

FCC ID: AZ489FT4826 DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 2 of 3

Networks & Enterprise EME Test Laboratory 8000 West Sunrise Blvd Fort Lauderdale, FL, 33322 Date of Report: Jan 11, 2007

Report Revision: B

Report ID: PCII rpt_PMUE1678B_RevB_070111_

SR4573

Responsible Engineer:Kim Uong (EME lead Eng.)Date/s Tested:12/8/06-12/18/06, 1/10/07Manufacturer/Location:Motorola – Penang

Manufacturer/Location: Motorola – Penan Sector/Group/Div.: NE/GTDG Date submitted for test: 11/13/06

DUT Description: 403-470 MHZ 4W Trunking Popular w/o Keypad

Test TX mode(s): CWMax. Power output: 4.8W **Nominal Power:** 4.0W Tx Frequency Bands: 403-470MHz Signaling type: FM Model(s) Tested: PMUE1678B **Model(s) Certified:** PMUE1678B **Serial Number(s):** 004TGL3002

Classification: Occupational/Controlled

Rule Part(s): 90

Approved Accessories:

Antenna(s):

PMAE4002A (403-433 MHz Stubby ¼ wave antenna, -4.5dBi); PMAE4003A (430-470 MHz Stubby ¼ wave antenna, -4.5dBi); NAE6483AR (403-520 MHz Whip ¼ wave antenna, -2.0dBi).

Battery(ies):

HNN9008A (NiMH High Capacity Battery); HNN9009A (NiMH Ultra High Capacity Battery); HNN9010A (NiMH Ultra High Capacity Battery); Factory Mutual); HNN9011B (NiCd High Capacity Battery Factory Mutual); HNN9012B (NiCd High Capacity Battery); HNN9013D (Li Ion High Capacity Battery).

Body worn accessory(ies):

HLN9670A (Leather Case, Thin Battery w/ Swivel); HLN9676A (Leather Case, Standard Battery w/ Swivel); HLN9714A (Belt Clip); HLN9952A (Belt Clip Carry Holder); HLN9677A (Leather DTMF case, Thin Battery w/ Belt Loop); HLN9689A (Leather DTMF case, Standard Battery w/ Belt Loop); HLN9690A (Leather DTMF case, Thin Battery w/ Swivel); HLN9694A (Leather DTMF case, Standard Battery w/ Swivel); HLN9701B (Hard Nylon Case, Belt Loop, D-ring, for all battery sizes); HLN9652A (Leather Case, Thin Battery w/ belt Loop); HLN9665A (Leather Case, Standard Battery w/ Belt Loop).

Audio/Data cable accessory(ies):

See section 3.0 for list of approved audio accessories.

Max. Calc.: 1g Avg. SAR: 6.38 W/kg (Body); 10g Avg. SAR: 4.59 W/kg (Body) Max. Calc.: 1g Avg. SAR: 3.60 W/kg (Face); 10g Avg. SAR: 2.71 W/kg (Face)

The S.A.R. results clearly demonstrate compliance to ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300GHz), Health Physics 74, 494-522 RF Exposure limits of 10 W/kg averaged over 10grams of contiguous tissue.

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 2.0 of this report.

This report shall not be reproduced without written approval from an officially designated representative of the Motorola EME Laboratory.

This reporting format is consistent with the test report guidelines of the TIA TSB-150 December 2004

The results and statements contained in this report pertain only to the device(s) evaluated

Signature on file – Deanna Zakharia Deanna Zakharia N&E EME Lab Senior Resource Manager, Laboratory Director,

Approval Date: 1/11/07

Certification Date: 1/11/07

Certification No.: L1070107

Appendix C Dipole Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

Motorola CGISS

Certificate No: D450V2-1001_May06

	CERTIFICAT		
Object	D450V2 - SN: 1	001	
Calibration procedure(s)	QA CAL-15.v4 Calibration Proc	edure for dipole validation kits below	800 MHz
Calibration date:	May 25, 2006		
Condition of the calibrated item	In Tolerance		
	cted in the closed laborate	probability are given on the following pages and are ory facility: environment temperature $(22 \pm 3)^{\circ}$ C and	
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B Power sensor E4412A	GB41293874 MY41495277	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	Apr-07 Apr-07
		5-Apr-06 (METAS, No. 251-00557)	Apr-07
	MY41498087		
ower sensor E4412A		[M 문항 바이트 항상 경기도 및 모양 등 경기를 위하고 있는 것을 받아 있다	Aug-06
Power sensor E4412A Reference 3 dB Attenuator	MY41498087 SN: S5054 (3c) SN: S5086 (20b)	11-Aug-05 (METAS, No. 251-00499) 4-Apr-06 (METAS, No. 251-00558)	10.774
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	SN: S5054 (3c)	11-Aug-05 (METAS, No. 251-00499)	Aug-06
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ET3DV6	SN: S5054 (3c) SN: S5086 (20b)	11-Aug-05 (METAS, No. 251-00499) 4-Apr-06 (METAS, No. 251-00558)	Aug-06 Apr-07
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ET3DV6 DAE4	SN: S5054 (3c) SN: S5086 (20b) SN 1507	11-Aug-05 (METAS, No. 251-00499) 4-Apr-06 (METAS, No. 251-00558) 11-Jul-05 (SPEAG, No. ET3-1507_Jul05)	Aug-06 Apr-07 Jul-06
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C	SN: S5054 (3c) SN: S5086 (20b) SN 1507 SN 601 ID # US3642U01700	11-Aug-05 (METAS, No. 251-00499) 4-Apr-06 (METAS, No. 251-00558) 11-Jul-05 (SPEAG, No. ET3-1507_Jul05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	Aug-06 Apr-07 Jul-06 Dec-06 Scheduled Check In house check: Nov-07
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C	SN: S5054 (3c) SN: S5086 (20b) SN 1507 SN 601	11-Aug-05 (METAS, No. 251-00499) 4-Apr-06 (METAS, No. 251-00558) 11-Jul-05 (SPEAG, No. ET3-1507_Jul05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house)	Aug-06 Apr-07 Jul-06 Dec-06 Scheduled Check
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	SN: S5054 (3c) SN: S5086 (20b) SN 1507 SN 601 ID # US3642U01700 US37390585 Name	11-Aug-05 (METAS, No. 251-00499) 4-Apr-06 (METAS, No. 251-00558) 11-Jul-05 (SPEAG, No. ET3-1507_Jul05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Aug-06 Apr-07 Jul-06 Dec-06 Scheduled Check In house check: Nov-07 In house check: Nov 06 Signature
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	SN: S5054 (3c) SN: S5086 (20b) SN 1507 SN 601 ID # US3642U01700 US37390585	11-Aug-05 (METAS, No. 251-00499) 4-Apr-06 (METAS, No. 251-00558) 11-Jul-05 (SPEAG, No. ET3-1507_Jul05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Aug-06 Apr-07 Jul-06 Dec-06 Scheduled Check In house check: Nov-07 In house check: Nov 06 Signature
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	SN: S5054 (3c) SN: S5086 (20b) SN 1507 SN 601 ID # US3642U01700 US37390585 Name	11-Aug-05 (METAS, No. 251-00499) 4-Apr-06 (METAS, No. 251-00558) 11-Jul-05 (SPEAG, No. ET3-1507_Jul05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Aug-06 Apr-07 Jul-06 Dec-06 Scheduled Check In house check: Nov-07 In house check: Nov 06

Certificate No: D450V2-1001_May06

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D450V2-1001_May06

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.6
Extrapolation	Advanced Extrapolation	
Phantom	Flat Phantom V4.4	Shell thickness: 6 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.6 ± 6 %	0.86 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	(TOWN)	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	398 mW input power	2.00 mW/g
SAR normalized	normalized to 1W	5.03 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	5.06 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	4.5
SAR measured	398 mW input power	1.35 mW / g
SAR normalized	normalized to 1W	3.39 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	3.40 mW / g ± 17.6 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 Ω - 9.6 jΩ	
Return Loss	- 20.4 dB	

General Antenna Parameters and Design

er in the transfer of the tran	4 040
Electrical Delay (one direction)	1.343 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 22, 2002	- N

Certificate No: D450V2-1001_May06

Page 4 of 6

DASY4 Validation Report for Head TSL

Date/Time: 25.05.2006 13:20:31

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN:1001

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450;

Medium parameters used: f = 450 MHz; $\sigma = 0.86$ mho/m; $\varepsilon_r = 43.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

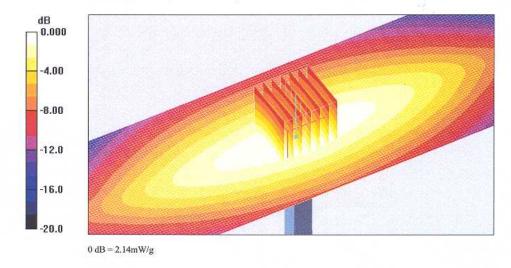
Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (LF); ConvF (6.59, 6.59, 6.59); Calibrated: 11.07.2005

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

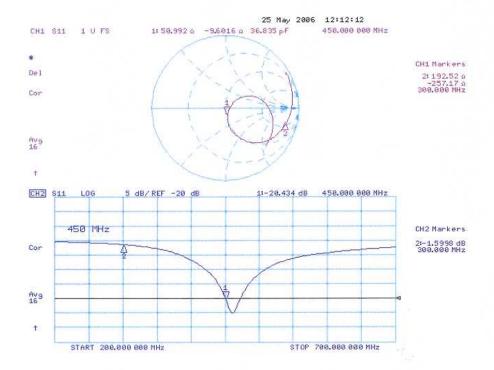
d=15mm, Pin=398mW/Area Scan (61x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.14 mW/g


d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.1 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 2.85 W/kg

SAR(1 g) = 2 mW/g; SAR(10 g) = 1.35 mW/g


Maximum value of SAR (measured) = 2.14 mW/g

Certificate No: D450V2-1001_May06

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D450V2-1001_May06

Page 6 of 6

DIPOLE SAR TARGET - HEAD

Date:		06/1	7/06	Frequency (MH	z):		450
Lab Locat	tion:	N	Œ	Mixture Type:		1	E Head
DAE Seri	al #:	36	63	Ambient Temp.	(°C):	22.6	
Tissue Ch	aracteristi	ics					
Permitivit		45	5.2	Phantom Type/S	SN:	80302	2002B-S8
Conductiv			91	Distance (mm):			15
Tissue Te	mp.(°C):	21	.9	_			
Reference	Source:	Dip	ole	Power to Dipole	×. *	250	mW
Reference	SN:	10	01	_		1	_
Target SA		-	4.9	_mW/g (1g avg.),	3.3	mW/g (1	l0g avg.)
New Ta	_	SAR Value:	5.11	_mW/g (1g avg.),	3.34	mW/g (I	l0g avg.)
Percent Di	ifference I	From Target (I	MUST be v	vithin k=2 Uncertain	ty):		4.33% (1g ave) 1.33% (10g ave)
Test perfo	rmed by:		E	d Church		_Initial:	E, C
Probe	1-G	Diff from	10-G	Diff from			1
SN #s	Cube	Ave	Cube	Ave	Robot		
1383	5.02	-1.80%	3.33	-0.42%	R3		
1384	4.89	-4.34%	3.20	-4.31%	R3		

Average	5.1120	(200	3.3440 nalized to 1.0 W, i		sured SAR Value
1547	5.51	7.79%	3.55	6.16%	R3
1545	5.37	5.05%	3.46	3.47%	R3
1393	4.77	-6.69%	3.18	-4.90%	R3
1384	4.89	-4.34%	3.20	-4.31%	R3
1383	5.02	-1.80%	3.33	-0.42%	R3
Probe SN #s	1-G Cube	Diff from Ave	10-G Cube	Diff from Ave	Robot

Motorola Internal Use Only

FCD-0733 Rev. 2

DIPOLE SAR TARGET - BODY

 Date:
 06/17/06
 Frequency (MHz):
 450

 Lab Location:
 NE
 Mixture Type:
 FCC Body

 DAE Serial #:
 363
 Ambient Temp. (°C):
 22.7

Tissue Characteristics

Reference Source: Dipole Power to Dipole: 250 mW Reference SN: 1001

New Target:

Average Measured SAR Value: ____4.43 __ mW/g(1g avg.), ____2.96 __ mW/g (10g avg.)

Test performed by: Ed Church Initial:

Average	4.4300	(2.9620 lized to 1.0 W, i		sured SAR Value
1547	4.82	8.8%	3.13	5.7%	R3
1545	4.79	8.1%	3.11	5.0%	R3
193	4.09	-7.7%	2.81	-5.1%	R3
1384	4.23	-4.5%	2.89	-2.4%	R3
1383	4.22	-4.7%	2.87	-3.1%	R3
Probe SN #s	1-G Cube	Diff from Ave	10-G Cube	Diff from Ave	Robot

Motorola Internal Use Only

FCD-0733 Rev. 2

Appendix D Test System Verification Scans

Dipole validation scans at the head from SPEAG are provided in APPENDIX C. NE's EME lab validates its' dipole(s) to the applicable IEEE system performance targets. A system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. Dipoles are assessed using multiple probes and measurements were performed using the isotropic assessment procedure mentioned below.

To assess the isotropic characteristics of the measurement probe, two system performance zoom scans (0 and 90 degrees) were measured. The results were averaged together and adjusted to account for the power drift in order to obtain the final calculated 1 and 10 gram results. The results obtained from each probe were then averaged together to determine the new measured SAR target.

Page 1 of 2

Motorola N&E EME Laboratory Date/Time: 12/8/2006 7:36:26 PM

Robot#/Run#. DASY4-FL-1/MeC-SYSP-450B-061208-01 Phantom#/ Tissue Temp.: 80302002D-S15 / 21.4 (C) Dipole Model#/Serial#. D450V2 / 1001 TX Freq. / Start power: 450 (MHz) / 250 (mW)

Target: 4.43 mW/g (1g); 2.96 mW/g (10g) Calculated: 4.21 mW/g (1g); 2.84 mW/g (10g) Percent from Target (+/-): 5.07 % (1g); 4.02 % (10g)

(Including Drift)

Probe: ET3DV6 - SN1383, Calibrated: 2/22/2006, ConvF(7.12, 7.12, 7.12)

Electronics: DAE3 Sn406, Calibrated: 11/13/2006

Duty Cycle: 1:1, Medium parameters used: f = 450 MHz; $\sigma = 0.92 \text{ mho/m}$; $\epsilon_r = 57.8$; $\rho = 1000 \text{ kg/m}^3$

System Performance/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm

Reference Value = 36.7 V/m; Power Drift = -0.0262 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.708 mW/gMaximum value of SAR (measured) = 1.14 mW/g

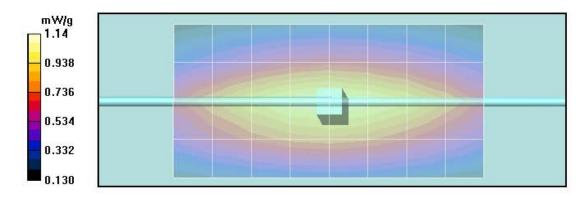
System Performance/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm

Reference Value = 36.7 V/m; Power Drift = -0.0262 dB

Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.704 mW/g Maximum value of SAR (measured) = 1.13 mW/g


System Performance/Dipole Area Scan (41x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 36.7 V/m; Power Drift = -0.026 dB

Motorola Fast SAR: SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.742 mW/g

Maximum value of SAR (interpolated) = 1.12 mW/g

System Performance/Z-Axis Retraction (1x1x17): Measurement grid: dx=20mm, dy=20mm, dz=10mm Maximum value of SAR (measured) = 1.12 mW/g

Page 1 of 2

Motorola N&E EME Laboratory Date/Time: 12/13/2006 11:37:49 AM

Robot# / Run#: DASY4-FL-1 / ErC-SYSP-450B-061213-01 Phantom# / Tissue Temp::80302002D-S15 / 21.2 (C) Dipole Model# / Serial#:D450V2 / 1001 TX Freq. / Start power: 450 (MHz) / 250 (mW)

Target: 4.43 mW/g (1g); 2.96 mW/g (10g)
Calculated: 4.31 mW/g (1g); 2.93 mW/g (10g)
Percent from Target (+/-): 1.11 % (1g); 0.81% (10g)

(Including Drift)

Probe: ET3DV6 - SN1383, Calibrated: 2/22/2006, ConvF(7.12, 7.12, 7.12)

Electronics: DAE3 Sn406, Calibrated: 11/13/2006

Duty Cycle: 1:1, Medium parameters used: f = 450 MHz, $\sigma = 0.93 \text{ mho/m}$; $\epsilon_r = 57.4$; $\rho = 1000 \text{ kg/m}^3$

System Performance/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm

Reference Value = 37.2 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 1.09 mW/g, SAR(10 g) = 0.739 mW/g

Maximum value of SAR (measured) = 1.18 mW/g

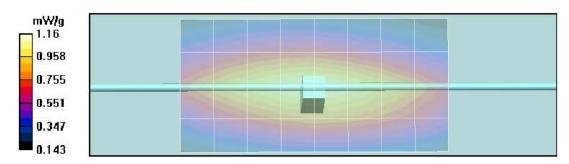
System Performance/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm

Reference Value = 37.2 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 1.07 mW/g SAR(10 g) = 0.728 mW/g


Maximum value of SAR (measured) = 1.15 mW/g

System Performance/Dipole Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.16 mW/g

System Performance/Z-Axis Retraction (1x1x17): Measurement grid: dx=20mm, dy=20mm, dz=10mm

Maximum value of SAR (measured) = 1.17 mW/g

Page 1 of 2

Motorola N&E EME Laboratory Date/Time: 12/14/2006 8:14:42 AM

Robot# / Run#: DASY4-FL-1 / ErC-SYSP-450B-061214-01 Phantom# / Tissue Temp::80302002D-S15 / 20.9 (C) Dipole Model# / Serial#:D450V2 / 1001 TX Freq. / Start power: 450 (MHz) / 250 (mW)

Target: 4.43 mW/g (1g); 2.96 mW/g (10g)
Calcul ated: 4.27 mW/g (1g); 2.89 mW/g (10g)
Percent from Target (+/-): 3.60 % (1g); 2.32% (10g)

(Including Drift)

Probe: ET3DV6 - SN1383, Calibrated: 2/22/2006, ConvF(7.12, 7.12, 7.12)

Electronics: DAE3 Sn406, Calibrated: 11/13/2006

Duty Cycle: 1:1, Medium parameters used: f = 450 MHz; $\sigma = 0.93 \text{ mho/m}$; $\varepsilon_r = 57.3$; $\rho = 1000 \text{ kg/m}^3$

System Performance/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm

Reference Value = 36.9 V/m; Power Drift = -0.0108 dB

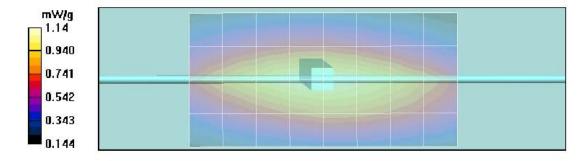
Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 1.07 mW/g SAR(10 g) = 0.726 mW/g

Maximum value of SAR (measured) = 1.15 mW/g

System Performance/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm


Reference Value = 36.9 V/m; Power Drift = -0.0108 dB

Peak SAR (extrapolated) = 1.49 W/kg

SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.716 mW/g

Maximum value of SAR (measured) = 1.14 mW/g

System Performance/Dipole Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Page 1 of 2

Motorola N&E EME Laboratory Date/Time: 12/15/2006 7:25:42 AM

Robot# / Run#: DASY4-FL-1 / ErC-SYSP-450B-061215-01 Phantom# / Tissue Temp::80302002D-S15 / 21.4 (C) Dipole Model# / Serial#:D450V2 / 1001 TX Freq. / Start power: 450 (MHz) / 250 (mW)

Target: 4.43 mW/g (1g); 2.96 mW/g (10g)
Calculated: 4.30 mW/g (1g); 2.92 mW/g (10g)
Percent from Target (+/-): 3.03 % (1g); 1.26% (10g)
(Including Drift)

Probe: ET3DV6 - SN1383, Calibrated: 2/22/2006, ConvF(7.12, 7.12, 7.12)

Electronics: DAE3 Sn406, Calibrated: 11/13/2006

Duty Cycle: 1:1, Medium parameters used: f = 450 MHz, $\sigma = 0.93 \text{ mho/m}$; $\epsilon_r = 57.3$; $\rho = 1000 \text{ kg/m}^3$

System Performance/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm

Reference Value = 37.3 V/m; Power Drift = -0.0159 dB

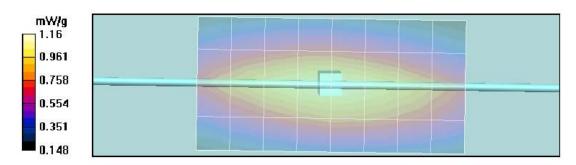
Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.735 mW/g

Maximum value of SAR (measured) = 1.16 mW/g

System Performance/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm


Reference Value = 37.3 V/m; Power Drift = -0.0159 dB

Peak SAR (extrapolated) = 1.49 W/kg

SAR(1 g) = 1.06 mW/g SAR(10 g) = 0.721 mW/g

Maximum value of SAR (measured) = 1.14 mW/g

System Performance/Dipole Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Page 1 of 3

Motorola N&E EME Laboratory Date/Time: 12/17/2006 10:49:58 AM

Robot# / Run#: DASY4-FL-1 / CM-SYSP-450H-061217-01 Phantom# / Tissue Temp::80302002C-S9 / 20.0 (C) Dipole Model# / Serial#:D450V2 / 1001 TX Freq. / Start power:450 (MHz) / 250 (mW)

Target: 5.11 mW/g (1g); 3.34 mW/g (10g)
Calcul ated: 5.12 mW/g (1g); 3.43 mW/g (10g)
Percent from Target (+/-): 0.15 % (1g); 2.81 % (10g)
(Including Drift)

Probe: ET3DV6 - SN1383, Calibrated: 2/22/2006, ConvF(6.74, 6.74, 6.74)

Electronics: DAE3 Sn406, Calibrated: 11/13/2006

Duty Cycle: 1:1, Medium parameters used: f = 450 MHz; σ = 0.85 mho/m; ϵ_{r} = 43.1; ρ = 1000 kg/m³

System Performance/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm

Reference Value = 41.8 V/m; Power Drift = -0.136 dB

Peak SAR (extrapolated) = 1.87 W/kg

SAR(1 g) = 1.25 mW/g SAR(10 g) = 0.839 mW/g

Maximum value of SAR (measured) = 1.35 mW/g

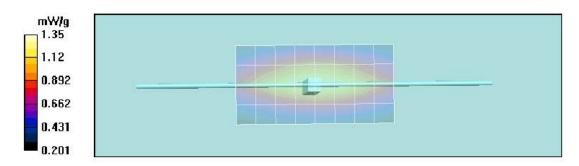
System Performance/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm

Reference Value = 41.8 V/m; Power Drift = -0.136 dB

Peak SAR (extrapolated) = 1.84 W/kg

SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.825 mW/g


Maximum value of SAR (measured) = 1.33 mW/g

System Per formance/Dipole Area Scan (41x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 41.8 V/m; Power Drift = -0.136 dB

Motorola Fast SAR: SAR(1 g) = 1.28 mW/g; SAR(10 g) = 0.905 mW/g

Maximum value of SAR (interpolated) = 1.36 mW/g

Page 1 of 2

Motorola N&E EME Laboratory Date/Time: 12/18/2006 8:10:29 AM

Robot# / Run#: DASY4-FL-1 / ErC-SYSP-450H-061218-01 Phantom# / Tissue Temp::80302002C-S9 / 21.5 (C) Dipole Model# / Serial#:D450V2 / 1001 TX Freq. / Start power: 450 (MHz) / 250 (mW)

Target: 5.11 mW/g (1g); 3.34 mW/g (10g)
Calcul ated: 4.82 mW/g (1g); 3.22 mW/g (10g)
Percent from Target (+/-): 5.69% (1g); 3.49 % (10g)
(Including Drift)

Probe: ET3DV6 - SN1383, Calibrated: 2/22/2006, ConvF(6.74, 6.74, 6.74)

Electronics: DAE3 Sn406, Calibrated: 11/13/2006

Duty Cycle: 1:1, Medium parameters used: f = 450 MHz, $\sigma = 0.89 \text{ mho/m}$; $\epsilon_r = 44.1$; $\rho = 1000 \text{ kg/m}^3$

System Performance/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm

Reference Value = 39.6 V/m; Power Drift = 0.000739 dB

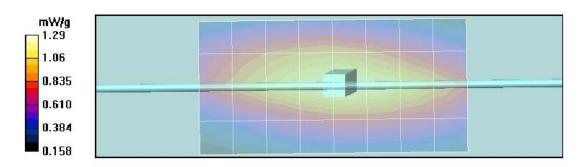
Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 1.21 mW/g; SAR(10 g) = 0.812 mW/g

Maximum value of SAR (measured) = 1.31 mW/g

System Performance/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm


Reference Value = 39.6 V/m; Power Drift = 0.000739 dB

Peak SAR (extrapolated) = 1.78 W/kg

SAR(1 g) = 1.2 mW/g; SAR(10 g) = 0.800 mW/g

Maximum value of SAR (measured) = 1.29 mW/g

System Performance/Dipole Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Motorola N&E EME Laboratory

Date/Time: 1/10/2007 5:03:08 PM

Robot# / Run#: DASY4-FL-1 / MeC-SYSP-450B-070110-08 Phantom# / Tissue Temp.: 80302002D-S15 / 21.8 (C)

Dipole Model# / Serial#: D450V2 / 1001 TX Freq. / Start power: 450 (MHz) / 250 (mW)

4.43 mW/g (1g); 2.96 mW/g (10g) Target: 4.25 mW/g (1g); 2.83 mW/g (10g) Calculated: Percent from Target (+/-): 3.98 % (1g); 4.34% (10g) (Including Drift)

Probe: ET3DV6R - SN1545, Calibrated: 9/21/2006, ConvF(7.46, 7.46, 7.46)

Electronics: DAE3 Sn406, Calibrated: 11/13/2006

Duty Cycle: 1:1, Medium parameters used: f = 450 MHz; $\sigma = 0.95$ mho/m; $\epsilon_r = 57.4$; $\rho = 1000$ kg/m³

System Performance/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm

Reference Value = 35.5 V/m; Power Drift = 0.00663 dB

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.719 mW/g

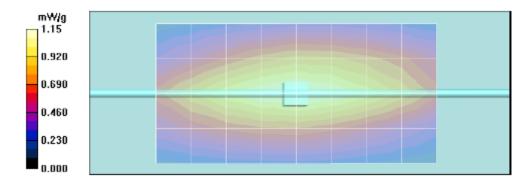
Maximum value of SAR (measured) = 1.15 mW/g

System Performance/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm

Reference Value = 35.5 V/m; Power Drift = 0.00663 dB

Peak SAR (extrapolated) = 1.65 W/kg


SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.698 mW/g

Maximum value of SAR (measured) = 1.13 mW/g

System Performance/Dipole Area Scan (41x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 35.5 V/m; Power Drift = 0.00663 dB

Motorola Fast SAR: SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.764 mW/gMaximum value of SAR (interpolated) = 1.16 mW/g

