

CGISS EME Test Laboratory

8000 West Sunrise Blvd Fort Lauderdale, FL. 33322

S.A.R. EME Compliance Test Report Part 2 of 2

Date of Report:June 9, 2004Report Revision:Rev. OManufacturer:Motorola

Product Description: MOC4600i 458-470MHz, 0.25/0.50/0.75 Watts,

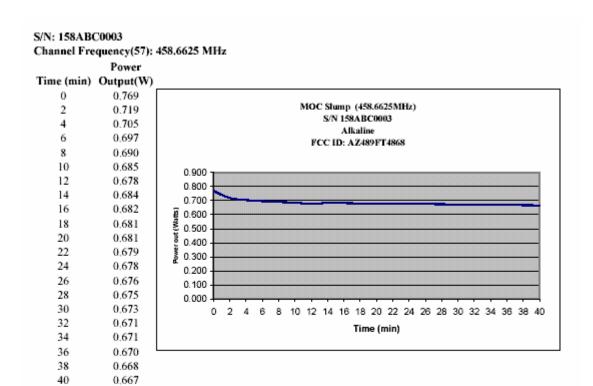
Service prompter (call box)

FCC ID: AZ489FT4868 Device Model: RLE1062A

Test Period: 05/28/04 - 06/01/04

EME Tech: Kim Uong (Lead EME Engineer)
EME Eng.: Kim Uong (Lead EME Engineer)
Author: Kim Uong (Lead EME Engineer)

Note: Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with all applicable national and international reference standards and guidelines.


Signature on file	6/9/04
[Ken Enger]	Date Approved
[Senior Resource Manager, Product Safety and EME Director, Phone: 954-723-6299]	

Note: Consistent with the ISO/IEC 17025 recommendation this report shall not be reproduced in part without written approval from an officially designated representative of the Motorola EME Laboratory.

APPENDIX A

Power Slump Data/Shortened Scan

DUT Power versus time data

Shortened Scan of Highest S.A.R. Configuration

FCC ID:AZ489FT4868; Test Date: 06/01/04

Motorola CGISS EME Laboratory Run #: KU-R2-040601-09

Model #: RLE1062A TX Freq: 458.6625MHz Sim Tissue Temp: 20.3 C

Antenna: Fixed

Battery Kit: C-Alkaline batteries

Carry: None Audio Acc.: None

Shortened scan reflect highest S.A.R. producing configuration; Run time 7minutes.

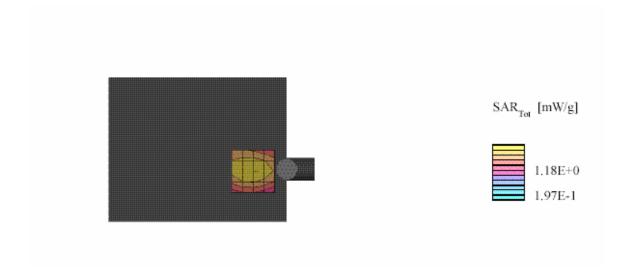
Representative "normal" scan run time was 23 minutes

"Shortened" scan max calculated S.A.R. using end power:

1-g Avg. = 1.07 mW/g; 10-g Avg. = 0.74 mW/g

"Normal" scan max calculated S.A.R. using end power:

1-g Avg. = 1.15 mW/g; 10-g Avg. = 0.80 mW/g (see section 7.1 run # KU-R2-040601-05)


DUT front against the phantom

Flat (2) Phantom; Device 2 Section;

Probe: ET3DV6R - SN1545 Probe cal date: 28/08/03; ConvF(7.00,7.00,7.00); Crest factor:1.0; FCC Body 464: σ = 0.95 mho/m ϵ r = 54.3 ρ = 1.00 g/cm3; DAE3V1SN406 Cal Date: (11/20/03)

Cube 5x5x7: SAR (1g): 1.35 mW/g, SAR (10g): 0.935 mW/g, (Worst-case extrapolation)

Power drift: -0.34 dB

APPENDIX B Data Results

FCC ID:AZ489FT4868; Test Date: 06/01/04 Motorola CGISS EME Laboratory

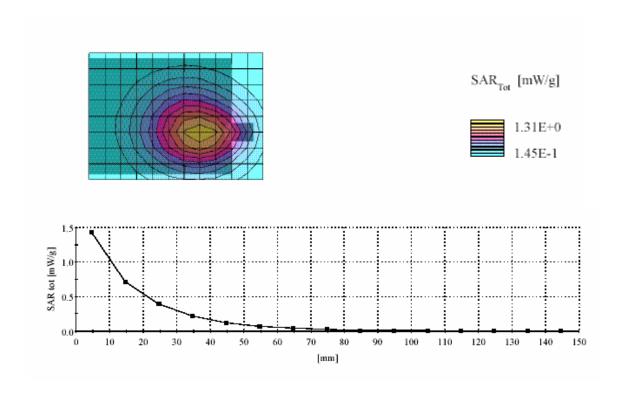
Run #: KU-R2-040601-05 Model #: RLE1062A TX Freq: 458.6625 MHz Sim Tissue Temp: 20.2 C

Antenna: Fixed

Battery Kit: C-Alkaline batteries

Carry: None Audio Acc.: None

DUT front against the phantom


Flat (2) Phantom; Device 2 Section;

Probe: ET3DV6R - SN1545 Probe cal date: 28/08/03; ConvF(7.00,7.00,7.00); Crest factor:1.0; FCC Body 464: σ = 0.95 mho/m ϵ r = 54.3 ρ = 1.00 g/cm3; DAE3V1SN406 Cal Date: (11/20/03)

Cube 5x5x7: SAR (1g): 1.43 mW/g, SAR (10g): 0.990 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 76.5, 106.5, 4.7

Power drift: -0.42 dB

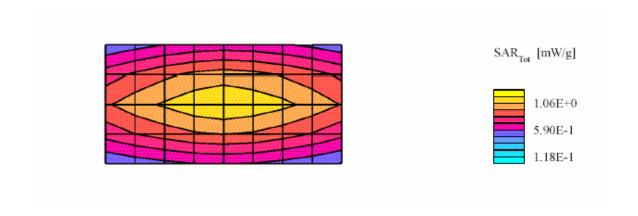
APPENDIX C Dipole System Performance Check Results

Dipole validations at the head from SPEAG are provided herein. The CGISS EME lab validated the dipole to the applicable IEEE system performance targets. Within the same day system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. The results of the CGISS EME system performance validation are provided in this appendix.

SPEAG Dipole D450 V2 SN 1002; Test Date: 05/28/04

Motorola CGISS EME Lab

Run #: Sys Perf-R2-040528-01


TX Freq: 450 MHz Sim Tissue Temp: 19.9C Start Power: 250mW

Target at 1W is 4.71mW/g (including drift) (1g) SAR calculated is 4.65 mW/g, Percent from target (including drift) for 1g is -1.2 %

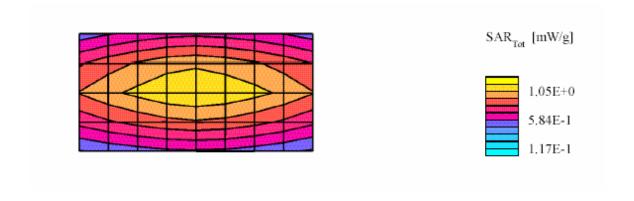
Flat (2); Probe: ET3DV6R - SN1545(cal Date 28 Aug 2003); ConvF(7.00,7.00,7.00); Crest factor: 1.0; FCC Body 450: σ = 0.94 mho/m ϵ r = 54.0 ρ = 1.00 g/cm3; DAE3V1SN406 Cal Date: (11/20/03) Cubes (2): Peak: 1.77 mW/g ± 0.03 dB, SAR (1g): 1.15 mW/g ± 0.04 dB, SAR (10g): 0.763 mW/g ± 0.05

dB, (Worst-case extrapolation)Penetration depth: 12.8 (11.6, 14.4) [mm]

Power drift: -0.05 dB

SPEAG Dipole D450 V2 SN 1002; Test Date: 06/01/04 Motorola CGISS EME Lab

Run #: Sys Perf-R2-040601-01


TX Freq: 450 MHz Sim Tissue Temp: 20.6C Start Power: 250mW

Target at 1W is 4.71mW/g (including drift) (1g) SAR calculated is 4.61 mW/g, Percent from target (including drift) for 1g is -2.11 %

Flat (2); Probe: ET3DV6R - SN1545(cal Date 28 Aug 2003); ConvF(7.00,7.00,7.00); Crest factor: 1.0; FCC Body 450: σ = 0.94 mho/m ϵ r = 54.4 ρ = 1.00 g/cm3; DAE3V1SN406 Cal Date: (11/20/03) Cubes (2): Peak: 1.79 mW/g ± 0.01 dB, SAR (1g): 1.15 mW/g ± 0.03 dB, SAR (10g): 0.760 mW/g ± 0.04

dB,(Worst-case extrapolation) Penetration depth: 12.6 (11.4, 14.1) [mm]

Power drift: -0.01 dB

SYSTEM VALIDATION

Date:	4/14/2004	Frequency (MHz):	450
Lab Location:	CGISS	Mixture Type:	IEEE-Flead
Robot System:	2	Ambient Temp.("C	23
Probe Serial #:	1545	Tissue Temp.(°C):	20.6
DAE Serial #:	374	 .	· · · · · · · · · · · · · · · · · · ·
Tissue Characteristics Permitivity:	44.3 0.86	_Phantom Type/SN:	80302002C/S6
Conductivity:	U:80.	Distance (mm):	15 (tissue/dipole cnt)
Reference Source:	D450V2	(Dipole)	
Reference SN:	1002	·	
Power to Dipole; Power Output (radio);	250 mW n/a mW		
Target SAR Value: (normalized to 1.0 W)	4,9	mW/g, 3.3	_mW/g (10g avg.)
Measured SAR Value:	1.18	mW/g. 0.778	mW/g (10g avg.)
Power Drift:	-0.01	dB	
Measured SAR Value: (normalized to 1.0 W, including	4.73 (drift)	mW/g, 3.12	_mW/g (10g avg.)
Percent Difference From	n Target (MUST l	oe within System Unco	ertainty): 3.45 % (1g ave) 5.48 % (10g ave)
Test performed by:	c	Miller	Initial: 64

Dipole D450V2 SN1002; Test date:04/14/04

Run #: Sys Perf R2-040414-01

Phantom #: 80302002B/S6

Model #: D450V2 SN: 1002

Robot: CGISS-2

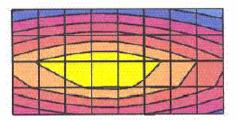
DAE3: SN: 374 (3/23/04) Tester: C Miller

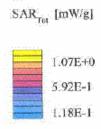
Sim Tissue Temp: 20.6 C

TX Freq: 450 MHz Start Power: 250mW

SAR calculated 1g is 4.73 mW/g SAR Calculated 10g is 3.12 mW/g

Flat (2); Probe: ET3DV6R - SN1545(cal Date 28 Aug 2003); ConvF(7.00,7.00,7.90); Crest factor; 1.0; IEEE


Head 450 MHz: $\sigma = 0.86$ mho/m $c_s = 44.3$ $\rho = 1.00$ g/cm³


Cubes (2): Peak: 1.83 $\text{ mW/g} \pm 0.08 \text{ dB}$, SAR (1g): 1.18 $\text{ mW/g} \pm 0.07 \text{ dB}$, SAR (10g): 0.778 $\text{ mW/g} \pm 0.07 \text{ dB}$

dB, (Worst-case extrapolation)

Penetration depth: 12.6 (11.3, 14.4) [mm]

Powerdrift: -0.01 dB

Motorola CGISS EME Lab

SYSTEM PERFORMANCE CHECK TARGET SAR

Date:	4/14/2004	Frequency (MHz):	450
Lab Location:	CGISS	Mixture Type:	FCC Body
Robot System:	2	Ambient Temp.("C):	23
Probe Serial #:	1595	Tissue Temp.(°C):	20.6
DAE Serial#	374	innered)
Tissue Characteristics			
Permitivity:	56.3	Phantom Type/SN:	80302002A/S8
Conductivity:	0.94	Distance (mm):	15 (tissue/dipole ont)
Reference Source	D450V2	(Dipole)	
Reference SN:	1002		
Power to Dipole:	250 mW		
Measured SAR Value:	1.17	mW/g, 0.773	mW/g (10g avg.)
Power Drift:	-0.03	dB	
New Target/Measured			
SAR Value:	4,7	1 mW/g. 3.1	1 mW.g (10g avg.)
(normalized to 1.0 W, incl			
			Asp.
Test performed by:	C	Miller.	Initial: / CMY

Dipole D450V2 SN1002; Test date:04/14/04

Run #: Sys Perf R2-040414-02

Phantom #: 80302002B/S6

Model #: D450V2 SN: 1002

Robot: CGISS-2

DAE3: SN: 374 (3/23/04) Tester: C Miller

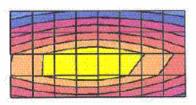
TX Freq: 450 MHz

Sim Tissue Temp: 20.6 C

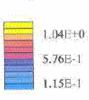
Start Power: 250mW

SAR calculated 1g is 4.71 mW/g SAR Calculated 10g is 3.11 mW/g

Flat (2); Probe: ET3DV6R - SN1545(cal Date 28 Aug 2003); ConvF(7.00,7.00,7.00); Crest factor: 1.0; FCC


Body 450: $\sigma = 0.94$ mho/m $\varepsilon_r = 56.3$ $\rho = 1.00$ g/cm³

Cubes (2): Peak: 1.79 mW/g ± 0.09 dB, SAR (1g): 1.17 mW/g ± 0.08 dB, SAR (10g): 0.773 mW/g ± 0.07


dB, (Worst-case extrapolation)

Penetration depth: 13.0 (11.5, 14.8) [mm]

Powerdrift: -0.03 dB

Motorola CGISS EME Lab

APPENDIX D Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Motorola CGISS

Calibration C				
Object(s)	ET3DV6R - SN:1545			
Calibration procedure(s)	QA CAL-01.√2 Calibration procedure for dosimetric E-field probes			
Calibration date:	August 28, 200			
Condition of the calibrated item	In Tolerance (a	according to the specific calibration	n document)	
17025 international standard:	d in the closed laborato	used in the calibration procedures and conformity of ry facility: environment temperature 22 +/- 2 degrees		
2011				
Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration	
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05 Apr-04	
Power sensor E4412A Power sensor HP 8481A	MY41495277 MY41092180	2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918)	Sep-03	
ower sensor HP 0401A Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04	
Network Analyzer HP 8753E	US37390585	18-Oct-01 (Agilent, No. 24BR1033101)	In house check; Oct 03	
Fluke Process Calibrator Type 702	SN: 6295803	3-Sep-01 (ELCAL, No.2360)	Sep-03	
Calibrated by:	Name Nico Vetterii	Function Technician	Signature	
Approved by:	Katja Pokovic	Laboratory Director	Marie Hot	
	CHEST CLE CHARLES HELD COLD COLD		Date issued: August 28, 2003	
	as an intermediate solu Partner Engineering Al	tion until the accreditation process (based on ISO/IE	G 17025 International Standard) for	

880-KP0301061-A

Page 1 (1)

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6R

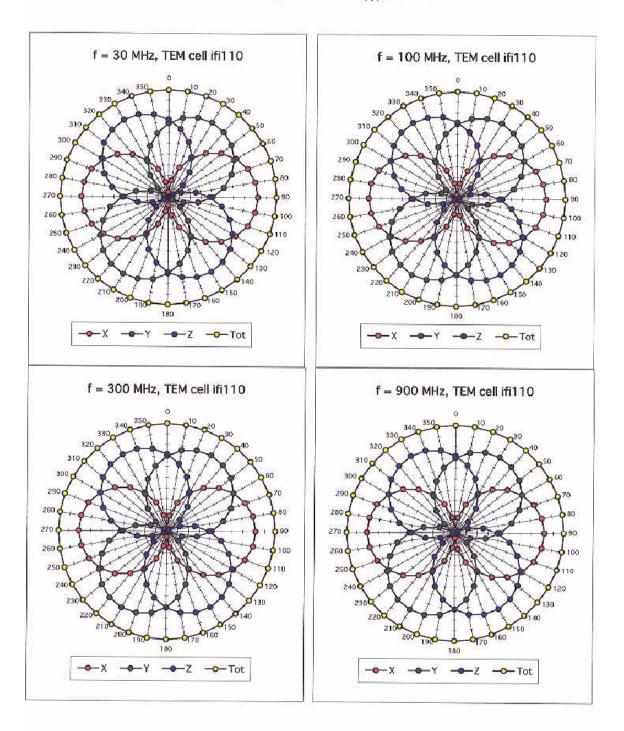
SN:1545

Manufactured:

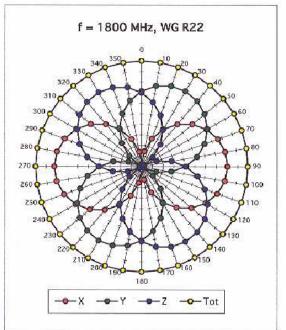
Last calibration: Recalibrated: October 16, 2000

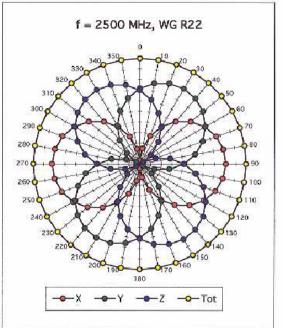
May 21, 2002 August 28, 2003

Calibrated for DASY Systems

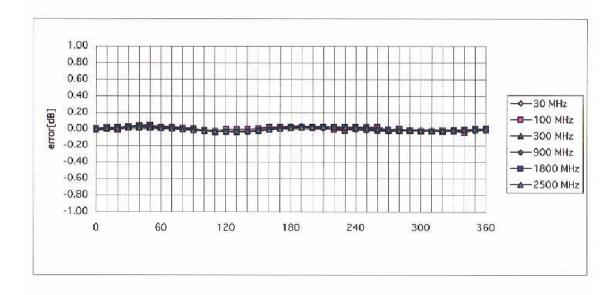

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6R SN:1545

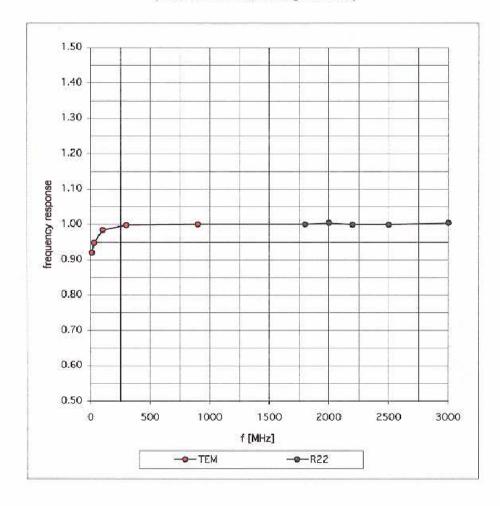

Sensit	ivity in Fre	e Space	D	iode Compressio	n	
	NormX	2.06	μV/(V/m) ²	DCP X	95	mV
	NormY	2.14	, μV/(V/m) ²	DCP Y	95	mV
	NormZ		$\mu V/(V/m)^2$	DCP Z	95	m√
Sensiti	vity in Tissu	e Simulatin	g Liquid			
Head	90	OO MHz	ε _r = 41.5 ± 5%	$\sigma = 0.97 \pm 5\%$	mho/m	
Valid for f	=800-1000 MHz	with Head Tissue	Simulating Liquid according to	EN 50361, P1528-200)	(
	ConvF X	6.1	± 9.5% (k=2)	Boundary eff	fect:	
	ConvF Y	6.1	± 9.5% (k=2)	Alpha	0.35	
	ConvF Z	6.1	±9.5% (k=2)	Depth	2.84	
Head		OO MHz	ε_r = 40.0 ± 5%	σ = 1.40 ± 5%		
Valid for f	=1710-1910 MH:	z with Head Tissu	e Simulating Liquid according t	o EN 50361, P1528-200	X	
	ConvF X	4.9	± 9.5% (k=2)	Boundary eff	ect:	
	ConvF Y	4.9	± 9.5% (k=2)	Alpha	0.50	
	ConvF Z	4.9	± 9.5% (k=2)	Depth	2.63	
Bound	ary Effect					
Head	90	00 MHz	Typical SAR gradient: 5 % p	oer mm		
	Probe Tip to	Boundary		1 mm	2 mm	
	SAR _{be} [%]	Without Corre	ection Algorithm	11.1	6.5	
	SAR _{be} [%]	With Correction	on Algorithm	0.5	0.6	
Head	180	00 MHz	Typical SAR gradient: 10 %	per mm		
	Probe Tip to	Boundary		1 mm	2 mm	
	SAR _{be} [%]	Without Corre	ection Algorithm	13.8	9.3	
	SAR _{be} [%]	With Correction	on Algorithm	0.2	0.1	
Sensor	Offset					
	Probe Tip to	Sensor Center	2.7		nm	


Page 2 of 11

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

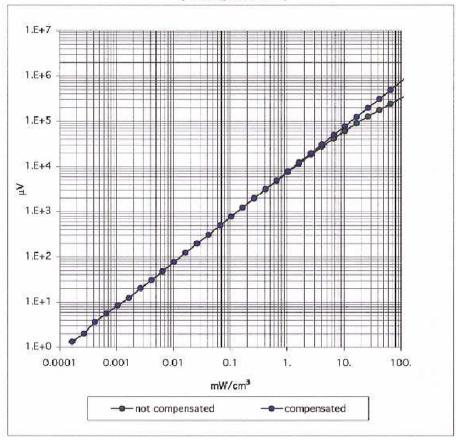


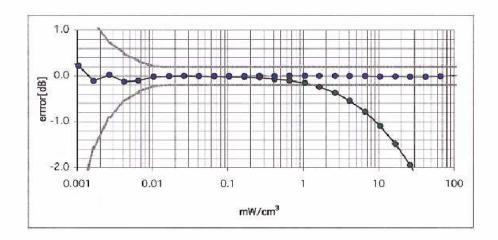
Page 3 of 11


Isotropy Error (ϕ), $\theta = 0^{\circ}$

Page 4 of 11

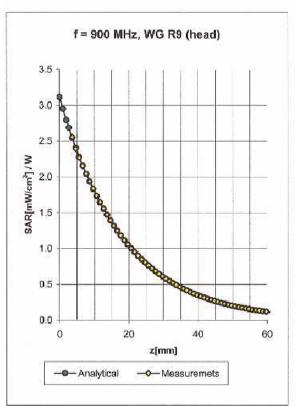
Frequency Response of E-Field

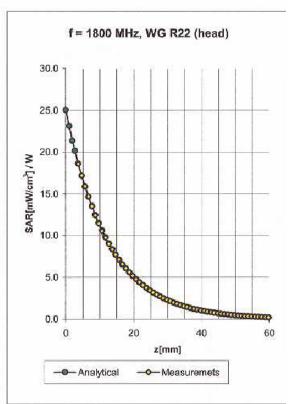

(TEM-Cell:ifi110, Waveguide R22)



Page 5 of 11

Dynamic Range f(SARhead)


(Waveguide R22)



Page 6 of 11

Conversion Factor Assessment

Head 900 MHz $\varepsilon_r = 41.5 \pm 5\%$

 $\sigma = 0.97 \pm 5\%$ mho/m

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

6.1 ± 9.5% (k=2)

Boundary effect:

ConvF Y

6.1 ±9.5% (k=2)

Alpha

0.35

ConvF Z

6.1 ± 9.5% (k=2)

Depth

2.84

Head

1800 MHz

 ε_r = 40.0 ± 5%

 $\sigma = 1.40 \pm 5\% \text{ mho/m}$

Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X

4.9 ± 9.5% (k=2)

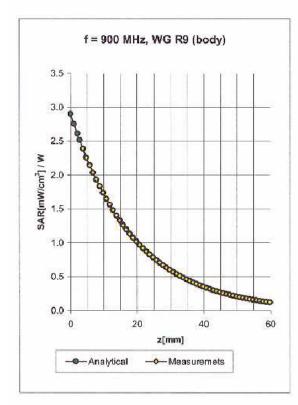
Boundary effect:

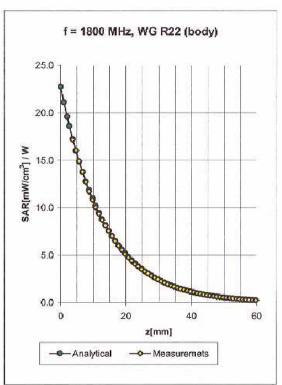
ConvF Y

4.9 ± 9.5% (k=2)

Alpha

ConvF Z


4.9 ± 9.5% (k=2)


Depth

0.50 2.63

Page 7 of 11

Conversion Factor Assessment

Body 900 MHz $\epsilon_r = 55.0 \pm 5\%$ $\sigma = 1.05 \pm 5\%$ mho/m

Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

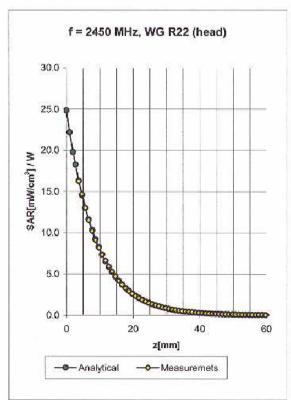
 ConvF X
 5.9 $\pm 9.5\%$ (k=2)
 Boundary effect:

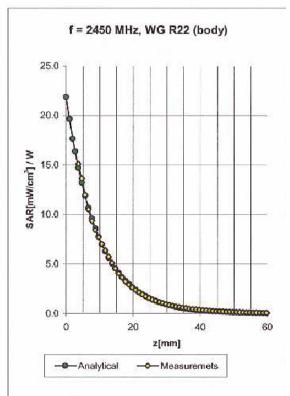
 ConvF Y
 5.9 $\pm 9.5\%$ (k=2)
 Alpha
 0.42

 ConvF Z
 5.9 $\pm 9.5\%$ (k=2)
 Depth
 2.54

Body 1800 MHz $\epsilon_r = 53.3 \pm 5\%$ $\sigma = 1.52 \pm 5\%$ mho/m

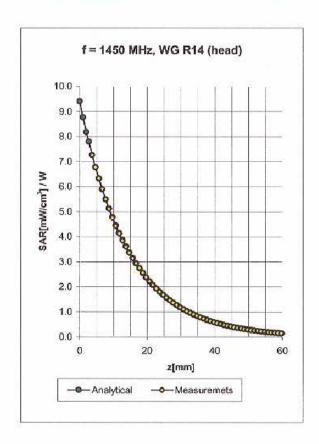
Valid for f=1710-1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C


 ConvF X
 4.6 $\pm 9.5\%$ (k=2)
 Boundary effect:


 ConvF Y
 4.6 $\pm 9.5\%$ (k=2)
 Alpha
 0.57

 ConvF Z
 4.6 $\pm 9.5\%$ (k=2)
 Depth
 2.65

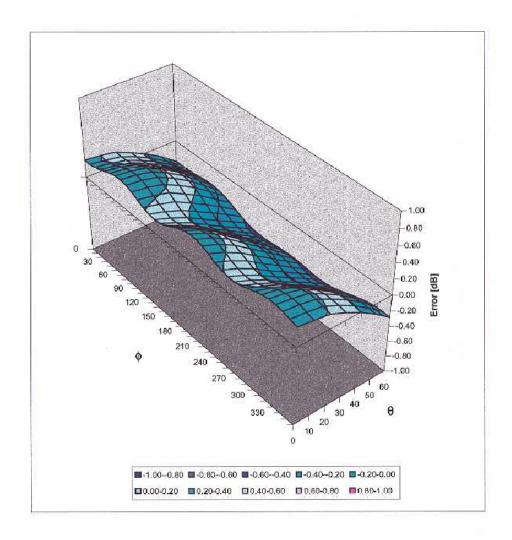
Page 8 of 11


Conversion Factor Assessment

2450 Head MHz E= 39.2 ± 5% $\sigma = 1.80 \pm 5\% \text{ mho/m}$ Valid for f=2400-2500 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X 4.5 ± 8.9% (k=2) ConvF X Boundary effect: ConvF Y 4.5 ± 8.9% (k=2) 1.11 Alpha $4.5 \pm 8.9\% (k=2)$ 1.76 ConvF Z Depth Body 2450 MHz Er = 52.7 ± 5% $\sigma = 1.95 \pm 5\% \text{ mho/m}$ Valid for f=2400-2500 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C ConvF X 4.2 ± 8.9% (k=2) Boundary effect: ConvF Y 4.2 ± 8.9% (k=2) Alpha 1.41 ConvF Z 4.2 ± 8.9% (k=2) 1.45 Depth

Conversion Factor Assessment

Head 1450 MHz $\epsilon_r = 41.0 \pm 5\%$ $\sigma = 1.20 \pm 5\%$ mho/m


Valid for f=1350-1550 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X	5.3 ± 9.5% (k=2)	Boundary effe	ecti
ConvF Y	5.3 ± 9.5% (k=2)	Alpha	0.62
ConvF Z	5.3 $\pm 9.5\%$ (k=2)	Depth	2.15

Page 10 of 11

Deviation from Isotropy in HSL

Error (θ,ϕ) , f = 900 MHz

Page 11 of 11

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 into@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6R	
Serial Number:	1545	
Place of Assessment:	Zurich	
Date of Assessment:	September 1, 2003	
Probe Calibration Date:	August 28, 2003	

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Mirie Mit-

ET3DV6R-SN:1545

Page I of 3

September 1, 2003

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6R SN:1545

Conversion factor (± standard deviation)

150 MHz	ConvF	$7.6 \pm 8\%$	$\epsilon_t = 61.9$ $\sigma = 0.80 \text{ mho/m}$ (body tissue)
236 MHz	ConvF	$7.4 \pm 8\%$	$\epsilon_r = 59.8$ $\sigma = 0.87 \text{ mho/m}$ (body tissue)
$300\mathrm{MHz}$	ConvF	7.3 ± 8 %	$\epsilon_r = 58.2$ $\sigma = 0.92 \text{ mho/m}$ (body tissue)
350 MHz	ConvF	7.3 ± 8%	$\epsilon_r = 57.7$ $\sigma = 0.93 \text{ mho/m}$ (body tissue)
450 MHz	ConvF	7.0 ± 8 %	$\epsilon_r = 56.7$ $\sigma = 0.94 \text{ mho/m}$ (body tissue)
784 MHz	ConvF	$6.1\pm8\%$	$\epsilon_r = 55.4$ $\alpha = 0.97 \text{ mho/m}$ (body tissue)
1450 MHz	ConvF	$5.0\pm8\%$	$\epsilon_r = 54.0$ $\sigma = 1.30 \text{ mho/m}$ (body tissue)

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6R SN:1545

Conversion factor (± standard deviation)

150 MHz	ConvF	$8.4\pm8\%$	$\epsilon_r = 52.3$ $\sigma = 0.76 \text{ mho/m}$ (head tissue)
236 MHz	ConvF	$7.6\pm8\%$	$\epsilon_r = 48.3$ $\sigma = 0.82 \text{ mho/m}$ (head tissue)
300 MHz	ConvF	7.4 ± 8%	$\varepsilon_r = 45.3$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
350 MHz	ConvF	$7.4 \pm 8\%$	$\epsilon_r = 44.7$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
400 MHz	ConvF	$7.0\pm8\%$	$\epsilon_r = 44.4$ $\sigma = 0.87 \text{ mho/m}$ (head tissue - CENELEC)
450 MHz	ConvF	7.0 ±8%	$\epsilon_r = 43.5$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
784 MHz	ConvF	6.3 ± 8%	$\epsilon_r = 41.8$ $\sigma = 0.90 \text{ mho/m}$ (head tissue)