

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2

Enterprise Mobility Solutions EME Test Laboratory 8000 West Sunrise Blvd Fort Lauderdale, FL. 33322. Date of Report: 12/22/10 Report Revision: O

Report ID: SAR rpt_PMUE3564A_CLP_Rev O

_101222 SR9161

Responsible Engineer: Deanna Zakharia – Senior Resource Mgr. **Report Author:** Deanna Zakharia – Senior Resource Mgr.

Date/s Tested: 12/20/10-12/21/10 **Manufacturer/Location:** Motorola, Penang

Sector/Group/Div.: EMS **Date submitted for test:** 12/20/10

DUT Description: CLP1040A, UHF, 4 channels, Non-Display, Fixed Antenna, 1

Watt, Black, Lithium Ion.

Test TX mode(s): CW (PTT)
Max. Power output: 1.1W
Nominal Power: 1.0W

Tx Frequency Bands: 450-470MHz

Signaling type: FM

Model(s) Tested:PMUE3564AModel(s) Certified:PMUE3564ASerial Number(s):134TLGF913

Classification: Occupational/ Controlled FCC ID: AZ489FT4902; Rule Part 90

IC ID: 109U-89FT4902

Diff Proto
Refer to Exhibit 18

* Refer to section 15 of part 1 for highest SAR summary results.

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of 47 CFR 2.1093(d). The 10 grams result is not applicable to FCC filing. The test results clearly demonstrate compliance with ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Physics 74, 494-522 RF Exposure limits of 2W/kg averaged over 10 grams of contiguous tissue.

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 3.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Deanna Zakharia – Signature on file Deanna Zakharia EMS EME Lab Senior Resource Manager, Laboratory Director

Approval Date: 12/22/2010

Certification Date: 12/22/2010

Certification No.: L1101259

Part	1 of 2	
1.0	Introduction	
2.0	Abbreviations / Definitions	4
3.0	Referenced Standards and Guidelines	
4.0	SAR Limits	
5.0	SAR Result Scaling Methodology	
6.0	Description of Device Under Test (DUT)	6
7.0	Optional Accessories and Test Criteria	
	7.1 Antennas	6
	7.2 Batteries	6
	7.3 Body worn Accessories	6
	7.4 Audio Accessories	
8.0	Description of Test System	
	8.1 Description of Robotics/Probes/Readout Electronics	
	8.2 Description of Phantom(s)	8
	8.2.1 Dual Flat Phantom	
	8.2.2 SAM Phantom	8
	8.2.3 Elliptical Phantom	8
	8.3 Description of Simulated Tissue	
9.0	Additional Test Equipment	
10.0	SAR Measurement System Verification	
	10.1 Equivalent Tissue Test Results	
	10.2 System Check Test Results	
	Environmental Test Conditions	
12.0	DUT Test Methodology	
	12.1 Measurements	
	12.2 DUT Configuration(s)	
	12.3 Device Positioning Procedures	
	12.3.1 Body	
	12.3.2 Face	
	12.3.3 Head	
	12.4 DUT Test Channels	
	12.5 DUT Test Plan	
	12.5.1 General Test Flowchart	
13.0	DUT Test Data	
	13.1 Assessments at the Body (CW mode) – CLP Magnetic holste	
	HKLN4433A with offered audio accessories	
	13.2 Assessments at the Body (CW mode) – CLP Magnetic holste	
	HKLN4433A for other frequencies	
	13.3 Assessments at the Body (CW mode) – Swivel belt holster C	
	HKLN4438A eith offered batteries and audio accessories	
	13.4 Assessments at the Body (CW mode) – Swivel belt holster C	
	HKLN4438A for other frequencies	
	13.5 Shorten Scan Assessment	
14.0	Conclusion	18

Part 1 of 2 Continued

APPENDICES

A	Measurement Uncertainty	19
В	Probe Calibration Certificates	
C	Dipole Calibration Certificates	36
Par	rt 2 of 2	
D	Test System Verification Scans	2
	DUT Scans (Shortened Scan and Highest SAR configurations)	
F	DUT Scans	10
G	DUT Test Position photos.	16
Н	DUT and Body worn Accessory Photos	

Report Revision History

Date	Revision	Comments
12/22/10	О	Initial release

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the EMS EME Test Laboratory for model number PMUE3564A.

2.0 Abbreviations / Definitions

CNR: Calibration Not Required FM: Frequency Modulation DUT: Device Under Test NA: Not Applicable PTT: Push to Talk

SAR: Specific Absorption Rate

Audio Accessories: These accessories allow communication while the DUT is worn on the body.

Body Worn Accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

3.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1*(2005) Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- United States Federal Communications Commission, Code of Federal Regulations; Rule Part 47CFR § 2.1093 sub-part J:1999
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- IEEE 1528*(2003), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1999
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998.
- Ministry of Health (Canada) Safety Code 6 (2010), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- Australian Communications Authority Radio communications (Electromagnetic Radiation Human Exposure) Standard (2003)/Amendment (2007)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"

- IEC62209-2 Edition 1.0 2010-03, Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices Human models, Instrumentation, and Procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz).
- * The IEC62209-1 and IEEE1528 are applicable for hand-held devices used in close proximity to the ear only.

4.0 SAR Limits

TABLE 1

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population /	(Occupational /		
	Uncontrolled Exposure	Controlled Exposure		
	Environment)	Environment)		
Spatial Average - ANSI -				
(averaged over the whole body)	0.08	0.4		
Spatial Peak - ANSI -				
(averaged over any 1-g of tissue)	1.6	8.0		
Spatial Peak – ICNIRP/ANSI -				
(hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0		
Spatial Peak - ICNIRP -				
(Head and Trunk 10-g)	2.0	10.0		

5.0 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" in the data tables is determined by scaling the measured SAR to account for power leveling variations and power slump. For this device the "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

 $P_{max} = Maximum Power (W)$

P int = Initial Power (W)

Drift = DASY drift results (dB)

SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg)

DC = Transmission mode duty cycle in % where applicable

50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied: If P int > P max, then P max/P int = 1.

Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 450824 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target.

6.0 Description of Device Under Test (DUT)

The model represented under this filing utilizes a fixed antenna and is capable of operating in the 450-470MHz band. The FM nominal conducted power is 1.0 Watt and maximum conducted output power is 1.10 Watts as defined by the upper limit of the production line final test station. The intended operating position is "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

7.0 Optional Accessories and Test Criteria

This radio is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required. The following sections identify the test criteria and details for each accessory category.

7.1 Antennas

There is only one antenna offered for this product. The table below lists the antenna and antenna description.

TABLE 2

Antenna Models	Description	Tested
Fixed (Internal)	Helical antenna, 450 – 470MHz, ¼ wave, 43mm, -2.0 dBi	Yes

^{*} Refer to Exhibit 7B for antenna separation distances.

7.2 Batteries:

All batteries were tested. The table below lists the batteries and batteries description.

TABLE 3

Battery Kits	Description	*Tested	Comments
	3.7V, Lithium Ion Battery 1130mAh		
HKNN4014A	(SNN5819B)	Yes	
3.7V HC Lithium Ion 1800mAh			
HKNN4013A	(SNN5826B)	Yes	

^{*} Refer to Exhibit 7B for antenna separation distances.

7.3 Body worn Accessories

All body worn accessories were tested. The table below lists the body worn accessories, and body worn accessory descriptions.

TABLE 4

Body worn Kits	Description	*Tested	Comments
			Applicable for batteries
			HKNN4014A and
HKLN4438A	Swivel Belt Holster CLP	Yes	HKNN4013A.
			Only applicable for slim
HKLN4433A	CLP Magnetic Holster	Yes	battery HKNN4014A

^{*} Refer to Exhibit 7B for antenna separation distances.

7.4 Audio Accessories

All audio accessories were tested. The table below lists the audio accessories and their descriptions.

TABLE 5

Audio Acc. Models	Description	Comments
Models	Description	Comments
HKLN4435A	CLP Single Pin ADJ Cord Earpiece	
		By similarity to HKLN4435A, same cable length
HKLN4436A	CLP Single Pin ADJ Inline PTT Earpiece	and cable diameter.
HKLN4437A	CLP Single Pin earpiece with inline Mic	
HKLN4455A	CLP Single Pin earpiece with PTT Mic	

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

The laboratory utilizes a Dosimetric Assessment System (DASY4TM) SAR measurement system Version 4.7 build 80 manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. The test system consists of a Stäubli RX90L robot, DAE4, and ES3DV3 E-field probe. The DASY4TM system is operated per the instructions in the DASY4TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess EME SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 Description of Phantom(s)

8.2.1 Dual Flat Phantom

Not Applicable

8.2.2 SAM Phantom

Not Applicable

8.2.3 Elliptical Phantom

TABLE 6

Phantom ID (s)	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)
OVAL1090	300MHz -6GHz; Er = 4+/- 1, Loss Tangent = ≤0.05	600x400x190	2mm +/- 0.2mm	Wood	< 0.05

8.3 Description of Simulated Tissue

The simulated tissue used is compliant to that specified in FCC Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01) and IEEE Std 1528 - 2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". The simulated tissue used is also compliant to that specified in IEC62209-1 (2005) and adopted by CENELEC as EN50360 (2006).

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 7 below for 450MHz. During the test duration of this product, this mixture was used to measure the Di-electric parameters daily at 450MHz as well as 460MHz frequencies to verify that the Di-electric parameters at these frequencies are within the tolerance of tissue specifications.

Simulated Tissue Composition (by mass)

TABLE 7

% of listed	450MHz				
ingredients	Body	Head			
Sugar	46.5	56.0			
Diacetin	0	0			
De ionized -					
Water	50.53	39.1			
Salt	1.87	3.8			
HEC	1.0	1.0			
Bact.	0.1	0.1			

Reference section 10.1 for target parameters

9.0 Additional Test Equipment

The table below lists additional test equipment used during the SAR assessment.

TABLE 8

Equipment Type	Model Number	Serial Number	Prior Calibration Date	Next Calibration Date		
Power Meter (Agilent)	E4419B	MY45103725	4/19/2010	4/19/2011		
E-Series Avg. Power Sensor (Agilent)	E9301B	MY41495730	4/13/2010	4/16/2011		
E-Series Avg. Power Sensor (Agilent)	E9301B	MY41495733	4/13/2010	4/13/2011		
Bi-Directional Coupler (NARDA)	3020A	40295	6/3/2010	6/3/2012		
Signal Generator (Agilent)	E4428C	MY47381119	1/14/2010	1/14/2012		
AMP (Amplifier Research)	10WD1000	28782	CNR	CNR		
Dickson Temperature Recorder	TM125	1195889	2/16/2010	2/16/2011		
Omega Digital Thermometer with J Type TC Probe	НН202А	18812	3/24/2010	3/24/2011		
	Tissue sta	tion				
Agilent PNA-L Network Analyzer	N5230A	MY45001092	6/10/2010	6/10/2011		
Dielectric Probe Kit (HP)	85070C	US99360076	CNR	CNR		
	Dipole					
SPEAG Dipole	D450V2	1001	4/26/2010	4/26/2012		

10.0 SAR Measurement System Verification

The SAR measurements were conducted with probe model(s)/serial number(s) ES3DV3/SN3147. The system performance check was conducted daily and within 24 hours prior to testing. DASY output files of the probe/dipole calibration certificates and system performance test results are included in appendices B, C, D respectively.

Dipole validation scans using head tissue equivalent medium are provided in Appendix D. The EMS EME lab validated the dipole to the applicable IEEE 1528-2003 system performance targets. Within the same day system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. The results of the EMS EME system performance validation are provided herein.

10.1 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% and or +/- 10% (dependent on specific frequencies and or tissue parameters) of the target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in Section 9.0. The table below summarizes the measured tissue parameters used for the SAR assessment.

TABLE 10

Frequency (MHz)	Tissue Type	Conductivity Target & Range (S/m)	Dielectric Constant Target & Range	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
450	FCC Body	0.94 (0.89-0.99)	56.7 (53.87-59.54)	0.95	55.9	12/21/10
460	FCC Body	0.94	56.7	0.97	56.2	12/20/10
460	FCC Body	(0.89 - 0.99)	(53.87-59.54)	0.96	55.8	12/21/10
	IEEE/IEC	0.87	43.5			
450	Head	(0.83-0.91)	(41.32-45.67)	0.88	42.7	12/20/10

10.2 System Check Test Results

System performance checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D explains how the targets were set and includes DASY plots for each day during the SAR assessment. The table below summarizes the daily system check results used for the SAR assessment.

TABLE 11

Probe Serial #	Tissue Type	Probe Cal Date	Dipole Kit / Serial #		System Check Test Results when normalized to 1W (W/kg)	Tested Date
3147	IEEE/IEC Head	2/18/10	SPEAG D450V2/1001	4.72 +/- 10%	4.56	12/20/10
3147	FCC Body	2/18/10	SPEAG D450V2/1001	4.32 +/- 10%	4.24	12/21/10

Note: See APPENDIX D for an explanation of the reference SAR targets stated above.

11.0 Environmental Test Conditions

The EME Laboratory ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The table below presents the range and average environmental conditions during the SAR tests reported herein.

TABLE 12

	Target	Measured
		Range: 21.4 – 21.7°C
Ambient Temperature	18 - 25 °C	Avg. 21.5°C
		Range: 45.7 – 50.8%
Relative Humidity	30 - 70 %	Avg. 47.9%
		Range: 20.5 – 20.8°C
Tissue Temperature	NA	Avg. 20.65°C

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in Section 8.0 using coarse and 5x5x7 zoom scans. An Elliptical flat phantom filled with applicable simulated tissue was used for body testing.

12.2 **DUT Configuration(s)**

The DUT is a portable device operational at the body as described in Section 6.0 while using the applicable accessories listed in Section 7.0. All accessories listed in Section 7.0 of this report were used to test all possible accessory combinations.

12.3 Device Positioning Procedures

The positioning of the device for each body location is described below and illustrated in Appendix G.

12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessories.

12.3.2 Face

Not Applicable.

12.3.3 Head

Not Applicable.

12.4 DUT Test Channels:

The number of test channels was determined by the following equation.

$$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$

Where

 N_c = Number of channels

 $F_{high} = Upper channel$

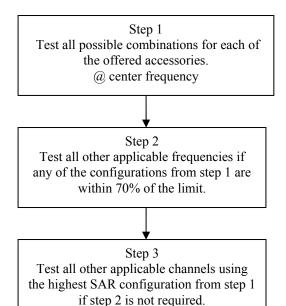
 $F_{low} = Lower channel$

 F_c = Center channel

12.5 DUT Test Plan:

All modes of operation identified in section 6.0 were considered during the development of the test plan. The mode which presented the highest duty cycle, FM mode (CW), was chosen for SAR assessment.

Tests were performed at the center frequency of the frequency band UHF (450-470MHz). Depending on the SAR result for each of the test configurations at this channel, the other frequency channels are assessed only for the configuration that indicated highest SAR result or for each of the configurations that indicated SAR results within 70% of the specification limit as recommended by the FCC (Correspondence Reference Number: 341759). If the 70% threshold is not required then the highest SAR configuration from the center frequency assessments were tested at all other applicable frequencies.


Note 1: Typically, the device is tuned at the nominal power. For SAR testing purposes, the radio is manually tuned to as close as possible to the max power indicated for each band. The tuning capability of the software does not allow for exact tuning due to it is limited to step sizes, and when the power is tuned for one channel it is typically affects the adjacent channels. Therefore, the initial conducted power measurements, in some cases, are slightly above the stated maximum power but not to exceed that by more than 5% of the max power.

12.5.1 General Test Flowchart

The following flowchart identify the general approach to the test sequences for body positions.

DUT Body Test Methodology (General flowchart)

Flowchart Objectives Body

Step 1 - The objective is to determine the highest SAR at the center frequency for all combinations of offered accessories at the body.

Step 2 – The objective is to determine the highest SAR configurations for all possible combinations of offered accessories. Refer to Section 12.5 for additional frequency channels test consideration details.

Step 3 Determine the highest SAR performance across all applicable channels if the SAR result from Step 1 is below the recommended 70% threshold. Refer to Section 12.5 for additional frequency channels test consideration details.

13.0 DUT Test Data

13.1 Assessments at the Body (CW mode) – CLP Magnetic holster HKLN4433A with offered audio accessories:

All possible accessory combinations, magnetic holder HKLN4433A with audio accessories HKLN4435A, HKLN4437A and HKLN4455A were tested with battery HKNN4014A (SNN5819B) at center frequency channel. Refer to Section 12.5 for additional frequency channels test consideration details.

The highest SAR results (bolded) from the table below are included in Appendix F Section 1.0.

Table 13

				Table 13								
	Assessments at the Body (CW mode): Magnetic holster HKLN4433A with audio accessories											
		Ma	agnetic ho	lster HKLN44	33A with audi	io accesso						
Antenna	Battery	Carry Case	Test Positions	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Max Calc. 10g-SAR (W/kg)	
Eivad (Internal)	HKNN4014A	HKLN4433A	Against	HKLN4435A								
Fixed (Internal)	(SNN5819B)	(Magnetic Holster)	Phantom	IIKLN4455A	460.0000	0.99	-0.543	1.91	1.29	1.202	0.81	
	****	HKLN4433A		*****								
Fixed (Internal)	HKNN4014A (SNN5819B)	(Magnetic Holster)	Against Phantom	HKLN4437A	460.0000	0.99	-0.495	1.94	1.30	1.208	0.81	
		,										
		HKLN4433A			450.0000							
Fixed (Internal)	HKNN4014A (SNN5819B)	(Magnetic Holster)	Against Phantom	HKLN4455A	460.0000	0.99	-0.631	1.62	1.12	1.04	0.72	
		ĺ			470.0000							

13.2 Assessments at the Body (CW mode) – CLP Magnetic holster HKLN4433A for other frequencies:

The DUT was tested at all other applicable frequencies using the highest SAR configuration from Table 13. Note that two configurations were very close to each other and therefore both configurations were ran across the frequencies. Refer to section 12.5 for additional frequency channels test consideration details.

The highest SAR result from the table below (bolded) is included in Appendix F Section 2.0.

TABLE 14

					<i>1</i> 22 1 7						
				ssments at the	• `						
	Magnetic holster HKLN4433A for other frequencies										
					Test	Initial	SAR	Meas.	Meas.	Max Calc.	Max Calc.
		Carry	Test	Additional	Freq.	Power	Drift	1g-SAR	10g-SAR	1g-SAR	10g-SAR
Antenna	Battery	Case	Positions	attachments	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
	1112313140144	HKLN4433A			450.0000	1.00	-0.648	2.92	1.78	1.86	1.14
Fixed (Internal)	HKNN4014A (SNN5819B)	(Magnetic	Against Phantom	HKLN4435A	460.0000	0.99	0.542	1.91	1.29	1.202	0.81
	(SININ 3017D)	Holster)	rnamom	nantom	460.0000	0.99	-0.543	1.91	1.29	1.202	0.81
					470.0000	0.99	-0.567	1.07	0.716	0.677	0.453
					170.0000	0.77	0.507	1.07	0.710	0.077	0.155
	111/2/13/14/14	HKLN4433A		_	450.0000	1.00	-0.405	2.96	1.96	1.79	1.18
Fixed (Internal)	HKNN4014A (SNN5819B)	(Magnetic	Against Phantom	HKLN4437A	460,0000	0.99	-0.495	1.94	1.30	1.208	0.81
		Holster)	r) Thantom	•		/	2,0	2.7.		1.200	0.01
					470.0000	0.99	-0.597	1.25	0.826	0.797	0.527

13.3 Assessments at the Body (CW mode) – Swivel belt holster CLP HKLN4438A with offered batteries and audio accessories:

All possible accessory combinations, swivel belt holster CLP HKLN4438A with batteries HKNN4014A (SNN5819A) and HKNN4013A (SNN5826B) were tested with audio accessories HKLN4435A, HKLN4437A and HKLN4455A at center frequency channel.

The highest SAR result from the table below (bolded) is included in Appendix F. Section 3.0.

TABLE 15

			Asse	ssments at the		ode):					
		Swivel belt hol			vith each batt	ery and a					
Antenna	Battery	Carry Case	Test Positions	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g-SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Max Calc. 10g-SAR (W/kg)
	HKNN4014A		Against		450.0000						
Fixed (Internal)	(SNN5819B)	HKLN4438A	Against Phantom	HKLN4435A	460.0000	0.99	-0.375	0.915	0.650	0.55	0.39
					470.0000						
T: 10	HKNN4013A	*****	Against	*****	450.0000						
Fixed (Internal)	(SNN5826B)	HKLN4438A	Phantom	HKLN4435A	460.0000	0.99	-0.293	0.794	0.539	0.47	0.32
					470.0000						
		1	I			T		Π		T T	
					450.0000						
Fixed (Internal)	HKNN4014A (SNN5819B)	HKLN4438A	Against Phantom	HKLN4437A	460.0000	0.99	-0.362	1.01	0.717	0.61	0.43
					470.0000						
		_									
	11/200140124				450.0000						
Fixed (Internal)	HKNN4013A (SNN5826B)	HKLN4438A	Against Phantom	HKLN4437A	460.0000	0.99	-0.239	0.979	0.685	0.57	0.40
					470.0000						
					450.0000						
Fixed (Internal)	HKNN4014A (SNN5819B)	HKLN4438A	Against Phantom	HKLN4455A	460.0000	0.99	-0.430	0.790	0.549	0.48	0.34
					470.0000						
	HKNN4013A		Against		450.0000						
Fixed (Internal)	(SNN5826B)	HKLN4438A	Against Phantom	HKLN4455A	460.0000	0.99	-0.275	0.899	0.626	0.53	0.37
					470.0000						

13.4 Assessments at the Body (CW mode) – Swivel belt holster CLP HKLN4438A for other frequencies:

The DUT was tested at all other applicable frequencies using the highest SAR configuration from Table 15. Refer to section 12.5 for additional frequency channels test consideration details.

The highest SAR result from the table below (bolded) is included in Appendix F Section 4.0.

TABLE 16

	Assessments at the Body (CW mode): Swivel belt holster CLP HKLN4438A for other frequencies											
Antenna	Battery	Carry Case	Test Positions	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	10g-SAR	Max Calc. 1g-SAR (W/kg)	Max Calc. 10g-SAR (W/kg)	
Fixed (Internal)	HKNN4014A (SNN5819B)	HKLN4438A	Against Phantom	HKLN4437A	450.0000 460.0000	1.00 0.99	-0.455 -0.362	0.740 1.01	0.524 0.717	0.45 0.61	0.32 0.43	
					470.0000	0.990	-0.519	0.547	0.393	0.34	0.25	

13.5 Shorten Scan Assessment

Short scan assessment: A "shortened" scan was performed to validate the SAR drift of the full DASY4TM coarse and 5x5x7 zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a 5x5x7 zoom scan only was performed. The results of the shortened cube scan presented in Appendix E demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The shortened scan SAR result from the table below is provided in Appendix E.

TABLE 17

				Shorten scan	Assessment						
Antenna	Battery	Carry Case	Test Positions	Additional attachments	Test Freq. (MHz)	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g-SAR (W/kg)		Max Calc. 10g-SAR (W/kg)
				Full	scan						
Fixed (Internal)	HKNN4014A (SNN5819B)	HKLN4433A (Magnetic Holster)	Against Phantom	HKLN4435A	450.0000	1.00	-0.648	2.92	1.78	1.86	1.14
				Shorte	n scan						
Fixed (Internal)	HKNN4014A (SNN5819B)	HKLN4433A (Magnetic Holster)	Against Phantom	HKLN4435A	450.0000	1.00	-0.265	2.86	1.79	1.67	1.05

14.0 Conclusion

The highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for this filing:

TABLE 18: RF Exposure Results for FCC Part 90:

	Max Calc a	t Body (W/kg)
Frequency Range (MHz)	1g-SAR	10g-SAR
450 -470MHz	1.86	1.14

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8W/kg per the requirements of 47 CFR2. 1093(d).

APPENDIX A Measurement Uncertainty

The Measurement Uncertainty tables indicated in this APPENDIX are applicable to the DUT ranging from 100MHz to 800MHz and for Dipole test frequency ranging from 300MHz to 800MHz. Therefore, the highest tolerance for the probe calibration uncertainty is indicated.

Table 1: Uncertainty Budget for Device Under Test: 100 – 800 MHz

							h =	i =	
				e =			cxf/	cxg/	
a	b	c	d	f(d,k)	f	g	e	e	<i>k</i>
		Tol.	Prob		c_i	c_i	1 g	10 g	
		(±	1100			(10	- 8	- · · · ·	
	IEEE 1528	%)	Dist		(1 g)	g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	section			Div.	, 0,		(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	10.0	N	1.00	1	1	10.0	10.0	8
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	8
Combined Standard Uncertainty			RSS				14	13	965
Expanded Uncertainty			k=2				27	27	

FCD-0558 Uncertainty Budget Rev. 8

Table 2: Uncertainty Budget for System Validation: 300 - 800 MHz

							h =	i =	
a	b	c	d	e = f(d,k)	f	g	cxf/e	cxg/e	\boldsymbol{k}
Uncertainty Component	IEEE 1528	Tol. (± %)	Prob. Dist.	Div.	c_i (1 g)	c _i (10 g)	1 g u _i (±%)	10 g u _i (±%)	v_i
Measurement System									
Probe Calibration	E.2.1	9.0	N	1.00	1	1	9.0	9.0	∞
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	∞
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	∞
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	8
Combined Standard Uncertainty			RSS				11	11	99999
Expanded Uncertainty			k=2				22	22	

FCD-0558 Uncertainty Budget Rev. 8

Notes:

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty f) ci sensitivity coefficient that should be applied to convert the variability of the
- uncertainty component into a variability of SAR.
- g) *ui* SAR uncertainty
- h) *vi* degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

APPENDIX B Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola EME

Certificate No: ES3-3147 Feb10

Accreditation No.: SCS 108

lient Motorola EME		Ce	rtificate No: ES3-3147_Feb10
CALIBRATION (CERTIFICAT	E	
Object	ES3DV3 - SN:3	147	
Calibration procedure(s)	QA CAL-25.v2	QA CAL-12.v6, QA CAL-1	
Calibration date:	February 18, 20	10	
The measurements and the uncer	rtainties with confidence	tional standards, which realize the p probability are given on the following ory facility: environment temperature	g pages and are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
Reference Probe ES3DV2 DAE4	SN: 3013 SN: 660	30-Dec-09 (No. ES3-3013_Dec 29-Sep-09 (No. DAE4-660_Sep	1771-185-1857
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-0	09) In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-	
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manage	The life
Approved by:	Niels Kuster	Quality Manager	1.100
This calibration actificate shall no	at he reproduced except	in full without written approval of the	Issued: February 19, 2010

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3147_Feb10

Page 2 of 11

Probe ES3DV3

SN:3147

Manufactured: July 12, 2007
Last calibrated: February 13, 2009
Recalibrated: February 18, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3147_Feb10

Page 3 of 11

February 18, 2010

ES3DV3 SN:3147

DASY - Parameters of Probe: ES3DV3 SN:3147

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.25	1.22	1.20	± 10.1%
DCP (mV) ^B	90.7	94.9	92.9	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	х	0.00	0.00	1.00	300.0	± 1.5%
			Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

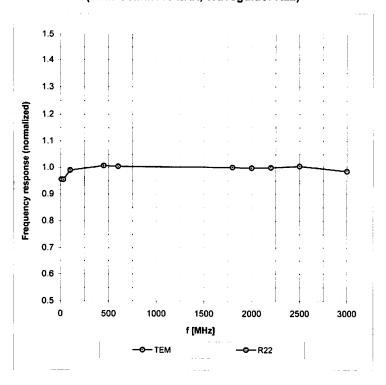
DASY - Parameters of Probe: ES3DV3 SN:3147

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
300	± 50 / ± 100	45.3 ± 5%	0.87 ± 5%	6.79	6.79	6.79	0.23	0.86 ± 13.3%
450	± 50 / ± 100	$43.5 \pm 5\%$	0.87 ± 5%	6.43	6.43	6.43	0.23	1.45 ± 13.3%
750	± 50 / ± 100	41.5 ± 5%	$0.90 \pm 5\%$	6.24	6.24	6.24	0.64	1.19 ± 11.0%
900	± 50 / ± 100	41.5 ± 5%	0.97 ± 5%	5.85	5.85	5.85	0.70	1.14 ± 11.0%
1810	± 50 / ± 100	$40.0 \pm 5\%$	1.40 ± 5%	5.06	5.06	5.06	0.42	1.80 ± 11.0%
1950	± 50 / ± 100	$40.0 \pm 5\%$	1.40 ± 5%	4.81	4.81	4.81	0.44	1.69 ± 11.0%
2300	± 50 / ± 100	$39.5 \pm 5\%$	1.67 ± 5%	4.68	4.68	4.68	0.40	1.85 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.42	4.42	4.42	0.40	2.06 ± 11.0%
2600	± 50 / ± 100	$39.0 \pm 5\%$	1.96 ± 5%	4.29	4.29	4.29	0.48	1.71 ± 11.0%
3500	± 50 / ± 100	$37.9 \pm 5\%$	2.91 ± 5%	4.09	4.09	4.09	1.00	1.23 ± 13.1%
3700	± 50 / ± 100	$37.7 \pm 5\%$	3.12 ± 5%	3.68	3.68	3.68	1.00	1.30 ± 13.1%

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

DASY - Parameters of Probe: ES3DV3 SN:3147

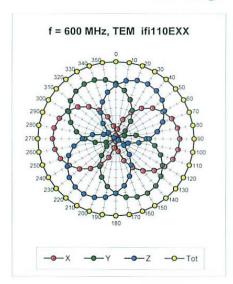

Calibration Parameter Determined in Body Tissue Simulating Media

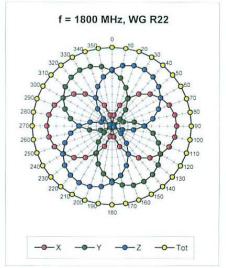
f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	56.7 ± 5%	0.94 ± 5%	6.82	6.82	6.82	0.10	2.74 ± 13.3%
750	± 50 / ± 100	55.5 ± 5%	0.96 ± 5%	5.95	5.95	5.95	0.78	1.14 ± 11.0%
900	± 50 / ± 100	55.0 ± 5%	1.05 ± 5%	5.81	5.81	5.81	0.88	1.13 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.90	4.90	4.90	0.28	2.75 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.75	4.75	4.75	0.42	1.98 ± 11.0%
2300	± 50 / ± 100	52.8 ± 5%	1.85 ± 5%	4.33	4.33	4.33	0.45	1.82 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.18	4.18	4.18	0.70	1.29 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	4.07	4.07	4.07	0.87	1.15 ± 11.0%
3500	± 50 / ± 100	51.3 ± 5%	3.31 ± 5%	3.50	3.50	3.50	1.00	1.38 ± 13.1%
3700	± 50 / ± 100	51.0 ± 5%	3.55 ± 5%	3.38	3.38	3.38	0.64	1.93 ± 13.1%

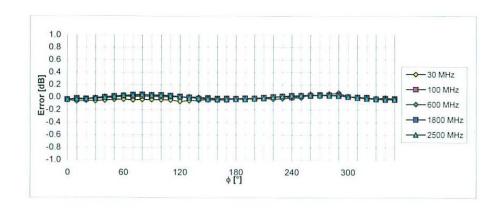
^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

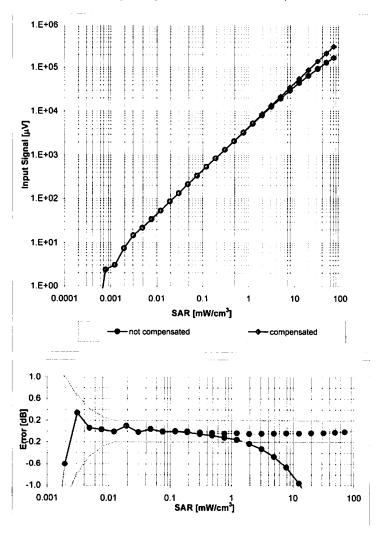



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ES3-3147_Feb10

Page 7 of 11

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

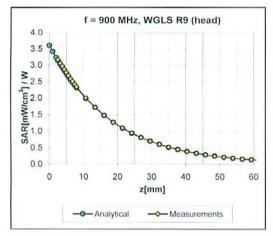

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

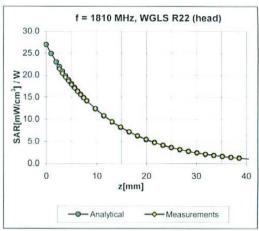
Certificate No: ES3-3147_Feb10

Page 8 of 11

Dynamic Range f(SAR_{head})

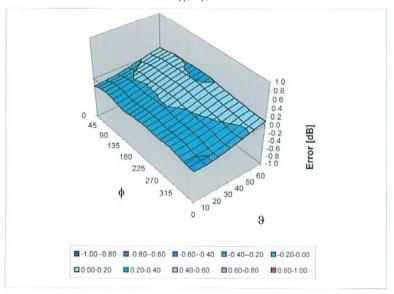
(Waveguide R22, f = 1800 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3147_Feb10

Page 9 of 11


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3147_Feb10

Page 10 of 11

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV3
Serial Number:	3147
Place of Assessment:	Zurich
Date of Assessment:	February 22, 2010
Probe Calibration Date:	February 18, 2010

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1810 MHz.

Assessed by:

ES3DV3-SN:3147 Page 1 of 2 February 22, 2010

Schmid & Partner Engineering AG

s p e a g

 $\sigma = 0.92 \text{ mho/m}$

(body tissue)

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV3 SN:3147

Conversion factor (± standard deviation)

150 MHz $8.0\pm10\%$ ConvF $\varepsilon_r = 52.3$ $\sigma = 0.76 \text{ mho/m}$ (head tissue) 250 MHz $7.2 \pm 10\%$ ConvF $\varepsilon_r = 47.6$ $\sigma = 0.83 \text{ mho/m}$ (head tissue) 150 MHz ConvF 7.7± 10% $\varepsilon_r = 61.9$ $\sigma = 0.80 \text{ mho/m}$ (body tissue) 250 MHz ConvF $7.3 \pm 10\%$ $\varepsilon_r = 59.4$ $\sigma = 0.88 \text{ mho/m}$ (body tissue) 300 MHz ConvF $7.1 \pm 9\%$ $\varepsilon_r = 58.2$

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

ES3DV3-SN:3147

Page 2 of 2

February 22, 2010

APPENDIX C Dipole Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola EME

Accreditation No.: SCS 108

Certificate No: D450V2-1001_Apr10

CALIBRATION CERTIFICATE

Object D450V2 - SN: 1001

Calibration procedure(s) QA CAL-15.v5

Calibration Procedure for dipole validation kits below 800 MHz

Calibration date: April 26, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41495277	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41498087	1-Apr-10 (No. 217-01136)	Apr-11
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
Type-N mismatch combination	SN: 5047.3 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ET3DV6 (LF)	SN: 1507	03-Jul-09 (No. ET3-1507_Jul09)	Jul-10
DAE4	SN: 654	23-Apr-10 (No. DAE4-654_Apr10)	Apr-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	7-0
Approved by:	Katja Pokovic	Technical Manager	20.113

Issued: April 26, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D450V2-1001_Apr10

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D450V2-1001_Apr10 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Flat Phantom V4.4	Shell thickness: 6 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan Resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.2 ± 6 %	0.83 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	398 mW input power	1.93 mW / g
SAR normalized	normalized to 1W	4.85 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	5.05 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	1.28 mW / g
SAR normalized	normalized to 1W	3.22 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	3.33 mW / g ± 17.6 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.3 Ω - 9.3 jΩ
Return Loss	- 20.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.343 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 22, 2002

DASY5 Validation Report for Head TSL

Date/Time: 26.04.2010 11:59:05

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN:1001

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450

Medium parameters used: f = 450 MHz; $\sigma = 0.83 \text{ mho/m}$; $\varepsilon_r = 44.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

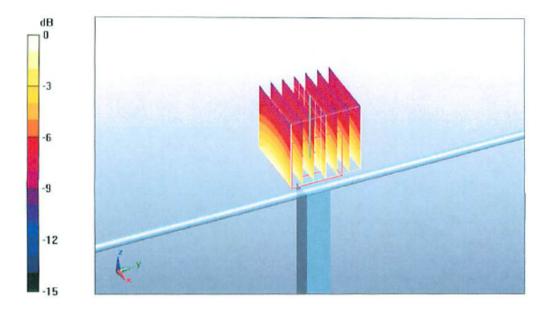
Probe: ET3DV6 - SN1507 (LF); ConvF(6.66, 6.66, 6.66); Calibrated: 03.07.2009

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 23.04.2010

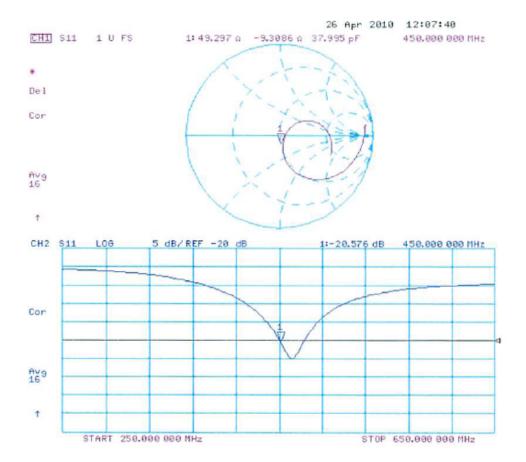
Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4; Serial: 1002

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 57


Pin=398mW/d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.7 V/m; Power Drift = 0.0013 dB

Peak SAR (extrapolated) = 2.89 W/kg


SAR(1 g) = 1.93 mW/g; SAR(10 g) = 1.28 mW/g

Maximum value of SAR (measured) = 2.07 mW/g

0 dB = 2.07 mW/g

Impedance Measurement Plot for Head TSL

