 20-21 of 27; Table 1]

The DUT was assessed at the TX center frequency of the band, with the flip open, in cheek touch position at the left ear of the SAM phantom, with the antenna retracted and extended, using battery model SNN5705C, in the 1:3 transmission mode. The remaining batteries were assessed using the worst case configuration from above.

The DUT was assessed at the TX center frequency of the band, with the flip open, in the 15° tilt position at the left ear of the Sam phantom, with the antenna retracted and extended, using the worst case battery from above, in 1:3 transmission mode.

The DUT was assessed at the TX band edges, in 1:3 transmission mode, using the test configuration from above that produced the highest S.A.R results.

The DUT was assessed using the worst case frequency and battery from the left ear assessment, with the flip open, in cheek touch and 15° tilt positions at the right ear of the SAM phantom, with the antenna retracted and extended, in the 1:3 transmission mode.

The DUT was assessed at the TX band edges, in 1:3 transmission mode, using the test configuration from above that produced the highest S.A.R results.

The DUT was assessed at the center frequency of the band, with the antenna retracted, with the flip open and closed, in the 1:6 transmission mode, with 2.5cm separation distance from the flat area of the SAM phantom (face assessment), using the worst case battery from above. An assessment was performed with the antenna extended using the worst case configuration from above. Band edge assessment was done using the worst case configuration from above.

Assessments at the head (900MHz band) [Page 22-23 of 27; Table 2]

The DUT was assessed at the TX center frequency of the band, with the flip open, in cheek touch position at the left ear of the SAM phantom, with the antenna retracted and extended, using battery model SNN5705C, in the 1:3 transmission mode. The remaining batteries were assessed using the

Certificate Number: 1449-01

worst case configuration from above.

The DUT was assessed at the TX center frequency of the band, with the flip open, in the 15° tilt position at the left ear of the Sam phantom, with the antenna retracted and extended, using the worst case battery from above, in 1:3 transmission mode.

The DUT was assessed at the TX band edges, in 1:3 transmission mode, using the test configuration from above that produced the highest S.A.R results.

The DUT was assessed using the worst case frequency and battery from the left ear assessment, with the flip open, in cheek touch and 15° tilt positions at the right ear of the SAM phantom, with the antenna retracted and extended, in the 1:3 transmission mode.

The DUT was assessed at the TX band edges, in 1:3 transmission mode, using the test configuration from above that produced the highest S.A.R results.

The DUT was assessed at the center frequency of the band, with the antenna retracted, with the flip open and closed, in the 1:6 transmission mode, with 2.5cm separation distance from the flat area of the SAM phantom (face assessment), using the worst case battery from above. An assessment was performed with the antenna extended using the worst case configuration from above. Band edge assessment was done using the worst case configuration from above.

Assessments at the Face (MOTOtalk ISM 900MHz band) [Page 23 of 27; Table 2]

The DUT was assessed at the TX center frequency of the band, with the antenna retracted and Extended, using battery model SNN5705C, in 114:120 transmission mode. The remaining offered batteries were assessed using the worst case configuration from above.

Assessments at the body (800MHz band) [Pages 24-25 of 27; Table 3]

The DUT was assessed at the TX center frequency of the band, using battery model SNN5705C, with each of the offered body worn accessories against the flat phantom, in the 81:120 transmission mode, with the antenna retracted and extended. The remaining offered batteries were assessed using the worst case test configuration from above.

The DUT was assessed against the flat phantom, in the 81:120 transmission modes, with the antenna retracted and extended, using the worst test configuration from above, with each of the offered data cable attachments.

The DUT was assessed against the flat phantom, in the applicable transmission mode, using the worst case test configuration from above, with each of the offered audio accessories.

The DUT was assessed at the edges of the band, in the 81:120 transmission mode, using the over all worst case test configuration at the body from above.

Assessments at the body (900MHz band) [Page 25 -26 of 27; Table 4]

The DUT was assessed in the 1:3 transmission mode, across the TX band, with the antenna retracted and extended, using the applicable worst case test configuration from the 800MHz band assessment at the body.

Page 12 of 27

Assessments at the body (MOTOtalk ISM 900MHz band) [Page 26 of 27; Table 4]

The DUT was assessed at the TX center frequency of the band, in the 114:120 transmission mode, with body worn accessory model NNTN4747A against the phantom, using battery model SNN5705C, , and audio accessory NSN6066A. The remaining offered batteries were assessed with the worst case test configuration from above.

The DUT was assessed at the TX band edges using the worst case test configuration from above.

Assessments at the body (@ 2.5cm) [Page 26 of 27; Table 5]

The DUT was assessed in the 81:120 transmission mode, against the phantom with its' back and front housing separated 2.5 cm from the phantom, using the worst case test frequency and offered battery from the 800MHz and 900MHz assessments above.

Shortened scan assessment at the body [APPENDIX A]

A "shortened" scan was performed using the test configuration that produced the highest S.A.R. results overall at the body.

5.4 Test Position Photographs

Figure 1: Highest S.A.R. Test Position (@ body)
DUT with body worn accessory model NNTN4747A against the flat phantom.

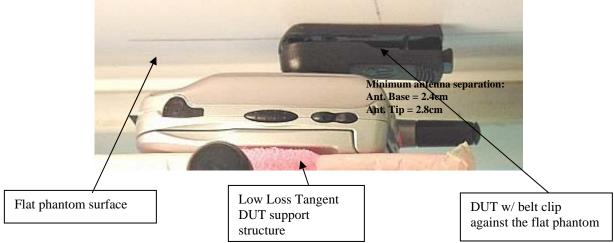


Figure 2. Assessment @ the Left ear DUT in Cheek touch position (same position used for antenna extended)

Figure 3. Assessment @ the Left ear DUT in 15° tilt position (same position used for antenna extended)

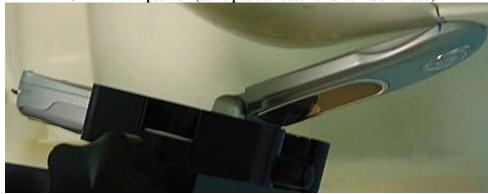


Figure 4. Assessment @ the Right ear DUT in Cheek touch position (same position used for antenna extended)

Figure 5. Assessment @ the Right ear DUT in 15° tilt position (same position used for antenna extended)

Figure 6. Assessment @ the body
DUT with body worn accessory model NNTN4682A against the flat phantom.
(same position used for antenna extended)

Figure 7. Assessment @ the body
DUT front 2.5cm separation distance from flat phantom.
(same position used for antenna extended)

Figure 8. Assessment @ the body
DUT back 2.5cm separation distance from flat phantom.
(same position used for antenna extended)

Figure 9. Assessment @ Face DUT front 2.5cm separation distance from flat phantom (flip open).

Figure 10. Assessment @ Face
DUT front 2.5cm separation distance from flat phantom (flip closed).
(same position used for antenna extended)





Figure 11: Robot Test System (Flat Phantom)

DASY3TM Robot

High density polyethylene Flat phantom used for S.A.R. testing

< 0.05 Loss Tangent Wooden support structure

6.0 Measurement Uncertainty

Table 1: Uncertainty Budget for Device Under Test: 75 - 3000 MHz

							h =	i =	
a	ь	c		e = f(d,k)		g			k
u	U		и	e - J(u,n)	J	- 0		cxg/e	^
	IEEE	Tol.	Prob		c_i	c_i	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	u_i	u_i	
Uncertainty Component	section			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	4.8	N	1.00	1	1	4.8	4.8	90
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	00
Hemispherical Isotropy	E.2.2	9,6	R	1.73	0,707	0.707	3.9	3.9	90
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	90
Linearity	E.2.4	4.7	R	1,73	1	1	2.7	2.7	00
System Detection Limits	E.2.5	1.0	R	1,73	1	1	0.6	0.6	00
Readout Electronics	E.2.6	1.0	N	1,00	1	1	1.0	1.0	8
Response Time	E.2.7	8.0	R	1.73	1	1	0.5	0.5	8
Integration Time	E.2.8	1,3	R	1.73	1	1	0.8	0.8	8
RF Ambient Conditions - Noise	E,6,1	3.0	R	1,73	1	1	1.7	1.7	8
RF Ambient Conditions -									
Reflections	E, 6, 1	0,0	R	1,73	1	- 1	0.0	0.0	90
Probe Positioner Mech. Tolerance	E,6,2	1.0	R	1,73	1	- 1	0,6	0,6	00
Probe Positioning w.r.t Phantom	E.6.3	4.0	R	1,73	1	- 1	2,3	2.3	00
Max. SAR Evaluation (ext., int.,						١.			
avg.)	E.5	3.4	R	1,73	1	l	2.0	2.0	90
Test sample Related									
Test Sample Positioning	E.4.2	3,4	N	1.00	1	1	3,4	3.4	29
Device Holder Uncertainty	E.4.1	3.8	N	1.00	1	1	3.8	3.8	8
SAR drift	6,6,2	5.0	R	1,73	1	1	2.9	2.9	90
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1,73	1	- 1	2,3	2.3	90
Liquid Conductivity (target)	E.3.2	5.0	R	1,73	0.64	0.43	1.8	1.2	90
Liquid Conductivity									
(measurement)	E.3.3	6,5	N	1.00	0.64	0,43	4.2	2.8	90
Liquid Permittivity (target)	E.3.2	5.0	R	1,73	0,6	0.49	1.7	1.4	90
Liquid Permittivity	E.3.3	4.0	N	1.00	0.6	0.49	2.4	2.0	
(measurement) Combined Standard	E.5.5	4,0	IN	1,00	0.6	0,49	2,4	2,0	00
Uncertainty			RSS				12	11	601
Expanded Uncertainty			11313						17.01
(95% CONFIDENCE LEVEL)			k=2			l	23	22	
(3570 COM IDENCE LEVEL)			~ ~				2.7		

Table 2: Uncertainty Budget for System Check: 75 – 3000 MHz

							h =	i =	
а	b	c	d	e = f(d,k)	f	g	cxf/e	cxg/e	k
		Tol.	Prob.		c_i	c_i	1 g	10 g	
	IEEE 1528	(± %)	Dist.		(1 0)	(10 g)	u,	u,	
Uncertainty Component	section	(= 74)	27.50.	Div.	(* A/	(10 g)	(±%)	(±%)	v_i
Measurement System				2111			(2.0)	()	-,
Probe Calibration	E.2.1	4.8	N	1.00	1	1	4.8	4.8	
Axial Isotropy	E.2.2	4.7	R	1.73	1	i	2.7	2.7	00
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	00
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	00
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	00
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	00
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	90
		,		-,	_	<u> </u>	-,-	-,-	00
Integration Time	E.2.8	1.3	R	1,73	1	1	0.8	0.8	00
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	œ
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	Ιı	0.0	0.0	
Probe Positioner Mechanical	E,0,1	0,0	K	1,75	1	1	0.0	0,0	œ
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	- oc
Probe Positioning w.r.t. Phantom		1.4	R	1.73	1	1	0.8	0.8	- ×
Max. SAR Evaluation (ext., int.,	13,0,2	-,.		2,72	<u> </u>	<u> </u>	0,0	0,0	-
avg.)	E.5	3.4	R	1,73	1	1	2.0	2.0	œ
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	œ
Input Power and SAR Drift									
Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	00
Phantom and Tissue									
Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1,73	1	-1	2.3	2.3	œ
Liquid Conductivity (target)	E.3.2	5.0	R	1,73	0.64	0.43	1.8	1.2	90
Liquid Conductivity									
(measurement)	E.3.3	6,0	R	1,73	0,64	0.43	2.2	1.5	œ
Liquid Permittivity (target)	E.3.2	5,0	R	1,73	0,6	0.49	1.7	1.4	00
Liquid Permittivity			_						
(measurement)	E.3.3	6.0	R	1,73	0,6	0.49	2,1	1.7	90
Combined Standard			nee				q		00000
Uncertainty		l	RSS		l	I	9	8	99999
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				17	17	

Notes for Tables 1 and 2

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) *ui* SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty.

7.0 S.A.R. Test Results

All S.A.R. results obtained by the tests described in Section 5.0 are listed in section 7.1 below. As noted in section 5.3, a coarse-to-cube approximation methodology, which has been accepted by SPEAG, was utilized to ascertain the worst-case test configuration for each body location. The worst case test configurations observed for each body location were then assessed using the full DASY3TM coarse and 5x5x7 cube methodology, and they are presented as bolded results in section 7.1. The associated S.A.R. plots are provided in APPENDIX B.

Appendix A presents shortened S.A.R. cube scans to assess the validity of the calculated results presented herein. Note: The results of the shortened cube scans presented in Appendix A demonstrate that the scaling methodology used to determine the calculated S.A.R. results presented herein are valid.

7.1 S.A.R. results

Note: (Run #s JF-REAR-R3-040917-02, CM-Face-R3-0401008-02, JF-REAR-R3-040917-03, CM-Face-R3-041008-03, CM-Face-R3-041007-02, CM-Ab-R3-040921-10, CM-Ab-R3-040921-09, CM-Ab-R3-040921-08 used full coarse and 5x5x7 cube scans)

Table1

DUT assessmen	nt at the he	ead; Cheek	Touch, Tilt, b	and edge	s and Face; 1:	3 mode at hea	d, 1:6 & I	114:120 n	nodes at face	e; 806-825MI	Hz band	
Run Number/ SN	Antenna Position	Freq. (MHz)	Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	S.A.R. Drift (dB)	Meas. 1g-S.A.R. (mW/g)	Meas. 10g-S.A.R. (mW/g)	Max Calc. 1g-S.A.R. (mW/g)	Max Calc. 10g-S.A.R. (mW/g)
Assessment at the left Ear (1:3)												
CM-LEAR-R3-040913- 03/364AEN0HFW	In	813.5125	SNN5705C	Cheek Touch	None	None	0.668	-0.27	0.673	0.443	0.72	0.471
CM-LEAR-R3-040913- 07/364AEN0HFW	Out	813.5125	SNN5705C	Cheek Touch	None	None	0.671	0.15	0.649	0.428	0.65	0.428
CM-LEAR-R3-040913- 09/364AEN0HFW	In	813.5125	SNN5683A	Cheek Touch	None	None	0.674	0.20	0.654	0.436	0.65	0.436
CM-LEAR-R3-040913- 10/364AEN0HFW	In	813.5125	SNN5685A	Cheek Touch	None	None	0.676	0.15	0.678	0.450	0.68	0.450
CM-LEAR-R3-040913- 11/364AEN0HFW	In	813.5125	NNTN4655A	Cheek Touch	None	None	0.684	0.19	0.668	0.437	0.67	0.437
CM-LEAR-R3-040913- 12/364AEN0HFW	In	813.5125	SNN5705C	15° tilt	None	None	0.672	0.00	0.202	0.135	0.20	0.135
CM-LEAR-R3-040913- 13/364AEN0HFW	Out	813.5125	SNN5705C	15° tilt	None	None	0.680	0.04	0.192	0.131	0.19	0.131
		Band	edge assessm	ent at the	Left ear with	worst case cor	ıfiguratio	on from a	bove (1:3)			
JF-LEAR-R3-040914- 03/364AEN0HFW	In	806.0125	SNN5705C	Cheek Touch	None	None	0.670	0.08	0.644	0.440	0.64	0.440
JF-LEAR-R3-040914- 04/364AEN0HFW	Out	824.9875	SNN5705C	Cheek Touch	None	None	0.670	0.26	0.638	0.436	0.64	0.436

Table 1 (continued)

					Table 1 (c	ontinuea)	·	·				
Run Number/ SN	Antenna Position	Freq. (MHz)	Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	S.A.R. Drift (dB)	Meas. 1g-S.A.R. (mW/g)	Meas. 10g-S.A.R. (mW/g)	Max Calc. 1g-S.A.R. (mW/g)	Max Calc. 10g-S.A.R. (mW/g)
				Ass	essment at th	e right Ear (1:	:3)					
CM-REAR-R3-040914- 17/364AEN0HFW	In	813.5125	SNN5705C	Cheek Touch	None	None	0.670	-0.33	0.739	0.514	0.80	0.56
17/304AENOIII W	111	613.3123	3NN3703C	Touch	None	None	0.070	-0.33	0.739	0.314	0.80	0.50
*CM-REAR-R3-040914-				Cheek								
16/364AEN0HFW	Out	813.5125	SNN5705C	Touch	None	None	0.668	0.03	0.806	0.561	0.81	0.56
CM-REAR-R3-040914-				15°								
18/364AEN0HFW	In	813.5125	SNN5705C	tilt	None	None	0.669	0.06	0.150	0.107	0.15	0.11
CM-REAR-R3-040914-				15°								
19/364AEN0HFW	Out	813.5125	SNN5705C	tilt	None	None	0.678	-0.03	0.138	0.097	0.14	0.10
		Band	edge assessme	ent at the I	Right ear with	worst case co	nfigurati	on from a	above (1:3)			
Band edge assessment at the Right ear with worst case configuration from above (1:3)												
JF-REAR-R3-040915- 02/364AEN0HFW	In	806.0125	SNN5705C	Cheek Touch	None	None	0.670	-0.25	0.536	0.369	0.57	0.39
	111	300.0123	511137030		1,0110	1,0110	0.070	0.23	0.550	0.507	0.57	0.57
JF-REAR-R3-040915-	Ove	906 0125	CMMETOEC	Cheek	Non-	Non-	0.670	0.26	0.746	0.511	0.75	0.51
03/364AEN0HFW	Out	806.0125	SNN5705C	Touch	None	None	0.670	0.26	0.746	0.511	0.75	0.51
JF-REAR-R3-040915-				Cheek								
04/364AEN0HFW	In	824.9875	SNN5705C	Touch	None	None	0.670	0.02	0.415	0.289	0.42	0.29
JF-REAR-R3-040915-				Cheek								
05/364AEN0HFW	Out	824.9875	SNN5705C	Touch	None	None	0.668	0.20	0.768	0.529	0.77	0.53
*Asses	ssment wi	th the wors	st case test co	nfiguration	at the head u	sing the full I	OASY coa	rse and 5	x5x7 cube s	can measure	ments.	
TE DE LE DA 040045				<i>a.</i> .								
JF-REAR-R3-040917- 02/364AEN0HFW	Out	813.5125	SNN5705C	Cheek Touch	None	None	0.671	0.42	0.677	0.473	0.68	0.47
OZ/30 ITETOTI V	Out	013.3123	511137030		I		ı	0.12	0.077	0.175	0.00	0.17
		<u> </u>		front	Assessment at	the Face (1:6)	I	I		1	1	
CM-Face-R3-040915-				2.5cm								
16/364AEN0HFW	In	813.5125	SNN5705C	Flip open	None	None	0.663	-0.09	0.041	0.030	0.02	0.02
				front								
CM-Face-R3-040915-				2.5cm Flip								
17/364AEN0HFW	In	813.5125	SNN5705C	closed	None	None	0.667	0.03	0.154	0.111	0.08	0.06
				front								
CM Face B2 040015				2.5cm								
CM-Face-R3-040915- 18/364AEN0HFW	Out	813,5125	SNN5705C	Flip closed	None	None	0.675	-0.03	0.163	0.118	0.08	0.06
		,	32.3.3.000	front		2.3110	2.3,2	2.02	3.200		2.00	3.00
				2.5cm								
*CM-Face-R3-040915- 19/364AEN0HFW	Out	806.0125	SNN5705C	Flip closed	None	None	0.678	-0.02	0.175	0.126	0.09	0.06
13/304/AENUIII W	Out	300.0123	SINING TOOC	front	INOHE	NOHE	0.076	-0.02	0.173	0.120	0.09	0.00
				2.5cm								
CM-Face-R3-040915-		004 005	a.p.:5505=	Flip			0.650	0.01	0.15.	0.112	0.00	0.05
20/364AEN0HFW Out 824.9875 SNN5705C closed None None 0.679 -0.01 0.154 0.112 0.08 0.06												
*Assessmen	t with the	worst case	test configur	ation at th	e face in 1:6 n	node using the	full DAS	Y coarse	and 5x5x7 o	cube scan me	asurements.	
			8	front								
CME TO THE TOTAL				2.5cm								
CM-Face-R3-041008- 02/364AEN0HFW	Out	806.0125	SNN5705C	Flip closed	None	None	0.679	0.05	0.170	0.124	0.09	0.06
UZ/3U4AENURFW	Out	000.0125	PININ3/03C	ciosed	INOHE	none	0.079	0.03	0.170	0.124	0.09	0.00

Table 2

					Table 2	•						
		- ~										
DUT assessmen	nt at the h	ead; Cheel	k Touch, Tilt,	and edges	and Face; 1:	3 mode at head	1, 1:6 & 1	14:120 n	iode at face;	896-902MH	z band	1
Run Number/ SN	Antenna Position	Freq. (MHz)	Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	S.A.R. Drift (dB)	Meas. 1g-S.A.R. (mW/g)	Meas. 10g-S.A.R. (mW/g)	Max Calc. 1g-S.A.R. (mW/g)	Max Calc. 10g-S.A.R. (mW/g)
				As	sessment at tl	ne left Ear (1:3	3)					
CM-LEAR-R3-040914- 05/364AEN0HFW	In	898.49375	SNN5705C	Cheek Touch	None	None	0.675	0.14	0.268	0.183	0.27	0.18
CM-LEAR-R3-040914- 06/364AEN0HFW	Out	898.49375	SNN5705C	Cheek Touch	None	None	0.686	0.18	0.721	0.486	0.72	0.49
CM-LEAR-R3-040914- 07/364AEN0HFW	Out	898.49375	SNN5704C	Cheek Touch	None	None	0.670	0.05	0.723	0.487	0.72	0.49
CM-LEAR-R3-040914- 08/364AEN0HFW	Out	898.49375	SNN5683A	Cheek Touch	None	None	0.692	0.17	0.687	0.463	0.69	0.46
CM-LEAR-R3-040914- 09/364AEN0HFW	Out	898.49375	SNN5685A	Cheek Touch	None	None	0.705	0.15	0.697	0.470	0.70	0.47
CM-LEAR-R3-040914- 10/364AEN0HFW	Out	898.49375	NNTN4655A	Cheek Touch	None	None	0.690	0.15	0.651	0.440	0.65	0.44
CM-LEAR-R3-040914- 12/364AEN0HFW	In	898.49375	SNN5704C	15° tilt	None	None	0.682	-0.11	0.080	0.055	0.08	0.06
CM-LEAR-R3-040914- 13/364AEN0HFW	Out	898.49375	SNN5704C	15° tilt	None	None	0.683	-0.02	0.163	0.112	0.16	0.11
				Band ed	lge assessmen	t at the Left ea	ar (1:3)					
CM-LEAR-R3-040914- 14/364AEN0HFW	Out	896.01875	SNN5704C	Cheek Touch	None	None	0.687	-0.17	0.704	0.480	0.73	0.50
CM-LEAR-R3-040914- 15/364AEN0HFW	Out	901.98125	SNN5704C	Cheek Touch	None	None	0.688	0.23	0.722	0.494	0.72	0.49
				Ass	essment at the	e Right Ear (1	:3)					
JF-REAR-R3-040915- 07/364AEN0HFW	In	898.49375	SNN5704C	Cheek Touch	None	None	0.675	-0.23	0.235	0.162	0.25	0.17
JF-REAR-R3-040915- 08/364AEN0HFW	Out	898.49375	SNN5704C	Cheek Touch	None	None	0.670	0.24	0.770	0.525	0.77	0.53
CM-REAR-R3-040915- 11/364AEN0HFW	In	898.49375	SNN5704C	15° tilt	None	None	0.670	0.08	0.030	0.021	0.03	0.02
CM-REAR-R3-040915- 10/364AEN0HFW	Out	898.49375	SNN5704C	15° tilt	None	None	0.675	-0.24	0.150	0.106	0.16	0.11
		Band	edge assessme	ent at the I	Right ear with	worst case co	nfigurati	on from	above (1:3)			
CM-REAR-R3-040915- 12/364AEN0HFW	In		SNN5704C	Cheek Touch	None None	None	0.680	0.01	0.366	0.254	0.37	0.25
*CM-REAR-R3-040915- 13/364AEN0HFW		896.01875	SNN5704C	Cheek Touch	None	None	0.682	0.05	0.869	0.587	0.87	0.59

Table 2 (continued)

					Table 2 (c	continued)						
Run Number/ SN	Antenna Position		Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	S.A.R. Drift (dB)	Meas. 1g-S.A.R. (mW/g)	Meas. 10g-S.A.R. (mW/g)	Max Calc. 1g-S.A.R. (mW/g)	Max Calc. 10g-S.A.R. (mW/g)
]	Band edge	assessment at	the Right e	ar with wor	st case configu	ration fr	om above	1:3 (continu	ied)		
CM-REAR-R3-040915-				Cheek								
14/364AEN0HFW	In	901.98125	SNN5704C	Touch	None	None	0.667	-0.17	0.276	0.191	0.29	0.20
CM DEAD D2 040015				CI I								
CM-REAR-R3-040915- 15/364AEN0HFW		901.98125	SNN5704C	Cheek Touch	None	None	0.683	0.17	0.820	0.554	0.82	0.55
10,00 11121 (0111)	Out	701.70120	511107010	10001	1,0110	110110	0.002	0.17	0.020	0.00	0.02	0.00
*Asse:	ssment wi	th the wors	st case test cor	ifiguration a	at the head	using the full I	DASY coa	rse and 5	x5x7 cube s	can measure	ments.	ı
JF-REAR-R3-040917-				Cheek								
03/364AEN0HFW	Out	896.01875	SNN5704C	Touch	None	None	0.670	-0.03	0.622	0.433	0.63	0.44
	T	1	I		ssessment at	the Face (1:6)	1	I	I	1	1	I
CM-Face-R3-040915-				DUT front 2.5cm								
21/364AEN0HFW	In	898.49375	SNN5704C	Flip open	None	None	0.666	0.16	0.025	0.018	0.01	0.01
				DUT front								
JF-Face-R3-040916-	T.,	000 40275	CNINETOAC	2.5cm	NT	N	0.666	0.02	0.002	0.065	0.05	0.02
02/364AEN0HFW	In	898.49375	SNN5704C	Flip closed DUT front	None	None	0.666	0.02	0.092	0.065	0.05	0.03
JF-Face-R3-040916-				2.5cm								
03/364AEN0HFW	Out	898.49375	SNN5704C	Flip closed	None	None	0.663	0.03	0.145	0.104	0.07	0.05
*IE E D2 040016				DUT front								
*JF-Face-R3-040916- 04/364AEN0HFW	Out	896.01875	SNN5704C	2.5cm Flip closed	None	None	0.665	0.04	0.148	0.105	0.07	0.05
0 1/20 11 121 (0111)	- Cur	0,0101070	BT (T (C) G T C	DUT front	1,0110	110110	0.002	0.0.	0.1.0	0.100	0.07	0.02
JF-Face-R3-040916-				2.5cm								
05/364AEN0HFW	Out	901.98125	SNN5704C	Flip closed	None	None	0.660	-0.04	0.144	0.103	0.07	0.05
*Assessmen	t with the	worst case	test configur	ation at the	face in 1:6 r	node using the	full DAS	Y coarse	and 5x5x7 c	cube scan me	easurements.	
CM F D2 041000				front								
CM-Face-R3-041008- 03/364AEN0HFW	Out	896 01875	SNN5704C	2.5cm Flip closed	None	None	0.668	0.04	0.149	0.106	0.08	0.05
OS/SOTTENOTH W	Out	070.01075							0.11)	0.100	0.00	0.05
CM E D2 040016			ASSE		ne race 114:	120 MOTOtall	k mode (1	11)				
CM-Face-R3-040916- 06/364AEN0HFW	In	915.5250	SNN5705C	DUT front 2.5cm	None	None	0.822	-0.21	0.404	0.289	0.21	0.15
CM-Face-R3-040916-				DUT front								
07/364AEN0HFW	Out	915.5250	SNN5705C	2.5cm	None	None	0.840	0.25	0.976	0.699	0.49	0.35
CM-Face-R3-040916-				DUT front								
09/364AEN0HFW	Out	915.5250	SNN5704C	2.5cm	None	None	0.809	0.17	0.950	0.680	0.48	0.34
CM-Face-R3-040916-		015 5050	ann. =	DUT front			0.040	0.45	0.074	0.502	0.40	0.04
10/364AEN0HFW	Out	915.5250	SNN5683A	2.5cm	None	None	0.810	0.16	0.954	0.683	0.48	0.34
CM-Face-R3-040916- 11/364AEN0HFW	Out	915.5250	SNN5685A	DUT front 2.5cm	None	None	0.805	0.22	0.985	0.705	0.49	0.35
CM-Face-R3-040916-	Out	713.3430	PEODERIES	DUT front	TAOHE	None	0.003	0.22	0.703	0.703	0.47	0.55
12/364AEN0HFW	Out	915.5250	NNTN4655A	2.5cm	None	None	0.826	0.25	0.939	0.671	0.47	0.34
*CM-Face-R3-040916-				DUT front								
13/364AEN0HFW	Out	902.5250	SNN5705C	2.5cm	None	None	0.845	0.30	1.188	0.849	0.59	0.42
CM-Face-R3-040916- 14/364AEN0HFW	Out	927.4750	SNN5705C	DUT front 2.5cm	None	None	0.815	0.26	0.907	0.647	0.45	0.32
	· I		•	l.		None			•	•	0.45	•
*Assessment v	vith the w	orst case te	est configurati	on at the fa	ce in 114:12	0 mode using t	ne full D	ASY coar	rse and 5x5x	/ cube scan	measuremen	ts.
CM-Face-R3-041007-				DUT front								
02/364AEN0HFW	Out	902.5250	SNN5705C	2.5cm	None	None	0.821	-2.250	0.669	0.473	0.56	0.40

Table 3

	Table 5											
DUT	r accocemo	nt at the had	y; against phan	tom bone	Lodges and 2	Sem congratio	n. 81.120	1.3 ma	dos: 806-825	MHz band		
D U1	assessmen	nt at the boo	y, agamst phan 	lom, band	euges, and 2.	Sciii separatio	11; 61:120	, 1.5 110	ues; 000-025	WIIIZ Dallu		
							Initial	S.A.R.	Meas.	Meas.	Max Calc.	Max Calc.
Run Number/	Antenna	Freq.		Test		Additional	Power	Drift	1g-S.A.R.	10g-S.A.R.	1g-S.A.R.	10g-S.A.R.
SN	Position	(MHz)	Battery	position	Carry Case	attachments	(W)	(dB)	(mW/g)	(mW/g)	(mW/g)	(mW/g)
			assessment of of	fored bett	ory and offere	d hody worn s	OCCUPANT OF THE OCCUPANT OCCUPA	(81.120)	modo)			
CM-Ab-R3-040917-			assessment of or	Against	ery and onere	u bouy worm a	iccessor y	(81.1201	noue)			
06/364AEN0HFW	In	813.5125	SNN5705C	_	NNTN4682A	None	0.674	0.04	0.992	0.699	0.99	0.70
CM-Ab-R3-040917-				Against								
07/364AEN0HFW	Out	813.5125	SNN5705C		NNTN4682A	None	0.675	-0.32	0.992	0.709	1.07	0.76
CM-Ab-R3-040917-				Against								
08/364AEN0HFW	In	813.5125	SNN5705C	phantom	NNTN4747A	None	0.672	-0.01	1.013	0.720	1.02	0.72
CM-Ab-R3-040917-	0 .	010 5105	anniegos a	Against	NN 199N 149 49 4	3.7	0.600	0.40	1 100	0.700	1.21	0.07
09/364AEN0HFW	Out	813.5125	SNN5705C		NNTN4747A	None	0.680	-0.40	1.100	0.790	1.21	0.87
CM-Ab-R3-040917- 10/364AEN0HFW	Out	813.5125	SNN5704C	Against	NNTN4747A	None	0.679	-0.72	1.032	0.738	1.22	0.87
CM-Ab-R3-040917-	Out	013.3123	511137040	Against	INITITATA	TVOIC	0.077	-0.72	1.032	0.736	1.22	0.67
11/364AEN0HFW	Out	813.5125	SNN5683A		NNTN4747A	None	0.681	-0.64	1.023	0.731	1.19	0.85
CM-Ab-R3-040917-				Against								
12/364AEN0HFW	Out	813.5125	SNN5685A		NNTN4747A	None	0.675	-0.32	1.120	0.795	1.21	0.86
CM-Ab-R3-040917-	Out	912 5125	NINTN/4655 A	Against	NNTN4747A	None	0.672	-0.08	0.942	0.667	0.96	0.68
13/364AEN0HFW CM-Ab-R3-040917-	Out	813.5125	NNTN4655A	Against	ININTIN4/4/A	None	0.672	-0.08	0.942	0.667	0.90	0.08
14/364AEN0HFW	Out	813.5125	SNN5704C		NNTN4747A	NKN6559A	0.677	-0.57	0.488	0.346	0.56	0.40
CM-Ab-R3-040917-				Against		NKN6560A						
15/364AEN0HFW	Out	813.5125	SNN5704C	phantom	NNTN4747A	RS232	0.676	-0.69	0.738	0.525	0.87	0.62
	, ,		T	Assessn	nent of audio a	ccessories (81	:120)		r		r	
CM-Ab-R3-040917-		010 5105	a.n.z=a.za	Against			0.500		0.250	0.050	0.04	0.25
16/364AEN0HFW	Out	813.5125	SNN5704C	phantom	NNTN4747A	NNTN4620A	0.680	0.05	0.358	0.253	0.36	0.25
CM-Ab-R3-040917-	0.4	012.5125	CNING TO AC	Against	NINITENIATATA	GMAI0200D	0.667	0.02	0.212	0.220	0.21	0.22
17/364AEN0HFW CM-Ab-R3-040917-	Out	813.5125	SNN5704C	Against	NNTN4747A	SYN8390B	0.667	-0.02	0.312	0.220	0.31	0.22
18/364AEN0HFW	Out	813.5125	SNN5704C		NNTN4747A	SYN8146C	0.670	0.04	0.484	0.346	0.48	0.35
JF-Ab-R3-040920-				Against								
02/364AEN0HFW	Out	813.5125	SNN5704C		NNTN4747A	NTN8496A	0.670	0.04	0.348	0.249	0.35	0.25
JF-Ab-R3-040920-				Against								
03/364AEN0HFW	Out	813.5125	SNN5704C		NNTN4747A	NNTN4033A	0.670	0.05	0.442	0.316	0.44	0.32
JF-Ab-R3-040920-				Against								
04/364AEN0HFW	Out	813.5125	SNN5704C		NNTN4747A	NTN8513B	0.670	0.09	0.347	0.248	0.35	0.25
CM-Ab-R3-040920-				Against								
10/364AEN0HFW	Out	813.5125	SNN5704C		NNTN4747A	SYN7875C	0.666	0.10	0.476	0.338	0.48	0.34
CM-Ab-R3-040920- 11/364AEN0HFW	Out	813.5125	SNN5704C	Against	NNTN4747A	NSN6066A	0.664	-0.03	0.203	0.146	0.10	0.07
	Out	313.3123	51113/040		1111117/7//	115110000A	0.004	0.03	0.203	0.170	0.10	0.07
JF-Ab-R3-040920-	04	012 5125	CNINIETOAC	Against	NINITNI 47 47 A	NINITNIE004 A	0.671	0.10	0.421	0.202	0.42	0.20
05/364AEN0HFW	Out	813.5125	SNN5704C	pnantom	NNTN4747A	A POOCNIT NINI	0.671	0.10	0.421	0.302	0.42	0.30
JF-Ab-R3-040920-				Against								
06/364AEN0HFW	Out	813.5125	SNN5704C	phantom	NNTN4747A	NNTN5005A	0.670	0.06	0.424	0.301	0.42	0.30
JF-Ab-R3-040920-				Against								
07/364AEN0HFW	Out	813.5125	SNN5704C	phantom	NNTN4747A	NNTN5006A	0.669	0.06	0.363	0.260	0.36	0.26

Table 3 (continued)

					- more e (ee							
Run Number/ SN	Antenna Position	Freq. (MHz)	Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	S.A.R. Drift (dB)	Meas. 1g-S.A.R. (mW/g)	Meas. 10g-S.A.R. (mW/g)	Max Calc. 1g-S.A.R. (mW/g)	Max Calc. 10g-S.A.R. (mW/g)
JF-Ab-R3-040920- 09/364AEN0HFW	Out	813.5125	SNN5704C	Against phantom	NNTN4747A	NNTN5211A	0.670	-0.01	0.378	0.268	0.38	0.27
JF-Ab-R3-040920- 08/364AEN0HFW	Out	813.5125	SNN5704C	Against phantom		NNTN5330A	0.670	-0.02	0.343	0.245	0.35	0.25
Band edge assessment at the body w/ worst case configuration from above (81:120)												
CM-Ab-R3-040920- 12/364AEN0HFW	Out	806.0125	SNN5704C	Against phantom	NNTN4747A	None	0.671	-0.68	1.056	0.758	1.24	0.89
CM-Ab-R3-040920- 13/364AEN0HFW	Out	824.9875	SNN5704C	Against phantom	NNTN4747A	None	0.677	-0.62	1.191	0.836	1.37	0.96
*JF-Ab-R3-040929- 02/364AEN0HFW (Shortened scan)	Out	824.9875	SNN5704C	Against phantom	NNTN4747A	None	0.675	-0.46	1.240	0.887	1.38	0.99
*Assessment with the worst case test configuration at the body in 81:120 mode using the full DASY coarse and 5x5x7 cube scan measurements.												
CM-Ab-R3-040921- 10/364AEN0HFW	Out	824.9875	SNN5704C	Against phantom	NNTN4747A	None	0.669	-1.16	1.020	0.725	1.33	0.95

Table 4

DUT assessment at t	he body; ac	ross the bar	nd, with worst c	ase test co	onfiguration fr	om 800MHz b	and asse	ssment; 1	:3 & 114:12	0 mode; 896-	902MHz ba	nd
Run Number/ SN	Antenna Position	Freq.	Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	S.A.R. Drift (dB)	Meas. 1g-S.A.R. (mW/g)	Meas. 10g-S.A.R. (mW/g)	Max Calc. 1g-S.A.R. (mW/g)	Max Calc. 10g-S.A.R. (mW/g)
Assessment with worst case configuration from 800MHz assessment												
CM-Ab-R3-040920- 15/364AEN0HFW	In	898.49375	SNN5704C	Against phantom	NNTN4747A	SYN8146C	0.680	-0.38	0.240	0.169	0.26	0.18
*CM-Ab-R3-040920- 14/364AEN0HFW	Out	898.49375	SNN5704C	Against phantom	NNTN4747A	SYN8146C	0.672	0.06	0.482	0.337	0.48	0.34
CM-Ab-R3-040920- 16/364AEN0HFW	In	896.01875	SNN5704C	Against phantom	NNTN4747A	SYN8146C	0.690	0.03	0.258	0.182	0.23	0.18
CM-Ab-R3-040920- 17/364AEN0HFW	Out	896.01875	SNN5704C	Against phantom	NNTN4747A	SYN8146C	0.688	0.07	0.451	0.316	0.45	0.32
CM-Ab-R3-040920- 18/364AEN0HFW	In	901.98125	SNN5704C	Against phantom	NNTN4747A	SYN8146C	0.664	-0.02	0.244	0.171	0.25	0.17
CM-Ab-R3-040920- 19/364AEN0HFW	Out	901.98125	SNN5704C	Against phantom	NNTN4747A	SYN8146C	0.684	0.04	0.404	0.285	0.40	0.29
*Assessn	ent with tl	ne worst case	e test configura	tion at the	body in 1:3 m	ode using the	full DAS	Y coarse	and 5x5x7 c	ube scan me	asurements	
CM-Ab-R3-040921- 09/364AEN0HFW	Out	898.49375	SNN5704C	Against phantom	NNTN4747A	SYN8146C	0.671	-0.43	0.394	0.281	0.44	0.31
Assessment in 114:120 MOTOtalk mode with offered RSM audio accessory												
CM-Ab-R3-040920- 20/364AEN0HFW	In	915.5250	SNN5705C	Against phantom	NNTN4747A	NSN6066A	0.832	-0.25	0.583	0.411	0.31	0.22
CM-Ab-R3-040920- 21/364AEN0HFW	Out	915.5250	SNN5705C	Against phantom	NNTN4747A	NSN6066A	0.810	0.17	1.449	1.009	0.72	0.50
CM-Ab-R3-040920- 22/364AEN0HFW	Out	915.5250	SNN5704C	Against phantom	NNTN4747A	NSN6066A	0.841	0.15	1.272	0.893	0.64	0.45
JF-Ab-R3-040921- 02/364AEN0HFW	Out	915.5250	SNN5683A	Against phantom	NNTN4747A	NSN6066A	0.830	0.23	1.405	0.987	0.70	0.49

Table 4 (continued)

Run Number/ SN	Antenna Position	Freq. (MHz)	Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	S.A.R. Drift (dB)	Meas. 1g-S.A.R. (mW/g)	Meas. 10g-S.A.R. (mW/g)	Max Calc. 1g-S.A.R. (mW/g)	Max Calc. 10g-S.A.R. (mW/g)
JF-Ab-R3-040921- 03/364AEN0HFW	Out	915.5250	SNN5685A	Against phantom	NNTN4747A	NSN6066A	0.820	-0.15	1.397	0.973	0.72	0.50
JF-Ab-R3-040921- 04/364AEN0HFW	Out	902.5250	SNN5705C	Against phantom	NNTN4747A	NSN6066A	0.820	0.01	1.367	0.961	0.68	0.48
*JF-Ab-R3-040921- 05/364AEN0HFW	Out	927.4750	SNN5705C	Against phantom	NNTN4747A	NSN6066A	0.815	0.38	1.473	1.036	0.74	0.52
*Assessment with	the worst	case test con	figuration at th	e body in	114:120 MOT	Otalk mode u	sing the f	ull DASY	coarse and	5x5x7 cube s	scan measur	ements.
CM-Ab-R3-040921- 08/364AEN0HFW	Out	927.4750	SNN5705C	Against phantom	NNTN4747A	NSN6066A	0.805	-2.22	1.370	0.866	1.14	0.72

Table 5

					Tabi							
							Initial	S.A.R.	Meas.	Meas.	Max Calc.	Max Calc.
Run Number/	Antenna	Freq.		Test		Additional	Power	Drift	1g-S.A.R.	10g-S.A.R.	1g-S.A.R.	10g-S.A.R.
SN	Position	(MHz)	Battery	position	Carry Case	attachments	(W)	(dB)	(mW/g)	(mW/g)	(mW/g)	(mW/g)
	Assessme	ent at 2.5cm	using the worst	case freq	uency and offe	ered battery fr	om both	800Mhz	and 900Mhz	assessments	1	
				DUT								
CM-Ab-R3-040921-				Back								
11/364AEN0HFW	Out	824.9875	SNN5705C	2.5cm	None	None	0.672	-0.76	1.014	0.723	1.21	0.86
				DUT								
CM-Ab-R3-040921-				Front								
13/364AEN0HFW	Out	824.9875	SNN5705C	2.5cm	None	None	0.673	-0.84	0.681	0.488	0.83	0.59
13/30TALINUIII W	Out	027.7013	514145705C	2.5CIII	TAOHE	TAOHE	0.073	-0.04	0.001	0.466	0.63	0.33

7.2 Peak S.A.R. location

Refer to APPENDIX B for detailed S.A.R. scan distributions.

7.3 Highest S.A.R. results calculation methodology

The calculated maximum 1-gram and 10-gram averaged S.A.R. results reported herein for the full DASY TM coarse and 5x5x7 cube measurements are determined by scaling the measured S.A.R. to account for power leveling variations and power slump. For this device the Maximum Calculated 1-gram and 10-gram averaged peak S.A.R. is calculated using the following formula:

Max. Calc. 1-g Avg. SAR = ((S.A.R. meas. / (10^(Pdrift/10)))*(Pmax/Pint))* DC%

 $P_{max} = Maximum Power (W)$

 P_{int} = Initial Power (W)

Pdrift = DASY drift results (dB)

 SAR_{meas} = Measured 1 gram averaged peak S.A.R. (mW/g)

DC % = Transmission mode duty cycle in % where applicable

Note that the use of the above formula should consider the relationship between the initial power, max power, and drift. Also, a 50% duty cycle is applied for PTT operation.

8.0 Conclusion

The highest Operational Maximum Calculated 1-gram and 10-gram average S.A.R. values found for FCC ID: AZ489FT5841 model H61XAN6RR4AN.

At the Body: 1-g Avg. = 1.38 mW/g; 10-g Avg. = 0.99 mW/g
At the Face: 1-g Avg. = 0.56 mW/g; 10-g Avg. = 0.40 mW/g
At the Head: 1-g Avg. = 0.68 mW/g; 10-g Avg. = 0.47 mW/g

These test results clearly demonstrate compliance with FCC General Population/Uncontrolled RF Exposure limits of **1.6 mW/g** per the requirements of 47 CFR 2.1093(d).

CGISS EME Test Laboratory

8000 West Sunrise Blvd Fort Lauderdale, FL. 33322

S.A.R. EME Compliance Test Report Part 2 of 2

Date of Report:	October 11, 2004
Report Revision:	Rev. O

Manufacturer: Rev. O Motorola

Product Description: iDEN i740; 1:6, 1:3, 81:120, 1:12 TDMA; 64 QAM, 16 QAM &

QPSK Modulation; 0.6 W Pulse average; GPS capable; MOTOtalk

(114:120 8FSK; 0.74W nominal)

FCC ID: AZ489FT5841 Device Model: H61XAN6RR4AN

Test Period: 9/13/04 - 9/29/04 & 10/7/04 - 10/8/04

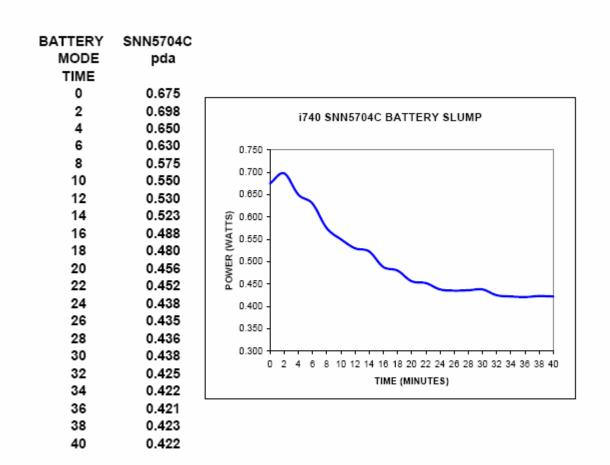
Technician: Clint Miller (EME Technician Electronics II)

Responsible Eng: Jim Fortier (Elect. Principle Staff Eng.)

Author: Michael Sailsman (Global EME Regulatory Affairs Liaison)

Note: This report shall not be reproduced without written approval from an officially designated representative of the Motorola EME Laboratory. Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 2.0 of this report.

Signature on file	10/13/04
Ken Enger	Date Approved
Senior Resource Manager, Laboratory Director, CGISS EME Lab	


APPENDIX A

Power Slump Data/Shortened Scan

DUT Power versus time data

Shortened Scan Results

FCC ID: AZ489FT5841; Test Date: 9/29/04

Motorola CGISS EME Laboratory

Run #: JF-Ab-R3-040929-02

Model #: H61XAN6RR4AN/NUF3970A00 SN: 364AEN0HFW

TX Freq: 824.9875 MHz

Sim Tissue Temp: 20.0 (Celsius)

Start Power: 0.675 W

Antenna: Out

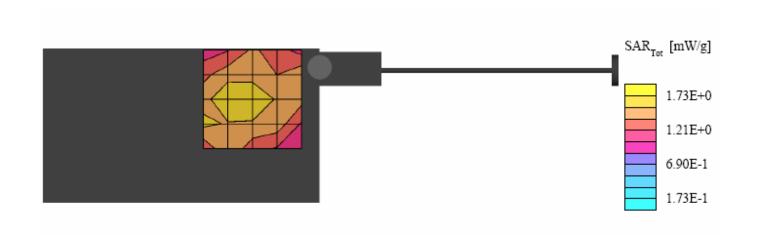
Battery Kit: SNN5704C Carry Acc: NNTN4747A Audio/Data Acc.: NONE

Shortened scan reflect highest S.A.R. producing configuration; Run time 8.5minutes.

Representative "normal" scan run time was 20 minutes

"Shortened" scan max calculated S.A.R. using S.A.R. drift: 1-g Avg. = 1.38mW/g; 10-g Avg. = 0.99mW/g

"Normal" scan max calculated S.A.R. using S.A.R. drift: 1-g Avg. = 1.33mW/g; 10-g Avg. = 0.95mW/g (see section 7.1 run # CM-Ab-R3-040921-10)


DUT w/ belt clip against the phantom

Flat Phantom; Position: (90°,90°);

Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); ConvF(5.82,5.82,5.82); Probe cal date: 25/2/04; Crest factor: 1.5; FCC

Body 813: σ = 0.95 mho/m ϵ r = 54.6 ρ = 1.00 g/cm3; DAE3: 401V1 DAE Cal Date: 8/25/2004 Cube 5x5x7: SAR (1g): 1.24 mW/g, SAR (10g): 0.887 mW/g, (Worst-case extrapolation) Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0; SAR (1g): 1.24 mW/g, SAR (10g): 0.887 mW/g

Power drift: -0.46 dB

APPENDIX B Data Results

FCC ID: AZ489FT5841; Test Date: 9/17/04

Motorola CGISS EME Laboratory

Run #: JF-REAR-R3-040917-02

Model #: H61XAN6RR4AN/NUF3970A00 SN: 364AEN0HFW

TX Freq: 813.5125 MHz

Sim Tissue Temp: 20.9 (Celsius)

Start Power: 0.671 W

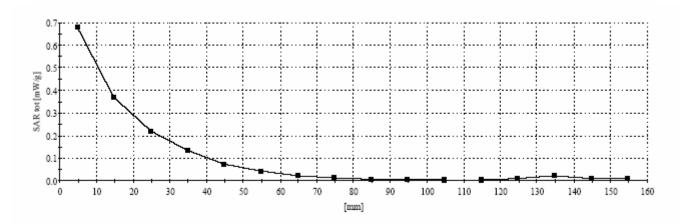
Antenna: Out

Battery Kit: SNN5705C Carry Acc: NONE Audio/Data Acc.: NONE

DUT at Left ear in cheek touch position

SAM - Expanded (new) Phantom; Right Hand Section; Position: (90°,301°);

Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); ConvF(6.30,6.30,6.30); Probe cal date: 25/2/04; Crest factor: 3.0; IEEE


Head 813 MHz: $\sigma = 0.93$ mho/m $\epsilon r = 42.0$ $\rho = 1.00$ g/cm3; DAE3: 406V1 DAE Cal Date: 11/20/2003

Cube 5x5x7: SAR (1g): 0.677 mW/g, SAR (10g): 0.473 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 43.5, 18.0, 4.7

Power Drift: 0.46 dB

FCC ID: AZ489FT5841; Test Date: 10/08/04 Motorola CGISS EME Laboratory

Run #: CM-Face-R3-041008-02

Model #: H61XAN6RR4AN/NUF3970A00 SN: 364AEN0HFW

TX Freq: 806.0125 MHz

Sim Tissue Temp: 21.1 (Celsius)

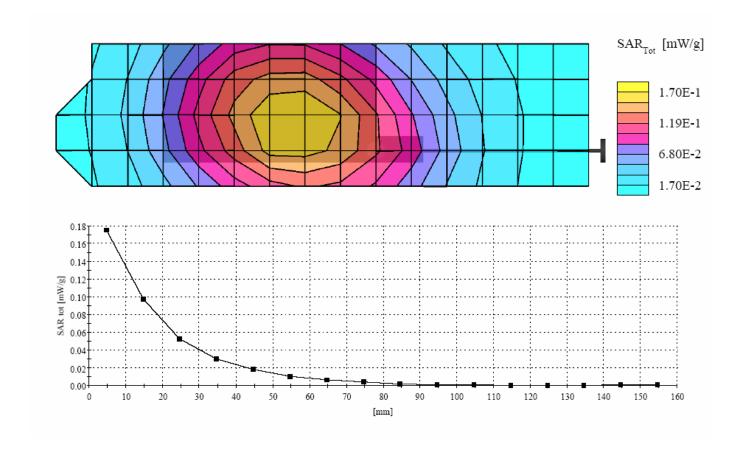
Start Power: 0.679 W

Antenna: Out

Battery Kit: SNN5705C Carry Acc: NONE Audio/Data Acc.: NONE

DUT front separated 2.5cm from phantom; flip closed

SAM - Expanded (new) Phantom; Flat Section; Position: (90°,90°);


Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); ConvF(6.30,6.30,6.30); Probe cal date: 25/2/04; Crest factor: 6.0; IEEE

Head 813 MHz: $\sigma = 0.93$ mho/m $\epsilon r = 42.3$ $\rho = 1.00$ g/cm3; DAE3: 401V1 DAE Cal Date: 8/25/2004

Cube 5x5x7: SAR (1g): 0.170 mW/g, SAR (10g): 0.124 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 34.5, 97.5, 4.7

Power drift: 0.05 dB

FCC ID: AZ489FT5841; Test Date: 9/17/04

Motorola CGISS EME Laboratory

Run #: JF-REAR-R3-040917-03

Model #: H61XAN6RR4AN/NUF3970A00 SN: 364AEN0HFW

TX Freq: 896.01875 MHz Sim Tissue Temp: 20.9 (Celsius)

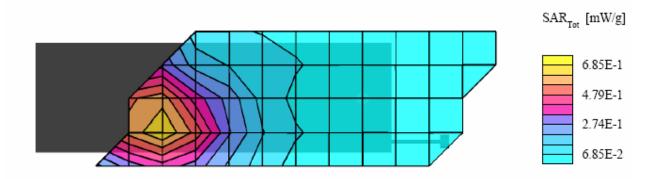
Start Power: 0.670 W

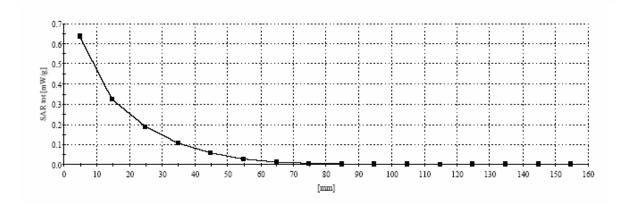
Antenna: In

Battery Kit: SNN5704C Carry Acc: NONE Audio/Data Acc.: NONE

DUT at right ear in cheek touch position

SAM - Expanded (new) Phantom; Right Hand Section; Position: (90°,301°);


Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); ConvF(6.30,6.30,6.30); Probe cal date: 25/2/04; Crest factor: 3.0; IEEE


Head 899 MHz: $\sigma = 1.01$ mho/m $\varepsilon r = 41.0$ $\rho = 1.00$ g/cm3; DAE3: 406V1 DAE Cal Date: 11/20/2003

Cube 5x5x7: SAR (1g): 0.622 mW/g, SAR (10g): 0.433 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 42.0, 19.5, 4.7

Power drift: -0.03 dB

FCC ID: AZ489FT5841; Test Date: 10/08/04

Motorola CGISS EME Laboratory

Run #: CM-Face-R3-041008-03

Model #: H61XAN6RR4AN/NUF3970A00 SN: 364AEN0HFW

TX Freq: 896.01875 MHz Sim Tissue Temp: 21.1 (Celsius)

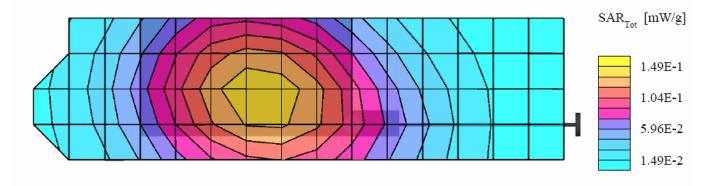
Start Power: 0.668 W

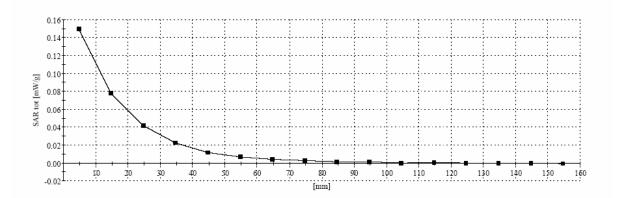
Antenna: Out

Battery Kit: SNN5704C Carry Acc: NONE Audio/Data Acc.: NONE

DUT front separated 2.5cm from phantom; flip closed

SAM - Expanded (new) Phantom; Flat Section; Position: (90°,90°);


Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); ConvF(6.30,6.30,6.30); Probe cal date: 25/2/04; Crest factor: 6.0; IEEE


Head 899 MHz: $\sigma = 1.00$ mho/m $\varepsilon r = 41.2$ $\rho = 1.00$ g/cm3; DAE3: 401V1 DAE Cal Date: 8/25/2004

Cube 5x5x7: SAR (1g): 0.149 mW/g, SAR (10g): 0.106 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 33.0, 94.5, 4.7

Power drift: 0.04 dB

FCC ID: AZ489FT5841; Test Date: 10/07/04 Motorola CGISS EME Laboratory

Run #: CM-Face-R3-041007-02

Model #: H61XAN6RR4AN/NUF3970A00 SN: 364AEN0HFW

TX Freq: 902.5250 MHz

Sim Tissue Temp: 20.7 (Celsius)

Start Power: 0.821 W

Antenna: In

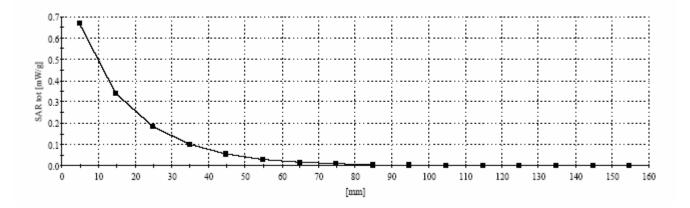
Battery Kit: SNN5705C Carry Acc: NONE Audio/Data Acc.: NONE

DUT front 2.5cm from phantom w/ flip closed

SAM - Expanded (new) Phantom; Flat Section; Position: (90°,90°);

Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); ConvF(6.30,6.30,6.30); Probe cal date: 25/2/04; Crest factor: 1.1; IEEE

Head 915 MHz: $\sigma = 1.02$ mho/m er = 41.0 $\rho = 1.00$ g/cm3; DAE3: 406V1 DAE Cal Date: 11/20/2003


Cube 5x5x7: SAR (1g): 0.669 mW/g, SAR (10g): 0.473 mW/g * Max outside, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 33.0, 103.5,

Power drift: -2.25dB

Note: "Max outside" has been identified by SPEAG as an unresolved intermittent occurrence with the DASY 3 application even when the entire peak area is captured.

FCC ID: AZ489FT5841; Test Date: 9/21/04

Motorola CGISS EME Laboratory

Run #: CM-Ab-R3-040921-10

Model #: H61XAN6RR4AN/NUF3970A00 SN: 364AEN0HFW

TX Freq: 824.9875 MHz

Sim Tissue Temp: 19.4 (Celsius)

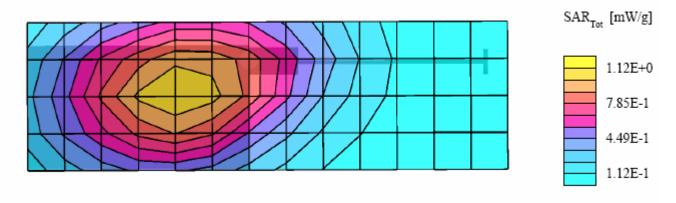
Start Power: 0.669 W

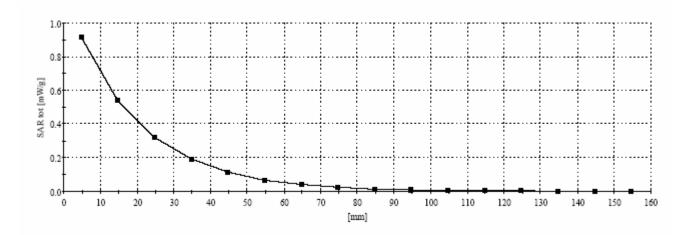
Antenna: In

Battery Kit: SNN5704C Carry Acc: NNTN4747A Audio/Data Acc.: NONE

DUT w/ body worn accessory against the phantom

Flat Phantom; Position: (90°,90°);


Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); ConvF(5.82,5.82,5.82); Probe cal date: 25/2/04; Crest factor: 1.5; FCC


Body 813: $\sigma = 0.96$ mho/m er = 53.7 $\rho = 1.00$ g/cm3; DAE3: 406V1 DAE Cal Date: 11/20/2003

Cube 5x5x7: SAR (1g): 1.02 mW/g, SAR (10g): 0.725 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 28.5, 61.5, 4.7

Power drift: -1.16 dB

FCC ID: AZ489FT5841; Test Date: 9/21/04

Motorola CGISS EME Laboratory

Run #: CM-Ab-R3-040921-09

Model #: H61XAN6RR4AN/NUF3970A00 SN: 364AEN0HFW

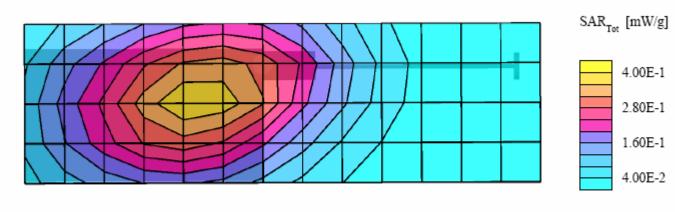
TX Freq: 898.49375 MHz Sim Tissue Temp: 19.4 (Celsius)

Start Power: 0.671 W

Antenna: Out

Battery Kit: SNN5704C Carry Acc: NNTN4747A Audio/Data Acc.: SYN8146C

DUT w/ body worn accessory against the phantom


Flat Phantom; Position: (90°,90°);

Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); ConvF(5.82,5.82,5.82); Probe cal date: 25/2/04; Crest factor: 3.0; FCC

Body 899: $\sigma = 1.06$ mho/m $\varepsilon r = 52.8$ $\rho = 1.00$ g/cm3; DAE3: 406V1 DAE Cal Date: 11/20/2003 Cube 5x5x7: SAR (1g): 0.394 mW/g, SAR (10g): 0.281 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 28.5, 64.5, 4.7

Power drift: -0.43 dB

FCC ID: AZ489FT5841; Test Date: 9/21/04

Motorola CGISS EME Laboratory

Run #: CM-Ab-R3-040921-08

Model #: H61XAN6RR4AN/NUF3970A00 SN: 364AEN0HFW

TX Freq: 927.4750 MHz

Sim Tissue Temp: 19.5 (Celsius)

Start Power: 0.805 W

Antenna: Out

Battery Kit: SNN5705C Carry: NNTN4747A

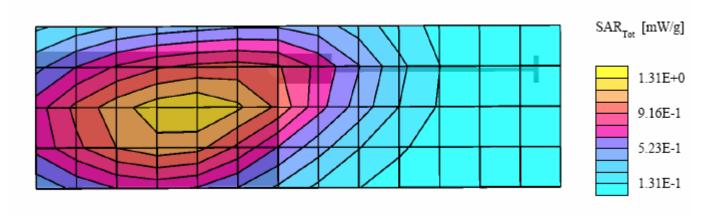
Audio/Data Acc.: NSN6066A

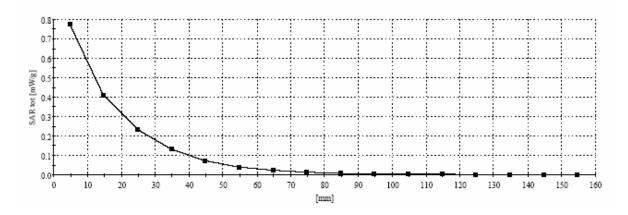
DUT w/ body worn accessory against the phantom

Flat Phantom; Position: (90°,90°);

Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); ConvF(5.82,5.82,5.82); Probe cal date: 25/2/04; Crest factor: 1.1; FCC

Body 915: $\sigma = 1.08$ mho/m $\varepsilon r = 52.6$ $\rho = 1.00$ g/cm3; DAE3: 406V1 DAE Cal Date: 11/20/2003


Cube 5x5x7: SAR (1g): 1.37 mW/g, SAR (10g): 0.866 mW/g * Max outside, (Worst-case extrapolation)


Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 31.5, 57.0, 4.7

Power drift: -2.22 dB

Note: "Max outside" has been identified by SPEAG as an unresolved intermittent occurrence with the DASY 3 application

even when the entire peak area is captured.

APPENDIX C

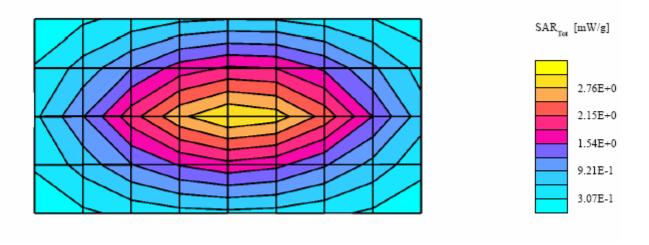
Dipole System Performance Check Results

Dipole validation scans at the head from SPEAG are provided in APPENDIX D. The CGISS EME lab validated the dipole to the applicable IEEE system performance targets. Within the same day system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. The results of the CGISS EME system performance validation are provided in this appendix.

SPEAG 900 MHz Dipole; Model D900V2, SN 084; Test Date: 9/13/04 Motorola CGISS EME Lab

Run #: Sys Perf-R3-040913-01

TX Freq: 900 MHz


Sim Tissue Temp: 20.9 (Celsius)

Start Power; 250mW

SAR target at 1W is 11.15 mW/g (1g avg, including drift)
SAR target at 1W is 6.98 mW/g (10g avg, including drift)
SAR calculated at 1W is 12.16 mW/g (1g avg). Percent from target (including drift) is + 9 %
SAR calculated at 1W is 7.59 mW/g (10g avg). Percent from target (including drift) is + 8 %

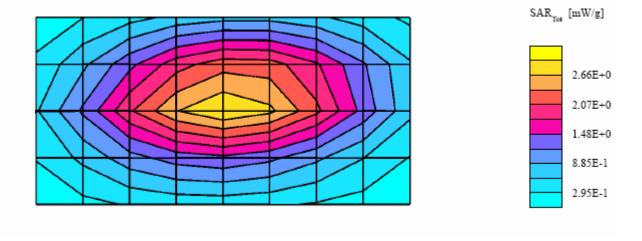
SAM - Expanded; Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); Probe Cal Date: 25/2/04ConvF(6.30,6.30,6.30); Crest factor: 1.0; IEEE Head 900 MHz: $\sigma = 1.01$ mho/m $\epsilon_r = 41.5$ $\rho = 1.00$ g/cm³; DAE3: 406 DAE Cal Date: 11/20/2003 Cubes (2): Peak: 4.89 mW/g \pm 0.00 dB, SAR (1g): 3.06 mW/g \pm 0.01 dB, SAR (10g): 1.91 mW/g \pm 0.01 dB, (Worst-case extrapolation) Penetration depth: 11.2 (10.4, 12.4) [mm]

Power drift: 0.03 dB

SPEAG 900 MHz Dipole; Model D900V2, SN 084; Test Date: 9/14/04 Motorola CGISS EME Lab

Run #: Sys Perf-R3-040914-01

TX Freq: 900 MHz


Sim Tissue Temp: 20.5 (Celsius)

Start Power; 250mW

SAR target at 1W is 11.15 mW/g (1g avg, including drift)
SAR target at 1W is 6.98 mW/g (10g avg, including drift)
SAR calculated at 1W is 12.21 mW/g (1g avg). Percent from target (including drift) is +9 %
SAR calculated at 1W is 7.62 mW/g (10g avg). Percent from target (including drift) is +9 %

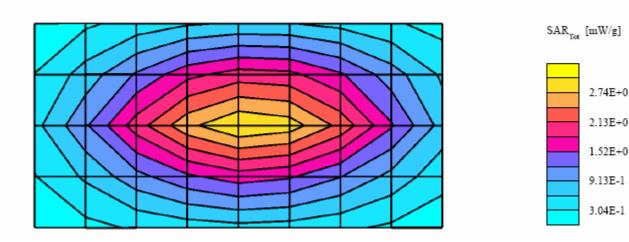
SAM - Expanded ;Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004);Probe Cal Date: 25/2/04ConvF(6.30,6.30,6.30); Crest factor: 1.0; IEEE Head 900 MHz: $\sigma = 1.01$ mho/m $\epsilon_r = 40.9$ $\rho = 1.00$ g/cm³; DAE3: 406 DAE Cal Date: 11/20/2003 Cubes (2): Peak: 4.90 mW/g \pm 0.02 dB, SAR (1g): 3.06 mW/g \pm 0.02 dB, SAR (10g): 1.91 mW/g \pm 0.03 dB, (Worst-case extrapolation) Penetration depth: 11.2 (10.4, 12.3) [mm]

Power drift: 0.01 dB

SPEAG 900 MHz Dipole; Model D900V2, SN 084; Test Date: 9/15/04 Motorola CGISS EME Lab

Run #: Sys Perf-R3-040915-01

TX Freq: 900 MHz


Sim Tissue Temp: 20.5 (Celsius)

Start Power; 250mW

SAR target at 1W is 11.15 mW/g (1g avg, including drift)
SAR target at 1W is 6.98 mW/g (10g avg, including drift)
SAR calculated at 1W is 12.18 mW/g (1g avg). Percent from target (including drift) is +9 %
SAR calculated at 1W is 7.64 mW/g (10g avg). Percent from target (including drift) is +9 %

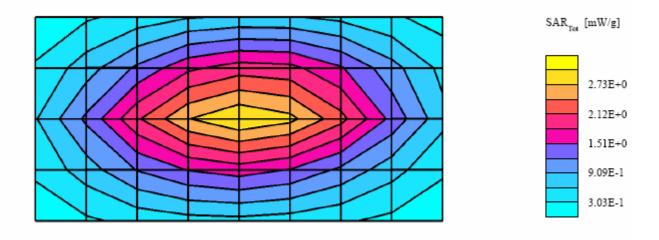
SAM - Expanded; Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); Probe Cal Date: 25/2/04ConvF(6.30,6.30,6.30); Crest factor: 1.0; IEEE Head 900 MHz: $\sigma = 1.01$ mho/m $\epsilon_r = 40.8$ $\rho = 1.00$ g/cm³; DAE3: 406 DAE Cal Date: 11/20/2003 Cubes (2): Peak: 4.91 mW/g \pm 0.05 dB, SAR (1g): 3.06 mW/g \pm 0.05 dB, SAR (10g): 1.92 mW/g \pm 0.05 dB, (Worst-case extrapolation) Penetration depth: 11.2 (10.4, 12.4) [mm]

Power drift: 0.02 dB

SPEAG 900 MHz Dipole; Model D900V2, SN 084; Test Date: 9/16/04 Motorola CGISS EME Lab

Run #: Sys Perf-R3-040916-01

TX Freq: 900 MHz


Sim Tissue Temp: 20.2 (Celsius)

Start Power; 250mW

SAR target at 1W is 11.15 mW/g (1g avg, including drift)
SAR target at 1W is 6.98 mW/g (10g avg, including drift)
SAR calculated at 1W is 11.88 mW/g (1g avg). Percent from target (including drift) is + 6.53 %
SAR calculated at 1W is 7.47 mW/g (10g avg). Percent from target (including drift) is + 6.99 %

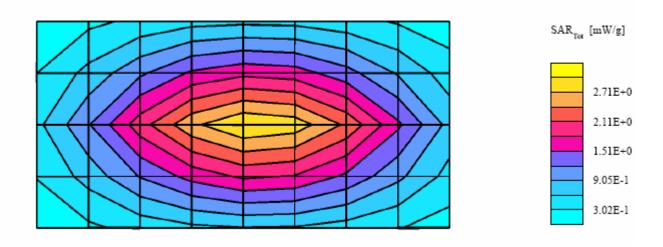
SAM - Expanded; Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); Probe Cal Date: 25/2/04ConvF(6.30,6.30,6.30); Crest factor: 1.0; IEEE Head 900 MHz: $\sigma = 1.01$ mho/m $\epsilon_r = 40.6$ $\rho = 1.00$ g/cm₃; DAE3: 406 DAE Cal Date: 11/20/2003 Cubes (2): Peak: 4.78 mW/g ± 0.06 dB, SAR (1g): 2.99 mW/g ± 0.05 dB, SAR (10g): 1.88 mW/g ± 0.03 dB, (Worst-case extrapolation) Penetration depth: 11.3 (10.6, 12.4) [mm]

Power drift: 0.03 dB

SPEAG 900 MHz Dipole; Model D900V2, SN 084; Test Date: 9/17/04 Motorola CGISS EME Lab

Run #: Sys Perf-R3-040917-01

TX Freq: 900 MHz


Sim Tissue Temp: 20.9 (Celsius)

Start Power; 250mW

SAR target at 1W is 11.15 mW/g (1g avg, including drift)
SAR target at 1W is 6.98 mW/g (10g avg, including drift)
SAR calculated at 1W is 12.05 mW/g (1g avg). Percent from target (including drift) is + 8.03 %
SAR calculated at 1W is 7.58 mW/g (10g avg). Percent from target (including drift) is + 8.65 %

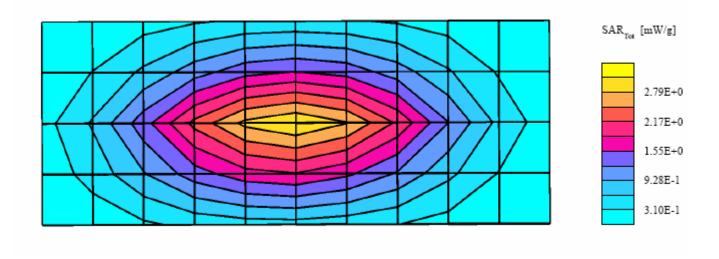
SAM - Expanded; Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); Probe Cal Date: 25/2/04ConvF(6.30,6.30,6.30); Crest factor: 1.0; IEEE Head 900 MHz: σ = 1.01mho/m ϵ_r = 41.0 ρ = 1.00 g/cm₃; DAE3: 406 DAE Cal Date: 11/20/2003 Cubes (2): Peak: 4.76 mW/g ± 0.02 dB, SAR (1g): 2.97 mW/g ± 0.01 dB, SAR (10g): 1.87 mW/g ± 0.00 dB, (Worst-case extrapolation) Penetration depth: 11.2 (10.4, 12.4) [mm]

Power drift: -0.06 dB

SPEAG 900 MHz Dipole; Model D900V2, SN 084; Test Date: 9/20/04 Motorola CGISS EME Lab

Run #: Sys Perf-R3-040920-01

TX Freq: 900 MHz


Sim Tissue Temp: 20.5 (Celsius)

Start Power; 250mW

SAR target at 1W is 11.75 mW/g (1g avg, including drift)
SAR target at 1W is 7.47 mW/g (10g avg, including drift)
SAR calculated at 1W is 12.20 mW/g (1g avg). Percent from target (including drift) is + 3.83 %
SAR calculated at 1W is 7.72 mW/g (10g avg). Percent from target (including drift) is + 3.35 %

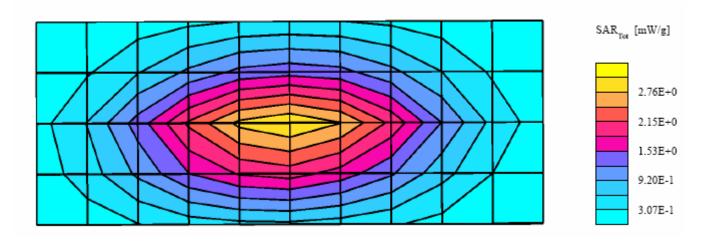
Flat Phantom; Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); Probe Cal Date: 25/2/04ConvF(5.82,5.82,5.82); Crest factor: 1.0; FCC Body 900MHz: σ = 1.05 mho/m ϵ_r = 52.8 ρ = 1.00 g/cm₃; DAE3: 406 DAE Cal Date: 11/20/2003 Cubes (2): Peak: 4.81 mW/g ± 0.03 dB, SAR (1g): 3.05 mW/g ± 0.01 dB, SAR (10g): 1.93 mW/g ± 0.01 dB, (Worst-case extrapolation) Penetration depth: 12.0 (11.0, 13.3) [mm]

Power drift: 0.00 dB

SPEAG 900 MHz Dipole; Model D900V2, SN 084; Test Date: 9/21/04 Motorola CGISS EME Lab

Run #: Sys Perf-R3-040921-01

TX Freq: 900 MHz


Sim Tissue Temp: 19.8 (Celsius)

Start Power; 250mW

SAR target at 1W is 11.75 mW/g (1g avg, including drift)
SAR target at 1W is 7.47 mW/g (10g avg, including drift)
SAR calculated at 1W is 12.41 mW/g (1g avg). Percent from target (including drift) is + 5.62 %
SAR calculated at 1W is 7.83 mW/g (10g avg). Percent from target (including drift) is + 4.78 %

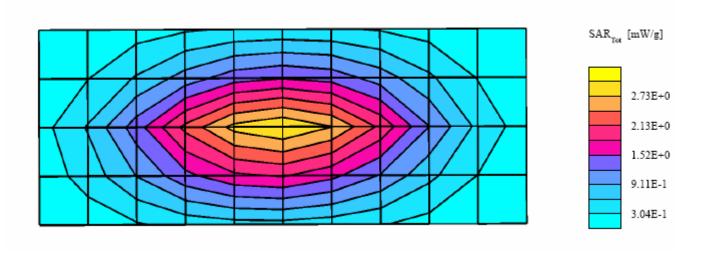
Flat Phantom; Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); Probe Cal Date: 25/2/04ConvF(5.82,5.82,5.82); Crest factor: 1.0; FCC Body 900MHz: σ = 1.06 mho/m ϵ_r = 52.7 ρ = 1.00 g/cm₃; DAE3: 406 DAE Cal Date: 11/20/2003 Cubes (2): Peak: 4.81 mW/g ± 0.01 dB, SAR (1g): 3.06 mW/g ± 0.00 dB, SAR (10g): 1.93 mW/g ± 0.00 dB, (Worst-case extrapolation) Penetration depth: 12.0 (11.0, 13.3) [mm]

Power drift: -0.06 dB

SPEAG 900 MHz Dipole; Model D900V2, SN 084; Test Date: 9/22/04 Motorola CGISS EME Lab

Run #: Sys Perf-R3-040922-01

TX Freq: 900 MHz


Sim Tissue Temp: 19.7 (Celsius)

Start Power; 250mW

SAR target at 1W is 11.75 mW/g (1g avg, including drift)
SAR target at 1W is 7.47 mW/g (10g avg, including drift)
SAR calculated at 1W is 12.00 mW/g (1g avg). Percent from target (including drift) is + 5.62 %
SAR calculated at 1W is 7.60 mW/g (10g avg). Percent from target (including drift) is + 4.78 %

Flat Phantom; Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); Probe Cal Date: 25/2/04ConvF(5.82,5.82,5.82); Crest factor: 1.0; FCC Body 900MHz: $\sigma = 1.05$ mho/m $\epsilon_r = 52.6$ $\rho = 1.00$ g/cm₃; DAE3: 406 DAE Cal Date: 11/20/2003 Cubes (2): Peak: 4.73 mW/g \pm 0.00 dB, SAR (1g): 3.00 mW/g \pm 0.01 dB, SAR (10g): 1.90 mW/g \pm 0.00 dB, (Worst-case extrapolation) Penetration depth: 12.0 (11.0, 13.3) [mm]

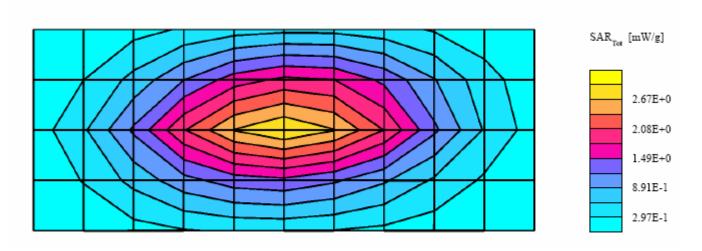
Power drift: 0.00 dB

SPEAG 900 MHz Dipole; Model D900V2, SN 084; Test Date: 9/29/04 Motorola CGISS EME Lab

Run #: Sys Perf-R3-040929-01

TX Freq: 900 MHz

Sim Tissue Temp: 21.0 (Celsius)


Start Power; 250mW

SAR target at 1W is 11.75 mW/g (1g avg, including drift)
SAR target at 1W is 7.47 mW/g (10g avg, including drift)
SAR calculated at 1W is 11.77 mW/g (1g avg). Percent from target (including drift) is 0.21 %
SAR calculated at 1W is 7.43 mW/g (10g avg). Percent from target (including drift) is -0.48 %

Flat Phantom; Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); Probe Cal Date: 25/2/04ConvF(5.82,5.82,5.82); Crest factor: 1.0; FCC Body 900MHz: σ = 1.04 mho/m ϵ_r = 53.7 ρ = 1.00 g/cm₃; DAE3: 401 DAE Cal Date: 8/25/2004 Cubes (2): Peak: 4.62 mW/g ± 0.02 dB, SAR (1g): 2.93 mW/g ± 0.01 dB, SAR (10g): 1.85 mW/g ± 0.01 dB, (Worst-case

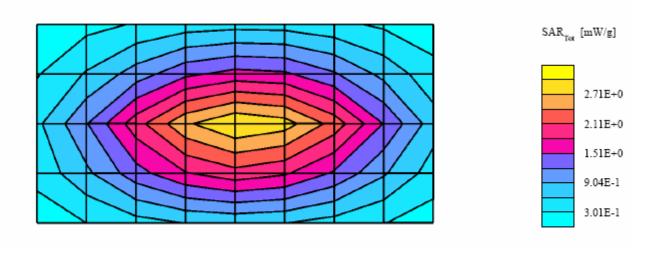
extrapolation) Penetration depth: 12.0 (11.0, 13.4) [mm]

Power drift: -0.02 dB

SPEAG 900 MHz Dipole; Model D900V2, SN 084; Test Date: 10/07/04 Motorola CGISS EME Lab

Run #: Sys Perf-R3-041007-01

TX Freq: 900 MHz


Sim Tissue Temp: 20.7 (Celsius)

Start Power; 250mW

SAR target at 1W is 11.15 mW/g (1g avg, including drift)
SAR target at 1W is 6.98 mW/g (10g avg, including drift)
SAR calculated at 1W is 11.99 mW/g (1g avg). Percent from target (including drift) is 7.51 %
SAR calculated at 1W is 7.54 mW/g (10g avg). Percent from target (including drift) is 7.98 %

SAM Expanded; Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); Probe Cal Date: 25/2/04ConvF(6.30,6.30,6.30); Crest factor: 1.0; IEEE Head 900 MHz: $\sigma = 1.00$ mho/m $\epsilon_r = 41.1$ $\rho = 1.00$ g/cm₃; DAE3: 406 DAE Cal Date: 11/20/2003 Cubes (2): Peak: 4.76 mW/g ± 0.01 dB, SAR (1g): 2.99 mW/g ± 0.00 dB, SAR (10g): 1.88 mW/g ± 0.00 dB, (Worst-case extrapolation) Penetration depth: 11.3 (10.5, 12.4) [mm]

Power drift: -0.01 dB

SPEAG 900 MHz Dipole; Model D900V2, SN 084; Test Date: 10/08/04 Motorola CGISS EME Lab

Run #: Sys Perf-R3-041008-01

TX Freq: 900 MHz

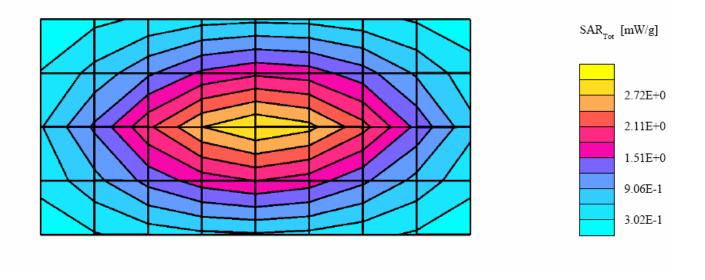
Sim Tissue Temp: 21.1 (Celsius)

Start Power; 250mW

SAR target at 1W is 11.15 mW/g (1g avg, including drift) SAR target at 1W is 6.98 mW/g (10g avg, including drift)

SAR calculated at 1W is 11.93 mW/g (1g avg). Percent from target (including drift) is 7.04 % SAR calculated at 1W is 7.47 mW/g (10g avg). Percent from target (including drift) is 7.08 %

SAM - Expanded (new); Flat Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); Probe Cal Date:


 $25/2/04 ConvF(6.30,6.30,6.30); \ Crest \ factor: \ 1.0; \ IEEE \ Head \ 900 \ MHz: \ \sigma = 1.00 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mathred = 1.00 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ 401 \ mho/m \ \epsilon_r = 41.1 \ \rho = 1.00 \ g/cm_3; \ DAE3: \ AUBA \ AUBA \ AUBA \ AUBA \ A$

DAE Cal Date: 8/25/2004

Cubes (2): Peak: $4.75 \text{ mW/g} \pm 0.00 \text{ dB}$, SAR (1g): $2.97 \text{ mW/g} \pm 0.01 \text{ dB}$, SAR (10g): $1.86 \text{ mW/g} \pm 0.01 \text{ dB}$, (Worst-case

extrapolation)Penetration depth: 11.3 (10.5, 12.4) [mm]

Power drift: -0.02 dB

SYSTEM VALIDATION

Date:	12/16/	2003	Frequenc	y (MHz):	9	00	
Lab Location:	CGI	SS	Mixture '	Гуре:	IEEE	Head	de .
Robot System:	CGIS	SS-3	Ambient	Temp.(°C)	:2:	2.8	
Probe Serial #:	ET3DV	6-1393	Tissue Te	emp.(°C):	2	0.9	
DAE Serial #:	40	6	-			***************************************	28
Tissue Characteristics							
Permitivity:	41	.5	Phantom	Type/SN:	SAMT	ΓP1208	
Conductivity:	1.0	00	_ Distance	110 an	15 (tissue	/dipole cnt)	5 6
Reference Source:	900	V2	(Dipole)				
Reference SN:	8:	3000					
Power to Dipole: Power Output (radio	250 NA	mW mW					
Target SAR Value: (normalized to 1.0 W)	ĭ	10.8	_mW/g,	6.9	_mW/g (10	Og avg.)	
Measured SAR Value:		3	mW/g,	1.88	mW/g (10	Og avg.)	
Power Drift:		0	_dB	E			
Measured SAR Value: (normalized to 1.0 W, including	i	12.00	_mW/g,	7.52	mW/g (10	Og avg.)	
Percent Difference Fro	om Targe	t (MUST	be within	System Un	certainty):	11.11 8.99	% (1g ave) % (10g ave)
Test performed by: _		Edward	R. Church		_Initial:	E, C	3

Motorola Internal Use Only

Sys. Valid. Form: 021024

SPEAG DIPOLE D900V2; Test date:12/16/03

Run #: Sys Val-R3-031216-03

Phantom #: SAMTP1208

Model #: D900V2

SN: 085

Robot: CGISS-3

Tester: E. Church

TX Freq: 900 MHz

Sim Tissue Temp; 20.9 (Celsius)

Start Power; 250mW

DAE3: SN: 406

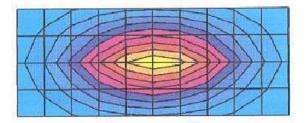
DAE Cal Date: 11/20/03

- Comments-

IEEE 1528 Target at 1W is 10.04 mW/g (1g) and 6.9 mW/g (10g avg.)

SAR calculated 1g is 11.96 mW/g percet from target (including drift) + 10.74 % SAR Calculated 10g is 7.52 mW/g Percent from target (including drift) is + 8.99 %

SAM; Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003); ConvF(7.00,7.00,7.00); Crest factor: 1.0; IEEE


Head 900 MHz. $\sigma = 1.00$ mho/m $\epsilon_r = 41.5$ $\rho = 1.00$ g/cm³

Cubes (2): Peak: 4.78 $\text{ mW/g} \pm 0.04 \text{ dB}$, SAR (1g): 3.00 $\text{ mW/g} \pm 0.04 \text{ dB}$, SAR (10g): 1.88 $\text{ mW/g} \pm 0.05$

dB, (Worst-case extrapolation)

Penetration depth: 11.2 (10.5, 12.3) [mm]

Powerdrift: 0.00 dB

SAR_{Tot} [mW/g]

3.00E-1

SYSTEM VALIDATION

Date:	4/14/2004	Frequency (MHz):	900
Lab Location:	CGISS	Mixture Type:	IEEE-Head
Robot System:	3	Ambient Temp.(°C):	23
Probe Serial #:	1383	Tissue Temp.(°C):	21
DAE Serial #:	406	_	
Tissue Characteristics Permitivity: Conductivity:	41.2 1.00	Phantom Type/SN: Distance (mm):	SAMTP1022 15 (tissue/dipole cnt)
Reference Source: Reference SN:	D900V2 84	_(Dipole)	
Power to Dipole: Power Output (radio):	250 mW n/a mW		
Target SAR Value: (normalized to 1.0 W)	10.8	mW/g, 6.9	mW/g (10g avg.)
Measured SAR Value: Power Drift:	2.78 -0.01	mW/g, 1.74 dB	mW/g (10g avg.)
Measured SAR Value: (normalized to 1.0 W, including		mW/g, 6.98	mW/g (10g avg.)
Percent Difference Fro	m Target (MUST be	within System Uncer	rtainty): 3.20 % (1g ave) 1.10 % (10g ave)
Test performed by:	C. 1	Miller	Initial: (Clu)

SER

SYSTEM PERFORMANCE CHECK TARGET SAR

Date:	4/14/2004	Frequency (MHz):	900
Lab Location:	CGISS	Mixture Type:	IEEE - Head
Robot System:	3	Ambient Temp.(°C):	23
Probe Serial #:	1383	Tissue Temp.(°C):	21
DAE Serial #:	401		
Tissue Characteristics			
Permitivity:	41.2	Phantom Type/SN:	SAMTP1022
Conductivity:	1.00	Distance (mm):	15 (tissue/dipole cnt)
Reference Source:	D900V2	(Dinolo)	
Reference SN:	84	_(Dipole)	
Reference SIV.	- 04		
Power to Dipole:	250 mW		
Measured SAR Value: Power Drift:	2.78 -0.01	mW/g,1.74	_mW/g (10g avg.)
New Target/Measured SAR Value: (normalized to 1.0 W, in		5 mW/g, 6.9	8 mW/g (10g avg.)
Test performed by:	C.	Miller	_Initial: Ou

SPEAG DIPOLE D900V2; Test date:04/14/04

Run #: Sys Perf-040414-08

Phantom #: SAMTP1022

Model # D900 V2

SN: 084

Robot: CGISS-3

Tester: C. Miller

TX Freq: 900 MHz

900 MHz Sim Tissue Temp: 21.0 (Celsius)

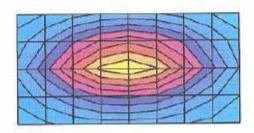
Start Power, 250 mW

DAE Cal Date: 08/21/2003

DAE3: 401 - Comments-

SAR calculated at 1W is 11.15 mW/g (1g avg). SAR calculated at 1W is 6.98 mW/g (10g avg).

SAM; Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); ConvF(6.30,6.30,6.30); Crest factor; 1.0; IEEE


Head 900: $\sigma = 1.00$ mho/m $\epsilon_r = 41.2 \ \rho = 1.00$ g/cm³

Cubes (2): Peak: 4.44 $\text{ mW/g} \pm 0.01 \text{ dB}$, SAR (1g): 2.78 $\text{ mW/g} \pm 0.02 \text{ dB}$, SAR (10g): 1.74 $\text{ mW/g} \pm 0.03$

dB, (Worst-case extrapolation)

Penetration depth: 11.2 (10.4, 12.4) [mm]

Powerdrift: -0.01 dB

SYSTEM PERFORMANCE CHECK TARGET SAR

Date:	4/14/2004	Frequency (MHz):	900
Lab Location:	CGISS	Mixture Type:	FCC Body
Robot System:	3	Ambient Temp.(°C):	23
Probe Serial #:	1545	Tissue Temp.(°C):	20.5
DAE Serial #:	406		
Tissue Characteristics			
Permitivity:	53.3	Phantom Type/SN:	80302002A/S8
Conductivity:	1.05	Distance (mm):	15 (tissue/dipole cnt)
Reference Source:	D900V2	(Dipole)	
Reference SN:	84	-	
Power to Dipole:	250 mW		
Measured SAR Value: Power Drift:	2.91 -0.04	mW/g, 1.85	mW/g (10g avg.)
New Target/Measured SAR Value: (normalized to 1.0 W, in	town the same of t	<u>i</u> mW/g, 7.47	
Test performed by:	C.1	Miller	Initial:

SPEAG DIPOLE D900V2; Test date:04/14/04

Run # Sys Perf-040414-09

Phantom #: 80302002A/S8

Model #: D900 V2

SN: 084

Robot: CGISS-3

Tester: C. Miller

TX Freq: 900 MHz

900 MHz Sim Tissue Temp: 20.5 (Celsius)

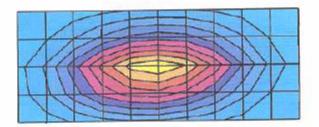
Start Power; 250 mW

DAE Cal Date: 08/21/2003

DAE3: 401 - Comments-

SAR calculated at 1W is 11.75 mW/g (1g avg). SAR calculated at 1W is 7.47 mW/g (10g avg).

Flat; Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); ConvF(5.82,5.82,5.82); Crest factor: 1.0; FCC Body


900MHz: σ = 1.05 mho/m ϵ_r = 53.3 ρ = 1.00 g/cm³

Cubes (2): Peak: 4.56 $\text{ mW/g} \pm 0.03 \text{ dB}$, SAR (1g): 2.91 $\text{ mW/g} \pm 0.03 \text{ dB}$, SAR (10g): 1.85 $\text{ mW/g} \pm 0.03 \text{ dB}$

dB, (Worst-case extrapolation)

Penetration depth: 12.0 (11.1, 13.3) [mm]

Powerdrift: -0.04 dB

APPENDIX D

Probe/Dipole Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurloh, Switzerland

Client

Motorola CGISS

Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Object(s)	ET3DV6 - SN	:1383	
Calibration procedure(s)	QA CAL-01 va Calibration pro	2 ocedure for dosimetric E-field prot	es:
Na Phone in a data.	F-4		
Calibration date:	rebruary 25,	2004	
Condition of the calibrated item	In Tolerance (according to the specific calibration	on document)
		onal standards, which realize the physical units of me robability are given on the following pages and are pa	
The measurements and the uncerta	ainties with confidence p	robability are given on the following pages and are pa	art of the certificate.
The measurements and the uncertainty of the conducted in	ainties with confidence p		art of the certificate.
he measurements and the uncertail calibrations have been conducte alibration Equipment used (M&TE	ainties with confidence p	robability are given on the following pages and are pa	art of the certificate.
he measurements and the uncertail calibrations have been conducte alibration Equipment used (M&TE lodel Type lower meter EPM E4419B	ainties with confidence p d in the closed laborator critical for calibration) ID # GB41293874	robability are given on the following pages and are page facility: environment temperature 22 +/- 2 degrees 0 Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250)	ort of the certificate. Celsius and humidity < 75%. Scheduled Calibration Apr-04
he measurements and the uncertaint calibrations have been conducted alibration Equipment used (M&TE) lodel Type ower meter EPM E4419B ower sensor E4412A	d in the closed laborator critical for calibration) ID # GB41293874 MY41495277	robability are given on the following pages and are page of facility: environment temperature 22 +/- 2 degrees 0 Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250)	celsius and humidity < 75%. Scheduled Calibration Apr-04 Apr-04
he measurements and the uncertail calibrations have been conducted alibration Equipment used (M&TE) and Type lower meter EPM E4419B lower sensor E4412A reference 20 dB Attenuator	d in the closed laborator critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b)	robability are given on the following pages and are page facility: environment temperature 22 +/- 2 degrees 0 Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 251-0340)	Scheduled Calibration Apr-04 Apr-04 Apr-04
he measurements and the uncertail calibrations have been conducted alibration Equipment used (M&TE lodel Type lower meter EPM E4419B lower sensor E4412A reference 20 dB Attenuator luke Process Calibrator Type 702	d in the closed laborator critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803	robability are given on the following pages and are page facility: environment temperature 22 +/- 2 degrees 0 Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 Sep-04
The measurements and the uncertainty of calibrations have been conducted alibration Equipment used (M&TE dode Type fower meter EPM E4419B fower sensor E4412A deference 20 dB Attenuator luke Process Calibrator Type 702 fower sensor HP 8481A	d in the closed laborator critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180	robability are given on the following pages and are page facility: environment temperature 22 +/- 2 degrees 0 Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Apr-04 Apr-04 In house check: Oct 05
The measurements and the uncertainty calibrations have been conducted calibration Equipment used (M&TE Model Type Tower meter EPM E4419B Tower sensor E4412A Reference 20 dB Attenuator Suke Process Calibrator Type 702 Tower sensor HP 8481A REF generator HP 8684C	d in the closed laborator critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803	robability are given on the following pages and are page facility: environment temperature 22 +/- 2 degrees 0 Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 Sep-04
The measurements and the uncertainty of calibrations have been conducted calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	d in the closed laborator critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585	robability are given on the following pages and are page facility: environment temperature 22 +/- 2 degrees 0 Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Oct-03) Function	Scheduled Calibration Apr-04 Apr-04 Apr-04 Apr-04 In house check: Oct 05 In house check: Aug-05
The measurements and the uncerta	d in the closed laborator critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585	cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Oct-03)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Apr-04 In house check: Oct 05 In house check: Oct 05

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for

Page 34 of 49

ET3DV6 SN:1383 February 25, 2004

DASY - Parameters of Probe: ET3DV6 SN:1383

Sensitivity in Free Space Diode Compression^A

NormX 1.88 μ V/(V/m)² DCP X 92 mV NormY 1.63 μ V/(V/m)² DCP Y 92 mV NormZ 1.71 μ V/(V/m)² DCP Z 92 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Plese see Page 7.

Boundary Effect

Head 900 MHz Typical SAR gradlent: 5 % per mm

Sensor Cener to Phantom Surface Distance 3.7 mm A.7 mm SAR_{be} [%] Without Correction Algorithm 9.9 5.0 A.7 mm SAR_{be} [%] With Correction Algorithm 0.1 0.3

Head 1800 MHz Typical SAR gradient: 10 % per mm

Sensor Offset

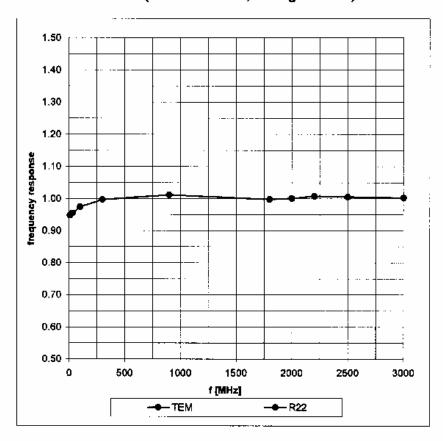
Probe Tip to Sensor Center 2.7 mm

Optical Surface Detection very low, but repeatable

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 35 of 49

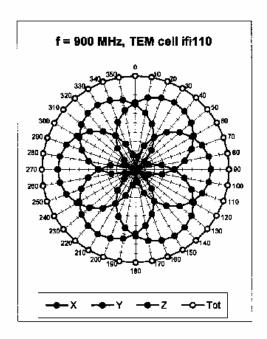
A numerical linearization parameter, uncertainty not required

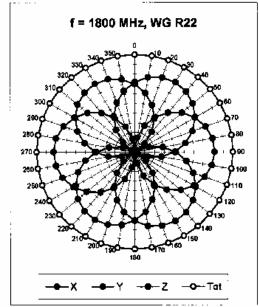


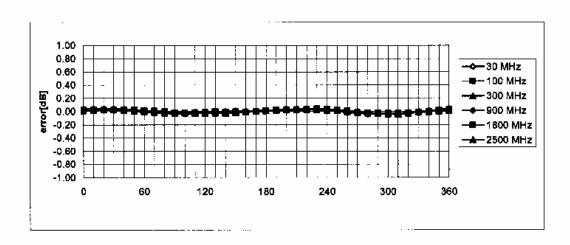
ET3DV6 SN:1383 February 25, 2004

Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)



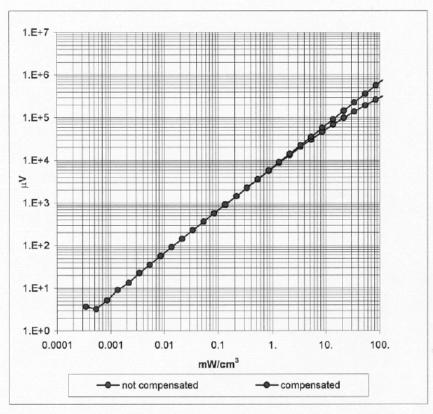


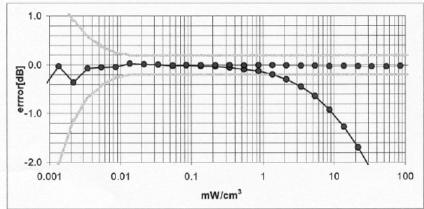

ET3DV6 SN:1383

February 25, 2004

Receiving Pattern (ϕ) , θ = 0°

Axial isotropy Error < ± 0.2 dB



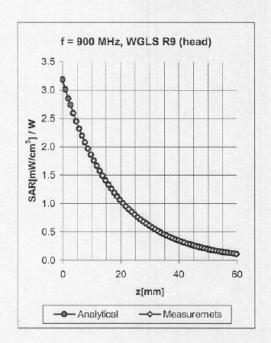

ET3DV6 SN:1383

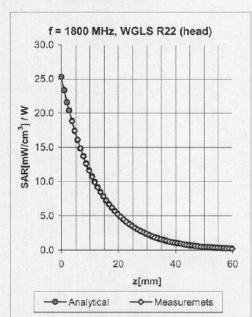
February 25, 2004

Dynamic Range f(SAR_{head})

(Waveguide R22)

Probe Linearity < ± 0.2 dB





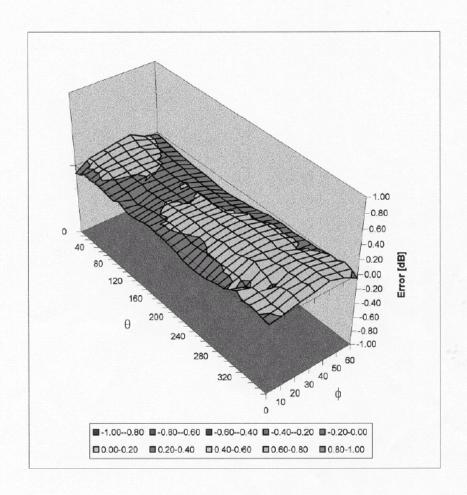
ET3DV6 SN:1383

February 25, 2004

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	800-1000	Head	41.5 ± 5%	0.97 ± 5%	0.72	1.77	6.30 ± 9.5% (k=2)
1450	1400-1500	Head	40.5 ± 5%	1.20 ± 5%	0.55	2.40	5.72 ± 9.5% (k=2)
1800	1710-1910	Head	40.0 ± 5%	1.40 ± 5%	0.57	2.38	5.14 ± 9.5% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	1.18	1.72	4.76 ± 9.5% (k=2)
900	800-1000	Body	55.0 ± 5%	1.05 ± 5%	0.51	2.27	5.82 ± 9.5% (k=2)
1450	1400-1500	Body	54.0 ± 5%	1.30 ± 5%	0.53	2.58	5.27 ± 9.5% (k=2)
1800	1710-1910	Body	53.3 ± 5%	1.52 ± 5%	0.62	2.67	4.55 ± 9.5% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.91	1.23	4.41 ± 9.5% (k=2)

^B The stated uncertainty of calibration was assessed according to P1528.



ET3DV6 SN:1383 February 25, 2004

Deviation from Isotropy in HSL

Error (θ, ϕ), f = 900 MHz

Spherical Isotropy Error < ± 0.4 dB

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

900 MHz System Validation Dipole

Type:	D900V2
Serial Number:	084
Place of Calibration:	Zurich
Date of Calibration:	February 11, 2002
Calibration Interval:	24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 900 MHz:

Relative Dielectricity 41.1 $\pm 5\%$ Conductivity 0.95 mho/m $\pm 5\%$

The DASY3 System (Software version 3.1d) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.5) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1 W input power.

SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 1. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm3 (1 g) of tissue: 11.2 mW/g

averaged over 10 cm³ (10 g) of tissue: 7.12 mW/g

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well.

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.389 ns (one direction)

Transmission factor: 0.997 (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 900 MHz: $Re\{Z\} = 52.1 \Omega$

Im $\{Z\} = -4.3 \Omega$

Return Loss at 900 MHz -26.5 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating solution of the following electrical parameters at 900 MHz:

Relative Dielectricity 54.8 $\pm 5\%$ Conductivity 1.03 mho/m $\pm 5\%$

The DASY3 System (Software version 3.1d) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.2) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1 W input power.

SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 4. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm3 (1 g) of tissue:

11.8 mW/g

averaged over 10 cm3 (10 g) of tissue:

7.52 mW/g

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 900 MHz:

 $Re{Z} = 47.6 \Omega$

Im $\{Z\} = -6.0 \Omega$

Return Loss at 900 MHz

-23.6 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

1.75E+0 1.50E+0 7.50E-1 2,50E+0 5.00E-1 2.25E+0 2:00E+0 1.25E+0 1.00E+0 2.50E-1 [B/M/II] SAR

Validation Dipole D900V2 SN:084, d = 15 mm

02/11/02

Frequency: 900 MHz, Antenna Input Power: 250 [mW] SAM Phanton; Flat Section; Grid Spacing: Dx = 20.0, Dy = 20.0, Dz = 10.0 Probe; ET3DV6 - SN1507; ConvF(6.50,6.50,6.50) at 900 MHz; IEEE1528 900 MHz; σ = 0.95 mho/m $\varepsilon_{\rm r}$ = 41.1 ρ = 1.00 g/cm³ Cubes (2); Peak: 4.54 mW/g ± 0.03 dB, SAR (1g): 2.81 mW/g ± 0.02 dB, SAR (10g): 1.78 mW/g ± 0.02 dB, (Worst-case extrapolation) Penetration depth: 11.5 (10.3, 13.2) [mm]

Powerdrift: -0.01 dB

Schmid & Partner Engineering AG, Zurich, Switzerland

25	250E
3 %	8 8 8

Schmid & Partner Engineering AG, Zurich, Switzerland

Validation Dipole D900V2 SN:084, d = 15 mm Frequency: 900 MHz, Antenna Input Power: 250 [mW] SAM Phantom; Flat Section; Grid Spacing: Dx = 20.0, Dy = 20.0, Dz = 10.0 Probe: ET3DV6 - SN1507; ConvF(6.20,6.20) at 900 MHz, Muscle 900 MHz; $\sigma = 1.03$ mho/m $s_r = 54.8$ $\rho = 1.00$ g/cm³ Cubes (2): Peak: 4.72 mVV/g ± 0.02 dB, SAR (1g): 2.95 mVV/g ± 0.01 dB, SAR (10g): 1.88 mVV/g ± 0.00 dB, (Worst-case extrapolation) Penetration depth: 12.0 (10.7, 13.7) [mm]

APPENDIX E Illustration of Body-Worn Accessories

The purpose of this appendix is to illustrate the body-worn carry accessories for FCC ID: AZ489FT5841. The sample that was used in the following photos represents the product used to obtain the results presented herein and was used in this section to demonstrate the different body-worn accessories.

Photo 1. Model NNTN4682A Back View

Photo 2. Model NNTN4682A Side View

Photo 3. Model NNTN4747A Back View

Photo 4. Model NNTN4747A Side View

Appendix F Accessories and options test status and separation distances

The following table summarizes the test status and separation distance provided by each of the body-worn accessories:

boc	ly-worn	accessories	3:

		Min. Separation	
		distances between DUT	
		antenna and phantom	
Carry Case		surface.	
Models	Tested ?	(mm)	Comments
NNTN4682A	Yes	34-36	NA
NNTN4747A	Yes	24-25	NA

Audio Acc.		Separation distances between DUT antenna and phantom surface.	
Models	Tested ?	(mm)	Comments
NNTN4620A	Yes	NA	NA
SYN8146C	Yes	NA	NA
SYN7875C	Yes	NA	NA
NTN8496A	Yes	NA	NA
NTN8513B	Yes	NA	NA
SYN8390B	Yes	NA	NA
NNTN4033A	Yes	NA	NA
NSN6066A	Yes	NA	NA
NNTN5004A	Yes	NA	NA
NNTN5005A	Yes	NA	NA
NNTN5006A	Yes	NA	NA
NNTN5330A	Yes	NA	NA
NNTN5211A	Yes	NA	NA

Data cable Models	Tested ?	Separation distances between DUT antenna and phantom surface. (mm)	Comments
NKN6560A	Yes	NA	NA
NKN6559A	Yes	NA	NA
NNTN5405A	Yes	NA	Similar to NKN6559A
NNTN5406A	Yes	NA	Similar to NKN6560A

Other attachment		Separation distances between DUT antenna and phantom surface.	
models	Tested ?	(mm)	Comments
			Battery cover tested with
NNTN4767A	Yes	NA	applicable battery model
			Battery cover tested with
NNTN5404A	Yes	NA	applicable battery model