

FCC ID: AZ489FT3810 DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 2 of 2

CGISS EME Test Laboratory 8000 West Sunrise Blvd Fort Lauderdale, FL. 33322

Report Revision:

Date of Report:

December 17, 2004

Rev. O

FCC rpt_AlphaL VHF_Rev O_041217 Report ID:

SR1795

Responsible Engineer: Jim Fortier (Elect. Principle Staff Eng.)

Date/s Tested: 12/8/04 -12/10/04 Manufacturer/Location: Motorola CGISS/GTDG Sector/Group/Div.: **Date submitted for test:** 11/19/04

DUT Description: Portable, PTT, Alpha L VHF 5W 150-174Mhz, 16ch, Black

Test TX mode(s): CW 5.5 Watts Max. Power output: **Nominal Power:** 5.0 Watts 150-174 MHz **Tx Frequency Bands:** Signaling type: FM

Model(s) Tested: PMUD2085A **Model(s) Certified:** PMUD2085A

Serial Number(s): 027YEU0007, 027YEU0006 **Classification:** Occupational/Controlled

Rule Part(s): 90.210

Approved Accessories:

Antenna(s):

PMAD4051 (Alpha L antenna 150-174MHZ 1/4 wave, 14cm, -3dBi)

Battery(ies):

PMNN4071A (NiMH battery)

Body worn accessory:

RLN5644A (Spring Belt clip); PMLN4691A (Standard Belt clip)

Audio Accessories:

PMMN4008A (RSM); PMLN4442A (Earbud w/ in-line mic & PTT/VOX switch); PMLN4443A (Ear receiver w/ in-line mic & PTT/VOX switch; PMLN4444A (Earphone Boom mic w/ in-line mic & PTT/VOX switch); PMLN4445A (Ultra lightweight headset w/ in-line PTT/VOX switch)

Max. Calc. 1-g/10-g Avg. SAR: 1.85/1.38 W/kg (Head/Face); 2.21/1.43 W/kg (Body)

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 2.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola EME Laboratory.

This reporting format is consistent with the test report guidelines of the TIA TSB-150 December 2004 The results and statements contained in this report pertain only to the device(s) evaluated.

Signature on file

Ken Enger CGISS EME Lab Senior Resource Manager, Laboratory Director,

Certification Date:

Certification No.: L1041246

12/17/04

APPENDIX A Measurement Uncertainty

Table 1: Uncertainty Budget for Device Under Test: 75 - 3000 MHz

							t	•-	
							h =	i =	
а	b	с	d	e = f(d,k)	f	g	cxf/e	cxg/e	k
	IEEE	Tol.	Prob		c_i	c_i	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	ui	u,	
Uncertainty Component	section			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	4.8	N	1.00	l	1	4.8	4.8	90
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	00
Hemispherical Isotropy	E.2.2	9.6	R	1,73	0,707	0.707	3.9	3.9	80
Boundary Effect	E.2.3	1.0	R	1,73	l	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1,73	1	1	2.7	2.7	90
System Detection Limits	E.2.5	1.0	R	1,73	l	1	0.6	0.6	8
Readout Electronics	E.2.6	1.0	N	1.00	l	1	1.0	1.0	8
Response Time	E.2.7	0.8	R	1,73	1	1	0.5	0.5	90
Integration Time	E.2.8	1.3	R	1,73	1	1	0.8	0.8	90
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	90
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1,73	1	- 1	0.0	0.0	90
Probe Positioner Mech. Tolerance	E.6.2	1,0	R	1,73	1	- 1	0.6	0.6	90
Probe Positioning w.r.t Phantom	E.6.3	4.0	R	1,73	l	1	2.3	2.3	00
Max. SAR Evaluation (ext., int.,									
avg.)	E.5	3,4	R	1,73	l	l	2.0	2.0	90
	_								
						_	_		8
SAR drift	6,6,2	5.0	R	1,73	l	1	2.9	2.9	90
Phantom and Tissue Parameters									
Phantom Uncertainty	_	4.0	R	1,73	l	1	2,3	2.3	œ
Liquid Conductivity (target)	E.3.2	5.0	R	1,73	0.64	0.43	1.8	1.2	00
	_								
	E.3.2	5.0	R	1,73	0,6	0,49	1.7	1.4	90
	E 2 2	4.0	M	1.00	0.6	0.40	2.4	2.0	
	E,3,3	4,0	14	1,00	0.0	0,49	2,4	2,0	- 00
000000000000000000000000000000000000000			RSS				12	11	601
			k=2				23	22	
Test sample Related Test Sample Positioning Device Holder Uncertainty SAR drift Phantom and Tissue Parameters Phantom Uncertainty	E.4.2 E.4.1 6.6.2 E.3.1 E.3.2 E.3.3 E.3.3	3.4 3.8 5.0	N N R R R R	1.00 1.00 1.73	1 1 1	1 1 1	3.4 3.8 2.9 2.3 1.8 4.2 1.7 2.4	3.4 3.8 2.9 2.3 1.2 2.8 1.4 2.0	29 8 ∞ ∞ ∞

Table 2: Uncertainty Budget for System Check: 75 - 3000 MHz

							h =	i =	
a	b	c	d	e = f(d,k)	f	g	cxf/e	cxg/e	k
		Tol.	Prob.	, ,,,,,		C _i	1 g	10 g	
	IEEE 1528				c_i				
	section	(± %)	Dist.	l	(1 g)	(10 g)	u _i	u _i	
Uncertainty Component				Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E,2,1	4.8	N	1.00	1	1	4.8	4.8	90
Axial Isotropy	E.2.2	4.7	R	1,73	1	1	2,7	2.7	*
Spherical Isotropy	E.2.2	9,6	R	1,73	0	-0	0,0	0.0	*
Boundary Effect	E.2.3	1.0	R	1,73	1	- 1	0.6	0.6	*
Linearity	E.2.4	4.7	R	1,73	-1	1	2.7	2.7	90
System Detection Limits	E.2.5	1.0	R	1,73	-1	1	0.6	0.6	8
Readout Electronics	E.2.6	1.0	N	1.00	1	1	1.0	1.0	8
Response Time	E.2.7	0.8	R	1,73	1	1	0.5	0.5	8
Integration Time	E.2.8	1.3	R	1.73	1	1	0.8	0.8	90
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	- 00
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1,73	1	1	0.0	0.0	90
Probe Positioner Mechanical									
Tolerance	E.6.2	0.4	R	1,73	1	-1	0.2	0.2	00
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1,73	-1	1	0.8	0.8	00
Max. SAR Evaluation (ext., int.,									
avg.)	E.5	3,4	R	1,73	1	1	2.0	2.0	00
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	-1	1	1.2	1.2	*
Input Power and SAR Drift	l					l			
Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	æ
Phantom and Tissue									
Parameters			_						
Phantom Uncertainty	E,3,1	4.0	R	1,73	1	1	2.3	2.3	90
Liquid Conductivity (target)	E,3,2	5.0	R	1,73	0.64	0.43	1.8	1.2	*
Liquid Conductivity	E 2.2	6.0	В	1.72	0.64	0.42	2.2	1.0	
(measurement)	E.3.3	6,0	R	1,73	0.64	0.43	2.2	1.5	*
Liquid Permittivity (target)	E.3.2	5.0	R	1,73	0,6	0.49	1.7	1.4	œ
Liquid Permittivity (measurement)	E.3.3	6.0	R	1.73	0.6	0.49	2.1	1.7	
Combined Standard	£,3,3	0,0	K	1,/3	0,0	0.49	2,1	1,7	œ
Uncertainty			RSS				9	8	99999
Expanded Uncertainty		'	100	'		'	,		22333
(95% CONFIDENCE LEVEL)		I I	k=2	I	I	ı	17	17	1
(95% CONFIDENCE LEVEL)			K-2				17	17	

Notes for Tables 1 and 2

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) *ui* SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty.

Appendix B Probe Calibration Certification

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurloh, Switzerland

Client

Motorola CGISS

Object(s)	ET3DV6 - SN	1383	
Calibration procedure(s)	QA CAL-01,v2 Calibration pro) ocedure for dosimetric E-field prot	oes
Calibration date:	February 25, 2	2004	
Condition of the calibrated item	In Tolerance (according to the specific calibratio	on document)
		onal standards, which realize the physical units of me robability are given on the following pages and are pa	
	d in the closed laboratory	y facility: environment temperature 22 +/- 2 degrees C	Celsius and humidity < 75%.
		y facility: environment temperature 22 +/- 2 degrees C	Celsius and humidity < 75%.
All calibrations have been conducted Calibration Equipment used (M&TE	critical for calibration)	y facility: environment temperature 22 +/- 2 degrees C Cal Date (Calibrated by, Certificate No.)	Celsius and humidity < 75%. Scheduled Calibration
All calibrations have been conducted calibration Equipment used (M&TE Model Type Power meter EPM E4419B	critical for calibration) ID # GB41293874	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250)	Scheduled Calibration Apr-04
All calibrations have been conducted calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A	critical for calibration) ID # GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250)	Scheduled Calibration Apr-04 Apr-04
All calibrations have been conducted calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b)	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340)	Scheduled Calibration Apr-04 Apr-04 Apr-04
Calibrations have been conducted Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702	Critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04
All calibrations have been conducted Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b)	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05
All calibrations have been conducted	Critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04
All calibrations have been conducted Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Aug-05
All calibrations have been conducted Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C	ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Oct 05 In house check: Oct 05
Calibrations have been conducted Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Cluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Jetwork Analyzer HP 8753E	ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Oct 05 In house check: Oct 05

ET3DV6 SN:1383 February 25, 2004

DASY - Parameters of Probe: ET3DV6 SN:1383

ression ^A
ļ

NormX	1.88 μV/(V/m) ²	DCP X	92	mV
NormY	1.63 μV/(V/m) ²	DCP Y	92	mV
NormZ	1.71 μV/(V/m) ²	DCP Z	92	mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Plese see Page 7.

Boundary Effect

Head 900 MHz Typical SAR gradient: 5 % per mm

Sensor Cener to	Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	9.9	5.0
SAR _{be} [%]	With Correction Algorithm	0.1	0.3

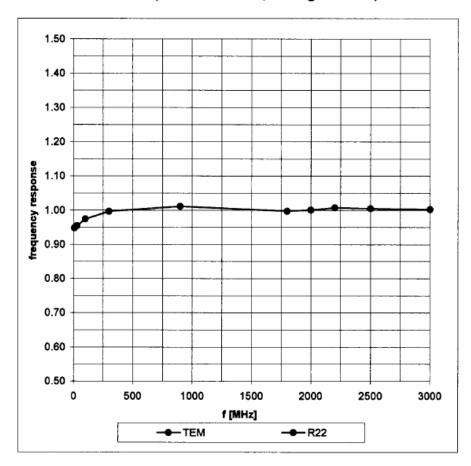
Head 1800 MHz Typical SAR gradient: 10 % per mm

Sensor to Surf	ace Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	13.6	8.8
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

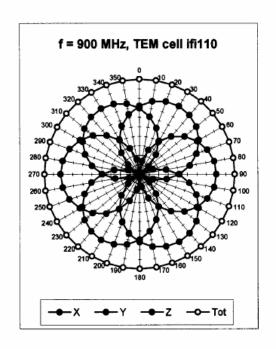
Sensor Offset

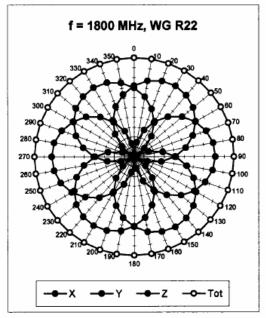
Probe Tip to Sensor Center 2.7 mm

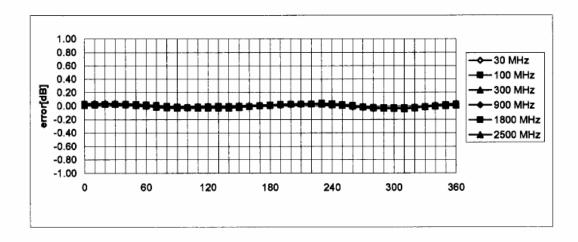
Optical Surface Detection very low, but repeatable


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

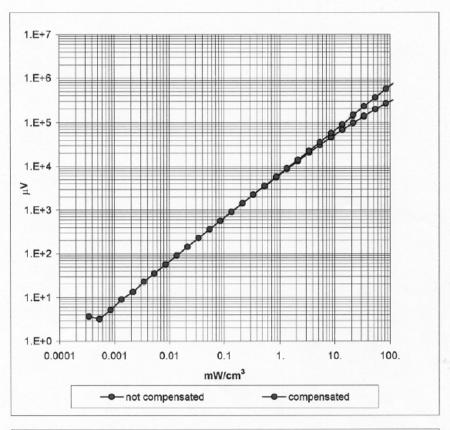
A numerical linearization parameter: uncertainty not required

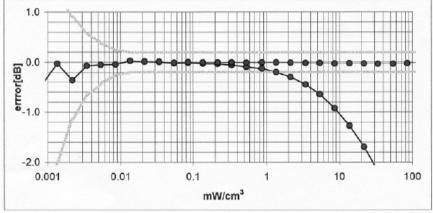

ET3DV6 SN:1383 February 25, 2004


Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)

Receiving Pattern (ϕ) , θ = 0°

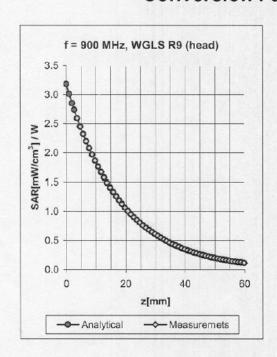


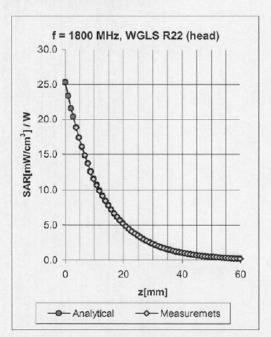

Axial Isotropy Error < ± 0.2 dB

ET3DV6 SN:1383 February 25, 2004

Dynamic Range f(SAR_{head})

(Waveguide R22)

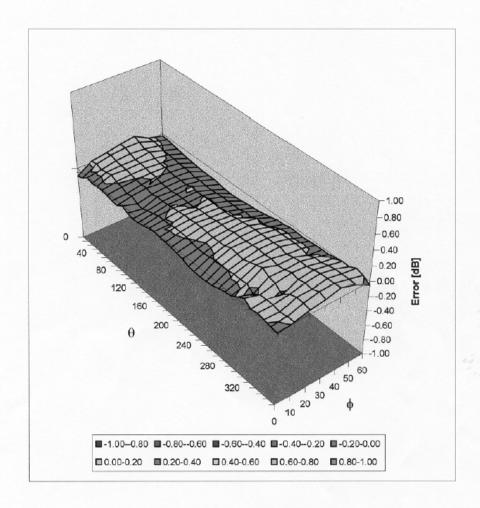



Probe Linearity < ± 0.2 dB

ET3DV6 SN:1383

February 25, 2004

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	800-1000	Head	41.5 ± 5%	0.97 ± 5%	0.72	1.77	6.30 ± 9.5% (k=2)
1450	1400-1500	Head	40.5 ± 5%	1.20 ± 5%	0.55	2.40	5.72 ± 9.5% (k=2)
1800	1710-1910	Head	40.0 ± 5%	1.40 ± 5%	0.57	2.38	5.14 ± 9.5% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	1.18	1.72	4.76 ± 9.5% (k=2)
900	800-1000	Body	55.0 ± 5%	1.05 ± 5%	0.51	2.27	5.82 ± 9.5% (k=2)
1450	1400-1500	Body	54.0 ± 5%	1.30 ± 5%	0.53	2.58	5.27 ± 9.5% (k=2)
1800	1710-1910	Body	53.3 ± 5%	1.52 ± 5%	0.62	2.67	4.55 ± 9.5% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.91	1.23	4.41 ± 9.5% (k=2)

^B The stated uncertainty of calibration was assessed according to P1528.

ET3DV6 SN:1383 February 25, 2004

Deviation from Isotropy in HSL

Error (θ, ϕ), f = 900 MHz

Spherical Isotropy Error < ± 0.4 dB

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1383
Place of Assessment:	Zurich
Date of Assessment:	February 27, 2004
Probe Calibration Date:	February 25, 2004

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Mone Ket-

150 MHz	ConvF	$7.9 \pm 8\%$	$\epsilon_r = 61.9$ $\sigma = 0.80 \text{ mho/m}$ (body tissue)
236 MHz	ConvF	$7.7 \pm 8\%$	$\epsilon_r = 59.8$ $\sigma = 0.87 \text{ mho/m}$ (body tissue)
300 MHz	ConvF	$7.6\pm8\%$	$\epsilon_r = 58.2$ $\sigma = 0.92 \text{ mho/m}$ (body tissue)
350 MHz	ConvF	$7.5 \pm 8\%$	$\varepsilon_r = 57.7$ $\sigma = 0.93 \text{ mho/m}$ (body tissue)
450 MHz	ConvF	7.2 ± 8%	$\epsilon_r = 56.7$ $\sigma = 0.94 \text{ mho/m}$ (body tissue)
784 MHz	ConvF	$6.3\pm8\%$	$\epsilon_r = 55.4$ $\sigma = 0.97 \text{ mho/m}$ (body tissue)

		deviation)	
150 MHz	ConvF	8.7 ± 8%	$\epsilon_r = 52.3$ $\sigma = 0.76 \text{ mho/m}$ (head tissue)
236 MHz	ConvF	7.9 ± 8%	$\epsilon_r = 48.3$ $\sigma = 0.82 \text{ mho/m}$ (head tissue)
300 MHz	ConvF	$7.5 \pm 8\%$	$\epsilon_r = 45.3$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
350 MHz	ConvF	7.4 ± 8%	$\epsilon_r = 44.7$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
400 MHz	ConvF	$7.3 \pm 8\%$	$\epsilon_r = 44.4$ $\sigma = 0.87 \text{ mho/m}$ (head tissue - CENELEC)
450 MHz	ConvF	$7.2\pm8\%$	$\epsilon_r = 43.5$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
784 MHz	ConvF	$6.5\pm8\%$	$\epsilon_r = 41.8$ $\sigma = 0.90 \text{ mho/m}$ (head tissue)

Appendix C Dipole Calibration Certificates

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Motorola CGISS

CALIBRATION CERTIFICATE

Object(s) D300V2 - SN:1001

Calibration procedure(s) QA CAL-15.V2

Calibration procedure for dipole validation kits below 800 MHz

Calibration date: August 13, 2004

Condition of the calibrated item In Tolerance (according to the specific calibration document)

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter EPM E4419B GB41293874 5-May-04 (METAS, No 251-00388) May-05 Power sensor E4412A MY41495277 5-May-04 (METAS, No 251-00388) May-05 Reference 20 dB Attenuator SN: 5086 (20b) 3-May-04 (METAS, No 251-00389) May-05 Fluke Process Calibrator Type 702 SN: 6295803 8-Sep-03 (Sintrel SCS No. E-030020) Sep-04 Power sensor HP 8481A MY41092180 18-Sep-02 (SPEAG, in house check Oct-03) In house check: Oct 05 RF generator HP 8684C US3642U01700 4-Aug-99 (SPEAG, in house check Aug-02) In house check: Aug-05 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Oct-03) In house check: Oct 05

Name Function Signature

Katja Pokovic Laboratory Director

Niels Kuster Quality Manager

Date issued: August 13, 2004

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Calibrated by:

Approved by:

D300V2-SN:1001

1. Measurement Conditions

The measurements were performed in the 6mm thick flat phantom filled with head simulating liquid of the following electrical parameters at 300 MHz:

Relative Dielectricity 45.8 $\pm 5\%$ Conductivity 0.89 mho/m $\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 8.75 at 300 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center of the flat phantom and the dipole was oriented parallel to the longer side of the phantom. The standard measuring distance was 15mm from dipole center to the liquid surface including the 6mm thick phantom shell. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 398 mW \pm 3 %. The results are normalized to 1W input power.

2. SAR Measurement with DASY System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm³ (1 g) of tissue: 2.79 mW/g \pm 20.7 % (k=2)¹

averaged over 10 cm³ (10 g) of tissue: 1.87 mW/g \pm 20.2 % (k=2)¹

_

¹ validation uncertainty

D300V2-SN:1001

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.745 ns

(one direction)

Transmission factor:

0.993

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 300 MHz:

 $Re{Z} = 55.1 \Omega$

Im $\{Z\} = -9.0 \Omega$

Return Loss at 300 MHz

-20.2 dB

4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

6. Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Date/Time: 08/13/04 15:41:44

Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 300 MHz; Serial: D300V2 - SN:1001

Communication System: CW;Duty Cycle: 1:1; Medium: HSL300

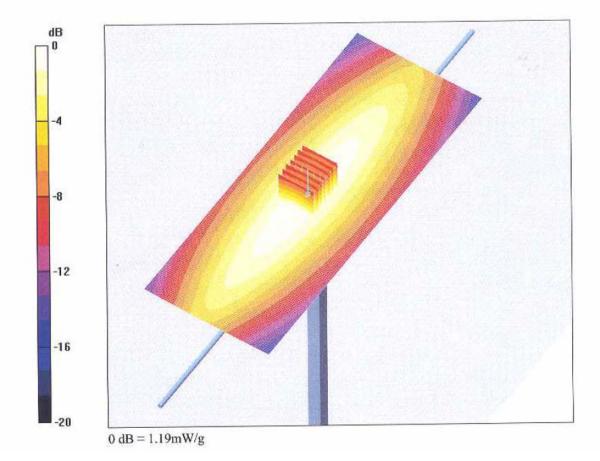
Medium parameters used: f = 300 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 45.8$; $\rho = 1000$ kg/m³

Phantom: Flat Phantom 4.4; Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (low frequencies); ConvF(8.75, 8.75, 8.75);

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn901; Calibrated: 6/29/2004
- Measurement SW: DASY4, V4.3 Build 14;


d=15mm, Pin=398mW/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.17 mW/g

d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 37 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 1.74 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.743 mW/gMaximum value of SAR (measured) = 1.19 mW/g

Appendix D Test System Verification Scans

Note: Dipole validation scans at the head from SPEAG are provided in APPENDIX D. The CGISS EME lab validated the dipole to the applicable IEEE system performance targets. Within the same day system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. The results of the CGISS EME system performance validation are provided herein.

SPEAG 350 MHz Dipole; Model D350V2, SN 1001; Test Date: 12/08/04 Motorola CGISS EME Lab

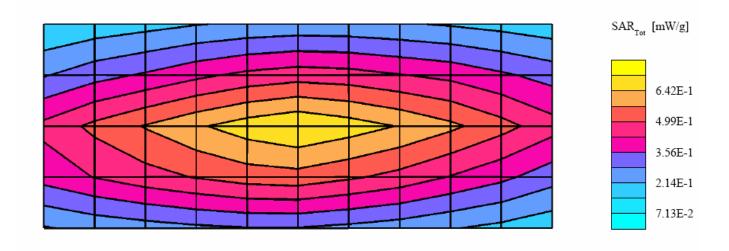
Run #: Sys Perf-R3-041208-01

TX Freq: 300 MHz

Sim Tissue Temp: 20.9 (Celsius)

Start Power: 250mW

SAR target at 1W is 2.89 mW/g (1g avg, including drift)
SAR target at 1W is 1.93 mW/g (10g avg, including drift)
SAR calculated at 1W is 2.88 mW/g (1g avg). Percent from target (including drift) is -0.40 %
SAR calculated at 1W is 1.92 mW/g (10g avg). Percent from target (including drift) is -0.64 %


 $Flat;\ Probe:\ ET3DV6-SN1383 (Cal\ Date\ 25\ Feb\ 2004); Probe\ Cal\ Date:\ 25/2/04 ConvF (7.50, 7.50, 7.50);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ Crest\ factor$

Head: 300 MHz: $\sigma = 0.86$ mho/m $\varepsilon_r = 46.2$ $\rho = 1.00$ g/cm₃; DAE3: 401 DAE Cal Date: 8/25/2004

Cubes (2): Peak: $1.10 \text{ mW/g} \pm 0.03 \text{ dB}$, SAR (1g): $0.713 \text{ mW/g} \pm 0.02 \text{ dB}$, SAR (10g): $0.475 \text{ mW/g} \pm 0.02 \text{ dB}$, (Worst-case

extrapolation) Penetration depth: 12.8 (11.3, 14.8) [mm]

Power drift: -0.04 dB

SPEAG 350 MHz Dipole; Model D350V2, SN 1001; Test Date: 12/09/04 Motorola CGISS EME Lab

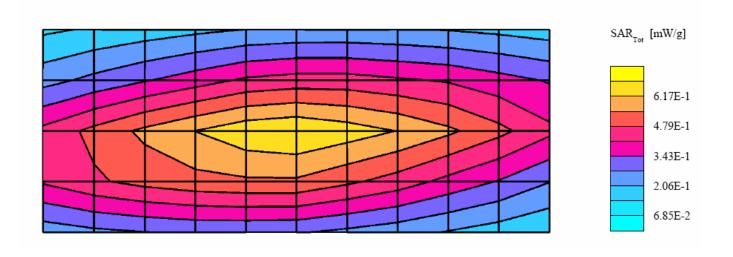
Run #: Sys Perf-R3-041209-01

TX Freq: 300 MHz

Sim Tissue Temp: 20.3 (Celsius)

Start Power; 250mW

SAR target at 1W is 2.76 mW/g (1g avg, including drift)
SAR target at 1W is 1.87 mW/g (10g avg, including drift)
SAR calculated at 1W is 2.77 mW/g (1g avg). Percent from target (including drift) is 0.23 %
SAR calculated at 1W is 1.87 mW/g (10g avg). Percent from target (including drift) is -0.09 %


Flat; Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); Probe Cal Date: 25/2/04ConvF(7.50,7.50,7.50); Crest factor: 1.0; FCC

Body 300: σ = 0.88 mho/m ϵ_r = 56.7 ρ = 1.00 g/cm₃; DAE3: 401 DAE Cal Date: 8/25/2004

Cubes (2): Peak: $1.06 \text{ mW/g} \pm 0.01 \text{ dB}$, SAR (1g): $0.690 \text{ mW/g} \pm 0.01 \text{ dB}$, SAR (10g): $0.466 \text{ mW/g} \pm 0.01 \text{ dB}$, (Worst-case

extrapolation) Penetration depth: 13.4 (11.7, 15.5) [mm]

Power drift: -0.01 dB

SPEAG 350 MHz Dipole; Model D350V2, SN 1001; Test Date: 12/10/04 Motorola CGISS EME Lab

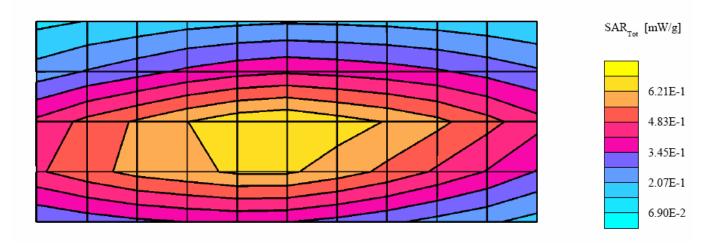
Run #: Sys Perf-R3-041210-01

TX Freq: 300 MHz

Sim Tissue Temp: 20.2 (Celsius)

Start Power; 250mW

SAR target at 1W is 2.89 mW/g (1g avg, including drift)
SAR target at 1W is 1.93 mW/g (10g avg, including drift)
SAR calculated at 1W is mW/g (1g avg). Percent from target (including drift) is %
SAR calculated at 1W is mW/g (10g avg). Percent from target (including drift) is %


 $Flat;\ Probe:\ ET3DV6-SN1383 (Cal\ Date\ 25\ Feb\ 2004); Probe\ Cal\ Date:\ 25/2/04 ConvF (7.50, 7.50, 7.50);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ IEEE\ Anticolor (Cal\ Date\ 25, 1.0);\ Crest\ factor:\ 1.0;\ Crest\ factor$

Head: 300 MHz: $\sigma = 0.88$ mho/m $\epsilon_r = 46.9$ $\rho = 1.00$ g/cm₃; DAE3: 401 DAE Cal Date: 8/25/2004

 $Cubes~(2): Peak:~1.13~mW/g \pm 0.00~dB,~SAR~(1g):~0.729~mW/g \pm 0.00~dB,~SAR~(10g):~0.487~mW/g \pm 0.01~dB,~(Worst-case):~0.00~dB,~SAR~(10g):~0.487~mW/g \pm 0.01~dB,~(Worst-case):~0.00~dB,~SAR~(10g):~0.487~mW/g \pm 0.01~dB,~(Worst-case):~0.00~dB,~SAR~(10g):~0.487~mW/g \pm 0.01~dB,~(Worst-case):~0.00~dB,~SAR~(10g):~0.487~mW/g \pm 0.01~dB,~(Worst-case):~0.00~dB,~(Worst-case):~0$

extrapolation)Penetration depth: 12.9 (11.3, 14.8) [mm]

Power drift: -0.04 dB

SYSTEM PERFORMANCE CHECK TARGET SAR

Date:	9/7/2004	Frequency (MHz)	: 300
Lab Location:	CGISS	Mixture Type:	FCC Body
Robot System:	CGISS-2	Ambient Temp.(°C	C): 21.7
Probe Serial #:	ET3DV6-1393	Tissue Temp.(°C):	20.3
DAE Serial #:	374		
Tissue Characteristics			
Permitivity:	57.7	Phantom Type/SN	I: 80602002A-S1
Conductivity:	0.90	Distance (mm):	15 (tissue/dipole cnt)
Reference Source:	Dipole	(Dipole)	
Reference SN:	1001		
Power to Dipole:	250 mW		
Measured SAR Value:	0.6	883 mW/g, 0.46	62 mW/g (10g avg.)
Power Drift:	-	04 dB	_
New Target/Measured			
SAR Value:	2.	76 mW/g, 1.8	87 mW/g (10g avg.)
(normalized to 1.0 W, including			
Test performed by:	_	Church	Initial: Z

10/07/04

Dipole D300V2; Test date:10/07/04

Run #: Sys Perf-R2-041007-01

Phantom #: 80602002A-S1

Model #: D300V2

SN: 1001

Robot: CGISS-2 DAE3: SN: 374

Tester: E. Church Cal Date: (3/23/04)

TX Freq: 300 MHz Start Power: 250mW

Sim Tissue Temp: 20.3 C

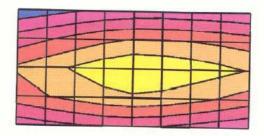
Target:

2.76 mW/g for 1g SAR

1.87 mW/g for 10g SAR

SAR calculated 1g is 2.76 mW/g percent from target (including drift) is 0 %SAR Calculated 10g is 1.87 mW/g Percent from target (including drift) is 0 %

Flat (2); Probe: ET3DV6 - SN1393 (Cal Date 28/04/04); ConvF(8.10,8.10,8.10); Crest factor: 1.0; FCC Body


300: σ = 0.90 mho/m ϵ_r = 57.7 ρ = 1.00 g/cm³

Cubes (2): Peak: 1.03 $\text{ mW/g} \pm 0.01 \text{ dB}$, SAR (1g): 0.683 $\text{ mW/g} \pm 0.02 \text{ dB}$, SAR (10g): 0.462 $\text{ mW/g} \pm 0.02 \text{ dB}$

dB, (Worst-case extrapolation)

Penetration depth: 13.4 (11.9, 15.2) [mm]

Powerdrift: -0.04 dB

SAR_{Tot} [mW/g]

Motorola CGISS EME Lab

SYSTEM VALIDATION

Date:	9/7/	9/7/2004		(MHz):	300	
Lab Location:	CG	ISS	Mixture Type:		IEEE Head	
Robot System:	CGISS-2		Ambient Temp.(°C):		21.7	
Probe Serial #:	ET3D'	V6-1393	Tissue Temp.(°C):		21.1	
DAE Serial #:	3	74				
Tissue Characteristics						
Permitivity:	47.5		Phantom Type/SN:		80602002B-S2	
Conductivity:	0	.88	_Distance (mm):		15 (tissue/dipole c	nt)
Reference Source:	Di	pole	_(Dipole)			
Reference SN:	3	00				
Power to Dipole:	250	mW				
Power Output (radio	NA	mW				
Target SAR Value: (normalized to 1.0 W)		3.00	_mW/g,	2.00	mW/g (10g avg.)	
Measured SAR Value:		0.720	mW/g,	0.482	mW/g (10g avg.)	
Power Drift:		-0.01	dB			5
Measured SAR Value: (normalized to 1.0 W, includin	g drift)	2.89	_mW/g,	1.93	mW/g (10g avg.)	
Percent Difference From	m Targe	et (MUST	be within S	ystem Unc	certainty):3.78	% (1g av
					3.38	% (10g a
Test performed by:		Edward	R. Church		Initial: Zr C)

10/07/04

Dipole D300V2; Test date:10/07/04

Run #: Sys Perf-R2-041007-02

Phantom #: 80602002B-S2

Model #: D300V2

SN: 1001

Robot: CGISS-2 DAE3: SN: 374

Tester: E. Church

TX Freq: 300 MHz

Cal Date: (3/23/04)

Start Power: 250mW

Sim Tissue Temp: 21.1 C

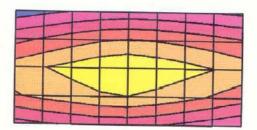
Target:

2.89 mW/g for 1g SAR

1.93 mW/g for 10g SAR

SAR calculated 1g is 2.89 mW/g percent from target (including drift) is $0\,\%$ SAR Calculated 10g is 1.93 mW/g Percent from target (including drift) is 0 %

Flat (2); Probe: ET3DV6 - SN1393 (Cal Date 28/04/04); ConvF(8.10,8.10,8.10); Crest factor: 1.0; IEEE


Head 300 MHz: $\sigma=0.88$ mho/m $\epsilon_r=47.5~\rho=1.00~g/cm^3$

Cubes (2): Peak: 1.10 $\,$ mW/g \pm 0.01 dB, SAR (1g): 0.720 $\,$ mW/g \pm 0.02 dB, SAR (10g): 0.482 $\,$ mW/g \pm 0.03

dB, (Worst-case extrapolation)

Penetration depth: 12.9 (11.5, 14.6) [mm]

Powerdrift: -0.01 dB

SAR_{Tot} [mW/g]

7.22E-2

Motorola CGISS EME Lab

Appendix E DUT Scans (Shortened scans & Highest SAR configurations)

Shortened Scan Results

FCC ID: AZ489FT3810; Test Date: 12/8/04

Motorola CGISS EME Laboratory

Run #: CM-Ab-R3-041209-07

Model #: PMUD2085A SN: 027YEU0007

Tx Freq: 162.025 MHz Sim tissue temp: 20.1 C Start power: 5.71 W

Antenna: PMAD4051A Battery Kit: PMNN4071A Body worn Acc.: RLN5644A Audio/Data Acc.: PMLN4444A

Shortened scan reflect highest S.A.R. producing configuration; Run time 7 minutes.

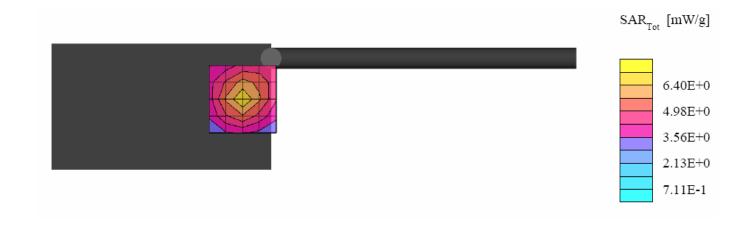
Representative "normal" scan run time was 23 minutes

"Shortened" scan max calculated S.A.R. using S.A.R. drift: 1-g Avg. = 2.18mW/g; 10-g Avg. = 1.41mW/g

"Normal" scan max calculated S.A.R. using S.A.R. drift: 1-g Avg. = 2.21mW/g; 10-g Avg. = 1.43mW/g

(see part 1 of 2 section 9.0 run # CM-Ab-R3-041209-06)

DUT w/ body worn accessory against the phantom


Flat Phantom; Position: (90°,90°);

Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); ConvF(7.90,7.90,7.90); Probe cal date: 25/2/04; Crest factor: 1.0; FCC

Body 162: σ = 0.78 mho/m εr = 60.2 ρ = 1.00 g/cm3; DAE: DAE3V1SN401 Cal Date: 8/25/04

Cube 5x5x7: SAR (1g): 4.18 mW/g, SAR (10g): 2.71 mW/g, (Worst-case extrapolation)

Power drift: -0.18 dB

Highest SAR Configurations Results

FCC ID: AZ489FT3810; Test Date: 12/9/04

Motorola CGISS EME Laboratory

Run #: CM-Ab-R3-041209-06

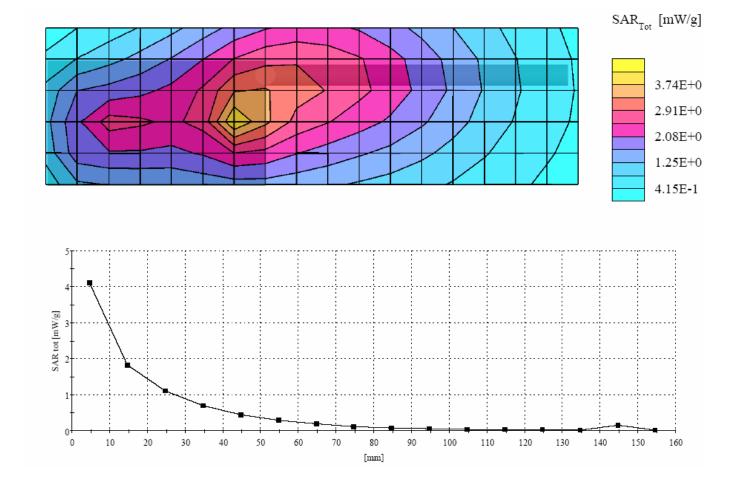
Model #: PMUD2085A SN: 027YEU0007

Tx Freq: 162.025 MHz Sim tissue temp: 20.2 C Start power: 5.65 W

Antenna: PMAD4051A Battery Kit: PMNN4071A Body worn Acc.: RLN5644A Audio/Data Acc.: PMLN4444A

DUT w/ body worn accessory against the phantom

Flat Phantom; Position: (90°,90°);


Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); ConvF(7.90,7.90,7.90); Probe cal date: 25/2/04; Crest factor: 1.0; FCC

Body 162: $\sigma = 0.78$ mho/m $\varepsilon r = 60.2$ $\rho = 1.00$ g/cm3; DAE: DAE3V1SN401 Cal Date: 8/25/04

Cube 5x5x7: SAR (1g): 4.11 mW/g, SAR (10g): 2.66 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 43.5, 91.5, 4.7

Power drift: -0.31 dB

FCC ID: AZ489FT3810; Test Date: 12/10/04

Motorola CGISS EME Laboratory

Run #: CM- Face-R3-041210-06

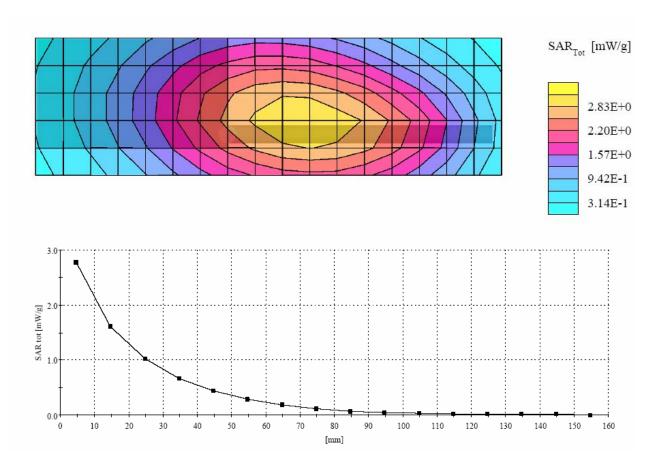
Model #: PMUD2085A SN: 027YEU0006

Tx Freq: 162.025 MHz Sim tissue temp: 20.1 C Start power: 6.22 W

Antenna: PMAD4051A Battery Kit: PMNN4071A Body worn Acc.: None Audio/Data Acc.: None

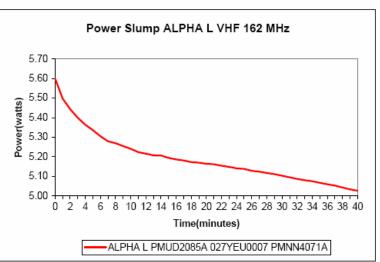
DUT w/ front separated 2.5cm from phantom (Face)

Flat Phantom; Position: (90°,90°);


Probe: ET3DV6 - SN1383(Cal Date 25 Feb 2004); ConvF(8.70,8.70,8.70); Probe cal date: 25/2/04; Crest factor: 1.0; IEEE

Head: 162 MHz: $\sigma = 0.77$ mho/m $\varepsilon r = 52.1$ $\rho = 1.00$ g/cm3; DAE: DAE3V1SN401 Cal Date: 8/25/04 Cube 5x5x7: SAR (1g): 2.95 mW/g, SAR (10g): 2.20 mW/g * Max outside, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 45.0, 145.5, 4.7


Power drift: -0.99 dB

Note: "Max outside" has been identified by SPEAG as an unresolved intermittent occurrence with the DASY 3 application even when the entire peak area is captured.

APPENDIX F DUT Supplementary Data (Power slump)

Duaduat Nama	ALPHA L		
Product Name Model #	PMUD2085A		
	027YEU0007		
Radio s/n Battery			
	PMNN4071A		
Frequency(MHz)	162		
Time(minutes)	Power(watts)		
0	5.60		
1	5.50		
2	5.44		
3	5.40		
4	5.36		
5	5.34		
6	5.31		
7	5.28		
8	5.27		
9	5.25		
10	5.24		
11	5.22		
12	5.22		
13	5.21		
14	5.21		
15	5.19		
16	5.19		
17	5.18		
18	5.17		
19	5.17		
20	5.16		
21	5.16		
22	5.15		
23	5.15		
24	5.14		
25	5.14		
26	5.13		
27	5.12		
28	5.12		
29	5.11		
30	5.10		
31	5.10		
32	5.09		
33	5.08		
34	5.08		
35	5.07		
36	5.06		
37	5.05		
38	5.04		
39	5.03		
40	5.03		

Appendix G DUT Test Position Photos

Figure 1: Highest S.A.R. Test Position (Body)

DUT with body worn accessory model RLN5644A against the phantom.

(Same position used for other offered audio accessories)

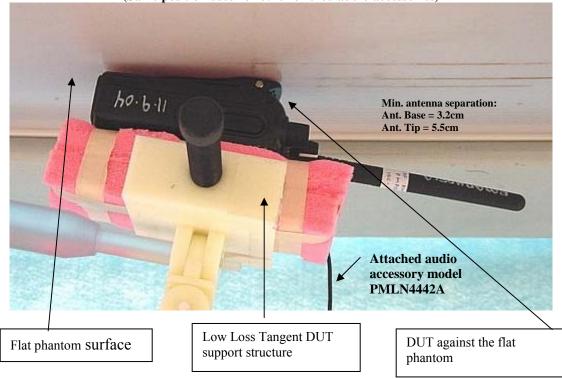
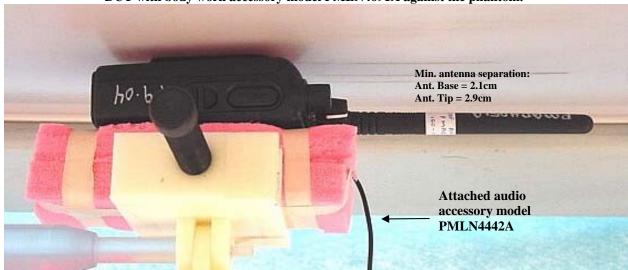



Figure 2: Body Assessment DUT with body worn accessory model PMLN4691A against the phantom.

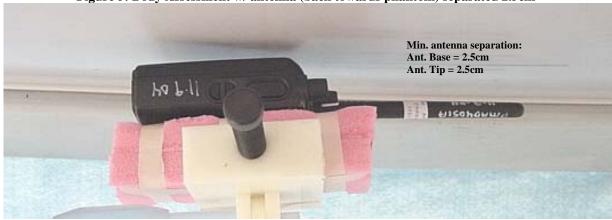

Min. antenna separation:
Ant. Base = 3.2cm
Ant. Tip = 3.3cm

Figure 3: Body Assessment w/ front housing separated 2.5cm

Figure 5: Body Assessment w/ antenna (back towards phantom) separated 2.5cm

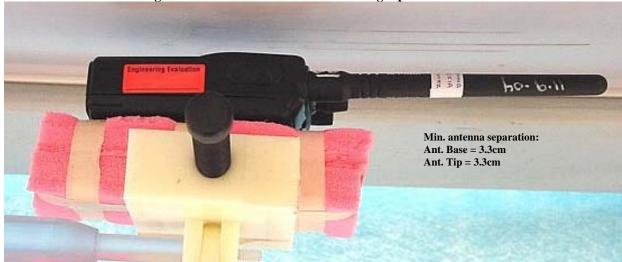


Figure 2: Face Assessment – front housing separated 2.5cm

Appendix H DUT and Accessory Photos

The purpose of this appendix is to illustrate the body-worn carry accessories for FCC ID: AZ489FT3810. The sample that was used in the following photos represents the product used to obtain the results presented herein and was used in this section to demonstrate the different body-worn accessories.

Photo 1. Model PMLN4691A Back View

Photo 3. Model RLN5644A Back View

Photo 2. Model PMLN4691A Side View

Photo 4. Model RLN5644A Side View

Appendix I DUT Body-worn Separation Distances

The following table summarizes the test status and separation distance provided by each of the applicable body-worn accessories:

Carry Case Models	Tested ?	Min. Separation distances between DUT antenna and phantom surface. (mm)	Comments
PMLN4691A	Yes	21	NA
RLN5644A	Yes	32	NA

Audio Acc. Models	Tested ?	Separation distances between DUT antenna and phantom surface. (mm)	Comments
PMMN4008A	Yes	NA	NA
PMLN4442A	Yes	NA	NA
PMLN4443A	Yes	NA	NA
PMLN4444A	Yes	NA	NA
PMLN4445A	Yes	NA	NA