



## DECLARATION OF COMPLIANCE SAR ASSESSMENT PCII Report

# Motorola Solutions Inc. EME Test Laboratory

Motorola Solutions Malaysia Sdn Bhd (Innoplex) Plot 2A, Medan Bayan Lepas, Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia. Date of Report: 9/28/2016 Report Revision: A

Responsible Engineer:Chang Chi Chern (EME Engineer)Report Author:Chang Chi Chern (EME Engineer)

**Date/s Tested:** 9/19/2016

Manufacturer: Vertex Standard LMR, Inc.

**DUT Description:** Handheld Portable – Vertex EVX-S24-G6-3 403-480MHz 3W

**Test TX mode(s):** CW (PTT)

 Max. Power output:
 3.2 W (TDMA) , 2.2 W (FM)

 Nominal Power:
 3.0 W (TDMA) , 2.0 W (FM)

**Tx Frequency Bands:** LMR 403-480MHz **Signaling type:** FM and TDMA

 Model(s) Tested:
 AC146U002 (EVX-S24-G6-3)

 Model(s) Certified:
 AC146U002 (EVX-S24-G6-3)

Serial Number(s): 2D6G200051

Classification: Occupational/Controlled

**FCC ID:** AXI11464620; LMR 406.125-480 MHz

This report contains results that are immaterial for FCC equipment approval, which are

clearly identified.

IC: 10239A-11464620; This report contains results that are immaterial for IC equipment

approval, which are clearly identified.

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of OET Bulletin 65. The 10 grams result is not applicable to FCC filing. The test results clearly demonstrate compliance with ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Physics 74, 494-522 RF Exposure limits of 10 W/kg averaged over 10 grams of contiguous tissue.

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Tiong

Tiong Nguk Ing Deputy Technical Manager Approval Date: 10/05/2016 Certification Date: 10/05/2016

Certification No.: 161002AD

# Part 1 of 2

| 2.0  | FCC S   | AR Summary                                          | .4  |
|------|---------|-----------------------------------------------------|-----|
| 3.0  | Abbrev  | viations / Definitions                              | .4  |
| 4.0  | Referen | nced Standards and Guidelines                       | .5  |
| 5.0  | SAR L   | imits                                               | . 6 |
| 6.0  | Descrip | otion of Device Under Test (DUT)                    | . 6 |
| 7.0  |         | al Accessories and Test Criteria                    |     |
|      | _       | Antenna                                             |     |
|      | 7.2     | Battery                                             | .7  |
|      | 7.3     | Body worn Accessory                                 | .7  |
|      | 7.4     | Audio Accessory                                     | .7  |
| 8.0  | Descrip | otion of Test System                                | .8  |
|      | 8.1     | Descriptions of Robotics/Probes/Readout Electronics | . 8 |
|      |         | Description of Phantom(s)                           |     |
|      |         | Description of Simulated Tissue                     |     |
| 9.0  | Additio | onal Test Equipment                                 | 10  |
| 10.0 | SAR M   | leasurement System Validation and Verification      | 10  |
|      |         | System Validation                                   |     |
|      | 10.2    | System Verification                                 | 11  |
|      | 10.3    | Equivalent Tissue Test Results                      | 11  |
| 11.0 | Enviro  | nmental Test Conditions                             | 11  |
| 12.0 | DUT T   | est Setup and Methodology                           | 12  |
|      |         | Measurements                                        |     |
|      | 12.2    | DUT Configuration(s)                                | 12  |
|      |         | DUT Positioning Procedures                          |     |
|      |         | 12.3.1 Body                                         | 13  |
|      |         | 12.3.2 Head                                         | 13  |
|      |         | 12.3.3 Face                                         |     |
|      |         | DUT Test Channels                                   |     |
|      |         | SAR Result Scaling Methodology                      |     |
|      |         | DUT Test Plan                                       |     |
| 13.0 |         | est Data                                            |     |
|      |         | Assessments at the Body                             |     |
|      |         | Shortened Scan Assessment                           |     |
|      |         | aneous Transmission Exclusion for BT                |     |
|      |         | Summary                                             |     |
|      |         | ility Assessment                                    |     |
| 17.0 | System  | Uncertainty                                         | 16  |

| APPENDICES | •            | n | $\mathbf{n}$ |    | N T | Т | ·T | М. |    |   |
|------------|--------------|---|--------------|----|-----|---|----|----|----|---|
|            | $\mathbf{A}$ | r | r            | н, | N   |   | ж  | ١. | HA | ۹ |

| Α | Measurement Uncertainty Budget  | , 17 |
|---|---------------------------------|------|
| В | Probe Calibration Certificates  | . 20 |
| C | Dipole Calibration Certificates | . 33 |
|   | r                               |      |

# Part 2 of 2

# **APPENDICES**

| D | System Verification Check Scans             | . 2 |
|---|---------------------------------------------|-----|
|   | DUT Scans                                   |     |
| F | Shortened Scan of Highest SAR configuration | . 6 |
|   | DUT Test Position Photos                    |     |
| Н | Antenna dimension and photo                 | . 9 |

# **Report Revision History**

| Date       | Revision | Comments        |
|------------|----------|-----------------|
| 09/28/2016 | A        | Initial release |

FCC ID: AXI11464620 / IC: 10239A-11464620 Report ID: P7340-EME-00002

#### 1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number AC146U002 (EVX-S24-G6-3). This device is classified as Occupational/Controlled. The information herein is to show evidence of Class II Permissive Change compliance base on SAR evaluation of new introduced Leather Case, Belt loop LCC-S24

## 2.0 FCC SAR Summary

Table 1

| Equipment | Engagener hand (MHz) | Max Calc at Body (W/kg) |      |  |  |
|-----------|----------------------|-------------------------|------|--|--|
| Class     | Frequency band (MHz) | 1g-SAR 10g-SAR          |      |  |  |
| TNF       | 406.125 - 480 MHz    | *3.88                   | 2.69 |  |  |
| Simul     | taneous Results      | NA                      | NA   |  |  |

Note: \* New highest reported SAR value for body-worn accessory transmission exposure condition is 3.88 W/kg

#### 3.0 Abbreviations / Definitions

CNR: Calibration Not Required

CW: Continuous Wave

DSP: Digital Signal Processor DUT: Device Under Test EME: Electromagnetic Energy

EME: Electromagnetic Energy FM: Frequency Modulation LMR: Land Mobile Radio

NA: Not Applicable PTT: Push to Talk RF: Radio Frequency

SAR: Specific Absorption Rate

TDMA: Time Division Multiple Access

TNF: Licensed Non-Broadcast Transmitter Held to Face

4FSK: 4 Level Frequency Shift Keying

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

#### 4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1 (2005) Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997.
- IEEE 1528 (2013), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
- Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2014)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- FCC KDB 643646 D01 SAR Test for PTT Radios v01r03
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 RF Exposure Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06

# 5.0 SAR Limits

FCC ID: AXI11464620 / IC: 10239A-11464620

Table 2

|                                               | SAR (W/kg)            |                      |  |  |
|-----------------------------------------------|-----------------------|----------------------|--|--|
| EXPOSURE LIMITS                               | (General Population / | (Occupational /      |  |  |
| EAI OSUKE LIVILIS                             | Uncontrolled Exposure | Controlled Exposure  |  |  |
|                                               | Environment)          | <b>Environment</b> ) |  |  |
| Spatial Average - ANSI -                      |                       |                      |  |  |
| (averaged over the whole body)                | 0.08                  | 0.4                  |  |  |
| Spatial Peak - ANSI -                         |                       |                      |  |  |
| (averaged over any 1-g of tissue)             | 1.6                   | 8.0                  |  |  |
| Spatial Peak – ICNIRP/ANSI -                  |                       |                      |  |  |
| (hands/wrists/feet/ankles averaged over 10-g) | 4.0                   | 20.0                 |  |  |
| Spatial Peak - ICNIRP -                       |                       |                      |  |  |
| (Head and Trunk 10-g)                         | 2.0                   | 10.0                 |  |  |

# **6.0** Description of Device Under Test (DUT)

This device operates using analog frequency modulation (FM) signaling incorporating traditional simplex two-way radio transmission protocol.

This radio contains transmit and receive circuitry for digital two way radio communications. The modulation scheme used for digital two-way radio communications is 4 Level Frequency Shift Keying (4FSK) and Time Division Multiple Access (TDMA). 4FSK is a modulation technique that transmits information by altering the frequency of the carrier frequency (RF) signal. Data is converted into complex symbols, which alter the RF signal and transmit the information. When the signal is received, the change in frequency is converted back into symbols and then into the original data. The system can accommodate 2-voice channels in a standard 12.5 kHz channel as used in two-way radio.

TDMA is used to allocate portions of the RF signal by dividing time into two slots. Time allocation enables independent units to transmit voice information without interference from each other. Transmission from a radio or base station is accommodated in time-slot lengths of 30 milliseconds and frame lengths of 60 milliseconds. The 4FSK TDMA modulation technique requires sophisticated algorithms and a digital signal processor (DSP) to perform voice compressions/decompressions and RF modulation/demodulation. This device is intended to be used with a maximum duty cycle of 50%

Table 3 below summarizes the technologies, bands, maximum duty cycles and maximum output powers. Maximum output powers are defined as upper limit of the production line final test station.

Table 3

| Technology | Band (MHz) | Transmission | Duty Cycle (%) | Max Power (W) |
|------------|------------|--------------|----------------|---------------|
| LMR        | 403-480    | TDMA         | *25            | 3.20          |
| LMR        | 403-480    | FM           | *50            | 2.20          |

Note - \* includes 50% PTT operation

FCC ID: AXI11464620 / IC: 10239A-11464620

The intended operating positions is "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

## 7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. The following section identifies the test criteria and details for each accessory category applicable for this PCII filing only. Detail listing of all approved offered accessories available in original filing report.

#### 7.1 Antenna

There is one antenna applicable for this PCII filing. The table below describes the antenna.

Table 4

| <b>Antenna Models</b> | Description                        | Selected for test | Tested |
|-----------------------|------------------------------------|-------------------|--------|
| ATU-6B                | Whip Antenna, 420-450MHz, -4.3 dBd | Yes               | Yes    |

# 7.2 Battery

There is one battery applicable for this PC II filing. The table below describes the battery.

Table 5

| <b>Battery Models</b> | Description           | Selected<br>for test | Tested | Comments |
|-----------------------|-----------------------|----------------------|--------|----------|
| FNB-V142LI            | High Capacity 2300mAh | Yes                  | Yes    |          |

# 7.3 Body worn Accessory

There is one new body worn accessory applicable for this PC II filling. The table below describes the body worn accessory.

Table 6

| Body worn<br>Models | Description             | Selected<br>for test | Tested | Comments |
|---------------------|-------------------------|----------------------|--------|----------|
| LCC-S24             | Leather Case, Belt Loop | Yes                  | Yes    |          |

# 7.4 Audio Accessory

There is one audio applicable for this PCII filing. The table below describes the audio accessory.

Table 7

| Audio Acc.<br>Models | Description         | Selected<br>for test | Tested | Comments |
|----------------------|---------------------|----------------------|--------|----------|
| Models               | Description         | for test             | resteu | Comments |
| MH-89A4B             | Earpiece microphone | Yes                  | Yes    |          |

# 8.0 Description of Test System



# 8.1 Descriptions of Robotics/Probes/Readout Electronics

Table 8

| Dosimetric System type | System version | DAE type | Probe Type |
|------------------------|----------------|----------|------------|
| Schmid & Partner       |                |          | ES3DV3     |
| Engineering AG         | 52.8.8.1222    | DAE4     | (E-Field)  |
| SPEAG DASY 5           |                |          | (L-Field)  |

The DASY5™ system is operated per the instructions in the DASY5™ Users Manual. The complete manual is available directly from SPEAG™. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations

## 8.2 Description of Phantom(s)

Table 9

| Phantom Type | Phantom(s) Used | Material<br>Parameters                                        | Phantom Dimensions LxWxD (mm) | Material<br>Thickness<br>(mm) | Support<br>Structure<br>Material | Loss<br>Tangent<br>(wood) |
|--------------|-----------------|---------------------------------------------------------------|-------------------------------|-------------------------------|----------------------------------|---------------------------|
| Triple Flat  | NA              | 200MHz -6GHz;<br>Er = 3-5,<br>Loss Tangent =<br>\$\leq 0.05\$ | 280x175x175                   |                               |                                  |                           |
| SAM          | NA              | 300MHz -6GHz;<br>Er = < 5,<br>Loss Tangent =<br>≤0.05         | Human Model                   | 2mm<br>+/- 0.2mm              | Wood                             | < 0.05                    |
| Oval Flat    | V               | 300MHz -6GHz;<br>Er = 4+/- 1,<br>Loss Tangent =<br>≤0.05      | 600x400x190                   |                               |                                  |                           |

## 8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

## **Simulated Tissue Composition (percent by mass)**

Table 10

|              | 450MHz |
|--------------|--------|
| Ingredients  | Body   |
| Sugar        | 46.50  |
| Diacetin     | 0      |
| De ionized – | 50.53  |
| Water        | 30.33  |
| Salt         | 1.87   |
| HEC          | 1.00   |
| Bact.        | 0.10   |

# 9.0 Additional Test Equipment

FCC ID: AXI11464620 / IC: 10239A-11464620

The Table below lists additional test equipment used during the SAR assessment.

Table 11

|                                           |                 | 100010 11     |                     |                      |
|-------------------------------------------|-----------------|---------------|---------------------|----------------------|
| Equipment Type                            | Model<br>Number | Serial Number | Calibration<br>Date | Calibration Due Date |
| Speag Probe                               | ES3DV3          | 3196          | 11/17/2015          | 11/17/2016           |
| Speag DAE                                 | DAE4            | 688           | 4/21/2016           | 4/21/2017            |
| Signal Generator (Vector ESG 250KHz-6GHz) | E4438C          | MY44270302    | 6/18/2015           | 6/18/2017            |
| Amplifier                                 | 10W1000C        | 312859        | NCR                 | NCR                  |
| Power Meter                               | E4419B          | MY50000505    | 9/2/2015            | 9/2/2017             |
| Power Meter                               | E4418B          | MY45100532    | 11/4/2015           | 11/4/2017            |
| Power Meter                               | E4418B          | MY45100911    | 5/29/2015           | 5/29/2017            |
| Power Sensor                              | 8481B           | MY41091170    | 11/11/2015          | 11/11/2016           |
| Power Sensor                              | 8481B           | SG41090248    | 12/14/2015          | 12/14/2016           |
| Power Sensor                              | N8481B          | MY51450002    | 6/7/2016            | 6/7/2017             |
| Bi-Directional Coupler                    | 3020A           | 40295         | 9/22/2015           | 9/22/2017            |
| Thermometer                               | HH806AU         | 080307        | 4/8/2016            | 4/8/2017             |
| Temperature Probe                         | 80PK-25         | 80428.01      | 8/5/2016            | 8/5/2017             |
| Dickson Temperature Recorder              | TM320           | 6153215       | 8/2/2016            | 8/2/2017             |
| Dielectric Assessment Kit                 | DAK-12          | 1051          | 3/8/2016            | 3/8/2017             |
| Network Analyzer                          | E5071B          | MY42403147    | 11/6/2015           | 11/6/2016            |
| Speag Dipole                              | D450V3          | 1077          | 11/25/2015          | 11/25/2017           |

# 10.0 SAR Measurement System Validation and Verification

DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively.

# 10.1 System Validation

The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below.

Table 12

| Dates     | Probe Calibration<br>Point |     | Probe<br>SN |      | red Tissue<br>ameters | Validation                     |      |      |
|-----------|----------------------------|-----|-------------|------|-----------------------|--------------------------------|------|------|
|           | Pol                        | Ш   | SIN         | σ    | $\epsilon_{ m r}$     | Sensitivity Linearity Isotropy |      |      |
|           |                            |     |             | CV   | V                     |                                |      |      |
| 1/22/2016 | Body                       | 450 | 3196        | 0.96 | 54.3                  | Pass                           | Pass | Pass |
| 1/26/2016 | Head                       | 450 | 3190        | 0.84 | 44.5                  | Pass Pass                      |      | Pass |

# FCC ID: AXI11464620 / IC: 10239A-11464620

## 10.2 System Verification

System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment.

Table 13

| Probe<br>Serial # | Tissue Type | Dipole Kit / Serial #  | Ref SAR @ 1W<br>(W/kg) |      | System Check Test<br>Results when<br>normalized to 1W<br>(W/kg) | Tested<br>Date |
|-------------------|-------------|------------------------|------------------------|------|-----------------------------------------------------------------|----------------|
| 3196              | FCC Body    | SPEAG D450V3 /<br>1077 | 4.52 +/- 10%           | 1.15 | 4.60                                                            | 9/19/2016      |

## **10.3** Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment.

Table 14

| Frequency (MHz) | Tissue Type | Conductivity<br>Target (S/m) | Dielectric Constant<br>Target | Conductivity<br>Meas. (S/m) | Dielectric<br>Constant<br>Meas. | <b>Tested Date</b> |
|-----------------|-------------|------------------------------|-------------------------------|-----------------------------|---------------------------------|--------------------|
| 430             | FCC Body    | 0.94<br>(0.89-0.98)          | 56.9<br>(54.1-59.7)           | 0.96                        | 54.6                            | 9/19/2016          |
| 450             | FCC Body    | 0.94<br>(0.89-0.99)          | 56.7<br>(53.9-59.5)           | 0.98                        | 54.4                            | 9/19/2016          |

#### 11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein:

Table 15

|                     | Target     | Measured              |
|---------------------|------------|-----------------------|
|                     |            | Range: 20.7 – 23.8 °C |
| Ambient Temperature | 18 − 25 °C | Avg. 22.1 °C          |
|                     |            | Range: 21.6-21.6°C    |
| Tissue Temperature  | NA         | Avg. 21.6°C           |

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

# 12.0 DUT Test Setup and Methodology

#### 12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing.

The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

Table 16

| Description                                                                                            | ≤ 3 GHz > 3 GHz                                                                    |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | $5 \pm 1 \text{ mm}$ $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$    |
| Maximum probe angle from probe axis to phantom surfanormal at the measurement location                 | 30° ± 1° 20° ± 1°                                                                  |
|                                                                                                        | $\leq$ 2 GHz: $\leq$ 15 mm $3-4$ GHz: $\leq$ 12 mm                                 |
|                                                                                                        | $2 - 3 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$      |
|                                                                                                        | When the x or y dimension of the test device, in                                   |
| Maximum area scan spatial resolution: ΔxArea, ΔyAr                                                     | the measurement plane orientation, is smaller                                      |
| Waximum area scan spatial resolution. ΔxArea, ΔyAr                                                     | than the above, the measurement resolution must                                    |
|                                                                                                        | be $\leq$ the corresponding x or y dimension of the                                |
|                                                                                                        | test device with at least one measurement point                                    |
|                                                                                                        | on the test device.                                                                |
| Maximum zoom scan spatial resolution: ΔxZoom, ΔyZo                                                     | om $\leq 2 \text{ GHz: } \leq 8 \text{ mm}$ $3-4 \text{ GHz: } \leq 5 \text{ mm*}$ |
|                                                                                                        | $2 - 3 \text{ GHz} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz} \le 4 \text{ mm}^*$      |
| Maximum zoom scan spatial uniform grid: ΔzZoom(r                                                       | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$                                             |
| resolution, normal to                                                                                  | $\leq$ 5 mm $4-5$ GHz: $\leq$ 3 mm                                                 |
| phantom surface                                                                                        | $5-6 \text{ GHz} \le 2 \text{ mm}$                                                 |

Note:  $\delta$  is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

## **12.2 DUT** Configuration(s)

The DUT is a portable device operational at the body as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646.

#### 12.3 **DUT Positioning Procedures**

The positioning of the device for each body location is described below and illustrated in Appendix G.

<sup>\*</sup> When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is  $\leq 1.4$  W/kg,  $\leq 8$  mm,  $\leq 7$  mm and  $\leq 5$  mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

#### 12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory.

#### 12.3.2 Head

Not applicable.

#### 12.3.3 Face

Not applicable.

#### **12.4 DUT Test Channels**

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

$$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$

Where

 $N_c$  = Number of channels

 $F_{high} = Upper channel$ 

 $F_{low} = Lower channel$ 

 $F_c$  = Center channel

## 12.5 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" are scaled using the following formula:

$$Max\_Calc = SAR\_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P\_max}{P\_int} \cdot DC$$

 $P_{max} = Maximum Power (W)$ 

P\_int = Initial Power (W)

Drift = DASY drift results (dB)

SAR\_meas = Measured 1-g or 10-g Avg. SAR (W/kg)

DC = Transmission mode duty cycle in % where applicable

50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied:

If  $P_{int} > P_{max}$ , then  $P_{max}/P_{int} = 1$ .

Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

#### 12.6 DUT Test Plan

A new offered leather case, belt loop (LCC-S24) was assessed at the body using the highest applicable configuration found during initial compliance assessment on file with the FCC. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW mode and 50% duty cycle was applied to PTT configurations in the final results.

#### 13.0 DUT Test Data

# 13.1 Assessments at the Body

The new leather case, belt loop LCC-S24 was assessed using the accessories indicated in section 7.0 which represent the highest applicable configurations at the body and face found during the initial compliance assessment on file with the FCC. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 17

| Antenna | Battery    | Carry<br>Accessory | Cable<br>Accessory | Test Freq<br>(MHz) | Init<br>Pwr<br>(W) | SAR<br>Drift<br>(dB) | Meas.<br>1g-SAR<br>(W/kg) |      | Max<br>Calc.<br>1g-<br>SAR<br>(W/kg) | Max<br>Calc.<br>10g-<br>SAR<br>(W/kg) | Run#            |  |
|---------|------------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|------|--------------------------------------|---------------------------------------|-----------------|--|
|         |            |                    |                    | 420.000            |                    |                      |                           |      |                                      |                                       |                 |  |
| ATU-6B  | FNB-V142LI | LCC-S24            | MH-                | 430.000            | 2.14               | -0.32                | 6.31                      | 4.36 | 3.49                                 | 2.41                                  | ZR-AB-160919-03 |  |
| ATU-0D  | FNB-V142L1 | LCC-324            | LCC-S24            | 89A4B              | 440.000            |                      |                           |      |                                      |                                       |                 |  |
|         |            |                    |                    | 450.000            |                    |                      |                           |      |                                      |                                       |                 |  |

#### 13.2 Shortened Scan Assessment

A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5<sup>TM</sup> coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F.

Table 18

|         |            |           |           |           |              |              | Meas.      | Meas.       | Max<br>Calc. | Max<br>Calc. |                 |
|---------|------------|-----------|-----------|-----------|--------------|--------------|------------|-------------|--------------|--------------|-----------------|
|         |            | Carry     | Cable     | Test Freq | Init<br>Pwr  | SAR<br>Drift | 1g-<br>SAR | 10g-<br>SAR | 1g-<br>SAR   | 10g-<br>SAR  |                 |
| Antenna | Battery    | Accessory | Accessory | (MHz)     | ( <b>W</b> ) | (dB)         | (W/kg)     | (W/kg)      | (W/kg)       | (W/kg)       | Run#            |
| ATU-6B  | FNB-V142LI | LCC-S24   | MH-89A4B  | 430.000   | 2.14         | -0.13        | 7.33       | 5.08        | 3.88         | 2.69         | ZR-AB-160919-04 |

## 14.0 Simultaneous Transmission Exclusion for BT

Not applicable

# 15.0 Results Summary

The highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for this filing:

Table 19

| Frequency               | Max Calc at | Body (W/kg)  | Max Calc at Face (W/kg) |         |  |  |  |  |  |
|-------------------------|-------------|--------------|-------------------------|---------|--|--|--|--|--|
| band (MHz)              | 1g-SAR      | 10g-SAR      | 1g-SAR                  | 10g-SAR |  |  |  |  |  |
| FCC                     |             |              |                         |         |  |  |  |  |  |
| 406.125-480             | *3.88       | 2.69         | 2.64                    | 1.91    |  |  |  |  |  |
|                         | Inc         | dustry Canad | a                       |         |  |  |  |  |  |
| 406.125-430;<br>450-470 | *3.88       | 2.69         | 2.64                    | 1.91    |  |  |  |  |  |
| Overall                 |             |              |                         |         |  |  |  |  |  |
| 403-480                 | *3.88       | 2.69         | 2.64                    | 1.91    |  |  |  |  |  |

All results are scaled to the maximum output power.

Note: \* New highest reported SAR value for body-worn accessory transmission exposure condition is  $3.88~\mathrm{W/kg}$ 

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of OET Bulletin 65. The 10 grams result is not applicable to FCC filing.

FCC ID: AXI11464620 / IC: 10239A-11464620 Report ID: P7340-EME-00002

# 16.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is required because SAR results are below 4.0W/kg (Occupational).

# 17.0 System Uncertainty

A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value Occupational exposure is less than 7.5W/kg.

Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.

FCC ID: AXI11464620 / IC: 10239A-11464620 Report ID: P7340-EME-00002

# Appendix A Measurement Uncertainty Budget

Table A.1: Uncertainty Budget for Device Under Test for 450 MHz

|                                                    |                         |            |              | e =    |             |              | h = cxf/                      | $i = c \times g /$             |          |
|----------------------------------------------------|-------------------------|------------|--------------|--------|-------------|--------------|-------------------------------|--------------------------------|----------|
| а                                                  | b                       | c          | d            | f(d,k) | f           | g            | e                             | e                              | k        |
| <b>Uncertainty Component</b>                       | IEEE<br>1528<br>section | Tol. (± %) | Prob<br>Dist | Div.   | ci<br>(1 g) | ci<br>(10 g) | 1 g<br>u <sub>i</sub><br>(±%) | 10 g<br>u <sub>i</sub><br>(±%) | $v_i$    |
| Measurement System                                 |                         |            |              |        |             |              |                               |                                |          |
| Probe Calibration                                  | E.2.1                   | 6.7        | N            | 1.00   | 1           | 1            | 6.7                           | 6.7                            | 8        |
| Axial Isotropy                                     | E.2.2                   | 4.7        | R            | 1.73   | 0.707       | 0.707        | 1.9                           | 1.9                            | 8        |
| Hemispherical Isotropy                             | E.2.2                   | 9.6        | R            | 1.73   | 0.707       | 0.707        | 3.9                           | 3.9                            | 8        |
| Boundary Effect                                    | E.2.3                   | 1.0        | R            | 1.73   | 1           | 1            | 0.6                           | 0.6                            | 8        |
| Linearity                                          | E.2.4                   | 4.7        | R            | 1.73   | 1           | 1            | 2.7                           | 2.7                            | 8        |
| System Detection Limits                            | E.2.5                   | 1.0        | R            | 1.73   | 1           | 1            | 0.6                           | 0.6                            | 8        |
| Readout Electronics                                | E.2.6                   | 0.3        | N            | 1.00   | 1           | 1            | 0.3                           | 0.3                            | 8        |
| Response Time                                      | E.2.7                   | 1.1        | R            | 1.73   | 1           | 1            | 0.6                           | 0.6                            | 8        |
| Integration Time                                   | E.2.8                   | 1.1        | R            | 1.73   | 1           | 1            | 0.6                           | 0.6                            | 8        |
| RF Ambient Conditions - Noise                      | E.6.1                   | 3.0        | R            | 1.73   | 1           | 1            | 1.7                           | 1.7                            | 8        |
| RF Ambient Conditions -                            |                         |            |              |        |             |              |                               |                                |          |
| Reflections                                        | E.6.1                   | 0.0        | R            | 1.73   | 1           | 1            | 0.0                           | 0.0                            | $\infty$ |
| Probe Positioner Mech. Tolerance                   | E.6.2                   | 0.4        | R            | 1.73   | 1           | 1            | 0.2                           | 0.2                            | 8        |
| Probe Positioning w.r.t Phantom                    | E.6.3                   | 1.4        | R            | 1.73   | 1           | 1            | 0.8                           | 0.8                            | 8        |
| Max. SAR Evaluation (ext., int.,                   |                         |            | _            |        |             |              | • 0                           | • 0                            |          |
| avg.)                                              | E.5                     | 3.4        | R            | 1.73   | 1           | 1            | 2.0                           | 2.0                            | ∞        |
| Test sample Related                                |                         |            |              |        |             |              |                               |                                |          |
| Test Sample Positioning                            | E.4.2                   | 3.2        | N            | 1.00   | 1           | 1            | 3.2                           | 3.2                            | 29       |
| Device Holder Uncertainty                          | E.4.1                   | 4.0        | N            | 1.00   | 1           | 1            | 4.0                           | 4.0                            | 8        |
| SAR drift                                          | 6.6.2                   | 5.0        | R            | 1.73   | 1           | 1            | 2.9                           | 2.9                            | ∞        |
| <b>Phantom and Tissue Parameters</b>               |                         |            |              |        |             |              |                               |                                |          |
| Phantom Uncertainty                                | E.3.1                   | 4.0        | R            | 1.73   | 1           | 1            | 2.3                           | 2.3                            | ∞        |
| Liquid Conductivity (target)                       | E.3.2                   | 5.0        | R            | 1.73   | 0.64        | 0.43         | 1.8                           | 1.2                            | 8        |
| Liquid Conductivity                                | E 2 2                   | 2.2        | NI           | 1.00   | 0.64        | 0.42         | 2.1                           | 1.4                            |          |
| (measurement)                                      | E.3.3                   | 3.3        | N            | 1.00   | 0.64        | 0.43         | 2.1                           | 1.4                            | ∞        |
| Liquid Permittivity (target)                       | E.3.2                   | 5.0        | R            | 1.73   | 0.6         | 0.49         | 1.7                           | 1.4                            | ∞        |
| Liquid Permittivity (measurement)                  | E.3.3                   | 1.9        | N            | 1.00   | 0.6         | 0.49         | 1.1                           | 0.9                            | ∞<br>477 |
| Combined Standard Uncertainty                      |                         |            | RSS          |        |             |              | 11                            | 11                             | 477      |
| <b>Expanded Uncertainty</b> (95% CONFIDENCE LEVEL) |                         |            | k=2          |        |             |              | 23                            | 22                             |          |

Notes for uncertainty budget Tables:

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) ci sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Table A.2: Uncertainty Budget for System Validation (dipole & flat phantom) for 450 MHz

|                                        |                         |            |              |        |                      |              | h =                                                 | i =                            |          |
|----------------------------------------|-------------------------|------------|--------------|--------|----------------------|--------------|-----------------------------------------------------|--------------------------------|----------|
|                                        | 7                       |            | 7            | e =    | C                    |              | cxf                                                 | cx                             | ,        |
| a                                      | b                       | c          | d            | f(d,k) | J                    | g            | / e                                                 | g/e                            | k        |
| <b>Uncertainty Component</b>           | IEEE<br>1528<br>section | Tol. (± %) | Prob<br>Dist | Div.   | c <sub>i</sub> (1 g) | $c_i$ (10 g) | $\begin{array}{c} 1~g\\ U_i\\ (\pm \%) \end{array}$ | 10 g<br>U <sub>i</sub><br>(±%) | $v_i$    |
| Measurement System                     |                         |            |              |        |                      |              |                                                     |                                |          |
| Probe Calibration                      | E.2.1                   | 6.7        | N            | 1.00   | 1                    | 1            | 6.7                                                 | 6.7                            | 8        |
| Axial Isotropy                         | E.2.2                   | 4.7        | R            | 1.73   | 1                    | 1            | 2.7                                                 | 2.7                            | ∞        |
| Spherical Isotropy                     | E.2.2                   | 9.6        | R            | 1.73   | 0                    | 0            | 0.0                                                 | 0.0                            | ∞        |
| Boundary Effect                        | E.2.3                   | 1.0        | R            | 1.73   | 1                    | 1            | 0.6                                                 | 0.6                            | ∞        |
| Linearity                              | E.2.4                   | 4.7        | R            | 1.73   | 1                    | 1            | 2.7                                                 | 2.7                            | ∞        |
| System Detection Limits                | E.2.5                   | 1.0        | R            | 1.73   | 1                    | 1            | 0.6                                                 | 0.6                            | 8        |
| Readout Electronics                    | E.2.6                   | 0.3        | N            | 1.00   | 1                    | 1            | 0.3                                                 | 0.3                            | 8        |
| Response Time                          | E.2.7                   | 1.1        | R            | 1.73   | 1                    | 1            | 0.6                                                 | 0.6                            | $\infty$ |
| Integration Time                       | E.2.8                   | 0.0        | R            | 1.73   | 1                    | 1            | 0.0                                                 | 0.0                            | 8        |
| RF Ambient Conditions - Noise          | E.6.1                   | 3.0        | R            | 1.73   | 1                    | 1            | 1.7                                                 | 1.7                            | 8        |
| RF Ambient Conditions - Reflections    | E.6.1                   | 0.0        | R            | 1.73   | 1                    | 1            | 0.0                                                 | 0.0                            | 8        |
| Probe Positioner Mechanical Tolerance  | E.6.2                   | 0.4        | R            | 1.73   | 1                    | 1            | 0.2                                                 | 0.2                            | $\infty$ |
| Probe Positioning w.r.t. Phantom       | E.6.3                   | 1.4        | R            | 1.73   | 1                    | 1            | 0.8                                                 | 0.8                            | ∞        |
| Max. SAR Evaluation (ext., int., avg.) | E.5                     | 3.4        | R            | 1.73   | 1                    | 1            | 2.0                                                 | 2.0                            | $\infty$ |
| Dipole                                 |                         |            |              |        |                      |              |                                                     |                                |          |
| Dipole Axis to Liquid Distance         | 8, E.4.2                | 2.0        | R            | 1.73   | 1                    | 1            | 1.2                                                 | 1.2                            | 8        |
| Input Power and SAR Drift Measurement  | 8, 6.6.2                | 5.0        | R            | 1.73   | 1                    | 1            | 2.9                                                 | 2.9                            | 8        |
| Phantom and Tissue Parameters          |                         |            |              |        |                      |              |                                                     |                                |          |
| Phantom Uncertainty                    | E.3.1                   | 4.0        | R            | 1.73   | 1                    | 1            | 2.3                                                 | 2.3                            | ∞        |
| Liquid Conductivity (target)           | E.3.2                   | 5.0        | R            | 1.73   | 0.64                 | 0.43         | 1.8                                                 | 1.2                            | ∞        |
| Liquid Conductivity (measurement)      | E.3.3                   | 3.3        | R            | 1.73   | 0.64                 | 0.43         | 1.2                                                 | 0.8                            | 8        |
| Liquid Permittivity (target)           | E.3.2                   | 5.0        | R            | 1.73   | 0.6                  | 0.49         | 1.7                                                 | 1.4                            | 8        |
| Liquid Permittivity (measurement)      | E.3.3                   | 1.9        | R            | 1.73   | 0.6                  | 0.49         | 0.6                                                 | 0.5                            | ∞        |
| Combined Standard Uncertainty          |                         |            | RSS          |        |                      |              | 10                                                  | 9                              | 99999    |
| <b>Expanded Uncertainty</b>            |                         |            |              |        |                      |              |                                                     |                                |          |
| (95% CONFIDENCE LEVEL)                 |                         |            | k=2          |        |                      |              | 19                                                  | 18                             |          |

Notes for uncertainty budget Tables:

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

FCC ID: AXI11464620 / IC: 10239A-11464620 Report ID: P7340-EME-00002

# **Appendix B Probe Calibration Certificates**

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Motorola Solutions MY

Certificate No: ES3-3196\_Nov15

# CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3196

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

November 17, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID              | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|-----------------|-----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 01-Apr-15 (No. 217-02128)         | Mar-16                 |
| Power sensor E4412A        | MY41498087      | 01-Apr-15 (No. 217-02128)         | Mar-16                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 01-Apr-15 (No. 217-02129)         | Mar-16                 |
| Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132)         | Mar-16                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 01-Apr-15 (No. 217-02133)         | Mar-16                 |
| Reference Probe ES3DV2     | SN: 3013        | 30-Dec-14 (No. ES3-3013_Dec14)    | Dec-15                 |
| DAE4                       | SN: 660         | 14-Jan-15 (No. DAE4-680_Jan15)    | Jan-16                 |
| Secondary Standards        | ID              | Check Date (in house)             | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-13)  | In house check: Apr-16 |
| Network Analyzer HP 8753E  | U\$37390585     | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 |

|                | Name            | Function              | Signature |
|----------------|-----------------|-----------------------|-----------|
| Calibrated by: | Claudio Leubler | Laboratory Technician | UD        |
| Approved by:   | Katja Pokovic   | Technical Manager     | De les    |

Issued: November 17, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3196\_Nov15

Page 1 of 12

#### Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibriordienot
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D

DCP

crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 3

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 8 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

# Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices
  used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

# Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
   NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3196\_Nov15

Page 2 of 12

November 17, 2015

# Probe ES3DV3

SN:3196

Manufactured: June 16, 2008

Calibrated:

November 17, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3196\_Nov15

Page 3 of 12

November 17, 2015

# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

# **Basic Calibration Parameters**

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 1.27     | 1.29     | 1.33     | ± 10.1 %  |
| DCP (mV) <sup>8</sup>    | 104.9    | 104.0    | 102.6    |           |

| Modulation | Calibration | Parameters |
|------------|-------------|------------|
|------------|-------------|------------|

| UID                             | Communication System Name                         |   | A<br>dB | B<br>dB√μV | С    | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|---------------------------------|---------------------------------------------------|---|---------|------------|------|---------|----------|---------------------------|
| 0                               | CM                                                | Х | 0.0     | 0.0        | 1.0  | 0.00    | 213.4    | ±3.3 %                    |
|                                 |                                                   | Υ | 0.0     | 0.0        | 1.0  |         | 214.3    |                           |
|                                 |                                                   | Z | 0.0     | 0.0        | 1.0  |         | 218.9    |                           |
| 10012-<br>CAB                   | IEEE 802.11b WIFi 2.4 GHz (DSSS, 1<br>Mbps)       | Х | 2.95    | 69.6       | 19.1 | 1.87    | 148.8    | ±0.7 %                    |
|                                 |                                                   | Υ | 3.00    | 69.4       | 18.9 |         | 147.7    |                           |
|                                 |                                                   | Z | 2.76    | 68.0       | 18.4 |         | 132.0    |                           |
| 10013-<br>CAB                   | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 6 Mbps) | × | 11.06   | 71.2       | 23.8 | 9.46    | 143.4    | ±3.3 %                    |
|                                 |                                                   | Y | 10.98   | 70.6       | 23.3 |         | 145.2    |                           |
|                                 |                                                   | Z | 10.86   | 70.5       | 23.4 |         | 124.5    |                           |
| 10059- IEEE 802.11<br>CAB Mbps) | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2<br>Mbps)       | Х | 3.25    | 70.7       | 19.7 | 2.12    | 147.8    | ±0.7 %                    |
|                                 |                                                   | Y | 3.55    | 72.1       | 20.2 |         | 147.4    |                           |
|                                 |                                                   | Z | 3.08    | 69.5       | 19.2 |         | 131.0    |                           |
|                                 | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 9 Mbps)  | Х | 11.24   | 71.6       | 24.3 | 9.83    | 140.4    | ±2.7 %                    |
|                                 |                                                   | Y | 11.13   | 70.9       | 23.7 |         | 141.2    |                           |
|                                 |                                                   | Z | 11.61   | 72.5       | 24.9 |         | 149.5    |                           |
| 10114-<br>CAB                   | IEEE 802.11n (HT Greenfield, 13.5<br>Mbps, BPSK)  | Х | 10.05   | 68.9       | 21.4 | 8.10    | 127.0    | ±2.2 %                    |
|                                 |                                                   | Y | 9.87    | 68.3       | 21.0 |         | 126.0    |                           |
|                                 |                                                   | Z | 10.23   | 69.4       | 21.7 |         | 134.0    |                           |
| 10117-<br>CAB                   | IEEE 802.11n (HT Mixed, 13.5 Mbps,<br>BPSK)       | X | 10.01   | 68.8       | 21.3 | 8.07    | 127.5    | ±2.2 %                    |
|                                 |                                                   | Y | 9.87    | 68.3       | 20.9 |         | 127.2    |                           |
|                                 |                                                   | Z | 10.21   | 69.3       | 21.7 |         | 134.9    |                           |
| 10193-<br>CAB                   | IEEE 802.11n (HT Greenfield, 6.5 Mbps,<br>BPSK)   | Х | 10.02   | 69.6       | 21.9 | 8.09    | 147.9    | ±2.5 %                    |
|                                 |                                                   | Y | 9.96    | 69.2       | 21.5 |         | 149.5    |                           |
|                                 |                                                   | Z | 9.84    | 69.0       | 21.6 |         | 129.1    |                           |
| 10196-<br>CAB                   | IEEE 802.11n (HT Mixed, 6.5 Mbps,<br>BPSK)        | Х | 10.00   | 69.6       | 21.9 | 8.10    | 147.4    | ±2.2 %                    |
|                                 |                                                   | Y | 9.92    | 69.1       | 21.5 |         | 147.7    |                           |
|                                 |                                                   | Z | 9.82    | 69.0       | 21.6 |         | 128.8    |                           |
| 10219-<br>CAB                   | IEEE 802.11n (HT Mixed, 7.2 Mbps,<br>BPSK)        | Х | 9.88    | 69.5       | 21.8 | 8.03    | 146.9    | ±2.5 %                    |
|                                 |                                                   | Y | 9.78    | 68.9       | 21.4 |         | 146.3    |                           |
|                                 |                                                   | Z | 9.73    | 69.0       | 21.6 |         | 127.8    |                           |
| 10222-<br>CAB                   | IEEE 802.11n (HT Mixed, 15 Mbps,<br>BPSK)         | Х | 10.00   | 68.8       | 21.3 | 8.06    | 127.3    | ±2.2 %                    |
|                                 |                                                   | Y | 9.80    | 68.2       | 20.9 |         | 126.3    |                           |
|                                 |                                                   | Z | 10.17   | 69.2       | 21.6 |         | 134.7    |                           |

Certificate No: ES3-3196\_Nov15

Page 4 of 12

November 17, 2015

| 10422-<br>AAA                              | IEEE 802.11n (HT Greenfield, 7.2 Mbps,<br>BPSK) | х | 10.28 | 69.9 | 22.2 | 8.32 | 149.2 | ±2.5 % |
|--------------------------------------------|-------------------------------------------------|---|-------|------|------|------|-------|--------|
|                                            |                                                 | Y | 10.19 | 69.4 | 21.8 |      | 149.0 |        |
|                                            |                                                 | Z | 10.09 | 69.3 | 21.9 |      | 129.5 |        |
| 10425- IEEE 802.11n (HT Green<br>AAA BPSK) | IEEE 802.11n (HT Greenfield, 15 Mbps,<br>BPSK)  | Х | 10.45 | 69.3 | 21.8 | 8.41 | 129.4 | ±2.5 % |
|                                            |                                                 | Υ | 10.27 | 68.7 | 21.3 |      | 128.2 |        |
|                                            |                                                 | Z | 10.65 | 69.8 | 22.1 | 11   | 135.7 |        |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

The uncertainties of Norm X,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 6 and 7).
 Numerical linearization parameter: uncertainty not required.
 Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

November 17, 2015

# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

# Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity F | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>C</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 150                  | 52.3                       | 0.76                    | 7.31    | 7.31    | 7.31    | 0.06               | 1.25                       | ± 13.3 %     |
| 300                  | 45.3                       | 0.87                    | 7.34    | 7.34    | 7.34    | 0.14               | 1.60                       | ± 13.3 %     |
| 450                  | 43.5                       | 0.87                    | 6.83    | 6.83    | 6.83    | 0.22               | 1.80                       | ± 13.3 %     |
| 750                  | 41.9                       | 0.89                    | 6.46    | 6.46    | 6.46    | 0.40               | 1.64                       | ± 12.0 %     |
| 900                  | 41.5                       | 0.97                    | 6.13    | 6.13    | 6.13    | 0.56               | 1.38                       | ± 12.0 %     |
| 2450                 | 39.2                       | 1.80                    | 4.54    | 4.54    | 4.54    | 0.68               | 1.36                       | ± 12.0 %     |

<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the CorwF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for CorwF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Fat frequencies below 3 GHz, the validity of tissue parameters (s and a) can be released to ± 10% if liquid compensation formula is applied to recovered to ± 10 MHz.

| Certificate | Alm: | E02.2 | 100 | Mount |
|-------------|------|-------|-----|-------|
|             |      |       |     |       |

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

6 Alpha/Depth are determined during calibration. SPEAG werrants that the remaining deviation due to the boundary effect after compensation is

6 Alpha/Depth are determined during calibration. SPEAG werrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

November 17, 2015

# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

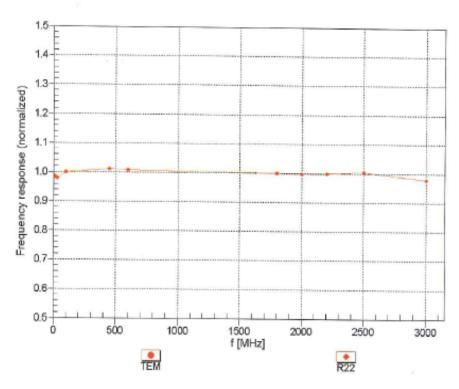
# Calibration Parameter Determined in Body Tissue Simulating Media

| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>6</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 150                  | 61.9                                  | 0.80                               | 6.94    | 6.94    | 6.94    | 0.06               | 1.25                       | ± 13.3 %     |
| 300                  | 58.2                                  | 0.92                               | 6.94    | 6.94    | 6.94    | 0.10               | 1.60                       | ± 13.3 %     |
| 450                  | 56.7                                  | 0.94                               | 7.06    | 7.06    | 7.06    | 0.13               | 1.60                       | ± 13.3 %     |
| 750                  | 55.5                                  | 0.96                               | 6.36    | 6.36    | 6.36    | 0.42               | 1.59                       | ± 12.0 %     |
| 900                  | 55.0                                  | 1.05                               | 6.10    | 6.10    | 6.10    | 0.39               | 1.80                       | ± 12.0 %     |
| 2450                 | 52.7                                  | 1.95                               | 4.43    | 4.43    | 4.43    | 0.71               | 1.28                       | ± 12.0 %     |

<sup>&</sup>lt;sup>6</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: ES3-3196\_Nov15

validity can be extended to ± 110 MHz.


At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

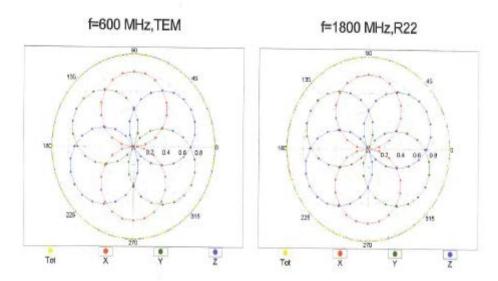
the ConvF uncertainty for indicated target tissue parameters.

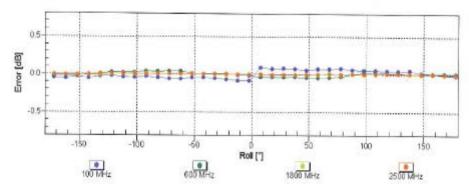
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-5 GHz at any distance larger than half the probe tip diameter from the boundary.

November 17, 2015

# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ES3-3196\_Nov15

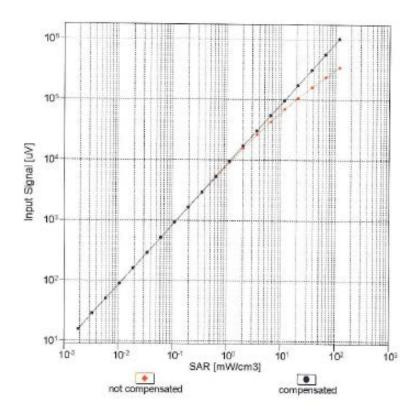
Page 8 of 12

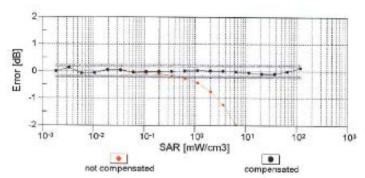
ES3DV3- SN:3196 November 17, 2015

# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$






Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: ES3-3196\_Nov15

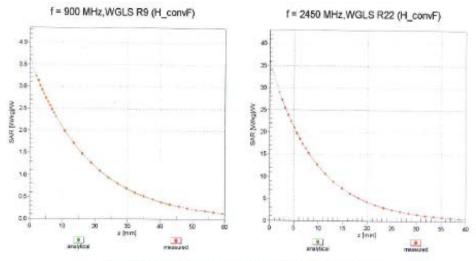
Page 9 of 12

November 17, 2015

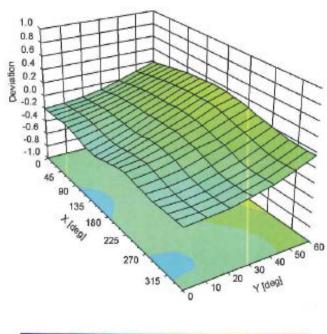
# Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)

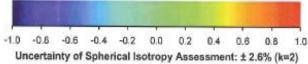





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3196\_Nov15


Page 10 of 12


ES3DV3-SN:3196 November 17, 2015

# **Conversion Factor Assessment**



# Deviation from Isotropy in Liquid Error (ø, 8), f = 900 MHz





Certificate No: ES3-3196\_Nov15

Page 11 of 12

November 17, 2015

# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

# Other Probe Parameters

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 7.9        |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 4 mm       |
| Probe Tip to Sensor X Calibration Point       | 2 mm       |
| Probe Tip to Sensor Y Calibration Point       | 2 mm       |
| Probe Tip to Sensor Z Calibration Point       | 2 mm       |
| Recommended Measurement Distance from Surface | 3 mm       |

Certificate No: ES3-3196\_Nov15

Page 12 of 12

FCC ID: AXI11464620 / IC: 10239A-11464620 Report ID: P7340-EME-00002

# Appendix C Dipole Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Motorola EME Client

Certificate No: D450V3-1077\_Nov15

# CALIBRATION CERTIFICATE

Object

D450V3 - SN: 1077

Calibration procedure(s)

QA CAL-15.v8

Calibration procedure for dipole validation kits below 700 MHz

Calibration date:

November 25, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| ID#                | Cal Date (Certificate No.)                                                                                                                                     | Scheduled Calibration                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GB41293874         | 01-Apr-15 (No. 217-02128)                                                                                                                                      | Mar-16                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MY41498087         | 01-Apr-15 (No. 217-02128)                                                                                                                                      | Mar-16                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SN: S5054 (3c)     | 01-Apr-15 (No. 217-02129)                                                                                                                                      | Mar-16                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SN: S5058 (20k)    | 01-Apr-15 (No. 217-02131)                                                                                                                                      | Mar-16                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SN: 5047.2 / 06327 |                                                                                                                                                                | Mar-16                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SN: 1507           |                                                                                                                                                                | Dec-15                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SN: 654            | 08-Jul-15 (No. DAE4-654_Jul15)                                                                                                                                 | Jul-16                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ID#                | Check Date (in house)                                                                                                                                          | Scheduled Check                                                                                                                                                                                                                                                                                                                                                                                                                        |
| US3642U01700       | 04-Aug-99 (in house check Apr-13)                                                                                                                              | In house check: Apr-16                                                                                                                                                                                                                                                                                                                                                                                                                 |
| US37390585 S4206   | 18-Oct-01 (in house check Oct-15)                                                                                                                              | In house check: Oct-16                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Name               | Function                                                                                                                                                       | Signature                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Leif Klysner       | Laboratory Technician                                                                                                                                          | 800912                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | GB41293874<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5058 (20k)<br>SN: 5047.2 / 06327<br>SN: 1507<br>SN: 654<br>ID #<br>US3642U01700<br>US37390585 S4206<br>Name | GB41293874 01-Apr-15 (No. 217-02128) MY41498087 01-Apr-15 (No. 217-02128) SN: S5054 (3c) 01-Apr-15 (No. 217-02129) SN: S5058 (20k) 01-Apr-15 (No. 217-02131) SN: 5047.2 / 06327 01-Apr-15 (No. 217-02131) SN: 1507 30-Dec-14 (No. ET3-1507_Dec14) SN: 654 08-Jul-15 (No. DAE4-654_Jul-15)  ID # Check Date (in house) US3642U01700 04-Aug-99 (in house check Apr-13) US37390585 S4206 18-Oct-01 (in house check Oct-15)  Name Function |

Katja Pokovic Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D450V3-1077\_Nov15

Approved by:

Page 1 of 8

#### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

| artificate No. D450V2 1077 No.45             |
|----------------------------------------------|
| ertificate No: D450V3-1077_Nov15 Page 2 of 8 |

#### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.8                     |
|------------------------------|------------------------|-----------------------------|
| Extrapolation                | Advanced Extrapolation |                             |
| Phantom                      | ELI4 Flat Phantom      | Shell thickness: 2 ± 0.2 mm |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer                 |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |                             |
| Frequency                    | 450 MHz ± 1 MHz        |                             |

## Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 43.5         | 0.87 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 44.0 ± 6 %   | 0.89 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              | ****             |

#### SAR result with Head TSL

| SAR averaged over 1 cm3 (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 250 mW input power | 1.16 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 4.57 W/kg ± 18.1 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 0.777 W/kg               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 3.07 W/kg ± 17.6 % (k=2) |

## Body TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 56.7         | 0.94 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 56.3 ± 6 %   | 0.95 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 1.14 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 4.52 W/kg ± 18.1 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 0.749 W/kg               |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 2.97 W/kg ± 17.6 % (k=2) |

Certificate No: D450V3-1077\_Nov15

# Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 58.1 Ω - 2.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.1 dB       |

## Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 55.0 Ω - 6.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.9 dB       |

## General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.349 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG         |  |
|-----------------|---------------|--|
| Manufactured on | June 24, 2010 |  |

Certificate No: D450V3-1077\_Nov15

Page 4 of 8

#### DASY5 Validation Report for Head TSL

Date: 25.11.2015

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1077

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz;  $\sigma = 0.89 \text{ S/m}$ ;  $\varepsilon_r = 44$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: ET3DV6 - SN1507; ConvF(6.58, 6.58, 6.58); Calibrated: 30.12.2014;

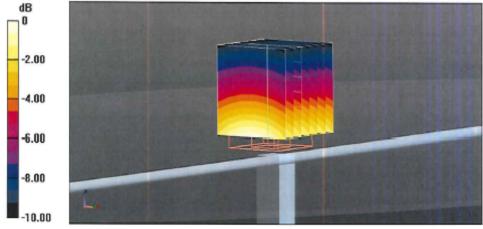
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 08.07.2015

Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

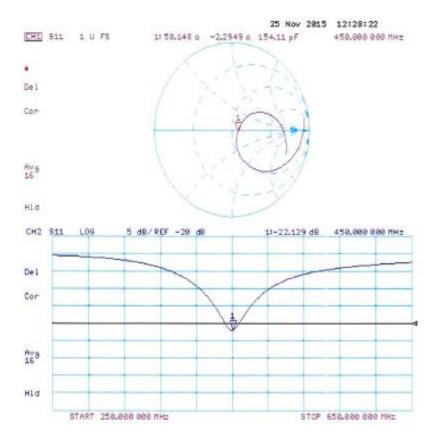
# Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.43 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.67 W/kg

SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.777 W/kg


Maximum value of SAR (measured) = 1.25 W/kg



0 dB = 1.25 W/kg = 0.97 dBW/kg

Certificate No: D450V3-1077\_Nov15

# Impedance Measurement Plot for Head TSL



#### DASY5 Validation Report for Body TSL

Date: 25.11.2015

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1077

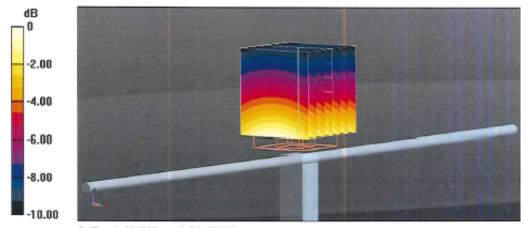
Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz;  $\sigma = 0.95 \text{ S/m}$ ;  $\varepsilon_r = 56.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

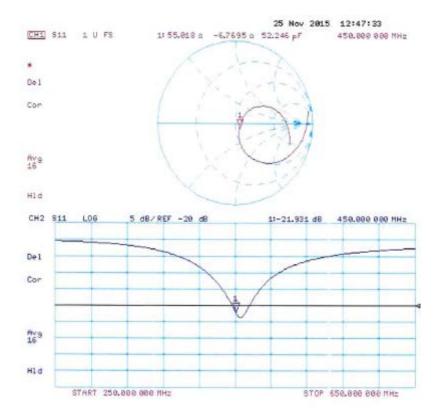

- Probe: ET3DV6 SN1507; ConvF(7.05, 7.05, 7.05); Calibrated: 30.12.2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 08.07.2015
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

## Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 36.74 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.749 W/kg

Maximum value of SAR (measured) = 1.22 W/kg




0 dB = 1.22 W/kg = 0.86 dBW/kg

Certificate No: D450V3-1077\_Nov15

Page 7 of 8

# Impedance Measurement Plot for Body TSL



Certificate No: D450V3-1077\_Nov15

Page 8 of 8

# **Dipole Data**

As stated in KDB 865664, only dipole used for longer calibration interval required to provide supporting information and measurement to qualify for extended calibration interval.

Dipole D450V3 (serial number 1077) not exceed annual calibration date, hence no further justification required.