

Function List

● DELAY FUNCTION

There are 8 kinds of delay function available when changing the dual rate setting. The start position, end position and duration can be independently set. Servos operate slowly when transitioning between dual rate settings. The default setting is INH (inhibit). Note that SW AUTO has a higher priority than FM AUTO.



TIPS

- The Dual Rate setting numerical value can be between 0 and 125, and EXPO can be between 0 and ± 100 .
- By moving the appropriate control stick, the numerical values can be independently changed for left and right (up and down), so that the control surface angles and curves can be individually adjusted. When the cursor is at the inverse display, the setting values can be modified, and also reset using the CLR key.

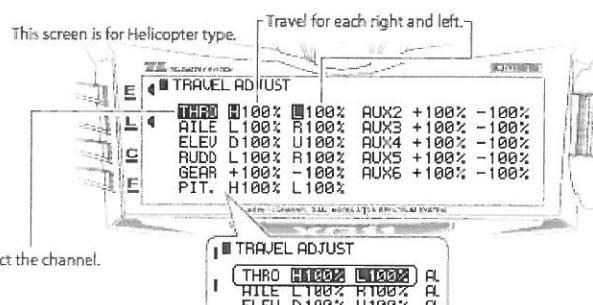
Caution Note

- Operate the servos and carefully confirm the operational settings before flying.

Function List

■ Travel adjust [TRAVEL ADJUST]

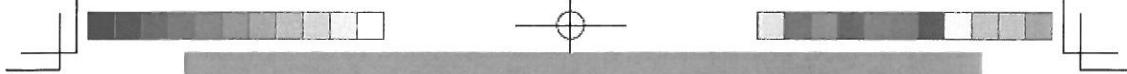
■ Function Explanation


This function allows independent adjustment of the servo left/right (or up/down) movement, for each channel. The adjustment is carried out with reference to the neutral position. Adjustment is possible over an adjusting range between 0 and 150% in each directions. The default value is 100%, and this gives standard servo movement.

■ Setting Method

Rotate the dial to move to, and select, the channel that you wish to set (inverse display). Then press the dial to display the setting box, and now change the numeric values by rotating the dial.

※ The channel names on the screen will differ according to the model type.



TIPS

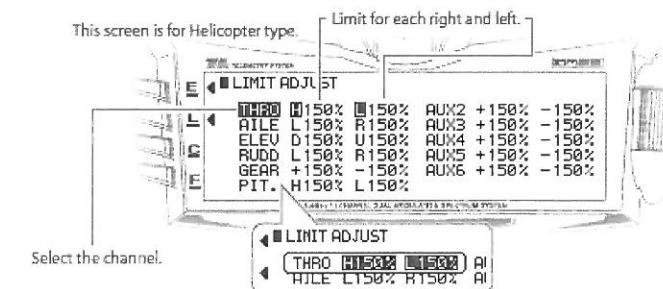
- By moving the appropriate control stick, the numerical values can be independently changed for left and right (up and down), so that the control surface travel can be individually adjusted. When the cursor is at the Inverse display, the setting values can be modified, and also reset using the CLR key.

■ Caution Note

- Operate the servos and carefully confirm the control surfaces move as expected before flying.

Function List

■ Limit Adjust [LIMIT ADJUST]


■ Function Explanation

When multiple channel mixing is used, the resultant servo movement angle may become to large, and an unreasonable force be applied to the linkages. If limit values are set, it is possible to limit the maximum movement of the servos, regardless of programmable mixing, etc.

■ Setting Method

Set the limit values separately for left/right and up/down directions for each channel (servo). Select the channel using the dial, and press the dial to display the adjustment box.

※ The channel names on the screen will differ according to the model type.

TIPS

- By moving the appropriate control stick, the numerical values can be independently changed for left and right (up and down), so that the control surface travel can be individually adjusted. When the cursor is at the Inverse display, the setting values can be modified, and also reset using the CLR key.

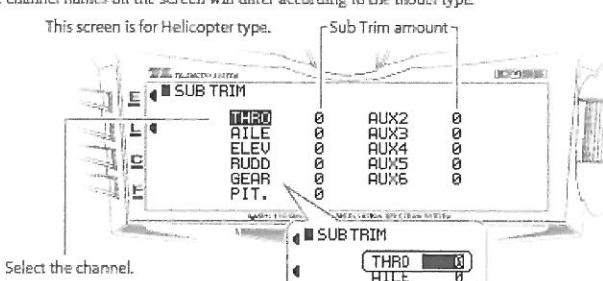
■ Caution Note

- Operate the servos and carefully confirm the control surfaces move as expected before flying.

Function List

■ Sub Trim [SUB TRIM]

■ Function Explanation


This allows fine trimming of the servos attached to each channel. This trim should be used as a fine adjustment when the servo horn mounting angle is not 90 degrees with regard to the linkage.

Note that if large amounts of sub trim is used, it will affect the maximum deflection of the servo. It is therefore recommended to use only small values here.

■ Setting Method

Rotate the dial to move to and select the channel that you wish to set (inverse display). Then press the dial to display the setting box, and carry out the numerical value setting.

※ The channel names on the screen will differ according to the model type.

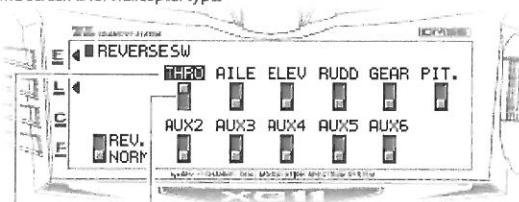
■ Caution Note

- Operate the servos and carefully confirm the control surfaces move as expected before flying.

Function List

■ Reverse Switch [REVERSE SW]

■ Function Explanation


This function reverses the servo operating direction (pulse change direction) of each channel.

■ Setting Method

Rotate the dial to move to and select the channel that you wish to change (inverse display). Then press the dial to select the rotation direction. "NORM" is the normal direction and "REV" is the reverse direction. Actually operate the servos and carefully confirm the settings before flying.

※ The channel names on the screen will differ according to the model type.

This screen is for Helicopter type.

Select the channel. Direction of Selected Channel

IMPORTANT NOTICE

In the situation where the reverse switch setting has been changed the Fail Safe has been set, because this will also affect the Fail Safe operation. It will operate in the opposite direction to the condition that was set. Accordingly, in the situation where the Fail Safe has operated after the throttle channel has been set to reverse by setting the reverse switch in the aircraft body, the servo will be set to the Full High side,

which will be extremely dangerous. After finishing the transmitter settings, be sure to implement the Fail Safe settings (Match the stick to the position that you wish to set and press the Memory key), and be certain to carry out operation confirmation. (Switch off the transmitter once, and check whether the servo movement reaches the correct position.)

Function List

■ Servo Speed [SERVO SPEED]

■ Function Explanation

This function slows down the operation speed of the servos independently for each channel. This function should be considered as a speed limiter. The speed setting can be set separately for left/right (up/down). Additionally, the setting can be set to ON or OFF in each Flight Mode, or controlled using optional switches. Further, this function can be turned ON or OFF using a desired throttle stick position (not available for gliders).

■ Setting Method

Rotate the dial to move the inverse display area and select the channel, then press the dial to display the setting box, and carry out the speed setting.

"NORM" is the fastest setting, and the speed can be slowed between 0.1-15.0 seconds. This indicates the time that the servo takes to rotate through 60 degrees. Note there may be some slight variation depending on the servos used.

■ For Helicopter

Adjustment of servo speed can be set to "ONE pattern" per channel, and can be coupled to the throttle stick to turn "ON" or "OFF".

Select the channel

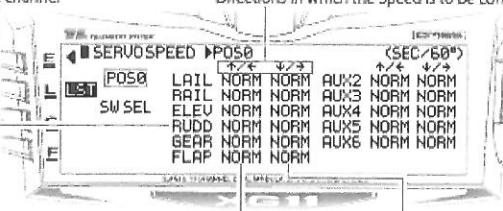
Directions in which the Speed is to be controlled

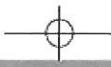
■ For Airplane

Adjustment of servo speed can be set to "TWO patterns" per channel, and can be coupled to the throttle stick at two positions.

Select the channel

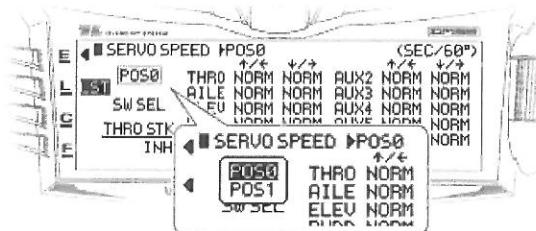
Directions in which the Speed is to be controlled

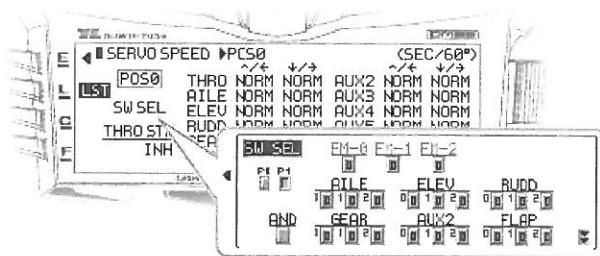



■ For Glider

Adjustment of servo speed can be set to "TWO" per channel, although it cannot be coupled with the throttle stick. But, by using SPS (Stick position Switch) it is possible to achieve a similar function.

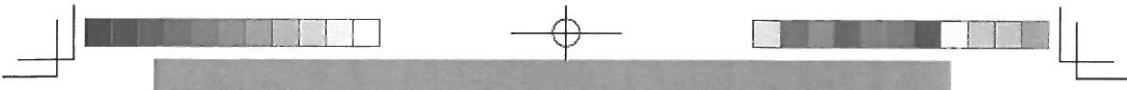
Select the channel


Directions in which the Speed is to be controlled



Function List
TIPS

- Depending on the application, some channels may not be able to have a speed set, and "----" will be displayed.


A switch can be selected to turn this function ON-OFF. ON-OFF operating confirmation is displayed on the screen.

ON-OFF using the Throttle Stick
(Only Helicopter and Airplane types)

Caution Note

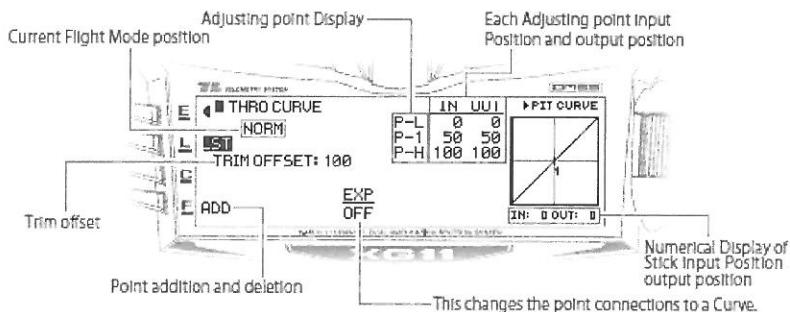
- When the servo speed has been set, carefully confirm the servo speeds using actual switch operation before flying.

 Function List

Throttle Curve [THRO CURVE]

Function Explanation

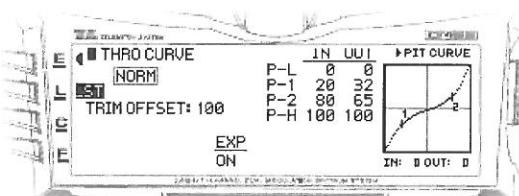
This function adjusts throttle servo operation in response to throttle stick operation. The servo position can be set independently for a maximum of 7 point positions. In addition, an EXPO (exponential) function is also incorporated to allow smooth throttle stick connection of each of the points. This function is available in each Flight Mode for helicopters (maximum 5), and 2 modes for airplanes.

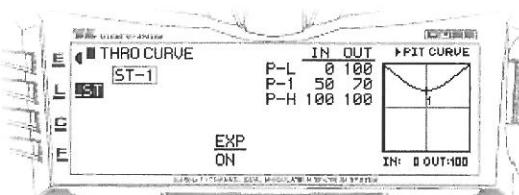


Setting Method

There are three initial curve points set at the slow, center, and high positions. To add a point, set the stick to the desired position and press the "ADD" key. In the situation where a point is to be deleted, this should be carried out using the "DEL" key. To change values at each point, rotate the dial to move to and select the point that you wish to change (inverse display). Then press the dial to select and change the numerical value.

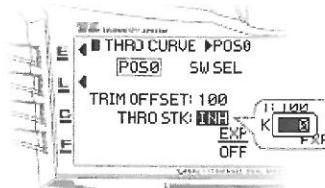
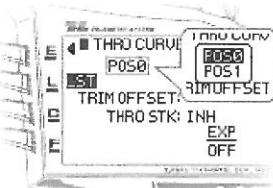
- Trim Offset


This functions the adjust throttle trim travel's range limit.


For Helicopter

There are five (5) flight modes (i.e. Normal, Stunt 1-4) available for helicopter throttle curves. Set each throttle curve as desired for the particular flight condition.

Normal mode



Stunt mode

Function List

For Airplane

There are two kinds of throttle curve available and it is possible to change the curve at any time with a toggle switch, flight mode switch or the throttle stick.

TIPS

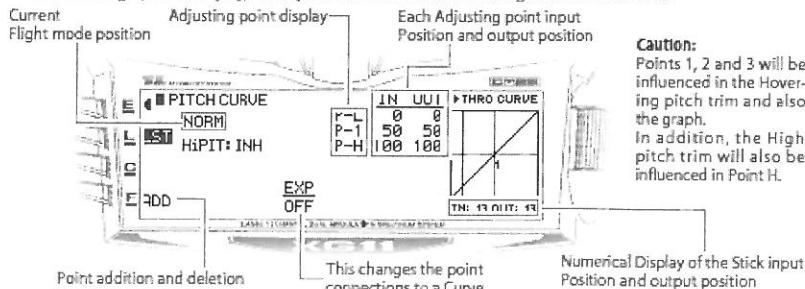
- The numerical value "IN" shows the position of the throttle stick and the numerical value "OUT" shows the output value to the servo.
- Adjustment is possible over an adjusting range between 0 and 100% for each of the Slow or High (up or down) directions. The graph may be further changed using the Hover Throttle and the Throttle Trim functions.

Caution Note

- Actually operate the servos and carefully confirm the settings before flying.

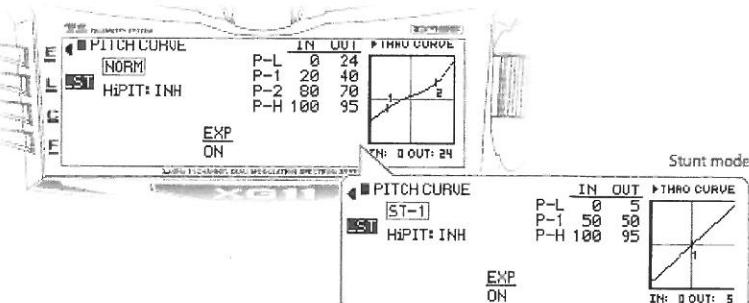
 Function List

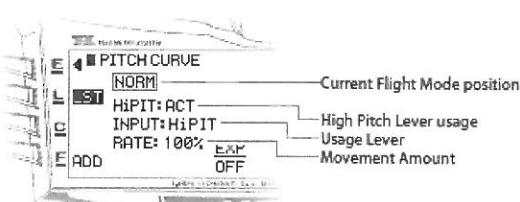
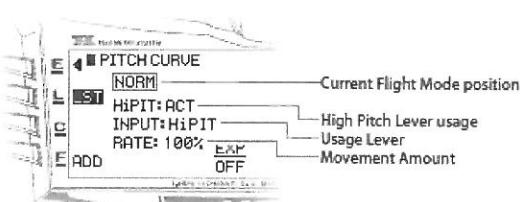
Pitch Curve [PITCH CURVE]


Function Explanation

This function adjusts pitch operation in response to throttle stick operation. The servo position can be set independently for a maximum of 7 point positions. In addition, an EXP (exponential) function is also incorporated to allow smooth throttle stick connection of each of the points. This function is available in each Flight Mode for helicopters (maximum 6), and 2 modes for airplanes.

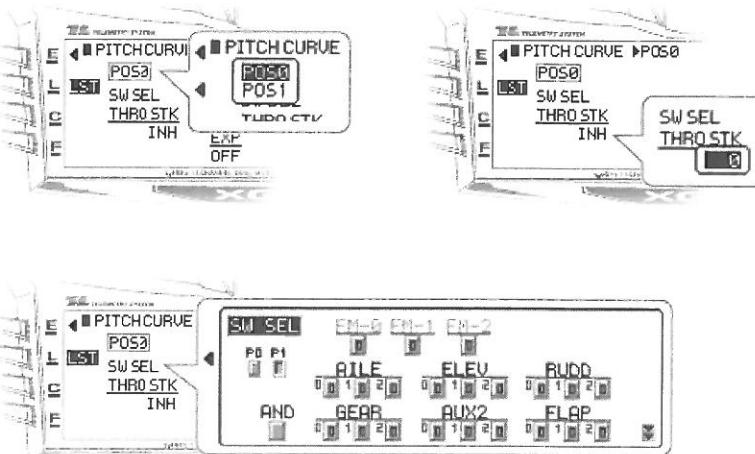
Setting Method


There are three initial curve points set at the slow, center, and high positions. To add a point, set the stick to the desired position and press the "ADD" key. In the situation where a point is to be deleted, this should be carried out using the "DEL" key. To change values at each point, rotate the dial to move to and select the point that you wish to change (inverse display). Then press the dial to select and change the numerical value.




For Helicopter

There are six (6) flight modes (i.e. Normal, Stunt, 1-4, hold) available for helicopter pitch curves. Set each throttle curve as desired for the particular flight condition.

Normal mode


- High Pitch trim (HiPIT)
High Pitch Trim Lever
Using the lever on the side of the transmitter, pitch adjustment at the high point is possible. This function is initially inhibited - it must be activated to use. After activating, select the lever either on the left or right side of the transmitter using "INPUT". The lever should normally be left in the center position, and should be used for dynamic adjustment.

Function List

For Airplane

It is possible to allocate the Pitch curve to any channel using "DEVICE SELECT" on the System List. (Set "OUT" as "PIT" when activating the function). There are two type of Pitch curve available in airplane mode. By flipping a switch, flight mode switch, or by using SPS on throttle stick, it is possible to change the pitch curve.

TIPS

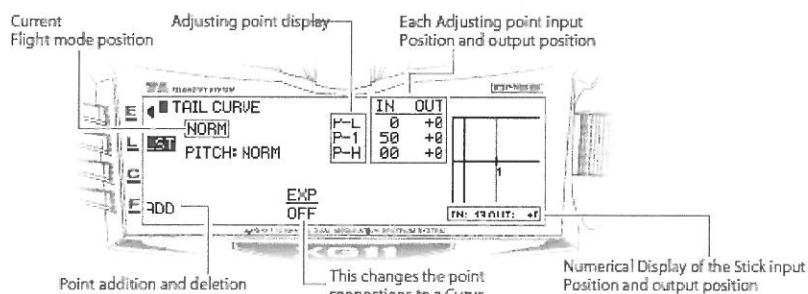
- The numerical value "IN" shows the position of the throttle stick and the numerical value "OUT" shows the output value to the servo.
- Adjustment is possible over an adjusting range between 0 and 100% for each of the slow to high (up and down) directions.
- Points 1, 2, and 3 will be influenced by the Hover Pitch Trim and this will be seen on the graph. In addition, the High Pitch Trim will influence Point H.

Caution Note

- After the setting, operate the servos and carefully confirm each of the Flight Mode settings before flying.

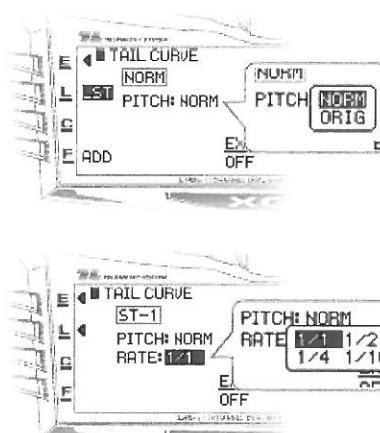
Function List

■ Tail Curve [TAIL CURVE]


■ Function Explanation

This function allows mixing between the pitch and the tail servo. It is also known as revolution mixing. It allows setting of the mix amounts separately up and down from the hovering point. Intermediate points can also be established in each direction, so that fine tuning can be carried out. In addition, a Mixing Rate setting, which is convenient for detailed adjustment of stunt positions, is possible. A maximum of 5 different curves can be programmed, one for each Flight Mode.

■ Setting Method


There are three initial curve points set at the slow, center, and high positions. To add a point, set the stick to the desired position and press the "ADD" key. In the situation where a point is to be deleted, this should be carried out using the "DEL" key. To change values at each point, rotate the dial to move to and select the point that you wish to change (inverse display). Then press the dial to select and change the numerical value.

■ In Put Pitch (PITCH)

The pitch information that is input to the mixer can be selected from the following two types.

- ① "NORM": This is the stick position referenced to the curve set using the Pitch Curve function.
- ② "ORIG": This is the stick position itself not considering the pitch curve.

■ MIXING RATE ON STUNT MODE (RATE)

This display will be shown when the Flight Mode is set to a stunt position. Even though the graph and output figures will remain the same, an action will be implemented that reduces the actual mixing amount by the multiplier described below. This is the stunt mode common multiplier.

- *1/1: × 1
- *1/2: × 0.5
- *1/4: × 0.25
- *1/10: × 0.1

■ Caution Note

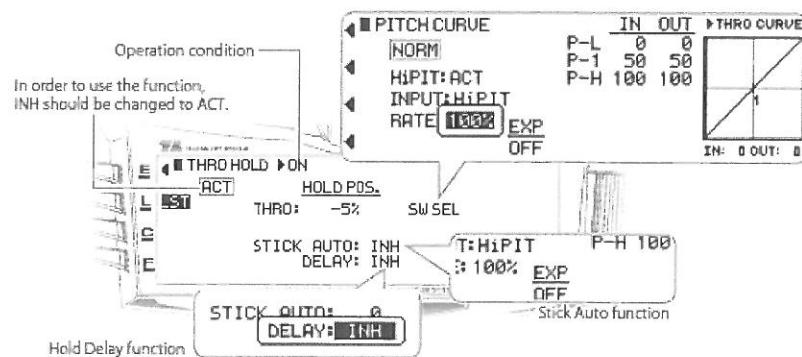
- When using a Tail Lock Gyro (Heading Lock), this function will not be required since the tail will be automatically corrected. Each of the setting values must be set to zero.

Function List

■ Throttle hold [THRO HOLD]

■ Function Explanation

This function is for autorotation landings - it holds the Throttle Servo at a low position. Using a selected switch, the engine can be cut, or fixed at an optional slow position. Further, there is also a Stick Auto function that allows switching of the servo to the Hold position when the stick is lowered to a preset position.



■ Setting Method

This function is "INH" by default. Set the function to ACT. Then adjust the hold position as required. The Hold switch is used by default, but this selection can be modified.

For Helicopter

By default, the "HOLD SW" is allocated to POS1. It is possible to allocate this switch to any desired switch locations.

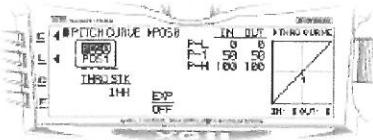
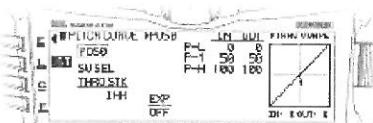
• Stick Auto Function (STICK AUTO)

When "STICK AUTO" is set, the servo will change to the Hold position when the stick is lowered past a predetermined position. To deactivate this function simply turn off the allocated switch. Initially this function is inhibited. To activate this function, move the cursor to "INH", and press the dial to "ACT". Move the cursor to the inverted display next to STICK AUTO. Move the throttle stick to desired position and press the "STO" key to set the position (a numerical value between 0-100 will be displayed on the inverted display). To "INH" this function, press the CLR key while the display is inverted.

• Hold delay function (DELAY)

It is possible to set a "DELAY" to prevent a sudden increase in engine rotations when the Hold switch is set to OFF. The duration of the delay can be set between 0.1sec to 2.0sec. If the Hold Delay is set, any throttle setting in the Servo Speed function will be cancelled.

TIPS



- By setting throttle hold active, this function acts like an additional flight mode. It is possible to set dedicated Dual rates, Pitch Curve, etc to this function.

Function List

For Airplane

By default, the HOLD switch is allocated to the "MIX SW" at POS1. It is possible to allocate this function to any desired switch location.

- For twin engines
It is possible to set the "HOLD" to one engine at any desired position.

Caution Note

- Actually operate the servos and carefully confirm the settings before flying.

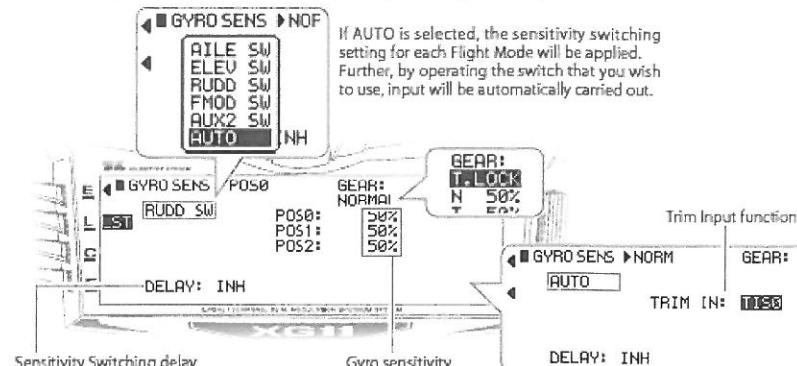
Function List

■ Gyro Sensitivity [GYRO SENS]

■ Function Explanation

This function controls the gyro sensitivity using the GEAR channel, and the Auxiliary (AUX) channel if required. It allows adjusting the gyro sensitivity from the transmitter. Further, it supports "Dual Gain" as employed in JR's G7000 where two channels are required. Additionally, the use of two gyro units is also possible. In addition, it supports 3 axis gyros (such as JR TAGS01), with separate gains for yaw, pitch and roll axis. The sensitivity switching of each gain can be with individual switches, or combined using the Flight Mode switch.

■ Setting Method


It is necessary to allocate the Gyro Sensitivity to a channel using "DEVICE SELECT" in the System List. Set "OUT" as "GYRO" by activating the function.

Select the switch position for changing the gyro sensitivity and move the cursor to each position to set the sensitivity on the display. If "AUTO" is selected, the sensitivity switching setting for each flight mode will be applied. There are two gyro sensitivities available - "NORMAL" and Tail Lock (T-LOCK) - choose the type depending on your application.

- Gyro sensitivity Switching delay (DELAY)

To avoid excessive servo hunting when switching the gyro sensitivity from a low sensitivity to higher sensitivity setting, (e.g. when the main rotor blade rpm is not stable) it is possible to set a delay on this function.

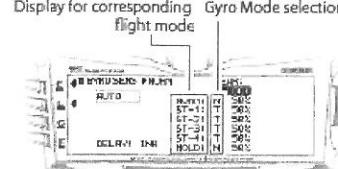
Note: During switching, the time will be delayed only in the high sensitivity direction.

Sensitivity Switching delay Gyro sensitivity

● Trim Input Function (TRIM IN)
By using the Trim Input, it is possible to change the gyro sensitivity values using a Trim Lever. Therefore, it is possible to easily adjust the sensitivity during flight.

● When two individual channels have been selected for Gyro sensitivity, it is possible to select from the following two modes.

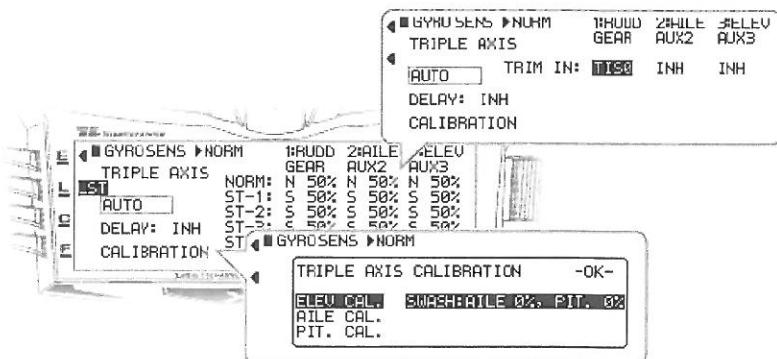
- "TWO GYRO"


It is possible to allocate two individual gyro sensitivities, and the Gyro sensitivity switching can occur on one shared switch.

- "DUAL GAIN"

In this mode, one channel is allocated for "NORMAL" and the other channel to "TAIL LOCK SENSITIVITY".

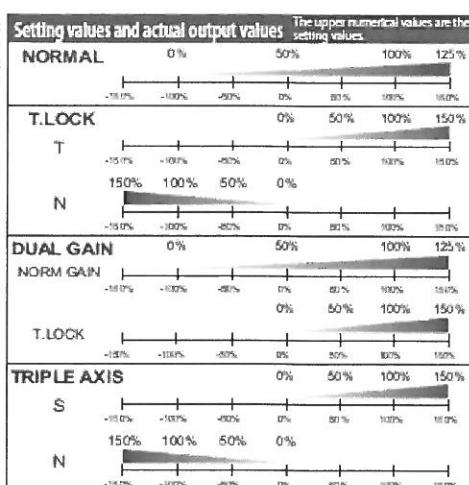
* For 3 Axis gyro applications (such as the JR TAGS01) three separate gain channels can be used. Each sensitivity for yaw, pitch and roll axis can be set using individual switches, or combined onto the flight mode switch. The gyro sensitivities can also be changed to Normal or Stunt Modes when using the JR TAGS01.


Display for corresponding flight mode Gyro Mode selection

Function List

- *Calibration for 3 Axis Gyros*

The JR 3 Axis Gyro system (TAGS01) as used for Flybarless R/C helicopters requires "CALIBRATION" prior to flying. This is required to recognize the type of CCPM being employed, and learn the servo travel ranges used. Calibration requires precise gimbal stick movement of one function at a time (Elevator or pitch stick up & down, and Aileron stick right to left). If, for example, the aileron stick is pushed by mistake during elevator calibration, the calibration will be incorrect. In order to avoid this problem, the calibration function allows single channel calibration.



TIPS

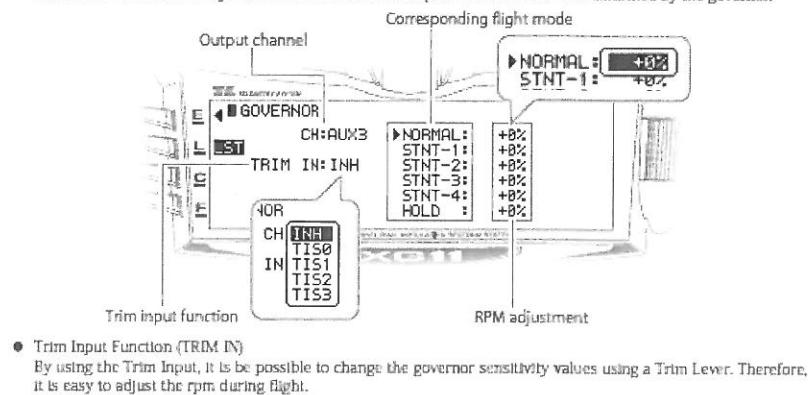
- Follow and understand the details of the TAGS01 3 axis gyro manual completely prior to using this calibration function.
- By using the Trim Input function, it is possible to change the gyro sensitivity values using Trim Lever. Therefore, it is possible to easily adjust the sensitivity during flight.

Caution Note

- Be sure to understand the Gyro manual thoroughly to allow correct use of this function.
- Carefully check the direction of the tail servo and be sure that everything works correctly before flight.

Function List

■ Governor [GOVERNOR]


■ Function Explanation

A governor maintains the rotor rotation speed at a uniform value. This function sets the rotation speed of the Governor to aid in stable flight. Different rpm settings can be made separately for each Flight Mode.

■ Setting Method

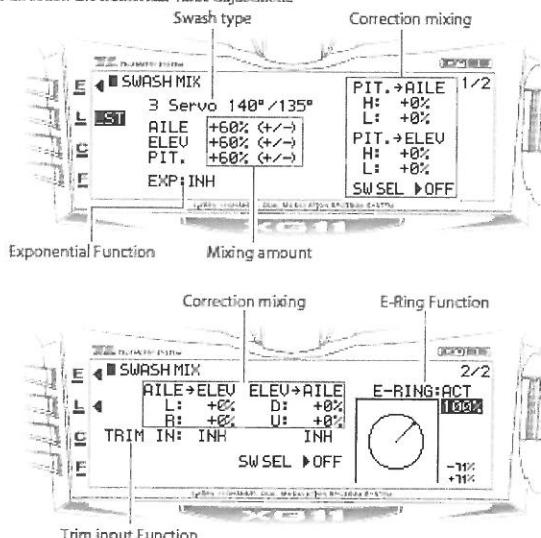
If the output "OUT" of an auxiliary channel is not set to "GOV" before using the function, the display in the Function List will be shown as non-usable. In addition, a Trim Input switch function can also be used. On the screen, set the rotor rotation speeds for each Flight Mode. Select the desired Flight Mode by rotating the dial, then press the dial to display the box for numerical value adjustment. Note that because the setting from the transmitter is a numeric adjustment, the actual rotation speed should be set and confirmed by the governor.

■ Caution Note

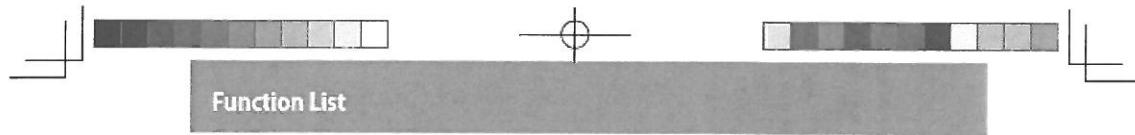
- Trim Input Function (TRIM IN)
By using the Trim Input, it is possible to change the governor sensitivity values using a Trim Lever. Therefore, it is easy to adjust the rpm during flight.

Function List

■ Swash Mixing [SWASH MIX]



■ Function Explanation


This function sets the mixing relating to the swash plate and swash plate servos (1-4) to allow coordinated control of the helicopter. This swash mixing is essential for helicopters that incorporate CCPM systems. CCPM is a type of pitch mixing in which the servos are directly linked to the swash plate. In this transmitter, 6 types of swash plates can be selected. Match the "SWASH TYPE" in the System List with your helicopter's servo configuration. An E-ring function is also incorporated that easily limits the swash maximum angle.

■ Setting Method

Set the "SWASH TYPE" according to the helicopter's swash plate configuration. The "SWASH TYPE" selection is in the System List, and should be chosen before proceeding to set the swash mix. The default settings for the Swash Mix are +60% on Aileron, Elevator and Pitch. If necessary, adjust the mixing amount according to the type of helicopter and servo setup. Press the dial to display the setting box, and then carry out and direction the numerical value adjustment.

- Exponential Function (EXP)
By activating this function, the servo's non-linear output is modified to be more linear in motion.
- E-Ring Function (E-RING)
By activating this function, the e-ring electronically corrects the swash to move in the same angle in all directions. The operation of the stick and e-ring can be confirmed on the graph. The diameter of the circle is the swash tilt angle, which can be set as desired.
- Correction mixing
 - PIT.→AILE,→ELEV
This mix corrects tilt of the swashplate in the aileron and elevator axis when the pitch stick is moved up and down. Adjustment of the mixing amount can be carried out separately to the front and rear and to the left and right. The mix can be switched ON and OFF of using a switch or flight modes as desired.
 - AILE→ELEV, ELEV→AILE
This is used to correct interactions where aileron and elevator movement influence each other. The aileron and elevator mutual mixing amount can be separately adjusted. The switching ON/OFF of the mixing on this screen can be set using a switch or flight modes as desired. It is also possible to use TRIM INPUT to adjust the mix during flight using a trim lever.

- Trim Input Function (TRIM IN)
By using the Trim Input, it is possible to change the mix values using the Trim Lever. Therefore, it is possible to easily adjust the mix during flight.

TIPS

- If the servo direction is incorrect, it is possible to set the mixing amount in a negative direction to achieve an appropriate setting.
- The setting value in this function should be between 0 to ± 125 . If the mixing amount is too much and you are not able to achieve the desire servo throw, adjust the servo horn hole position (with a practical range of 40-70%) outwards to have more throw.

Caution Note

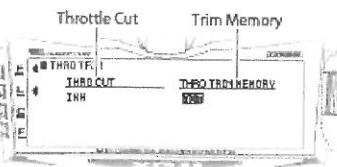
- Actually operate the servos and carefully confirm the settings before flying.

Function List

Throttle trim [THRO TRIM]

Function Explanation

This function sets the Throttle Trim movement, and additionally a Throttle Cut function is provided for cutting the engine. There is a Trim Memory function for cutting the engine using the Trim. Note that for airplanes, an Idle Adjust function is also incorporated that allows separate detailed setting of the idle position.



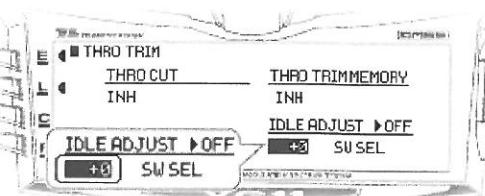
Setting Method

If the Throttle Cut is set to ACT, the Trim Memory will be forcibly set to INH. On the screen rotate the dial to move to and select (inverse display), then press the dial to set the item.

Throttle Cut Function (THRO CUT)

The Throttle cut can be used by setting it to "ACT". Initially the switch is allocated to "TRN SW", POS1. It is possible to allocate this switch to any desired switch location. Set the Throttle Cut to the desired position.

Time Lag (TIME LAG)


This function is to avoid the sudden stopping of the engine if the throttle cut switch is activated in error. This is especially useful when using the momentary switch (Trainer switch). It is possible to use this momentary switch as timer switch at the same time as throttle cut. When the time lag function is activated, throttle cut only activates when the switch is held on for a certain duration. The timer can be activated by a momentary action as usual. The time lag duration can be set between 0.5 to 2 seconds.

Throttle Trim Memory (THRO TRIM MEMORY)

When the Trim is lowered in a single action, the trim position immediately prior to the movement will be memorized, and when the trim is raised again, the trim will automatically return to the memorized position. The memorized position will be marked on the Trim display.

Idle Adjust (IDLE ADJUST) ※ For Airplane Mode only

The idle position when the throttle stick is at the "Slow" position can be given a separate setting using a switch. It is possible to set up landing with idle "DOWN", and normal flying with idle "UP".

TIPS

- Please carefully confirm the linkage does not jam when the carburetor's is closed.

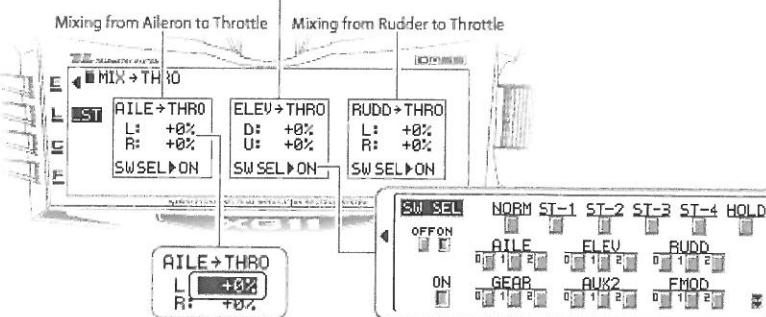
Caution Note

- Throttle Cut will only work when the helicopter Flight Mode is set to "NORMAL".

Function List

■ Throttle Mixing [MIX → THRO]

■ Function Explanation

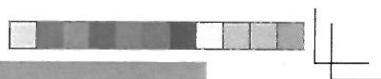


When operating various controls on a helicopter, the rotor rotation may be reduced due to loading. This function is a mixing function for implementing a correction for this effect. It will allow corrections of the rotor rotation speed normally carried out by a governor. Each mix (from aileron, elevator, and rudder) can be controlled from a separate switch.

■ Setting Method

Each mix from Aileron, Elevator, or Rudder can be switched on and off using an independent switch. After setting the switches, please confirm the display of the operation function. Then set the mix amounts to the throttle for each of the stick operation directions. The mix should be set to whichever direction the rotor rotation increases when the operation is carried out.

Mixing from Elevator to Throttle


TIPS

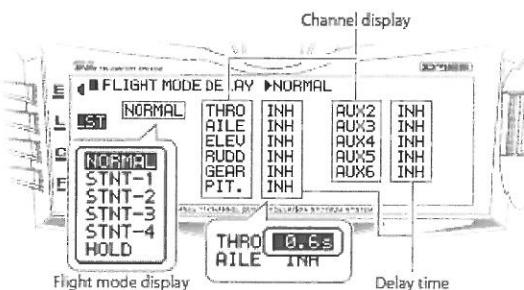
- As a rough guide to values, it is recommended that the aileron and elevator should be set to 10%~30%, and the rudder should start from L10%~R15%.

■ Caution Note

- When using a governor, this function is not required, and the numerical values should all be set to zero.
- Actually operate the servos and carefully confirm the settings before flying.

Function List

■ Flight Mode Delay [FLIGHT MODE DELAY]



■ Function Explanation

When the Flight Mode is changed, the servos may move suddenly, causing a jerky reaction in flight. To prevent this, it is possible to set a time to each channel separately, during which the servo will move slowly to the new position when switching Flight Modes. This can be set separately in each Flight Mode.

■ Setting Method

Rotate the dial to select the desired channel in the setting screen, then press the dial to display the time setting box. The time displayed here will be the time for moving to the servo position of the Flight Mode that is currently being displayed.

TIPS

- If a delay is added to a channel being used for Governor or Gyro, or some function related to another delay function which has been set, the combination might not work together, depend on the exact settings.

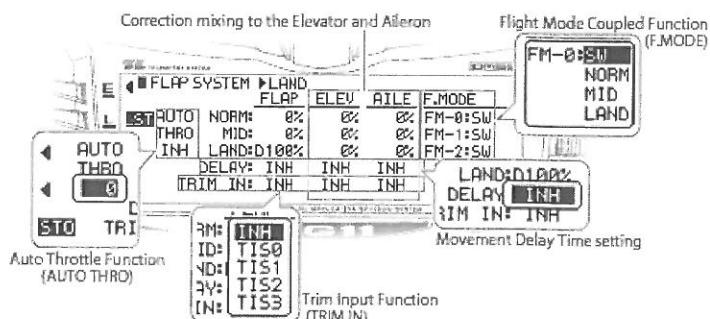
■ Caution Note

- Actually operate the servos and carefully confirm the settings before flying.

Function List

FLAP SYSTEM [FLAP SYSTEM]

Function Explanation



The flaps can be controlled in three stages using a switch. A flap delay is also possible. Additionally, there is a function that carries out mixing to the elevators. There is also an Auto Throttle function that automatically lowers the flaps when the throttle stick is lowered.

Setting Method

If the flap channel output has not been set to "SYS" in the Device Select menu, the function will be displayed as being unusable.

It is also possible to control the flaps with a switch set by the input device for the flap channel using Device Select. Input the flap position value and if necessary arrange the delay value depending on the NORM, MID and LAND switch position.

- Auto Throttle Function (AUTO THRO)
By activating "AUTO THRO" it enables control of the flaps automatically depending on throttle stick position. Set the stick at the desired position and press the dial to display the box to set the position. Above the point where "AUTO THRO" has been set, "NORM" mode is selected. Below this point the flaps should be activated to the desired position automatically.
- Flight mode coupled function (F.MODE)
It is possible to set the flap position related to the selected flight mode.
- Correction mixing to the Elevator and Aileron.
- In order to off-set the pitching action upon activating the flaps, it is possible to set a mix to elevator. And it is also possible to set a correction in roll by mixing to the Ailerons when the flaps are deployed.
- Trim Input Function (TRIM IN)
By using the Trim Input, it is possible to change the flap amount values using a Trim Lever. Therefore, it is possible to easily adjust the flap trim during flight.

Caution Note

- Actually operate the servos and carefully confirm the settings before flying.

Function List

■ SNAP ROLL [SNAP ROLL]

■ Function Explanation

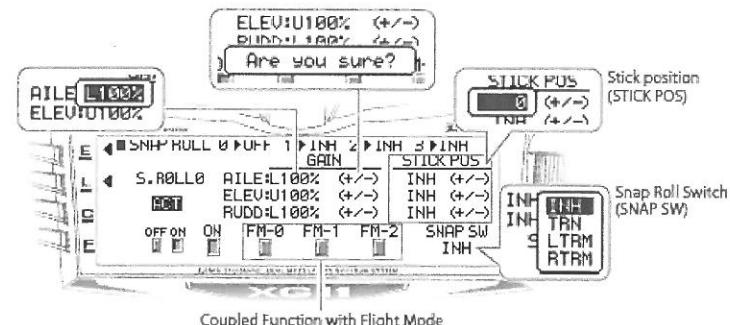
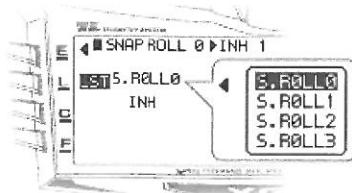
This function is useful for executing Snap Rolls. There are four types of presets, and normally activation is carried out using the Snap switch. However, Stick switches are also incorporated that automatically enter a Snap Roll when the stick is operated by a fixed amount. Further, it is also possible to select which Flight Modes the Snap switches are active in.

■ Setting Method

There are four types of Snap roll available, and they are initially set as "INH". Be sure to "ACT" the function before setting the numerical values for Aileron, Elevator and Rudder. Please refer to below chart which shows the default values.

	AILE	ELEV	RUDD
S.ROLL0 Left UP	1100%	1100%	1100%
S.ROLL1 Left DOWN	1100%	1100%	1100%
S.ROLL2 Right UP	1100%	1100%	1100%
S.ROLL3 Right DOWN	1100%	1100%	1100%

- SNAP ROLL SWITCH (SNAP SW)



The Snap switch (SNAP SW) is initially set to "INH". It should be set to "ACT", and then set the device (momentary switch, trim switch or stick position switch).

- Stick Position Switch (STICK POS)

The Stick Position Switch (STICK POS) is initially set to "INH". It should be set to "ACT". Set the stick position to activate this switch function.

- Coupled function with Flight Mode

After setting up the Snap Roll switch and Stick Position Switch, it is possible to select each one of the switches to be active or not depending on the flight mode. Initially the switches are active in all flight modes.

Coupled Function with Flight Mode

■ Caution Note

- This function cannot be used when the radio is set as "MASTER" while using the trainer system with another radio.
- Actually operate the servos and carefully confirm the settings before flying.