Certificate Number: 1449-02

CGISS EME Test Laboratory

8000 West Sunrise Blvd Fort Lauderdale, FL. 33322

S.A.R. EME Compliance Test Report

Attention: FCC

Date of Report: September 25, 2003

Report Revision: Rev. B **Manufacturer:** Motorola

Product Description: 2W UHF RBR 6 channel w/ display; Fixed antenna

FCC ID: AZ489FT4851 Model(s) Tested: NUE2986A

Model(s) affected: NUE2986A, NUE2986B, NUE2983B, NUE2984B,

NUE3002B, NUE3001B, NUE2982B

Test Period: 9/5/03 **EME Tech:** Ed Church **EME Engineer:** Deanna Zakharia

Elect. Principle Staff Eng.

Author: Michael Sailsman

Global EME Regulatory Affairs Liaison

Note: Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 2.0 of this report.

Signature on File	9/26/03
Ken Enger	Date Approved
Senior Resource Manager, Laboratory Director, CGISS EME Lab	

Note: This report shall not be reproduced without written approval from an officially designated representative of the Motorola EME Laboratory.

Form-SAR-Rpt-Rev. 2.00 Page 1 of 42

TABLE OF CONTENTS

Part 1 of 1

- 1.0 Introduction
- 2.0 Reference Standards and Guidelines
- 3.0 Description of Test Sample
 - 3.1 Test Signal
 - 3.2 Test Output Power
- 4.0 Description of Test Equipment
 - 4.1 Description of S.A.R Measurement System
 - 4.2 Description of Phantom
 - 4.2.1 Flat Phantom
 - 4.2.2 SAM phantom
 - 4.3 Simulated Tissue Properties
 - 4.3.1 Type of Simulated Tissue
 - 4.3.2 Simulated Tissue Composition
 - 4.4 Test condition
- 5.0 Description of Test Procedure
 - 5.1 Device Test Positions
 - 5.1.1 Body
 - 5.1.2 Head
 - 5.1.3 Face
 - 5.2 Test Position Photographs
 - 5.3 Probe Scan Procedures
- 6.0 Measurement Uncertainty
- 7.0 S.A.R. Test Results
 - 7.1 S.A.R. results
 - 7.2 Peak S.A.R. location
 - 7.3 Highest S.A.R. results calculation methodology
- 8.0 Conclusion

Appendix A: Power Slump Data

Appendix B: Data Results

Appendix C: Dipole System Performance Check Results

Appendix D: Calibration Certificates

Form-SAR-Rpt-Rev. 2.00 Page 2 of 42

REVISION HISTORY

Date	Revision Comments											
8/27/01	0	Original release.										
8/29/03	A	Modified final SAR derivation in section 7.0 per supplement C Appendix D "Test Device Operating Conditions"										
9/25/03	В	Disclosure of compliance results with new addendum accessory										

Form-SAR-Rpt-Rev. 2.00 Page 3 of 42

1.0 Introduction

This report details the utilization, test setup, test equipment, and updated test results of the Specific Absorption Rate (S.A.R.) measurements performed at the CGISS EME Test Lab for tested model number NUE2986A FCC ID: AZ489FT4851.

A new earpiece w/ boom microphone audio accessory, model HCSN4001A is being offered for this product. The compliance results presented herein reflect the compliance performance of the affected models listed above.

The applicable exposure environment is Occupational/Controlled.

2.0 Reference Standards and Guidelines

This product is designed to comply with the following national and international standards and guidelines.

- United States Federal Communications Commission, Code of Federal Regulations; 47CFR part 2 sub-part J
- American National Standards Institute (ANSI) / Institute of Electrical and Electronic Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronic Engineers (IEEE) C95.1-1999 Edition
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6. Limits of Human Exposure to Terminal frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, 1999
- Australian Communications Authority Terminal communications (Electromagnetic Radiation Human Exposure) Standard 2003
- ANATEL, Brazil Regulatory Authority, Resolution 256 (April 11, 2001) "additional requirements for SMR, cellular and PCS product certification."

Form-SAR-Rpt-Rev. 2.00 Page 4 of 42

3.0 Description of Test Sample

DUT model number NUE2986A FCC ID: AZ489FT4851 is a handheld transceiver, which operates as a traditional simplex 2-way radio. It will be marketed to and used by employees solely for work - related operations, such as Retail Business, Construction, and Small Business Operation. User training is the responsibility of the business group, who can be expected to employ the usage instructions, safety information and operational cautions set forth in the user's manual, instructional sessions or other means. Motorola also makes available to its customers training classes on the proper use of two - way radios. The intended use positions are "at the face" with the microphone 1 to 2 inches from the mouth or "at the waist or abdomen" secured to the user's belt. When operated at the waist or abdomen, the audio and pushto-talk functions are routed to a remote accessory, which connects to the side of the radio. The transmit duty cycle, 50% maximum for this type of device, is controlled by the user via the push – to - talk button. This device transmits in the 461.0375 – 469.5625MHz band with 6 channels. The maximum conducted power, as defined by the production line final test station upper limit, is 2.2 watts. See section 5.0 for more detailed information on the maximum conducted power.

Form-SAR-Rpt-Rev. 2.00 Page 5 of 42

The following are applicable options and accessories assessed along with the new audio accessory model HCSN4001A. Other offered options and accessories specific to the tested models were disclosed during the respective product compliance certification.

The battery and carry case assessed herein represents the accessories that produced the highest S.A.R. results for the tested model NUE2986A.

Antenna:

Fixed \(\frac{1}{4}\) wave 60mm helical, fixed non-retractable, freq. range 460-470MHz.

Batteries

NTN8971B XTN/CP100 Series NiMH Rechargeable (53871)

Body-worn Accessories

NNTN4020A XTN Series Carry Case (53873)

Audio attachments

HCSN4001A Earpiece/ W Boom mic (56518)

3.1 Test Signal

Test Signal mode:

Test Mode	X	Base Station		Simulator		
-----------	---	--------------	--	-----------	--	--

Transmission Mode:

CW	X
Native Transmission	
TDM:	
Other	

3.2 Test Output Power

This device uses a fixed antenna and power output measurements are not possible prior to each test. The DASY3TM system's S.A.R. drift function was used to determine the power slump characteristic of the device. A characteristic power versus time assessment based on 50 ohms measurements was performed on a representative sample of this product and a results table and plot are provided in APPENDIX A for the batteries producing the highest S.A.R. results.

Form-SAR-Rpt-Rev. 2.00 Page 6 of 42

4.0 Description of Test Equipment

4.1 Descriptions of S.A.R. Measurement System

The laboratory utilizes a Dosimetric Assessment System (DASY3TM) S.A.R. measurement system manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. The test system consists of a Stäubli RX90L robot with an ET3DV6 E-Field probe. Please reference the SPEAG user manual and application notes for detailed probe, robot, and S.A.R. computational procedures.

The S.A.R. measurements were conducted with probe model/serial number ET3DV6/SN1383. The system performance check was conducted daily and within 24 hours prior to testing. DASY output files of the system performance test results and the probe/dipole calibration certificates are included in appendices C and D respectively. The table below summarizes the system performance check results normalized to 1W.

Probe Serial #	Tissue Type	Probe Cal Date	Dipole Kit / Serial #	System Perf. Result when normalized to 1W (mW/g)	Reference S.A.R @ 1W (mW/g)	Test Date(s)	
1383	FCC Body	2/26/03	SPEAG D450V2 MHz /1002	4.62 +/- 0.00	4.52 +/- 10%	9/5/03	

Note: see APPENDIX C for an explanation of the reference S.A.R. targets stated above

The DASY3™ system is operated per the instructions in the DASY3™ Users Manual. The complete manual is available directly from SPEAG™. All measurement equipment used to assess EME S.A.R. compliance was calibrated according to 17025 A2LA guidelines.

4.2 Description of Phantom

4.2.1 Flat Phantom

A rectangular shaped box made of high-density polyethylene (HDPE) with a dielectric constant of 2.26 and a loss tangent of less than 0.00031. The phantom is mounted on a wooden supporting structure that has a loss tangent of < 0.05. The flat phantom used for this assessment has a 68.58 cm x 20.32 cm opening at its center to allow positioning the DUT to the phantom's surface. The flat phantom dimensions used for S.A.R. performance assessment at the body was: length=80cm, Width=30cm, Height=20cm, Surface thickness=0.2cm.

4.2.2 SAM Phantom

SAM Phantom assessment was not applicable for this filing.

Form-SAR-Rpt-Rev. 2.00 Page 7 of 42

4.3 Simulated Tissue Properties

4.3.1 Type of Simulated Tissue

The simulated tissue used is compliant to that specified in FCC Supplement C (Edition 01 - 01) to OET Bulletin 65 (Edition 97 - 01).

Simulated Tissue	Body Position
FCC Body	Torso

4.3.2 Simulated Tissue Composition

Tissue Ingredient (%) @ 450 MHz											
	Head	Body									
Sugar	56	46.5									
DGBE (Glycol)	-	-									
De ionized -Water	39.1	50.53									
Salt	3.8	1.87									
HEC	1.0	1.0									
Bact.	0.1	0.1									

Characterization of Simulated tissue materials and ambient conditions:

Simulated tissue prepared for S.A.R. measurements is measured daily and within 24 hours prior to actual S.A.R. testing to verify that the tissue is within 5% of target parameters at the center of the transmit band. This measurement is done using the Agilent (HP) probe kit model 85070C and a HP8753D Network Analyzer.

Target tissue parameters

FCC Body											
Frequency (MHz)	Di-electric Constant Target	Di-electric Constant Meas. (Range)	Conductivity Target S/m	Conductivity Meas. (Range) S/m							
450	56.70	54.9-54.9	0.94	0.90-0.90							
465	56.60	54.7-54.7	0.94	0.91-0.91							

4.4 Test conditions

The EME Laboratory ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is

Form-SAR-Rpt-Rev. 2.00 Page 8 of 42

measured prior to each scan to insure it is within \pm - 2°C of the temperature at which the dielectric properties were determined. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The table below presents the range and average environmental conditions during the S.A.R. tests reported herein:

	Target	Measured
	Target	Range: 21.3-23.72°C
Ambient Temperature	20 - 25 °C	Avg. 22.9°C
		Range: 40.20-45.7%
Relative Humidity	30 - 70 %	Avg. 42.15%
		Range: 20.5-20.5°C
Tissue Temperature	NA	Avg. 20.5°C

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the S.A.R scans are repeated. However, the lab environment is sufficiently protected such that no S.A.R. impacting interference has been experienced to date.

5.0 Description of Test Procedure

All options and accessories listed in section 3.0 were considered in order to develop the S.A.R. test plan for this product. A S.A.R. measurement was performed using a flat phantom to assess performance at the body. The assessment was done using the flat phantom containing FCC body or tissue, and with the DUT in CW mode.

The DUT was assessed with the new audio accessory model HCSN4001A attached using the battery and carry case accessory that produced the highest S.A.R. results previously submitted to the FCC.

5.1 Device Test Positions

Reference Figure 1 for the device orientation and position which exhibited the highest S.A.R. performance.

5.1.1 Body

The DUT was positioned such that it was centered against the flat phantom with the applicable body-worn accessory.

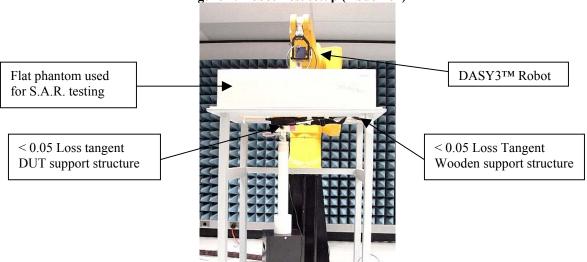
5.1.2 Head

Assessments at the head was not applicable for this filing.

5.1.3 Face

Assessment at the face was not applicable for this filing.

Form-SAR-Rpt-Rev. 2.00 Page 9 of 42


5.2 **Test Position Photographs**

(DUT w/ carry case model against the flat phantom) Ant. Separation distances Base=2.7cm Center=2.9cm Tip=3.1cm

Attached **Audio accessory Model HCSN4001A** < 0.05 Loss tangent Wooden DUT with carry < 0.05 Loss Tangent DUT Support Structure and case against the flat support structure Opening phantom

Figure 1: Highest S.A.R. Test Position at the body

Figure 2: Robot Test setup (Abdomen)

Page 10 of 42 Form-SAR-Rpt-Rev. 2.00

5.3 Probe Scan Procedures

The E-field probe first scans in a coarse grid over a large area inside the phantom in order to locate the interpolated maximum S.A.R. distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

6.0 Measurement Uncertainty

Table 1: Uncertainty Budget for Device Under Test

							h =	i =	
а	b	с	d	e = f(d,k)	f	g	cxf/e	cxg/e	k
	Section	Tol.	Prob.		Ci	Ci	1 g	10 g	
	of IEEE	(± %)	Dist.		(1.9)	(10 g)	u_i	u_i	
Uncertainty Component	P1528			Divisor	(- 8/	(8)	(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	4.8	N	1.00	1	1	4.8	4.8	00
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	00
Spherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	00
Boundary Effect	E.2.3	5.8	R	1.73	1	1	3.3	3.3	00
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	00
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	00
Integration Time	E.2.8	1.3	R	1.73	1	1	0.8	0.8	
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	
Probe Positioner Mechanical	15.0.1	5.0		1,75	<u> </u>	-	1,,,	1.7	~
Tolerance	E.6.2	0.3	R	1.73	1	1	0.2	0.2	00
Probe Positioning with									
respect to Phantom Shell	E.6.3	1.1	R	1.73	1	1	0.6	0.6	00
Extrapolation, interpolation									
and Integration Algorithms									
for Max. SAR Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	00
Test sample Related									
Test Sample Positioning	E.4.2	3.6	N	1.00	-1	1	3.6	3.6	29
Device Holder Uncertainty	E.4.1	2.8	N	1.00	1	1	2.8	2.8	8
Output Power Variation -									
SAR drift measurement	6.6.2	5.0	R	1.73	1	1	2.9	2.9	00
Phantom and Tissue									
Parameters									
Phantom Uncertainty (shape									
and thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	00
Liquid Conductivity -			_						
deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	00
Liquid Conductivity -		400	_	4 = 2		0.10		2.5	
measurement uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5	00
Liquid Permittivity -	E 2.2	10.0	_ n	1.72	0.0	0.40	2.5	2.0	
deviation from target values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8	00
Liquid Permittivity -	Eaa	5.0	Р	1.70	0.5	0.40	1.7	1.4	
measurement uncertainty Combined Standard	E.3.3	5.0	R	1.73	0.6	0.49	1.7	1.4	00
Uncertainty			RSS				12	11	1363
Expanded Uncertainty			1133				12	11	1505
(95% CONFIDENCE					I				
LEVEL)			k=2				23	22	

Form-SAR-Rpt-Rev. 2.00 Page 11 of 42

Uncertainty Budget for System Performance Check (dipole & flat phantom)

B	Oncertainty Dudget for System	11011	OI IIIa	1100	neek (u	CC III	it phantom)				
Tol. Prob.								It =	i =		
Uncertainty Component	a	b	c	d	e = f(d,k)	f	g	cxf/e	cxg/e	k	
Uncertainty Component			Tol.	Prob.		c :	c:	1 g	10 g		
Uncertainty Component Sec. Div. (±%) (±%) v₁			(± %)					и.			
Measurement System	Uncertainty Component	Sec.	(,		Div.	(- 8)	(8/			ν,	
Probe Calibration					Ditt			(=70)	(=70)	- 1	
Axial Isotropy		E 2.1	4.8	N	1.00	1	1	4.8	4.8		
Spherical Isotropy						_	1				
Boundary Effect						•	-				
Linearity						1	1				
System Detection Limits						_	1				
Readout Electronics											
Response Time						_					
Integration Time						_	-				
RF Ambient Conditions						_	1				
Probe Positioner Mechanical Tolerance E.6.2 0.3 R 1.73 1 1 0.2 0.2 ∞						1	1				
Probe Positioning with respect to Phantom Shell E.6.3 1.1 R 1.73 1 1 0.6 0.6 ∞						1	1				
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation E.5 3.9 R 1.73 1 1 2.3 2.3 ∞											
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation Dipole Dipole Axis to Liquid Distance B, E.4.2 1.0 R 1.73 1 1 0.6 0.6 ∞ Input Power and SAR Drift Measurement 8, 6.6.2 4.7 R 1.73 1 1 2.7 2.7 ∞ Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness tolerances) E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity - deviation from target values E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity - measurement uncertainty Liquid Permittivity - deviation from target values E.3.3 10.0 R 1.73 0.64 0.43 3.7 2.5 ∞ Liquid Permittivity - deviation from target values E.3.3 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty Expanded Uncertainty Expanded Uncertainty		E.6.3	1.1	R	1.73	1	1	0.6	0.6		
Algorithms for Max. SAR Evaluation											
Algorithms for Max. SAR Evaluation	Extrapolation, interpolation and Integration										
Dipole Dipole Axis to Liquid Distance 8, E.4.2 1.0 R 1.73 1 1 0.6 0.6 ∞		E.5	3.9	R	1.73	1	1	2.3	2.3		
Dipole Axis to Liquid Distance											
Input Power and SAR Drift Measurement		8. E.4.2	1.0	R	1.73	1	1	0.6	0.6		
Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness tolerances) E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞			4.7	_		1	1		2.7	00	
tolerances) E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity - deviation from target values E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity - measurement uncertainty E.3.3 10.0 R 1.73 0.64 0.43 3.7 2.5 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS 10 9.4 99999 Expanded Uncertainty											
tolerances) E.3.1 4.0 R 1.73 1 1 2.3 2.3 ∞ Liquid Conductivity - deviation from target values E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity - measurement uncertainty E.3.3 10.0 R 1.73 0.64 0.43 3.7 2.5 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS 10 9.4 99999 Expanded Uncertainty	Phantom Uncertainty (shape and thickness										
Liquid Conductivity - deviation from target values E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity - measurement uncertainty E.3.3 10.0 R 1.73 0.64 0.43 3.7 2.5 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS 10 9.4 99999 Expanded Uncertainty	F 1 A	E.3.1	4.0	R	1.73	1	1	2.3	2.3		
values E.3.2 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity - measurement uncertainty E.3.3 10.0 R 1.73 0.64 0.43 3.7 2.5 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS 10 9.4 99999 Expanded Uncertainty 8 1.73 0.6 0.49 1.7 1.4 ∞	Liquid Conductivity - deviation from target										
Liquid Conductivity - measurement uncertainty E.3.3 10.0 R 1.73 0.64 0.43 3.7 2.5 ∞ Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS 10 9.4 99999 Expanded Uncertainty		E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	00	
Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS 10 9.4 99999 Expanded Uncertainty 9.4 99999	Liquid Conductivity - measurement										
Liquid Permittivity - deviation from target values E.3.2 10.0 R 1.73 0.6 0.49 3.5 2.8 ∞ Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS 10 9.4 99999 Expanded Uncertainty Page 10 9.4 99999	uncertainty	E.3.3	10.0	R	1.73	0.64	0.43	3.7	2.5		
Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS 10 9.4 99999 Expanded Uncertainty 0.6 0.49 1.7 1.4 ∞	Liquid Permittivity - deviation from target										
Liquid Permittivity - measurement uncertainty E.3.3 5.0 R 1.73 0.6 0.49 1.7 1.4 ∞ Combined Standard Uncertainty RSS 10 9.4 99999 Expanded Uncertainty 0.6 0.49 1.7 1.4 ∞	values	E.3.2	10.0	R	1.73	0.6	0.49	3.5	2.8		
Combined Standard Uncertainty RSS 10 9.4 99999 Expanded Uncertainty	Liquid Permittivity - measurement										
Expanded Uncertainty		E.3.3	5.0	R	1.73	0.6	0.49	1.7	1.4	00	
	Combined Standard Uncertainty			RSS				10	9.4	99999	
(95% CONFIDENCE LEVEL) $k=2$ 20 18	Expanded Uncertainty										
	(95% CONFIDENCE LEVEL)			k=2				20	18		

Notes for Tables 1 and 2

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) *ui* SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty.

Form-SAR-Rpt-Rev. 2.00 Page 12 of 42

7.0 S.A.R. Test Results

The S.A.R. result obtained by the test described in Section 5.0 is listed in section 7.1 below. The result below reflects the highest observed S.A.R. performance using audio accessory model HCSN4001A. The DASY3TM S.A.R. measurement scan is provided in APPENDIX B for the result data presented.

7.1 S.A.R. results

Compliance Assessment at the body using audio accessory model HCSN4001A; CW mode												
Run Number/ SN	Freq. (MHz)	Antenna/ Position	Battery	Test position	Body- worn	Additional attachments	Initial Power (W)		Measured 1g-S.A.R. (mW/g)	1g-S.A.R.	Meas. 10g-S.A.R. (mW/g)	Max Calc. 10g-S.A.R. (mW/g)
Ab-R2-030905- 18/158ABS0701	464.563	Fixed	NTN8971B	Against phantom	NNTN4020A	HCSN4001A	2.505	-0.780	3.940	2.36	2.860	1.71

7.2 Peak S.A.R. location

Refer to APPENDIX B for detailed S.A.R. scan distributions.

7.3 Highest S.A.R. results calculation methodology

The calculated maximum 1-gram and 10-gram averaged S.A.R. value is determined by scaling the measured S.A.R. to account for power leveling variations and power output slump below the reported maximum power during the S.A.R. measurements. For this device the Maximum Calculated 1-gram and 10-gram averaged peak S.A.R. is calculated using the following formula:

```
Max. Calc. 1-g Avg. SAR = ((S.A.R. meas. / (10^(Pdrift/10))*(Pmax/Pint))* DC%)
P_{max} = Maximum Power (W)
P_{int} = Initial Power (W)
Pdrift = DASY drift results (dB)
SAR_{meas.} = Measured 1 gram averaged peak S.A.R. (mW/g)
DC \% = Transmission mode duty cycle in % where applicable
```

8.0 Conclusion

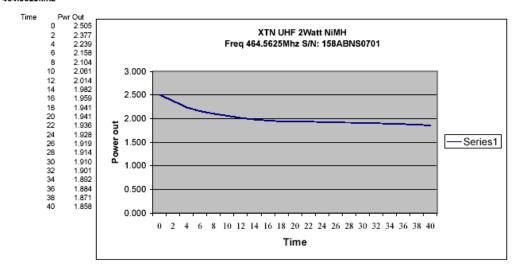
The highest Operational Maximum Calculated 1-gram and 10-gram average S.A.R. values found for FCC ID: AZ489FT4851

At the body: 1-g Avg. = 2.36 mW/g; 10-g Avg. = 1.71 mW/g

The 1-g average result above at the body replaces the previously reported 1-g average results of 1.6mW/g at the body. The previously reported 1-g average result at the face of 1.17mW/g will remain current. These test results clearly demonstrate compliance with FCC Occupational/ Controlled RF Exposure limits of **8.0 mW/g** per the requirements of 47 CFR 2.1093(d).

Form-SAR-Rpt-Rev. 2.00 Page 13 of 42

APPENDIX A


Power Slump Data

Form-SAR-Rpt-Rev. 2.00 Page 14 of 42

Equipment HP8920B Control # SMHPB030 calibration date Mar 17, 00 Due Mar 17, 02 9/19/2001

XTN UHF 2 Watts Pilot pwr slump 9/19/01 NiMH

Radio S/N: 158ABS0701 Ch 2 freq 464.5625Mhz

Form-SAR-Rpt-Rev. 2.00 Page 15 of 42

APPENDIX B Data Results

Form-SAR-Rpt-Rev. 2.00 Page 16 of 42

FCC ID: AZ489FT4851; Test Date: 9/5/03 Motorola CGISS EME Laboratory

RUN #: Ab-R2-030905-18

MODEL #: NUE2986A S/N: 158ABS0701

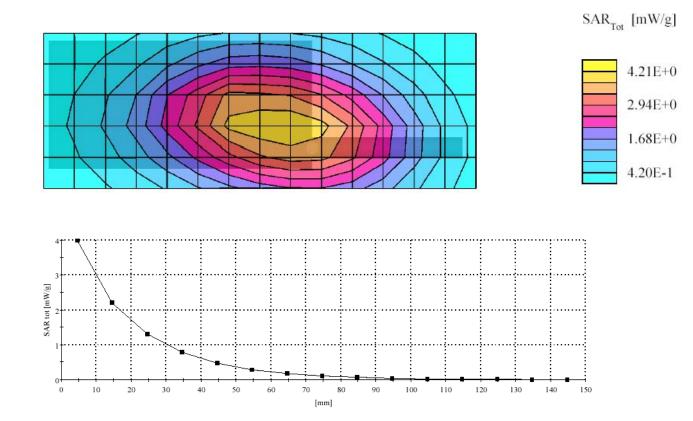
Tx freq: 464.563

Simulated tissue temp: 20.5 Start power: 2.505 W

Antenna/position: Fixed Battery kit: NTN8971B

Carry Accessories: NNTN4020A Audio/data accessories: HCSN4001A

DUT w/ carry case against the flat phantom


Flat Phantom; Flat Abdomen (1) Section; Position: (90°,90°);

Probe: ET3DV6 - SN1383 (Cal Date 26 February 2003); ConvF(7.50,7.50,7.50); Probe cal date: 26/02/03; Crest factor: 1.0;

FCC Body 465: $\sigma = 0.91$ mho/m $\varepsilon = 54.7$ $\rho = 1.00$ g/cm3; DAE3V1SN406 (11/11/02) Cube 7x7x7: SAR (1g): 3.94 mW/g, SAR (10g): 2.86 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 46.5, 118.5, 4.7

Power drift: -0.78dB

Form-SAR-Rpt-Rev. 2.00 Page 17 of 42

APPENDIX C Dipole System Performance Check Results

Dipole validations at the head from SPEAG are provided herein. The CGISS EME lab validated the dipole to the applicable IEEE system performance targets. Within the same day system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. The results of the CGISS EME system performance validation are provided in this appendix.

Form-SAR-Rpt-Rev. 2.00 Page 18 of 42

SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 9/5/03

Motorola CGISS EME Lab

Run #: Sys Perf R2-030905-01

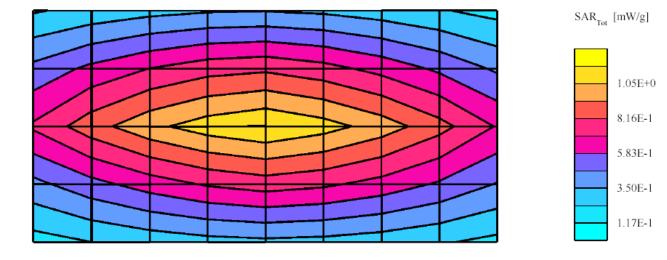
Tx Freq: 450MHz

Simulated tissue temp: 20.5 C

Start power: 250mW

Target:

4.52 mW/g for 1g SAR, 2.99 mW/g for 10g SAR, +/- 10% from system performance target 1/16/03. SAR calculated 1g is 4.62 mW/g percent from target (including drift) is 2.24% SAR Calculated 10g is 3.05 mW/g Percent from target (including drift) is 2.14%


 $Flat; Probe: ET3DV6 - SN1383 \ (Cal\ Date\ 26\ February\ 2003); Probe\ Cal\ Date: 26/02/03 ConvF (7.50, 7.50, 7.50); Crest\ factor:\ 1.0; Probe: ET3DV6 - SN1383 \ (Cal\ Date\ 26\ February\ 2003); Probe\ Cal\ Date: 26/02/03 ConvF (7.50, 7.50, 7.50); Crest\ factor:\ 1.0; Probe: ET3DV6 - SN1383 \ (Cal\ Date\ 26\ February\ 2003); Probe\ Cal\ Date: 26/02/03 ConvF (7.50, 7.50, 7.50); Crest\ factor:\ 1.0; Probe: ET3DV6 - SN1383 \ (Cal\ Date\ 26\ February\ 2003); Probe\ Cal\ Date: 26/02/03 ConvF (7.50, 7.50, 7.50); Crest\ factor:\ 1.0; Probe: ET3DV6 - SN1383 \ (Cal\ Date\ 26\ February\ 2003); Probe\ Cal\ Date: 26/02/03 ConvF (7.50, 7.50, 7.50); Crest\ factor:\ 1.0; Probe: ET3DV6 - SN1383 \ (Cal\ Date\ 26\ February\ 2003); Probe\ Cal\ Date: 26/02/03 ConvF (7.50, 7.50, 7.50); Crest\ factor:\ 1.0; Probe: ET3DV6 - SN1383 \ (Cal\ Date\ 26\ February\ 2003); Probe\ Cal\ Date: 26/02/03 ConvF (7.50, 7.50, 7.50); Crest\ factor:\ 1.0; Probe: 26/02/03 ConvF (7.50, 7.50, 7.50); Crest\ factor:\ 1.0; Probe: 26/02/03 ConvF (7.50, 7.50, 7.50); Crest\ factor:\ 1.0; Probe: 26/02/03 ConvF (7.50, 7.50, 7.50); Crest\ factor:\ 1.0; Probe: 26/02/03 ConvF (7.50, 7.50, 7.50); Crest\ factor:\ 1.0; Probe: 26/02/03 ConvF (7.50, 7.50, 7.50); Crest\ factor:\ 1.0; Probe: 26/02/03 ConvF (7.50, 7.50, 7.50); Crest\ factor:\ 1.0; Probe: 26/02/03 ConvF (7.50, 7.50, 7.50); Crest\ factor:\ 1.0; Probe: 26/02/03 ConvF (7.50, 7.50, 7.50); Crest\ factor:\ 1.0; Probe: 26/02/03 ConvF (7.50, 7.50); Cres$

FCC Body 450: $\sigma = 0.90 \text{ mho/m } \epsilon = 54.9 \ \rho = 1.00 \ \text{g/cm}_3; DAE3V1SN406 \ (11/11/02)$

Cubes (2): Peak: 1.77 mW/g \pm 0.02 dB, SAR (1g): 1.15 mW/g \pm 0.02 dB, SAR (10g): 0.760 mW/g \pm 0.02 dB, (Worst-case

extrapolation) Penetration depth: 12.9 (11.5, 14.8) [mm]

Power drift: -0.02 dB

Form-SAR-Rpt-Rev. 2.00 Page 19 of 42

SYSTEM PERFORMANCE CHECK TARGET SAR

Date:	1/16/2003	Frequency (MHz):	450
Lab Location:	CGISS	Mixture Type:	FCC Body
Robot System:	CGISS 3	Ambient Temp.(°C):	22.6, (Humid: 45%)
Probe Serial #:	ET3DV6-1393	Tissue Temp.(°C):	21.5
DAE Serial #:	406		
Tissue Characteristics			
Permitivity:	55.4	Phantom Type/SN:	80302002C/S7
Conductivity:	0.92	Distance (mm):	15 (tissue/dipole cnt)
Reference Source:	D450V2	(Dipole)	
Reference SN:	1002		
Power to Dipole:	250 mW		
Measured SAR Value Power Drift:		13 mW/g, 0.748 0 dB	mW/g (10g avg.)
New Target/Measured			
SAR Value:		52 mW/g, 2.99	mW/g (10g avg.)
(normalized to 1.0 W, includi			1
Test performed by:	J.	Fortier	Initial:
			f

Form-SAR-Rpt-Rev. 2.00 Page 20 of 42

Dipole D450V2 SN1002; Test date:01/16/03

Run #: Sys Val R3 030116-07

Phantom #:80302002C/S7

Model #: D450V2

SN: 1002

Robot: CGISS-3

Tester: J. Fortier

TX Freq: 450 MHz

Sim Tissue Temp: 21.5 (Celsius)

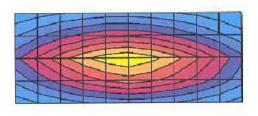
Start Power; 250mW DAE3: SN:406

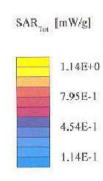
DAE Cal Date: 11/11/02

- Comments-

Target at 1W is 4.52 mW/g (1g), 2.99 mW/g (10g)

Flat; Probe: ET3DV6 - SN1393 SPEAG; ConvF(8.20,8.20,8.20); Crest factor: 1.0; FCC Body 450: σ = 0.92 mho/m ϵ_r = 55.4 ρ =


1.00 g/cm3


 $Cubes~(2);~Peak;~1.74~mW/g\pm0.06~dB,~SAR~(1g);~1.13~mW/g\pm0.06~dB,~SAR~(10g);~0.748~mW/g\pm0.06~dB,~(Worst-case);~1.13~mW/g\pm0.06~dB,~(Worst-case);~0.13~mW/g\pm0.06~dB,~($

extrapolation)

Penetration depth: 13.1 (11.6, 14.9) [mm]

Powerdrift: -0.00 dB

Motorola CGISS EME Lab

SYSTEM VALIDATION

Date:	1/16/2003	Frequency (MHz):	450
Lab Location:	CGISS	Mixture Type:	IEEE Head
Robot System:	CGISS 3	Ambient Temp.(°C):	: 22.6, (Humid: 46.4%)
Probe Serial #:	ET3DV6-1393	Tissue Temp.(°C):	21.2
DAE Serial #:	406		
Tissue Characteristics			
Permitivity:	43.3	Phantom Type/SN:	80302002B/S6
Conductivity:	0.87	Distance (mm):	15 (tissue/dipole cnt)
Reference Source:	D450V2	(Dipole)	
Reference SN:	1002	— 20 8 10 — 1	
Power to Dipole:	250 mW		
Power Output (radio):	mW		
Target SAR Value: (normalized to 1.0 W)	4	. <u>9</u> mW/g,3.3	mW/g (10g avg.)
Measured SAR Value;	1.	17 mW/g, 0.774	mW/g (10g avg.)
Power Drift:	-0.6	02 dB	
Measured SAR Value: (normalized to 1.0 W, including		70 mW/g, 3.11	mW/g (10g avg.)
Percent Difference Fro	om Target (MUS'	Γ be within System Und	
			5.75 % (10g ave)
Test performed by: _	J.	Fortier	Initial:
			fe

Form-SAR-Rpt-Rev. 2.00 Page 22 of 42

SYSTEM PERFORMANCE CHECK TARGET SAR

1/16/2003	Frequency (MHz):	450
CGISS	Mixture Type:	IEEE Head
CGISS 3	Ambient Temp.(°C)	: 22.6, (Humid: 46.4%)
ET3DV6-1393	Tissue Temp.(°C):	21.2
406		<u> </u>
·s		
43.3	Phantom Type/SN:	80302002B/S6
0.87	Distance (mm):	15 (tissue/dipole cnt)
D450V2	(Dipole)	
1002		
250 mW		
e: 1.1	17 mW/g, 0.774	mW/g (10g avg.)
	The state of the s	
ed		
	70 mW/g,3.11	mW/g (10g avg.)
		1
	CGISS CGISS 3 ET3DV6-1393 406 ss 43.3 0.87 D450V2 1002 250 mW e: 10.4	CGISS

Dipole D450V2 SN1002; Test date:01/16/03

Run #: Sys Val R3 030116-04

Phantom #:80302002B/S6

Model #: D450V2 Robot: CGISS-3 SN: 1002 Tester; J. Fortier

TX Freq: 450 MHz

Sim Tissue Temp: 21.2 (Celsius)

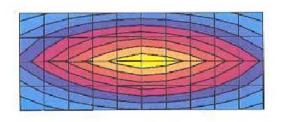
Start Power; 250mW DAE3; SN:406 STATE OF THE PROPERTY OF THE WAY OF THE PROPERTY OF THE PROPER

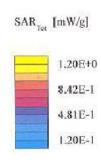
DAE Cal Date: 11/11/02

- Comments-

Target at 1W is 4.9 mW/g (1g)

SAR calculated is 4.7 mW/g, Percent from IEEE-1528 target (including drift) for 1g is 4.0%


Flat; Probe: ET3DV6 - SN1393 SPEAG; ConvF(8.00,8.00,8.00); Crest factor: 1.0; IEEE Head 450 MHz: $\sigma = 0.87$ mho/m $\epsilon_c = 43.3$ $\rho = 1.00$ g/cm³


Cubes (2): Peak: 1.81 $\,$ mW/g \pm 0.05 dB, SAR (1g): 1.17 $\,$ mW/g \pm 0.05 dB, SAR (10g): 0.774 $\,$ mW/g \pm 0.06 dB, (Worst-case

extrapolation)

Penetration depth: 12.8 (11.4, 14.5) [mm]

Powerdrift: -0.02 dB

Motorola CGISS EME Lab

APPENDIX D

Calibration Certificates

Form-SAR-Rpt-Rev. 2.00 Page 25 of 42

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Motorola CGISS

Object(s)	ET3DV6 - SN:138	3	
Calibration procedure(s)	QA CAL-01.v2 Calibration proced	ure for dosimetric E-field probe	S
Calibration date:	February 26, 2003		
Condition of the calibrated item	In Tolerance (acco	rding to the specific calibration	document)
This calibration statement document 17025 international standard.	ts traceability of M&TE used i	n the calibration procedures and conformity of t	he procedures with the ISO/IEC
		ity: environment temperature 22 +/- 2 degrees (Celsius and humidity < 75%.
Calibration Equipment used (M&TE	critical for calibration)		
Calibration Equipment used (M&TE Model Type	critical for calibration)	Cal Date	Scheduled Calibration
Calibration Equipment used (M&TE Model Type RF generator HP 8684C	critical for calibration) ID # US3642U01700	Cal Date 4-Aug-99 (in house check Aug-02)	Scheduled Calibration In house check; Aug-05
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A	critical for calibration) ID # US3642U01700 MY41495277	Cal Date 4-Aug-99 (in house check Aug-02) 8-Mar-02	Scheduled Calibration In house check; Aug-05 Mar-03
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A	critical for calibration) ID # US3642U01700 MY41495277 MY41092180	Cal Date 4-Aug-99 (in house check Aug-02) 8-Mar-02 18-Sep-02	Scheduled Calibration In house check; Aug-05 Mar-03 Sep-03
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B	critical for calibration) ID # US3642U01700 MY41495277	Cal Date 4-Aug-99 (in house check Aug-02) 8-Mar-02 18-Sep-02 13-Sep-02	Scheduled Calibration In house check; Aug-05 Mar-03 Sep-03 Sep-03
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	critical for calibration) ID # US3642U01700 MY41495277 MY41092180 GB41293874	Cal Date 4-Aug-99 (in house check Aug-02) 8-Mar-02 18-Sep-02	Scheduled Calibration In house check; Aug-05 Mar-03 Sep-03
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	critical for calibration) ID # US3642U01700 MY41495277 MY41092180 GB41293874 US38432426	Cal Date 4-Aug-99 (in house check Aug-02) 8-Mar-02 18-Sep-02 13-Sep-02 3-May-00	Scheduled Calibration In house check: Aug-05 Mar-03 Sep-03 Sep-03 In house check: May 03
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Calibrator Type 702	critical for calibration) ID # US3642U01700 MY41495277 MY41092180 GB41293874 US38432426 SN: 6295803	Cal Date 4-Aug-99 (in house check Aug-02) 8-Mar-02 18-Sep-02 13-Sep-02 3-May-00 3-Sep-01	Scheduled Calibration In house check: Aug-05 Mar-03 Sep-03 Sep-03 In house check: May 03 Sep-03
All calibrations have been conducted Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor E4412A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Calibrator Type 702 Calibrated by:	critical for calibration) ID # US3642U01700 MY41495277 MY41092180 GB41293874 US38432426 SN: 6295803	Cal Date 4-Aug-99 (in house check Aug-02) 8-Mar-02 18-Sep-02 13-Sep-02 3-May-00 3-Sep-01 Function Technician	Scheduled Calibration In house check: Aug-05 Mar-03 Sep-03 Sep-03 In house check: May 03 Sep-03

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for

Form-SAR-Rpt-Rev. 2.00 Page 26 of 42

Calibration Laboratory of Schmid & Partner Engineering AG is completed.

DASY - Parameters of Probe: ET3DV6 SN:1383

Sensit	ivity in Fre	e Space		Diode C	compress	sion	
	NormX	1.80	$\mu V/(V/m)^2$		DCP X	93	mV
	NormY	1.55	$\mu V/(V/m)^2$		DCP Y	93	mV
	NormZ	1.62	$\mu V/(V/m)^2$		DCP Z	93	mV
Sensit	ivity in Tis	sue Simu	lating Liquid				
Head	900	MHz	$\epsilon_{\rm r} = 41.5 \pm 5\%$	σ=	0.97 ± 5% r	nho/m	
Head	835	5 MHz	$\epsilon_{\rm r}$ = 41.5 ± 5%	σ=	0.90 ± 5% r	nho/m	
	ConvF X	6.5	± 9.5% (k=2)		Boundary e	effect:	
	ConvF Y	6.5	± 9.5% (k=2)		Alpha	0.59	
	ConvF Z	6.5	± 9.5% (k=2)		Depth	1.97	
Head	1800) MHz	ϵ_r = 40.0 ± 5%	σ=	1.40 ± 5% r	nho/m	
Head	1900) MHz	$\epsilon_r = 40.0 \pm 5\%$	σ=	1.40 ± 5% r	nho/m	
	ConvF X	5.2	±9.5% (k=2)		Boundary e	ffect:	
	ConvF Y	5.2	± 9.5% (k=2)		Alpha	0.57	
	ConvF Z	5.2	±9.5% (k=2)		Depth	2.54	
Bound	ary Effect						
Head	900) MHz	Typical SAR gradient	t: 5 % per m	ım		
	Probe Tip to	o Boundary			1 mm	2 mm	
	SAR _{be} [%]	Without Co	rrection Algorithm		10.0	5.2	
	SAR _{be} [%]	With Corre	ction Algorithm		0.1	0.5	
Head	1800) MHz	Typical SAR gradient	t: 10 % per i	mm		
	Probe Tip to	o Boundary			1 mm	2 mm	
	SAR _{be} [%]	Without Co	rrection Algorithm		15.1	9.9	
	SAR _{be} [%]	With Corre	ction Algorithm		0.2	0.0	
Senso	r Offset						

2.7

 0.5 ± 0.2

mm

mm

Form-SAR-Rpt-Rev. 2.00 Page 27 of 42

Probe Tip to Sensor Center

Optical Surface Detection

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1383
Place of Assessment:	Zurich
Date of Assessment:	February 28, 2003
Probe Calibration Date:	February 26, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

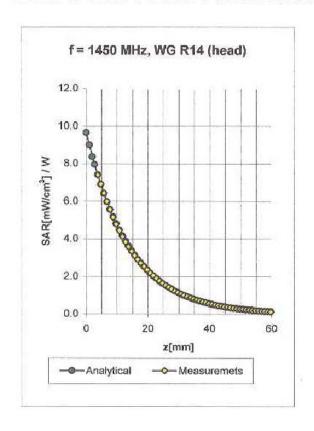
Dosimetric E-Field Probe ET3DV6 SN:1383

Conversion factor (± standard deviation)

150 MHz >	ConvF	$8.1 \pm 8\%$	$\varepsilon_r = 61.9$ $\sigma = 0.80 \text{ mho/m}$ (body tissue)
236 MHz	ConvF	$7.9\pm8\%$	$\epsilon_r = 59.8$ $\alpha = 0.87 \text{ mho/m}$ (body tissue)
300 MHz /	ConvF	7.8 ± 8%	$\epsilon_r = 58.2$ $\sigma = 0.92 \text{ mho/m}$ (body tissue)
350 MHz	ConvF	7.8 ± 8%	$\epsilon_r = 57.7$ $\sigma = 0.93 \text{ mho/m}$ (body tissue)
450 MHz	ConvF	$7.5 \pm 8\%$	$\varepsilon_r = 56.7$ $\sigma = 0.94 \text{ mho/m}$ (body tissue)
784 MHz ¥	ConvF	6.5 ± 8%	$\epsilon_r = 55.4$ $\sigma = 0.97 \text{ mho/m}$ (body tissue)
1450 MHz	ConvF	$5.3\pm8\%$	$\epsilon_r = 54.0$ $\sigma = 1.30 \text{ mho/m}$ (body tissue)

Form-SAR-Rpt-Rev. 2.00 Page 29 of 42

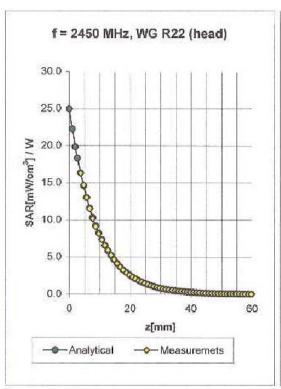
Dosimetric E-Field Probe ET3DV6 SN:1383

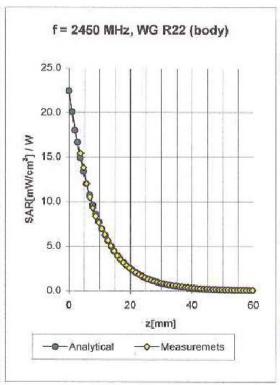

Conversion factor (± standard deviation)

A 441 - 41 4 - 11 - 1 - 1 - 1	to V - Homes many in a		
150 MHz	ConvF	$9.0\pm8\%$	$\epsilon_r = 52.3$ $\sigma = 0.76 \text{ mho/m}$ (head tissue)
236 MHz 🗸	ConvF	8.2 ± 8 %	$\epsilon_r = 48.3$ $\sigma = 0.82 \text{ mho/m}$ (head tissue)
300 MHz V	ConvF	$7.7\pm8\%$	$\varepsilon_r = 45.3$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
350 MHz ∨	ConvF	$7.7 \pm 8\%$	$\epsilon_r = 44.7$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
100 MHz	ConvF	$7.5\pm8\%$	$\epsilon_r = 44.4$ $\sigma = 0.87 \text{ mho/m}$ (head tissue - CENELEC)
450 MHz ✓	ConvF	$7.5\pm8\%$	$\epsilon_r = 43.5$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
784 MHz 🗸	ConvF	6.7 ± 8%	$\epsilon_r = 41.8$ $\sigma = 0.90 \text{ mho/m}$ (head tissue)

Form-SAR-Rpt-Rev. 2.00 Page 30 of 42

ET3DV6 SN:1383

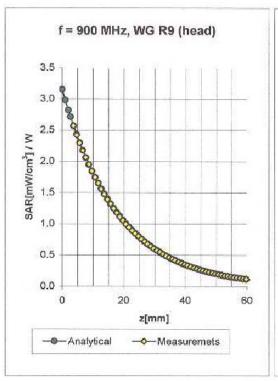

Conversion Factor Assessment

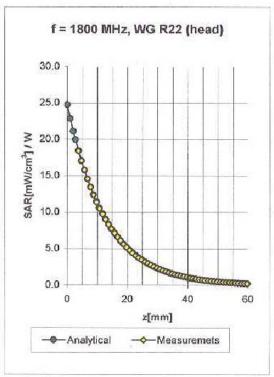


Head	1450 MHz		$\varepsilon_r = 40.4 \pm 5\%$	$\sigma = 1.23 \pm 5\%$ mho	o/m
	ConvF X	5.8	± 8.9% (k=2)	Boundary effect	et:
	ConvF Y	5.8	±8.9% (k=2)	Alpha	0.75
	ConvF Z	5.8	±8.9% (k=2)	Depth	1.91

Form-SAR-Rpt-Rev. 2.00 Page 31 of 42

Conversion Factor Assessment

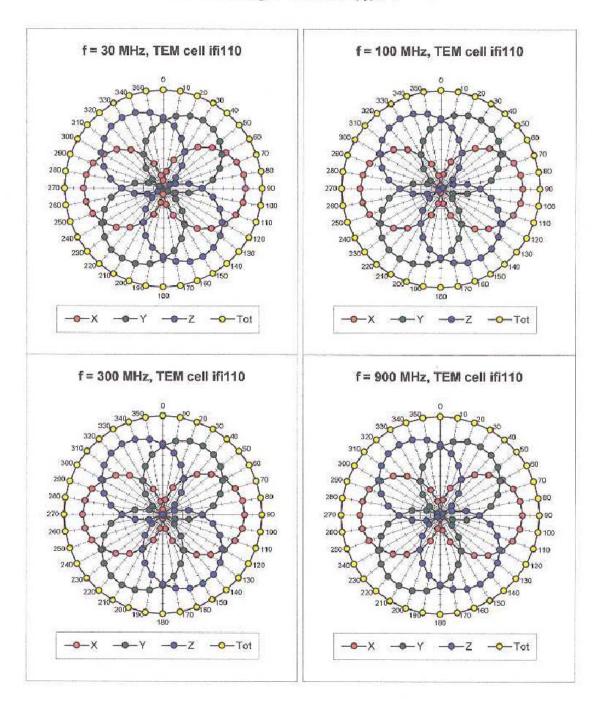




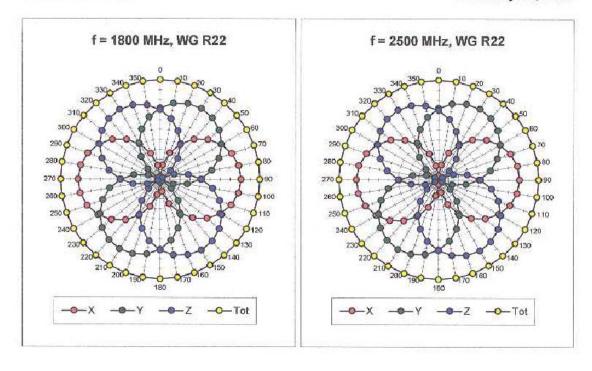
Head	2450	MHz		$\varepsilon_{\rm r}$ = 39.2 ± 5%	σ = 1.80 ± 5% m	ho/m
	ConvF X		5.0	± 8.9% (k=2)	Boundary eff	fect:
	ConvF Y		5.0	± 8.9% (k=2)	Alpha	1.15
	ConvF Z		5.0	± 8.9% (k=2)	Depth	1.76
Body	2450	MHz		$\epsilon_{\rm r}$ = 52.7 ± 5%	α = 1.95 ± 5% m	ho/m
	ConvF X		4.7	± 8.9% (k=2)	Boundary eff	fect:
	ConvF Y		4.7	± 8.9% (k=2)	Alpha	2.00
	ConvF Z		4.7	± 8.9% (k=2)	Depth	1.24

ET3DV6 SN:1383

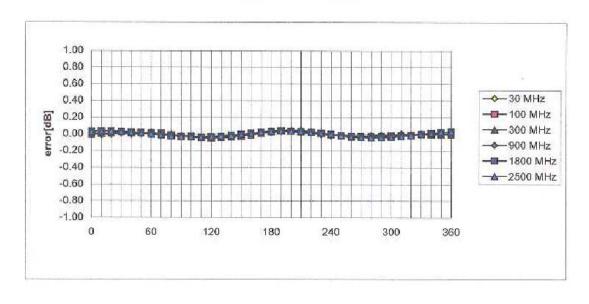
Conversion Factor Assessment



Head	900 MHz		$\varepsilon_r = 41.5 \pm 5\%$	$\sigma = 0.97$	± 5% mho/m	
Head	835 MHz		$\varepsilon_r = 41.5 \pm 5\%$	$\sigma = 0.90$	± 5% mho/m	*
	ConvF X	6.5	± 9.5% (K=2)	Bou	ndary effect:	
	ConvF Y	6.5	±9.5% (k=2)	Alph	na 0.	59
	ConvF Z	6.5	± 9.5% (k=2)	Dep	th 1.	97
Head	1800 MHz		$e_r = 40.0 \pm 5\%$	σ = 1.40) ± 5% mho/m	
Head	1800 MHz 1900 MHz					
пеао	20 T. Spill (1992) 1993		$\varepsilon_{\rm r} = 40.0 \pm 5\%$	0 = 1,40	± 5% mho/m	
	ConvF X	5.2	± 9.5% (k=2)	Bou	ndary effect:	
	ConvF Y	5.2	± 9.5% (k=2)	Alph	na 0.	57
	ConvF Z	5.2	± 9.5% (k=2)	Dep	th 2.	54


Form-SAR-Rpt-Rev. 2.00 Page 33 of 42

Receiving Pattern (ϕ), $\theta = 0^{\circ}$



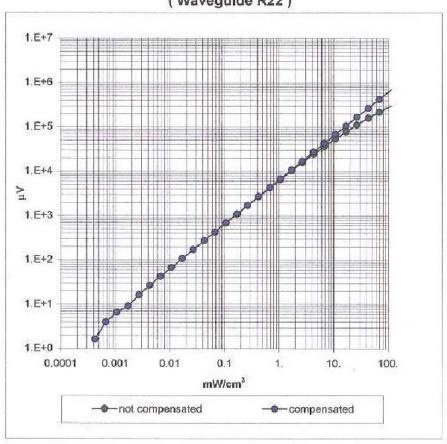
Form-SAR-Rpt-Rev. 2.00 Page 34 of 42

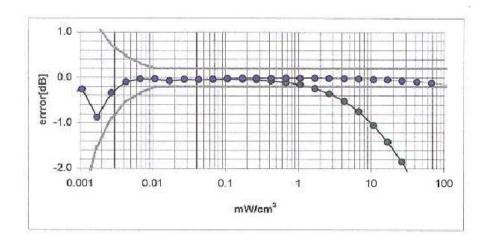
ET3DV6 SN:1383 February 26, 2003


Isotropy Error (ϕ), θ = 0°

Form-SAR-Rpt-Rev. 2.00 Page 35 of 42

Frequency Response of E-Field

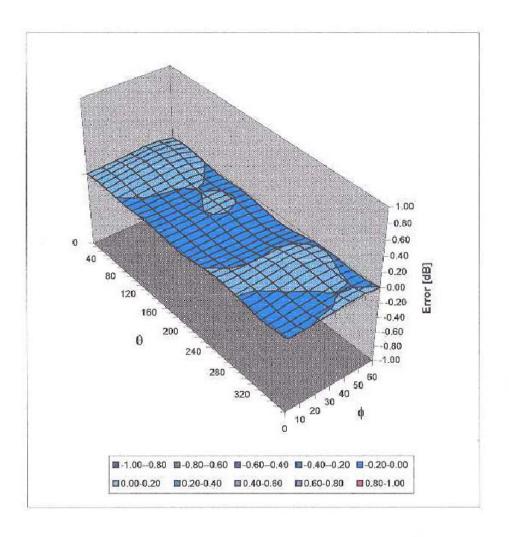

(TEM-Cell:ifi110, Waveguide R22)



Form-SAR-Rpt-Rev. 2.00 Page 36 of 42

Dynamic Range f(SAR_{brain})

(Waveguide R22)



Form-SAR-Rpt-Rev. 2.00 Page 37 of 42

ET3DV6 SN:1383 February 26, 2003

Deviation from Isotropy in HSL

Error (θ,ϕ) , f = 900 MHz

Form-SAR-Rpt-Rev. 2.00 Page 38 of 42

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

450 MHz System Validation Dipole

Type:	D450V2
Serial Number:	1002
Place of Calibration:	Zurich
Date of Calibration:	April 5, 2002
Calibration Interval:	24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by: School Control Control

1. Measurement Conditions

The measurements were performed in the flat phantom filled with head simulating liquid of the following electrical parameters at 450 MHz:

Relative Dielectricity 44.5 $\pm 5\%$ Conductivity 0.86 mho/m $\pm 5\%$

The DASY3 System (Software version 3.1d) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 7.2 at 450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the longer side of the phantom. The standard measuring distance was 15mm from dipole center to the liquid surface including the 6mm thick phantom shell. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was 389 mW \pm 3 %. The results are normalized to 1W input power.

2. SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 1. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm³ (1 g) of tissue: 4.81 mW/g (Advanced Extrapolation)

averaged over 10 cm³ (10 g) of tissue: 3.19 mW/g (Advanced Extrapolation)

Advanced extrapolation has been applied to the measured SAR values to compensate for the probe boundary effect (see DASY User Manual for details).

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well.

Form-SAR-Rpt-Rev. 2.00 Page 40 of 42

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.347 ns (one direction)

Transmission factor:

0.997

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 450 MHz:

 $Re\{Z\} = 57.2 \Omega$

Im $\{Z\} = -5.2 \Omega$

Return Loss at 450 MHz.

-21.7 dB

4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

5. Design

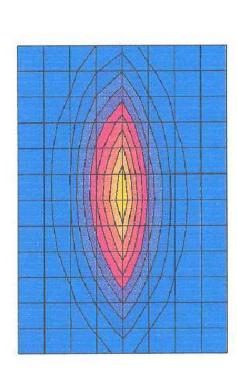
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

6. Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Form-SAR-Rpt-Rev. 2.00 Page 41 of 42

03/27/02


Validation Dipole D450V2 SN:1002, d = 15 mm

Frequency: 450 MHz, Antenna Input Power: 389 [mW]

Phantom Name: Calibration, Grid Specing: Dx = 20.0, Dy = 20.0, Dz = 10.0Probe: ET3DV6 - SN1507; ConvF(7.20,7.20,7.20), Crest factor: 1.0; Head 450 MHz: $\sigma = 0.86$ mho/m $\epsilon_r = 44.5 \ \rho = 1.00$ g/cm³

Cubes (2): Peak: 2.84 mW/g ± 0.03 dB, SAR (1g): 1.87 mW/g ± 0.03 dB, SAR (10g): 1.24 mW/g ± 0.03 dB, (Advanced extrapolation)

Penetration depth: 13.0 (11.9, 14.4) [mm]

1.82E+0

2,03E+0

SAR_{ret} [mW/g]

1.62E+0

1,42E+0

1.22E+0

1.01E+0

8.11E-1

6.08E-1

4.0SE-1

2,03E-1

Schmid & Partner Engineering AG, Zurich, Switzerland