

TEST REPORT

	MEASUREMENT	EXHIBIT	NUMBER OF PAGES
I	RF Power Output	6A 1-2	2
П	Audio Response	6B	1
Ш	Modulation Limiting A. 12.5 kHz channel spacing case	6C	1
IV	Occupied Bandwidth	6D 1-2	4
V	Conducted Spurious Emissions 6E1 1Watt 6E2 0.5 Watts	6E 1-2	2
VI	Radiated Spurious Emissions A. TX Vertical/ Horizontal 0.5W B. TX Vertical/Horizontal 1.0W	6F 1-2	2
VII	Frequency Stability		
	A. Temperature B. Supply Voltage	6G-1 6G-2	1 1
VIII	Transient Frequency Behavior	6H 1-2	2

RF POWER OUTPUT DATA

The RF power output was measured with the indicated voltage applied to and current into the final RF amplifying device.

Measured Conducted RF output (GMRS) 1.04 Watts
Measured Conducted RF output (FRS) 0.580 Watts
* Calculated Radiated RF output (GMRS) 0.599 Watts
* Calculated Radiated RF output (FRS) 0.357 Watts
Normal DC Voltage 4.20 Volts
Normal DC Current (GMRS) 760 ma
Normal DC Current (FRS) 542 ma

Primary Supply Voltage 4.50 Volts

RF Conducted output measured at 4.5v

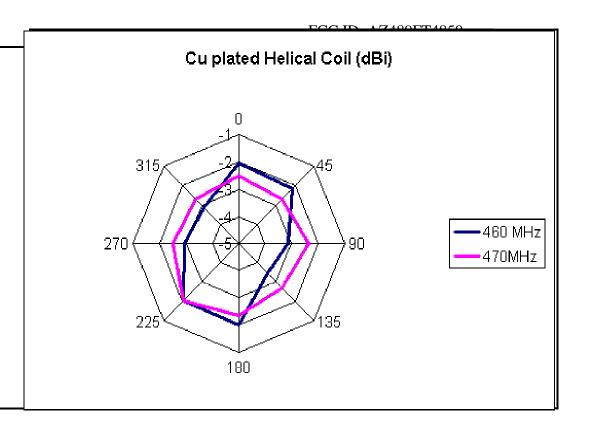
*Calculated Radiated RF output. The conducted power measurements converted to dBm minus the antenna loss, Which is 2.4dB (see exhibit 6A-2) and converted back to watts ERP

Example: GMRS conducted RF output = 1.04 Watts

 $10\log(1.0\text{w}/1\text{w}) = 30.17\text{dBm}$

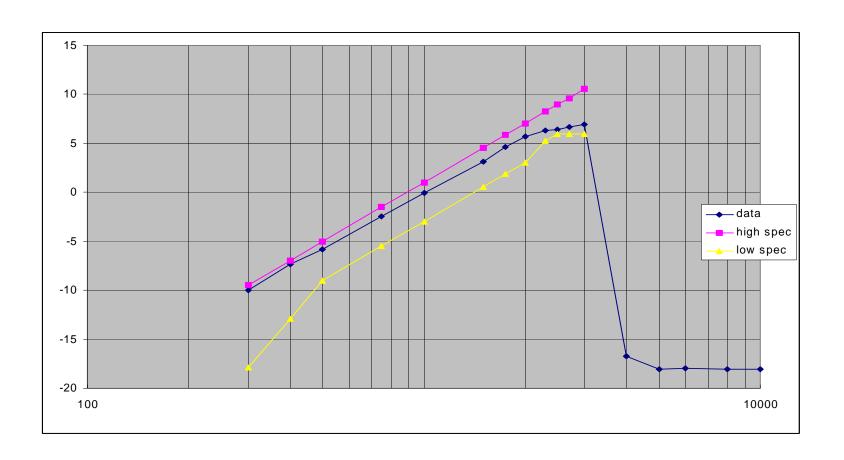
ERP = 30.17dBm-2.4dB=27.77dBm

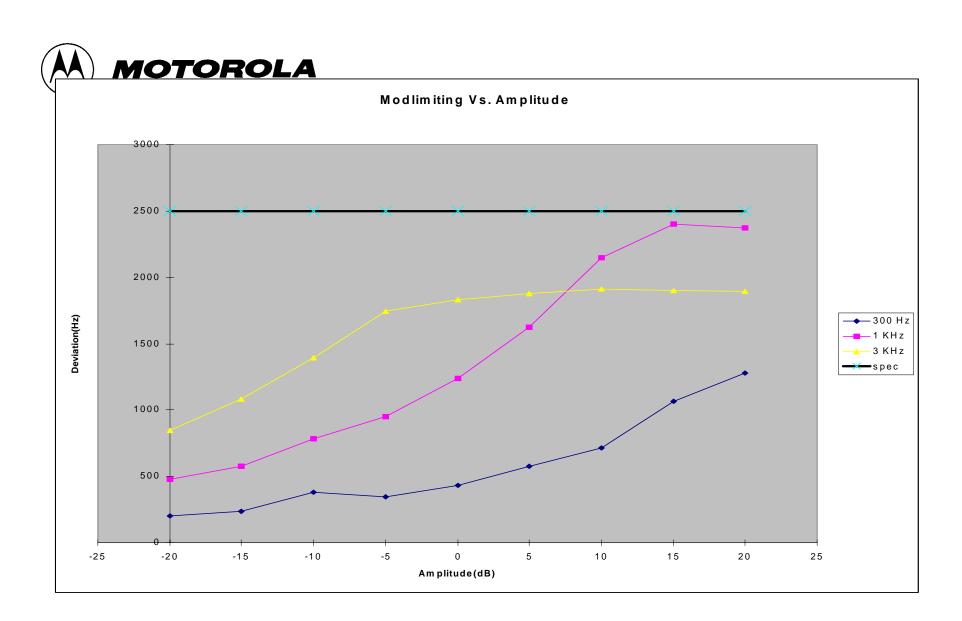
ERP = $10^{(27.77/10)} = 10^{2.777} = 599$ mWatts.


The antenna gain (loss) is measured in an anechoic chamber free of outside radiation, refraction, defraction and interference. The anechoic chamber's path loss = 37.9 dBm. The antenna was placed on an infinite ground plane, and 10dBm was transmitted from the antenna. The receiving spectrum analyzer registered -30.3 dBm. Therefore, the antenna gain = Pr - Pt + Path loss = -30.3 - 10 + 37.9 = -2.4 dB.

Antenna performance data over frequency is on the next page.

EXHIBIT: 6A-1


	Coil (Cu25 u) dBi			
Degree	460 MHz	470MHz		
0	-2.05	-2.53		
45	-2.15	-2.68		
90	-3.15	-2.35		
135	-3.49	-2.68		
180	-2.02	-2.35		
225	-2.05	-2.01		
270	-2.95	-2.51		
315	-3.15	-2.68		
Average	-2.61	-2.47		



AUDIO RESPONSE

EXHIBIT 6B

OCCUPIED BANDWIDTH DATA

12.5 kHz Channel Spacing

EXHIBIT 6E-1

2500 Hz Audio Modulation Emission Type: 11K0F3E Horizontal: 5 kHz/Div. Vertical: 10 dB/Div.

Carrier Ref: 0 dB

Specification Mask D, 90.210

EXHIBIT 6E-2

2500 Hz & 77 Hz Tone "PL" Modulation

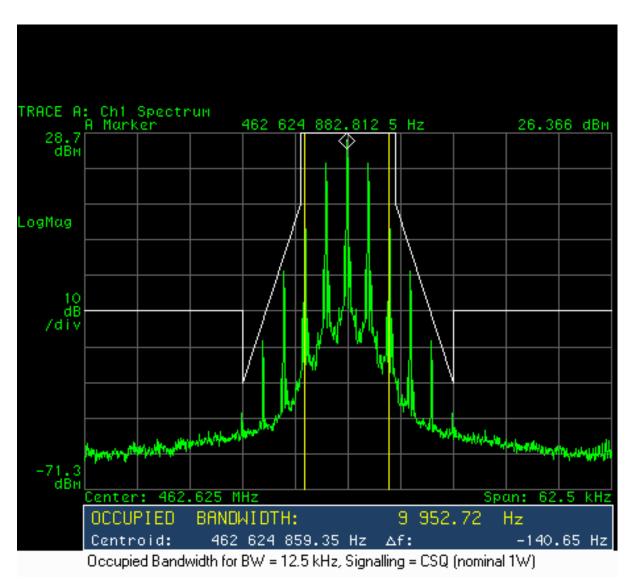
Emission Type: 11K0F3E Horizontal: 5 kHz/Div. Vertical: 10 dB/Div. Carrier Ref: 0 dB

Specification Mask D, 90.210

CARSON'S RULE

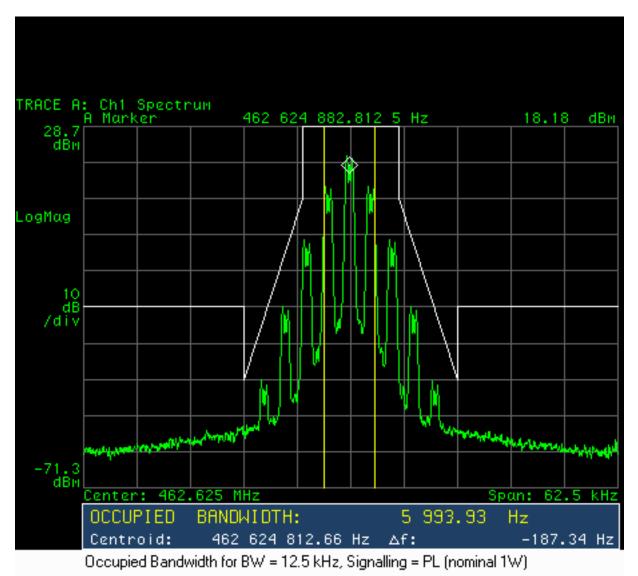
11K0F3E:

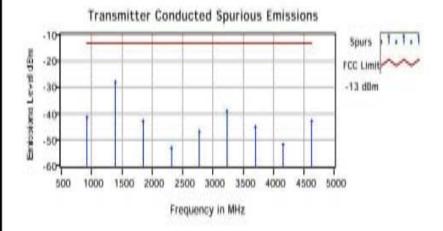
BW = 2(M + D)


BW = 2 (3 kHz maximum modulation frequency + 2.5 kHz deviation)

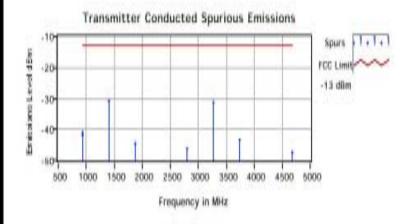
BW = 2 (5.5)

BW = 11 kHz



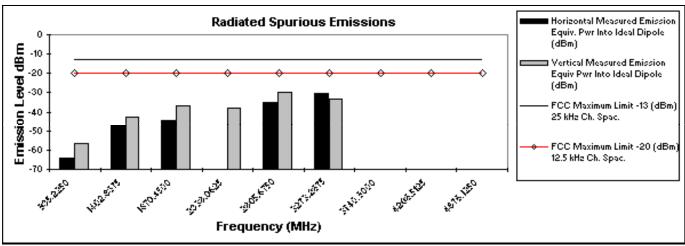


Transmitter Conducted Spurious Emissions	FCC ID: AZ489FT4850
462.56250 MHz	Power 1.0W


Spur Frequency	FCC Limit	Measured Value (dBm)
924.80000	-13.0	-41.7
1387.00000	-13.0	+27.9
1850.00000	-13.0	-43.0
2312.00000	-13.0	-53.1
2772.00000	-13.0	:47.1
3237.00000	-13.0	-39.1
3700.00000	-13.0	+45-3
4162.00000	-13.0	+51.7
4624.00000	13.0	:42.7

Transmitter Conducted Spurious Emissions	FCC ID: AZ489FT4850
467.61250 MHz	Power 500mW

Spur Frequency	FCC Limit	FCC Limit Measured Value (dBn	
934.90000	-13.0	-41.7	
935.30000	-13.0	41.1	
1402.00000	-13.0	+30.0	
1870.00000	-13.0	-44.6	
2802.00000	-13.0	-46.5	
3272,00000	-13.0	-31.3	
3740.00000	+13.0	+43.5	
4675.00000	-13.0	+47.3	

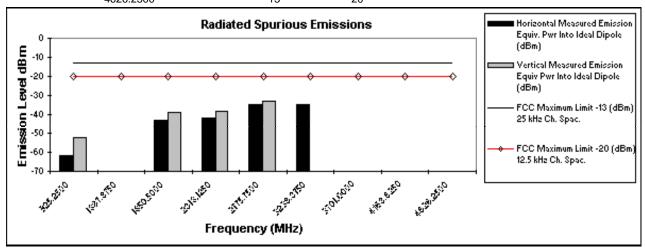

4676.1250

Transmitter Radiated Spurious Emissions: TalkAbout

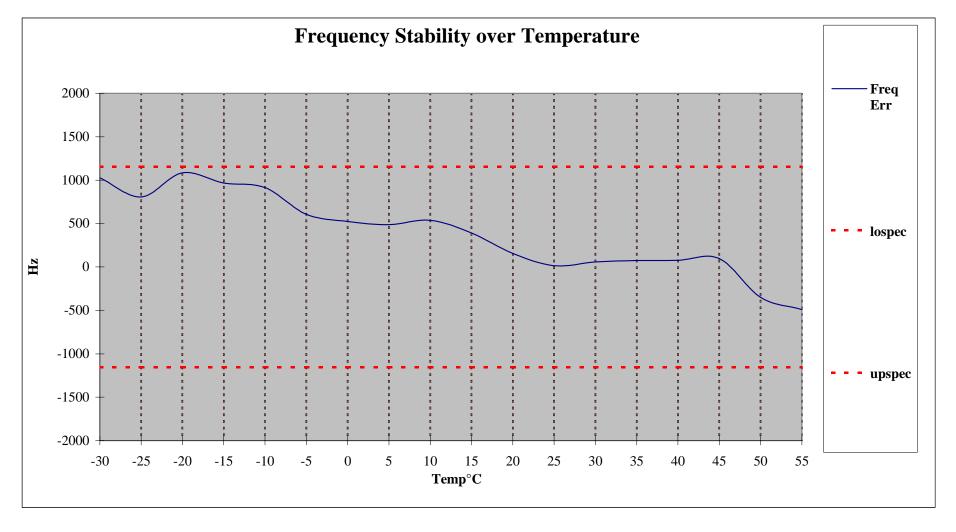
-13

467.6125 MHz	0.5 Watts			Channel Spacing 12.5
		FCC Maximum		
	FCC Maximum Limit	Limit -20 (dBm)	Horizontal Measured	Vertical Measured Emission
	-13 (dBm) 25 kHz	12.5 kHz Ch.	Emission Equiv. Pwr Into	Equiv Pwr Into Ideal Dipole
Frequency (MHz)	Ch. Spac.	Spac.	Ideal Dipole (dBm)	(dBm)
935.2250	-13	-20	-64.04	-56.57
1402.8375	-13	-20	-47.34	-42.84
1870.4500	-13	-20	-44.27	-36.81
2338.0625	-13	-20	*	-37.77
2805.6750	-13	-20	-34.74	-29.75
3273.2875	-13	-20	-30.08	-33.51
3740.9000	-13	-20	*	*
4208.5125	-13	-20	*	*

-20

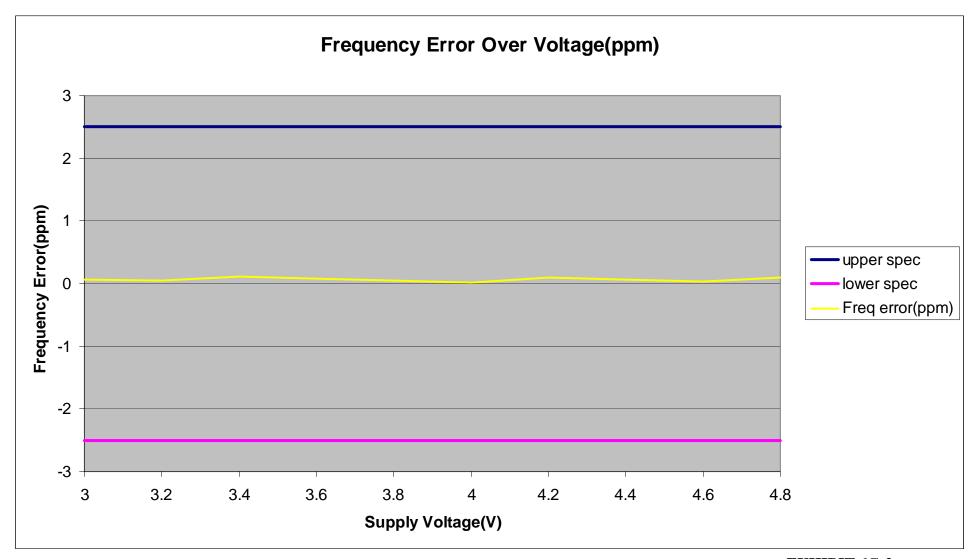


^{*} Indicates the spurious emission was less than -70dBm or could not be detected due to noise limitations or ambients.



Transmitter Radiated Spurious Emissions: TalkAbout

1 Watts		Channel Spacing 12.5		
FCC Maximum	FCC Maximum			
Limit -13 (dBm)	Limit -20 (dBm)	Horizontal Measured	Vertical Measured	
25 kHz Ch.	12.5 kHz Ch.	Emission Equiv. Pwr Into	Emission Equiv Pwr Into	
Spac.	Spac.	Ideal Dipole (dBm)	Ideal Dipole (dBm)	
-13	-20	-61.64	-52.50	
-13	-20	*	*	
-13	-20	-42.96	-38.66	
-13	-20	-41.97	-38.41	
-13	-20	-34.67	-32.97	
-13	-20	-34.51	*	
-13	-20	*	*	
-13	-20	*	*	
-13	-20	*	*	
	FCC Maximum Limit -13 (dBm) 25 kHz Ch. Spac. -13 -13 -13 -13 -13 -13 -13	FCC Maximum Limit -13 (dBm) 25 kHz Ch. Spac13 -13 -20 -13 -13 -20 -13 -20 -13 -20 -13 -20 -13 -20 -13 -20 -13 -20 -13 -20 -13 -20 -13 -20 -13 -20 -13 -20 -13 -20 -13 -20 -13 -20 -13 -20 -13 -20 -20 -13 -20 -20	FCC Maximum Limit -13 (dBm) FCC Maximum Limit -20 (dBm) Horizontal Measured 25 kHz Ch. Spac. 12.5 kHz Ch. Spac. Emission Equiv. Pwr Into Ideal Dipole (dBm) -13 -20 -61.64 -13 -20 * -13 -20 -42.96 -13 -20 -41.97 -13 -20 -34.67 -13 -20 -34.51 -13 -20 * -13 -20 * -13 -20 * -13 -20 * -13 -20 * -13 -20 *	



^{*} Indicates the spurious emission was less than -70dBm or could not be detected due to noise limitations or ambients.

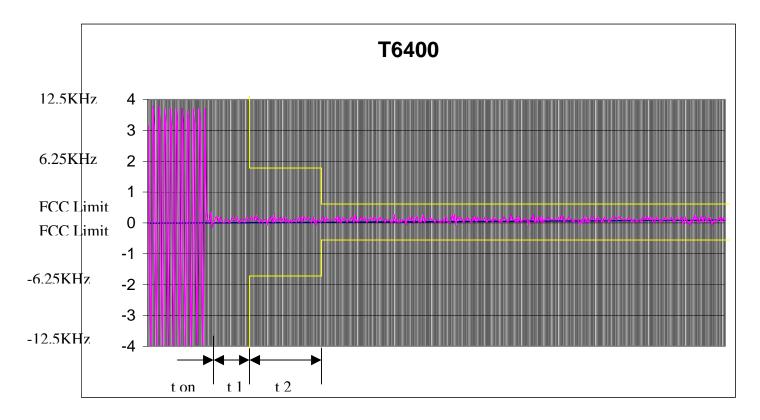

Radio resets at 2.75 Volts

EXHIBIT 6G-1

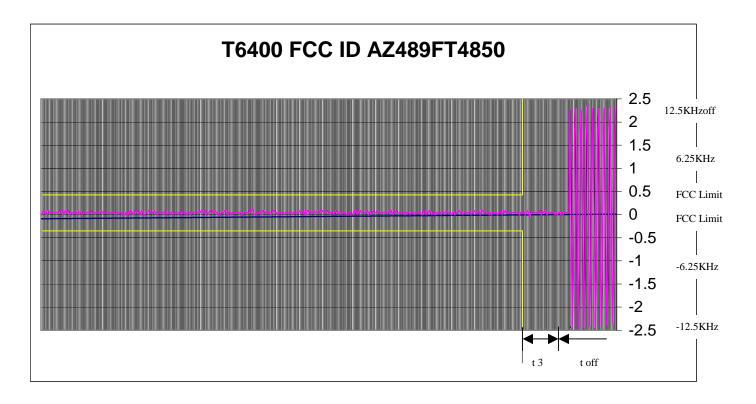

EXHIBIT 6G-2

EXHIBIT 6H-1

EXHIBIT 6H-2