

CERTIFICATE OF COMPLIANCE FCC PART 22 & 24 CERTIFICATION & INDUSTRY CANADA CERTIFICATION

Test Lab:				Applicant Information		
Rhein Tech Laborator 360 Herndon Parkway Suite 1400 Herndon, VA 20170		nc. Phone: 703-689-0368 Fax: 703-689-2056 Web Site: www.rheintech.o	<u>com</u>	Sony Ericsson Mobile C 7001 Development Driv P.O. Box 13969 Research Triangle Park, Phone: 919-472-1697 (1	NC 27709 USA	
EGG GI 18 41		DOD II ID GUI C D	2.1			
FCC Classification:	FCC Classification: PCB – Licensed Base Station for Part 24 PCE – Part 24 Licensed Portable Transmitter held to ear PCF – Part 24 Licensed Portable Transmitter held to face PCT – Part 24 Licensed Portable Transmitter held to body					
FCC Rule Part(s):	Part	22: Public Mobile Services Subpart E – Paging and Radioteleph Subpart F – Rural Radiotelephone S Subpart G – Air-Ground Radiotelep Subpart H – Cellular Radiotelephon Subpart I – Offshore Radiotelephon	Services bhone Services ne Services	ces ☐ Subpart D − ☐ Subpart E −	Communications Services Narrowband PCS Broadband PCS	
Industry Canada Standard:	Trai	RSS-118: Land and Subscriber Stat asmitters and Receivers Operating in RSS-128: 800 MHz Dual-Mode TE RSS-129: 800 MHz Dual Mode CE	tions: Voice the Cellula OMA Cellu	ce, Data and Tone Modulated, ar Mobile Bands 824-849 MH ılar Telephones		
FCC ID:		AXATR-423-A2	Max. R	F Output Power:	2.773 W AMPS 0.200 W CDMA	
Equipment Type:		AMPS, CDMA	Frequency Tolerance:		2.5 ppm	
Tx Frequency Range:		824 - 849 MHz; 1850 -1910	Emission Designator:		1M23F9W; 40K0F1D, 40K0F8W	
Rx Frequency Range:		869 - 894 MHz; 1930 -1990 MHz	Date of Test Report:		December 18, 2001	
Model(s):		CM-42				
described in this test restandards. Furthermore, there wa	eport.	No modifications were made to	the equip	oment during testing in ord	Forms to the identified standard(s) as ler to achieve compliance with these Part 15, FCC Part 22, FCC Part 24,	
Signature:	إلعان	<u></u>		Date: December 18, 2001		
Typed/Printed Name: Bruno Clavier			Position: Vice President o (NVLAP Signat			
4		ed by the National Voluntary Accredi	,		accreditation under Lab Code 200061-0.	

TABLE OF CONTENTS

1	GEN!	ERAL INFORMATION	4
	1.1	SCOPE	4
	1.2	TEST FACILITY	4
	1.3	RELATED SUBMITAL(S)/GRANT(S)	4
2	EQU	IPMENT INFORMATION	5
	2.1	APPLICANT AND EQUIPMENT INFORMATION	5
	2.2	JUSTIFICATION	5
	2.3	EXERCISING THE EUT	5
	2.4	TEST SYSTEM DETAILS	6
	2.5	CONFIGURATION OF TESTED SYSTEM	7
3	NEC	ESSARY BANDWIDTH AND EMISSION BANDWIDTH - § 2.202	9
4		OLTAGES AND CURRENTS - PART §2.1033(C)(8)	
5	RF P	OWER OUTPUT - §2.1046	11
-	5.1	POWER OUTPUT TEST PROCEDURES	
	5.1.1	ANSI/TIA/EIA-603-1992, SECTION 2.2.1 TEST PROCEDURE	11
	5.1.2	MEASUREMENTS REQUIRED: RF POWER OUTPUT - \$2.1046	
	5.1.3	EFFECTIVE RADIATED POWER LIMITS - \$22.913	
	5.2	POWER AND ANTENNA HEIGHT LIMITS - §24.232	
	5.3	RF POWER OUTPUT TEST EQUIPMENT	12
	5.4	POWER OUTPUT TEST DATA- §2.1046	13
6	MOD	OULATION CHARACTERISTICS - §2.1047	14
	6.1	MODULATION CHARACTERISTICS - §2.1047 TEST PROCEDURE	14
	6.2	MODULATION REQUIREMENTS - §22.915 TEST PROCEDURE	14
	6.3	MODULATION CHARACTERISTICS TEST EQUIPMENT	14
	6.4	MODULATION CHARACTERISTICS TEST DATA	14
7	OCC	UPIED BANDWIDTH -	18
	7.1	OCCUPIED BANDWIDTH - §2.1049 TEST PROCEDURE	18
	7.2	OCCUPIED BANDWIDTH TEST EQUIPMENT	18
	7.3	OCCUPIED BANDWIDTH TEST DATA	19
8	SPUF	RIOUS EMISSIONS AT ANTENNA TERMINAL - §2.1051	27
	8.1	SPURIOUS EMISSIONS TEST PROCEDURES	27
	8.1.1	SPURIOUS EMISSIONS AT ANTENNA TERMINAL - §2.1051	27
	8.1.2	EMISSION LIMITATIONS FOR CELLULAR - §22.917	
	8.1.3	MEASUREMENT PROCEDURE	27
	8.1.4	EMISSION LIMITS - \$24.133	27
	8.2	SPURIOUS EMISSIONS AT ANTENNA TERMINAL TEST EQUIPMENT	
	8.3	SPURIOUS EMISSIONS TEST DATA	
^	8.4	FCC PART 22.917 (F) MOBILE EMISSIONS IN BASE FREQUENCY RANGE	
9		IATED SPURIOUS AND HARMONIC EMISSIONS - \$2.1053	36
	9.1	RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053	36
	9.2	RADIATED SPURIOUS TEST EQUIPMENT	36
	9.3	FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA - §2.1053	
	9.4	FCC PART 22.901(D); PART 24.229 AND PART 24.238 - BAND-EDGE COMPLIANCE	40
10		REQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055	46
	10.1	MEASUREMENT METHOD:	46
	10.2	FREQUENCY STABILITY TEST EQUIPMENT	46
	10.3	TIME PERIOD AND PROCEDURE:	46
	10.4	FREQUENCY TOLERANCE §22.355:	
	10.5	FREQUENCY STABILITY § 24.235	47
	10.6	FREQUENCY STABILITY TEST DATA - §2.1055	
11	C	ONCLUSION	54

TABLE INDEX

TABLE 2-1:	EQUIPMENT UNDER TEST (EUT)	
TABLE 2-2:	SUPPORT EQUIPMENT	6
TABLE 5-1:	REDUCED POWER FOR BASE STATION ANTENNA HEIGHTS OVER 300 METERS	12
TABLE 5-2:	RF POWER OUTPUT TEST EQUIPMENT	12
TABLE 5-3:	POWER OUTPUT DATA - §2.1046	
TABLE 6-1:	MODULATION CHARACTERISTICS TEST EQUIPMENT	
TABLE 7-1:	OCCUPIED BANDWIDTH TEST EQUIPMENT	
TABLE 8-1:	SPURIOUS EMISSIONS AT ANTENNA TERMINAL TEST EQUIPMENT	
TABLE 9-1:	RADIATED SPURIOUS TEST EQUIPMENT	36
TABLE 9-2:	FIELD STRENGTH DATA §2.1053 (CELLULAR AMPS)	
TABLE 9-3:	FIELD STRENGTH DATA \$2.1053 (CELLULAR CDMA)	
TABLE 9-4:	FIELD STRENGTH DATA §2.1053 (PCS CDMA)	39
TABLE 10-1:	FREQUENCY STABILITY TEST EQUIPMENT	46
TABLE 10-2:	FREQUENCY STARILLEY DATA \$2,1055	4/
TABLE 10-3:	FREQUENCY STABILITY DATA - §2.1055	4/
	FREQUENCY STABILITY EXHIBIT INDEX	
EXHIBIT 10-1:	VOLTAGE FREQUENCY STABILITY - §2.1055; AMPS (800)	48
EXHIBIT 10-1:	TEMPERATURE FREQUENCY STABILITY - §2.1055; AMPS (800)	
EXHIBIT 10-2:	VOLTAGE FREQUENCY STABILITY - §2.1055; CDMA (800)	
EXHIBIT 10-3:	TEMPERATURE FREQUENCY STABILITY - §2.1055; CDMA (800)	
EXHIBIT 10-5:	VOLTAGE FREQUENCY STABILITY - §2.1055; CDMA (1900)	52
EXHIBIT 10-6:	TEMPERATURE FREQUENCY STABILITY - §2.1055; CDMA (1900)	53
	A POEN IN	
	APPENDIX INDEX	
APPENDIX A:	AGENCY AUTHORIZATION LETTER	55
APPENDIX B:	CONFIDENTIALITY REQUEST LETTER	
APPENDIX C:	ATTESTATION LETTER(S)	
APPENDIX D:	PRODUCT DESCRIPTION	
APPENDIX E:	LABEL AND LABEL LOCATION	
APPENDIX F:	BILL OF MATERIAL (PARTS LIST)	
APPENDIX G:	SCHEMATIC	
APPENDIX H:	BLOCK DIAGRAM	
APPENDIX I:	MANUAL	
APPENDIX J:	TEST PHOTOGRAPHS	
APPENDIX K:	EXTERNAL PHOTOGRAPHS	
APPENDIX L:	INTERNAL PHOTOGRAPHS	
APPENDIX M:	ADDITIONAL INFORMATION FOR CANADIAN CERTIFICATION	68
	PHOTOGRAPH INDEX	
	THOTOGRAFITINDEA	
PHOTOGRAPH		
PHOTOGRAPH	2: CONFIGURATION OF TESTED SYSTEM (REAR VIEW)	8

1 GENERAL INFORMATION

1.1 SCOPE

FCC Rules Part 22.901: The rules in this subpart govern the licensing and operation of cellular radiotelephone systems.

FCC Rules Part 24 (E): The rules in this subpart govern Personal Communications Services – Broadband PCS.

IC RSS-129: This Radio Standards Specification (RSS) and the TIA/EIA-627 Compatibility Standard referred to in section 3.10 set out the minimum requirements for the certification (type-approval) of transmitters and receivers for the dual-mode (analog and digital CDMA) cellular telephone system in the 824-849 MHz and 869-894 MHz paired bands.

All measurements contained in this application were conducted in accordance with the FCC Rules and Regulations CFR47, Industry Canada RSS-129 and ANSI/TIA/EIA603-1992/-1-1998 Land Mobile FM or PM Communications Equipment Measurement and Performance Standards. The instrumentation utilized for the measurements conforms to the ANSI C63.4 standard for EMI and Field Strength Instrumentation. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

1.2 TEST FACILITY

The open area test site and conducted measurement facility used to collect the radiated data is located at 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report and approved by the Federal Communication Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 1992).

1.3 RELATED SUBMITAL(S)/GRANT(S)

This is an original application for Certification.

2 EQUIPMENT INFORMATION

2.1 APPLICANT AND EQUIPMENT INFORMATION

Sony Ericsson Mobile Communications (USA, Inc.) 7001 Development Drive P.O. Box 13969

Research Triangle Park, NC 27709 USA Phone: 919-472-1697 (Pierre Chery)

FCC	∇ PCB – Licensed Base Station for Part 24					
Classification:	PCE – Part 24 Licensed Portable Transmitter held to ear					
	PCF – Part 24 Licensed Portable Transmitter held to face					
	PCT – Part 24 Licensed Portable Transmitter held to body					
FCC Rule Part(s):	Part 22: Public Mobile Services Part 24: Personal Communications Services					
. ,	☐ Subpart E – Paging and Radiotelephone Services ☐ Subpart D – Narrowband PCS					
	□ Subpart E – Paging and Radiotelephone Services □ Subpart D – Narrowband PCS □ Subpart F – Rural Radiotelephone Services □ Subpart E – Broadband PCS					
	Subpart G – Air-Ground Radiotelephone Services					
	Subpart H – Cellular Radiotelephone Services					
	Subpart I – Offshore Radiotelephone Services					
Industry Canada	RSS-118: Land and Subscriber Stations: Voice, Data and Tone Modulated, Angle Modulation Radiotelephone					
Standard:	Transmitters and Receivers Operating in the Cellular Mobile Bands 824-849 MHz and 869-894 MHz					
~	RSS-128: 800 MHz Dual-Mode TDMA Cellular Telephones					
	RSS-129: 800 MHz Dual Mode CDMA Cellular Telephones					
FCC ID:	AXATR-423-A2 Max. RF Output Power: 2.773 W AMPS					

FCC ID:	AXATR-423-A2	Max. RF Output Power:	2.773 W AMPS
			0.198 W CDMA
Equipment Type:	AMPS, CDMA	Frequency Tolerance:	2.5 ppm
Tx Frequency Range:	824 – 849 MHz;	Emission Designator:	1M23F9W; 40K0F1D, 40K0F8W
	1850-1910	_	
Rx Frequency Range:	869 –894 MHz;	Date of Test Report:	December 18, 2001
	1930-1990 MHz	-	
Model(s):	CM-42		

2.2 JUSTIFICATION

To complete the test configuration required by the FCC, the receiver was connected to an external antenna, which receives a signal from a signal generator output. With the antenna installed, the receiver indicator was used to determine optional reception. The EUT's Intermediate frequencies (IF), Local Oscillators (LO), crystal oscillators and harmonics of each were investigated. All modes were investigated and tested including standby mode and receiving mode. The final radiated data was taken with the EUT locked to a set frequency in receive mode for Part 15 data.

The transmitter was tested at a high, mid, and low channel in the following frequency range (824 – 849 MHz and 1930 – 1990 MHz). The following frequencies were tested: 824.04, 836.49, 848.97, 1851.25, 1878.75, and 1908.75 MHz. Each transmitter frequency was measured independently in 3 orthogonal planes at 360° rotation.

The final radiated data was taken with the EUT locked to a set frequency.

2.3 EXERCISING THE EUT

The CM42 was tested using client based software to set all the parameters required for testing, such as power level, modulation type, frequency, and receive modes.

2.4 TEST SYSTEM DETAILS

The FCC Identifiers for all equipment, plus descriptions of all cables used in the tested system are:

TABLE 2-1: EQUIPMENT UNDER TEST (EUT)

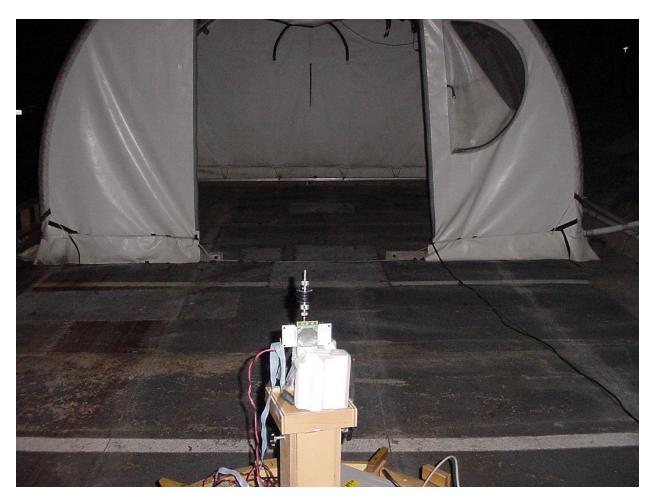
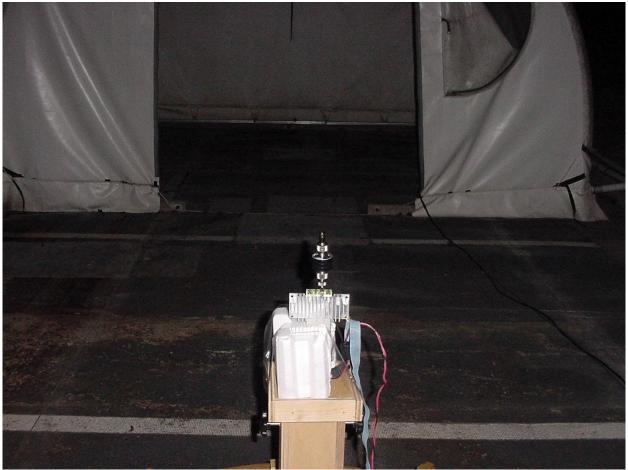

THE E		CITED TEST (ECT)				
PART	MANUFACTURER	Model	SERIAL NUMBER	FCC ID	CABLE DESCRIPTION	RTL BAR CODE
CM-42 MODULE	SONY ERICSSON MOBILE COMMUNICATIONS	CM-42	TE60011MW2	SAMPLE	UNSHIELDED	013967
CM-42 MODULE	SONY ERICSSON MOBILE COMMUNICATIONS	CM-42	TE60011MW3	SAMPLE	UNSHIELDED	013966

TABLE 2-2: SUPPORT EQUIPMENT

INDEED 2. SOITONI EQUITABLE						
PART	MANUFACTURER	MODEL	SERIAL	FCC ID	CABLE	RTL
			Number		DESCRIPTION	BAR
						CODE
POWER SUPPLY	HEWLETT	E3610A	KR83020714	N/A	UNSHIELDED	013970
	Packard					
POWER SUPPLY	HEWLETT	E3610A	KR83020678	N/A	UNSHIELDED	013969
	PACKARD					
DRADIO	ANRITSU	MT8802A	MT17187	N/A	N/A	013965
COMMUNICATIONS						
ANALYZER						
JUNCTION BOX	SONY ERICSSON	N/A	N/A	N/A	N/A	N/A
	Mobile					
	COMMUNICATIONS					



2.5 CONFIGURATION OF TESTED SYSTEM

PHOTOGRAPH 1: CONFIGURATION OF TESTED SYSTEM (FRONT VIEW)

PHOTOGRAPH 2: CONFIGURATION OF TESTED SYSTEM (REAR VIEW)

3 NECESSARY BANDWIDTH AND EMISSION BANDWIDTH - § 2.202

Type of Emission: F8W, F1D

Necessary Bandwidth and Emission Bandwidth: 40K0F1D 40K0F8W

Calculation for 40K0F8W

1/ Voice + SAT

Modulation: Voice is 2.5 kHz and SAT is 6kHz, thus the maximum modulation is M = 6 kHz Deviation: Voice is 12kHz and SAT is 2kHz, thus the maximum deviation is D = 12 + 2 = 14 kHz Bn = 2xM + 2xDK with K = 1 Bn = 40 kHz

2/ Signaling Tone (ST) + SAT

Modulation: ST is 10 kHz and SAT is 6kHz, thus the maximum modulation is M=10 kHz Deviation: ST is 8kHz and SAT is 2kHz, thus the maximum deviation is D=8+2=10 kHz Bn = 2xM+2xDK with K=1 Bn=40 kHz

Calculation for 40K0F1D (wide Band Data)

1/ Voice + SAT

Modulation: Wideband Data is 10 kHz and SAT is 6kHz, thus the maximum modulation is M=10 kHz Deviation: Wideband Data is 8kHz and SAT is 2kHz, thus the maximum deviation is D=8+2=10 kHz Bn = 2xM+2xDK with K=1 Bn=40 kHz

4 DC VOLTAGES AND CURRENTS - PART §2.1033(C)(8)

The dc voltages applied to and dc currents into the several elements of the final radio frequency amplifying device for normal operation over the power range.

LABEL	LEVEL (VOLTS)	TOLERANCE	MAX. CURRENT
YCC_5V	5	+/-10%	
VCC_12V	13 . 8	+/-20%	
VDIG	2.9	+/-2%	150 mA
VCODEC	2.6	+/-2%	100 mA
VCORE	2.6	+/-2%	100 mA
VPA	4	+/-3%	1000 mA
VBT	3.1	+/-2%	150 mA
VBATTIN	5		
VTX	2.9		164 mA
VRX	2.9		80 mA
VSYNTH	2,9		150 mA
VGPS	3.3		
VRTC			
VRXRF	2,9	+/-2%	
12V_PA	13.8	+/-20%	1A
12V_SW	13 .8	+/-20%	1A
VCC_10V	10	+/-20%	5 mA
VGRF	3.3		
VRXRF_PCS	2.9		
VTCXO	2.8	+/-2%	150 mA
VGCORE	3.3		

5 RF POWER OUTPUT - §2.1046

5.1 POWER OUTPUT TEST PROCEDURES

5.1.1 ANSI/TIA/EIA-603-1992, SECTION 2.2.1 TEST PROCEDURE

Connect the equipment as illustrated below. Measure the transmitter output power during the defined duty cycle. The EUT was connected to a coaxial attenuator having a 50 Ω load impedance.

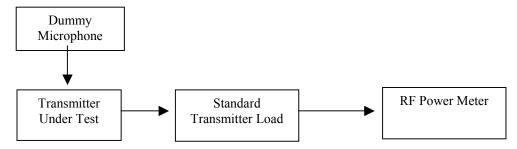


FIGURE 5-1: ILLUSTRATION OF HOW THE EQUIPMENT IS CONNECTED

5.1.2 MEASUREMENTS REQUIRED: RF POWER OUTPUT - §2.1046

Transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033(c)(8) of the FCC rules and regulations. The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

In addition, transmitters that are single sideband, independent sideband and controlled carrier radiotelephone the transmitter shall be modulated during the test as follows. In all tests, the input level of the modulating signal shall be such as to develop rated peak envelope power or carrier power, as appropriate, for the transmitter.

5.1.3 EFFECTIVE RADIATED POWER LIMITS - §22.913

Maximum ERP – The ERP of base transmitters and cellular repeaters must not exceed 500 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

5.2 POWER AND ANTENNA HEIGHT LIMITS - §24.232

HAAT is determined by subtracting average terrain elevation from antenna height above mean sea level.

Base stations are limited to 1640 watts peak equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT. Base station antenna heights may exceed 300 meters with a corresponding reduction in power.

TABLE 5-1: REDUCED POWER FOR BASE STATION ANTENNA HEIGHTS OVER 300 METERS

HAAT in meters	Maximum EIRP (Watts)
≤ 300	1640
≤500	1070
≤ 1000	490
<u>≤</u> 1500	270
≤ 2000	160

Mobile/Portable stations are limited to 2 watts EIRP peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

5.3 RF POWER OUTPUT TEST EQUIPMENT

TABLE 5-2: RF POWER OUTPUT TEST EQUIPMENT

RTL Asset	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901184	Agilent Technologies	E4416A	EPM-P Power Meter, single channel	GB41050573	7/5/02
901186	Agilent Technologies	E9323A (50MHz- 6GHz)	Peak & Avg. Power Sensor	US40410380	6/25/02

5.4 POWER OUTPUT TEST DATA- §2.1046

TABLE 5-3: POWER OUTPUT DATA - §2.1046

(800MHZ AMPS Mode)

(OUTHIE HIVIT S MOUC)					
		EUT	EUT		
Channel	Frequency	Conducted	Conducted		
Number	Tuned	Power (High	Power (Low		
		Power)	Power)		
	(MHz)	(dBm)	(dBm)		
991	824.04	34.43	24.3		
383	836.49	34.21	24.0		
799	848.97	34.31	24.0		

(800 MHz CDMA mode)

Channel Number	Frequency Tuned	EUT Conducted Power
	(MHz)	(dBm)
1013	824.70	23
400	837.00	23
777	848.31	23

(1900 MHz PCS CDMA mode)

Channel Number	Frequency Tuned	EUT Conducted Power
	(MHz)	(dBm)
25	1851.25	23
575	1878.75	23
1175	1908.75	23

6 MODULATION CHARACTERISTICS - §2.1047

6.1 MODULATION CHARACTERISTICS - §2.1047 TEST PROCEDURE

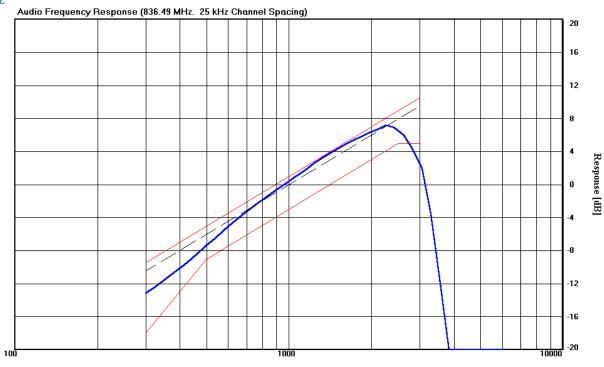
- (a) *Voice modulated communication equipment*. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.
- (b) *Equipment which employs modulation limiting*. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability

throughout the range of modulating frequencies and input modulating signal levels employed.

6.2 MODULATION REQUIREMENTS - §22.915 TEST PROCEDURE

Cellular systems must be capable of providing service using the types of modulation described in the cellular system compatibility specification.

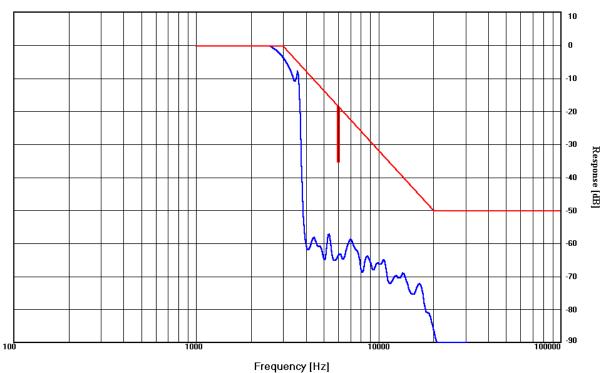
6.3 MODULATION CHARACTERISTICS TEST EQUIPMENT


TABLE 6-1: MODULATION CHARACTERISTICS TEST EQUIPMENT

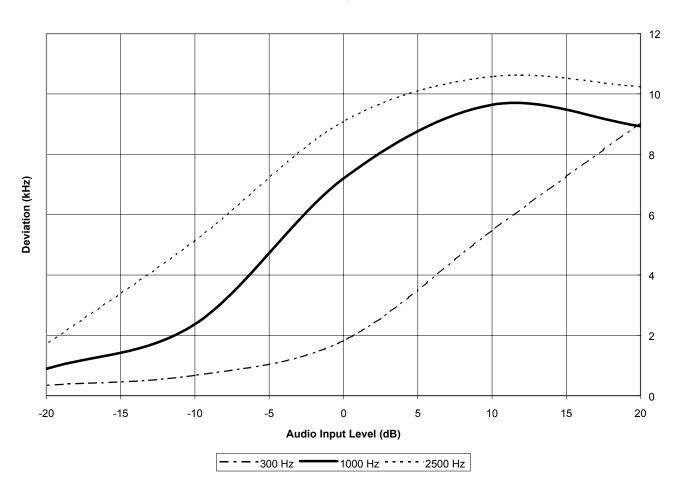
RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901055	Hewlett Packard	8901A Opt. 002- 003	Modulation Analyzer	2545A04102	7/31/02
901057	Hewlett Packard	3336B	Synthesizer/Level Generator	2514A02585	7/13/02
901054	Hewlett Packard	HP 3586B	Selective Level Meter	1928A01892	7/16/02

6.4 MODULATION CHARACTERISTICS TEST DATA

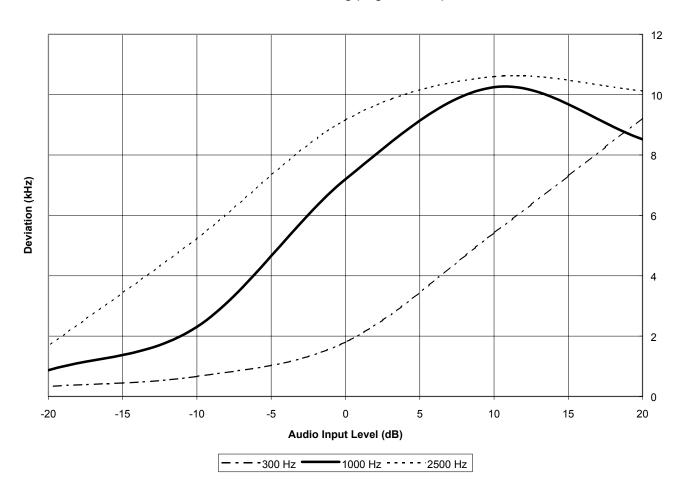
Туре	Measured	Rated
Voice	11.96	12
Wideband	8.23	8
SAT	1.81	2
ST	7.61	8


Audio Frequency Response

Frequency of Max Response: 2509.75 Hz


Frequency [Hz]

RTL



Modulation Limiting (Positive Peak)

Modulation Limiting (Negative Peak)

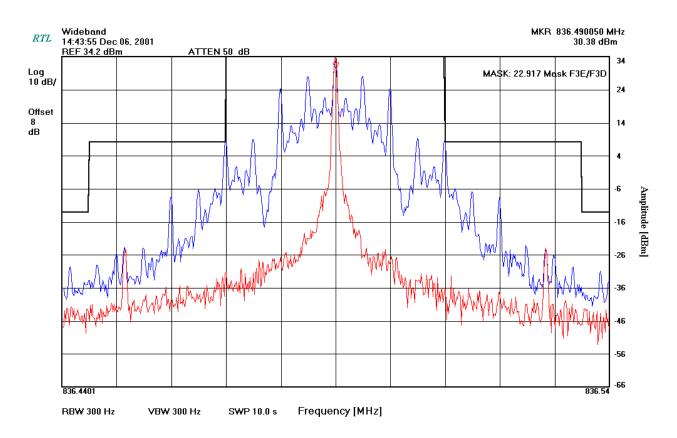
7 OCCUPIED BANDWIDTH - §2.1049

7.1 OCCUPIED BANDWIDTH - §2.1049 TEST PROCEDURE

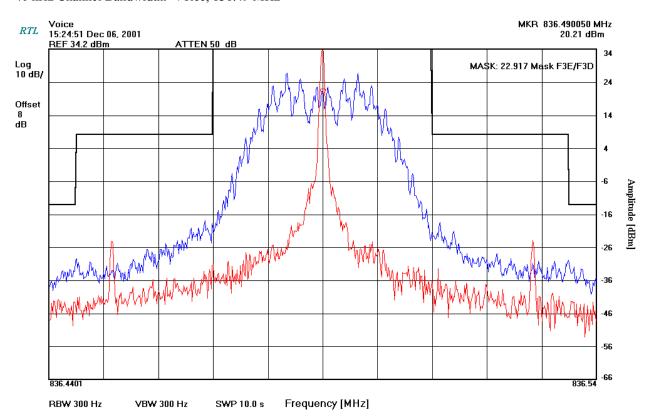
The antenna output terminal of the EUT was connected to the input of a 50W spectrum analyzer through a matched 30dB attenuator. The radio transmitter was operating at maximum output power with and without internal data modulation. 100% of the in-band modulation was below the specified mask per §22.917 (C). Specified Limits:

- A. On any frequency removed from the assigned carrier frequency by more than 20kHz, up to and including 45kHz, the sideband was at least 26dB below the carrier.
- B. On any frequency removed from the assigned carrier frequency by more than 45kHz, up to and including 90kHz, the sideband was at least 45dB below the carrier.
- C. On any frequency removed from the assigned carrier frequency by more than 90kHz, up to the first multiple of the carrier frequency, the sideband was at least 60dB below the carrier of 43 + log10 (mean power output in Watts) dB, whichever was the smaller attenuation.

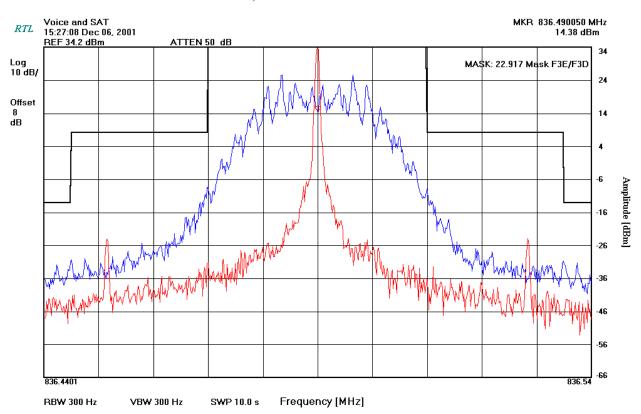
7.2 OCCUPIED BANDWIDTH TEST EQUIPMENT


TABLE 7-1: OCCUPIED BANDWIDTH TEST EQUIPMENT

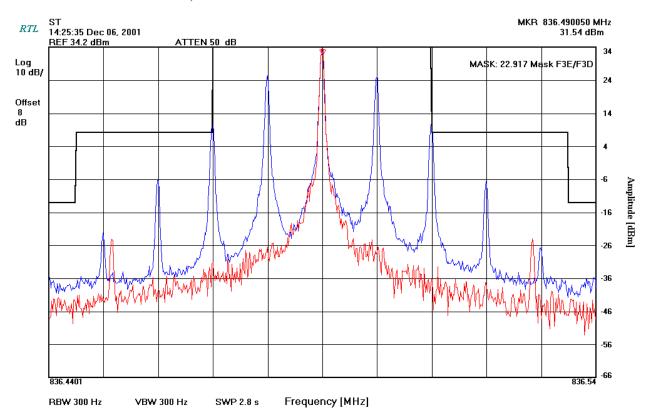
RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901020	Hewlett Packard	8564E	Portable Spectrum Analyzer (9kHz – 40 GHz)	3943A01719	6/7/02


7.3 OCCUPIED BANDWIDTH TEST DATA

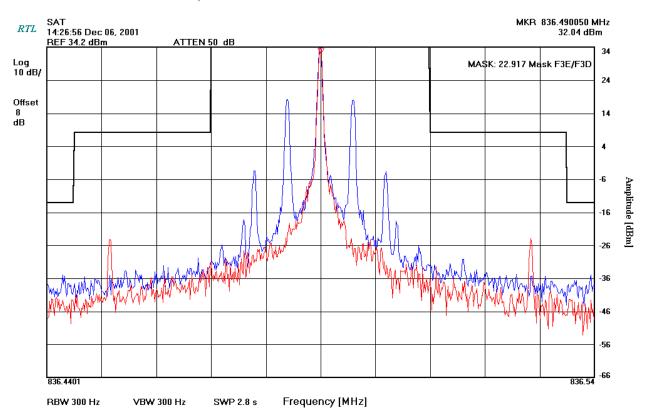
40 kHz Channel Bandwidth: Wideband data; 836.49 MHz



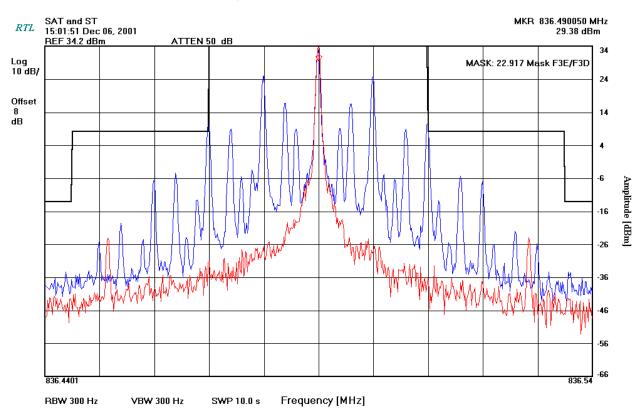
40 kHz Channel Bandwidth: Voice; 836.49 MHz



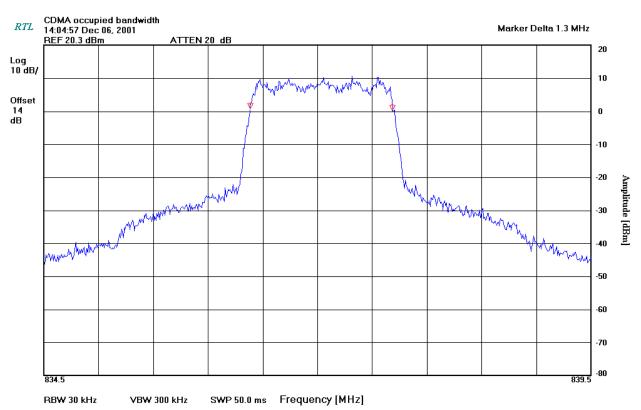
40 kHz Channel Bandwidth: Voice and SAT; 836.49 MHz



40 kHz Channel Bandwidth: ST; 836.49 MHz



40 kHz Channel Bandwidth: SAT; 836.49 MHz



40 kHz Channel Bandwidth: SAT and ST; 836.49 MHz

CDMA Occupied Bandwidth (1.3 MHz): 837.00 MHz

PCS CDMA Occupied Bandwidth (1.292 MHz): 1878.75 MHz

8 SPURIOUS EMISSIONS AT ANTENNA TERMINAL - §2.1051

8.1 SPURIOUS EMISSIONS TEST PROCEDURES

8.1.1 SPURIOUS EMISSIONS AT ANTENNA TERMINAL - §2.1051

The level of the carrier and the various conducted spurious frequencies was measured by means of a calibrated spectrum analyzer. The antenna output terminal of the EUT was connected to the input of a 50 Ω spectrum analyzer through a matched 30dB attenuator and coaxial cable. The transmitter was operating at maximum power with internal data modulation.

8.1.2 EMISSION LIMITATIONS FOR CELLULAR - §22.917

- (d) F1D emission mask. For F1D emissions, the mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) as follows:
- (1) On any frequency removed from the carrier frequency by more than 20 kHz but not more than 45 kHz: at least 26 dB;
- (2) On any frequency removed from the carrier frequency by more than 45 kHz, up to the first multiple of the carrier frequency: at least 60 dB or 43 + 10 log P dB, whichever is the lesser attenuation.

8.1.3 MEASUREMENT PROCEDURE

The following spectrum analyzer bandwidth settings should be used for measurement of spurious emissions. When operating in the radiotelephony mode or the supervisory audio tone mode: (1) Any emission not more than 45 kHz removed from the carrier frequency, 300 Hz. (2) Any emission more than 45 kHz removed from the carrier frequency, 30 kHz. When operating in the wideband data mode or the signaling tone mode: (1) Any emission not more than 60 kHz removed from the carrier frequency, 300 Hz. (2) Any emission more than 60 kHz removed from the carrier frequency, 30 kHz.

8.1.4 EMISSION LIMITS - §24.133

The power of any emission shall be attenuated below the transmitter power, as measure in accordance with FCC §24.132.

8.2 SPURIOUS EMISSIONS AT ANTENNA TERMINAL TEST EQUIPMENT

TABLE 8-1: SPURIOUS EMISSIONS AT ANTENNA TERMINAL TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901020	Hewlett Packard	8564E	Portable Spectrum Analyzer (9 kHz - 40 GHz)	3943A01719	6/7/02
901057	Hewlett Packard	3336B	Synthesizer/Level Generator	2514A02585	7/13/02
900913	Hewlett Packard	85462A	EMI Receiver RF Section (9 KHz – 6.5 GHz)	3325A00159	12/5/02

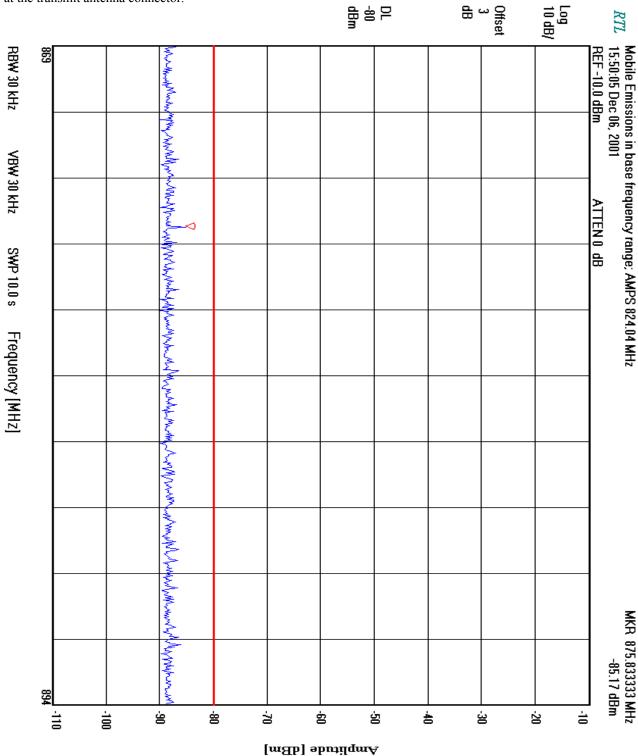
8.3 SPURIOUS EMISSIONS TEST DATA

Cellular AMPS 836.49 MHz Channel 383 Conducted power = 34.21 dBm Limit =47.21 dBc

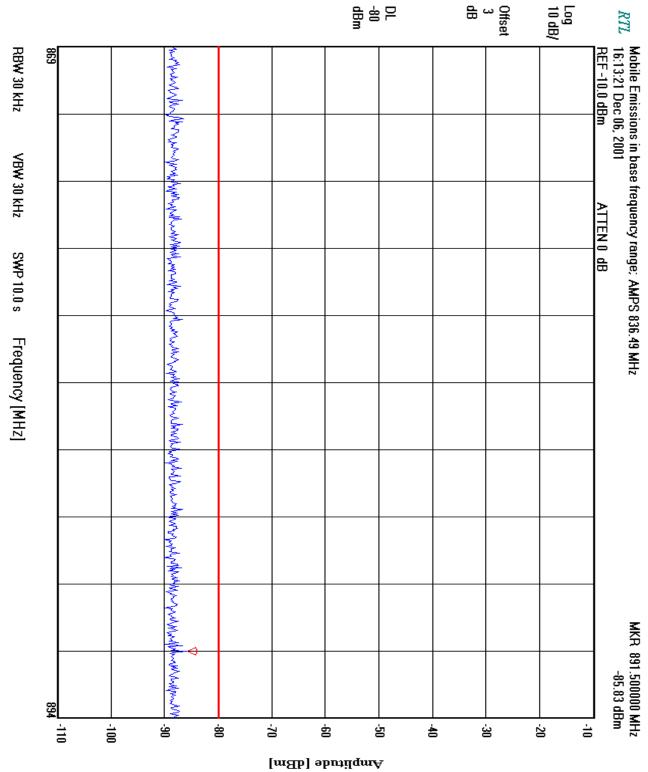
Frequency (MHz)	Level Measured (dBm)	Notch Insertion Loss (dB)	Corrected Level (dBc)	Margin (dB)
1672.98	-43.17	-9.67	67.71	-20.50
2509.47	-41.83	-12.33	63.71	-16.50
3345.96	-44.67	-10.17	68.71	-21.50
4182.45	-44.33	-11.00	67.54	-20.33
5018.94	-54.67	-9.50	79.38	-32.17
5855.43	-65.33	-13.33	86.21	-39.00
6691.92	-87.50	-30.83	90.88	-43.67
7528.41	-68.83	-10.17	92.87	-45.66
8364.9	-68.17	-12.83	89.55	-42.34

Cellular CDMA 837.00 MHz Channel 400 Conducted power = 20.7 dBm Limit = 33.7 dBc

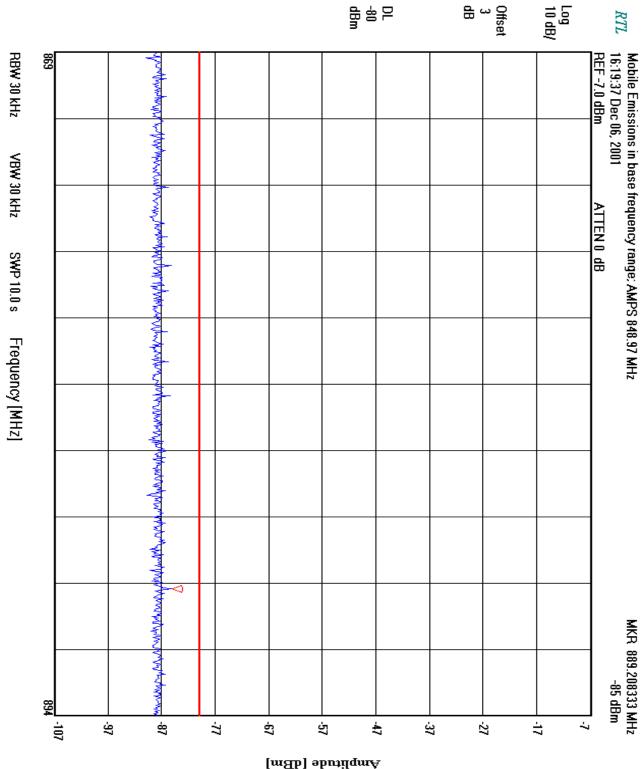
Frequency (MHz)	Level Measured (dBm)	Notch Insertion Loss (dB)	Corrected Level (dBc)	Margin (dB)
1674.00	-85.23	-10.23	95.70	-62.00
2511.00	-84.00	-13.73	90.97	-57.27
3348.00	-77.17	-10.57	87.30	-53.60
4185.00	-90.50	-11.90	99.30	-65.60
5022.00	<-100			
5859.00	<-100			
6696.00	<-100		_	
7533.00	<-100		_	
8370.00	<-100			

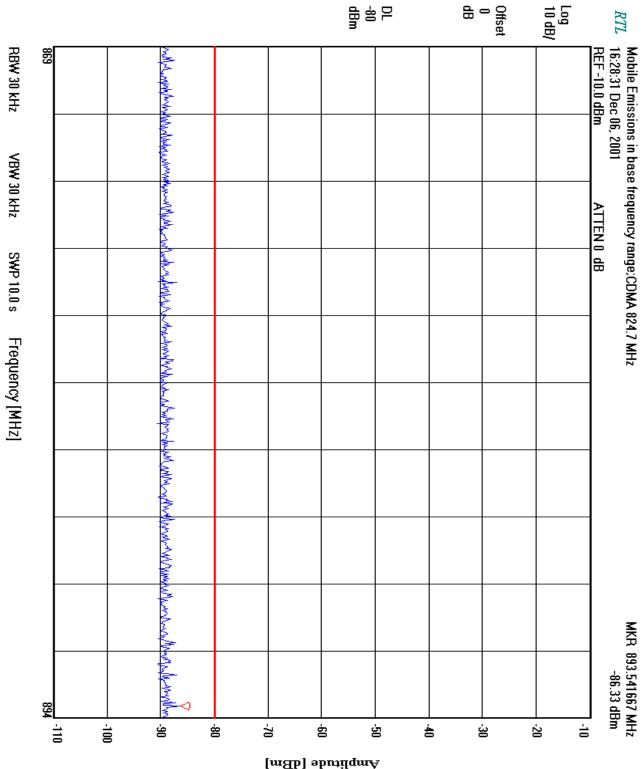

PCS CDMA 1878.75 MHz Channel 575 Conducted power = 22.56 dBm Limit = 35.56 dBc

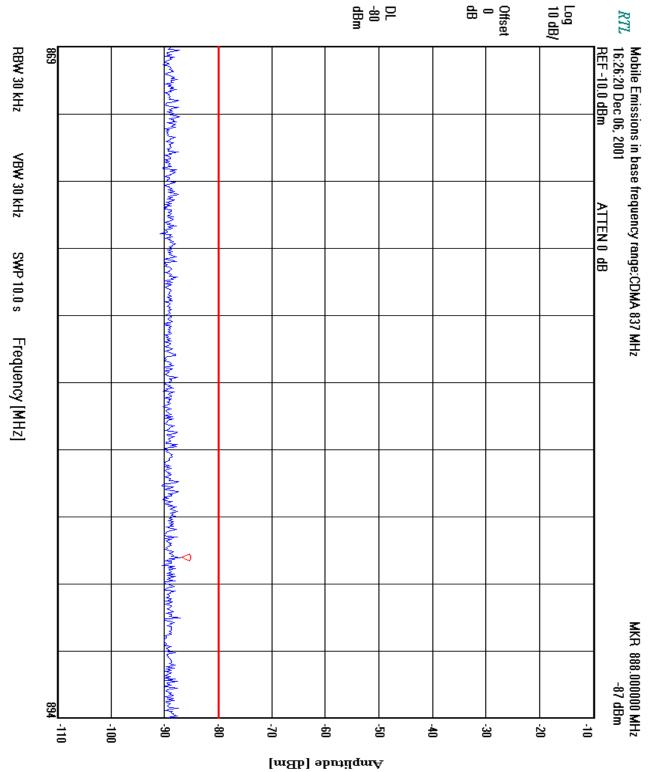
Frequency (MHz)	Level Measured (dBm)	Notch Insertion Loss (dB)	Corrected Level (dBc)	Margin (dB)
3757.50	-94.83	-1.67	115.72	-80.16
5636.25	-96.50	-1.17	117.89	-82.33
7515.00	<-100			
9393.75	<-100			
11272.50	<-100			
13151.25	<-100			
15030.00	<-100			
16908.75	<-100			
18787.50	<-100			

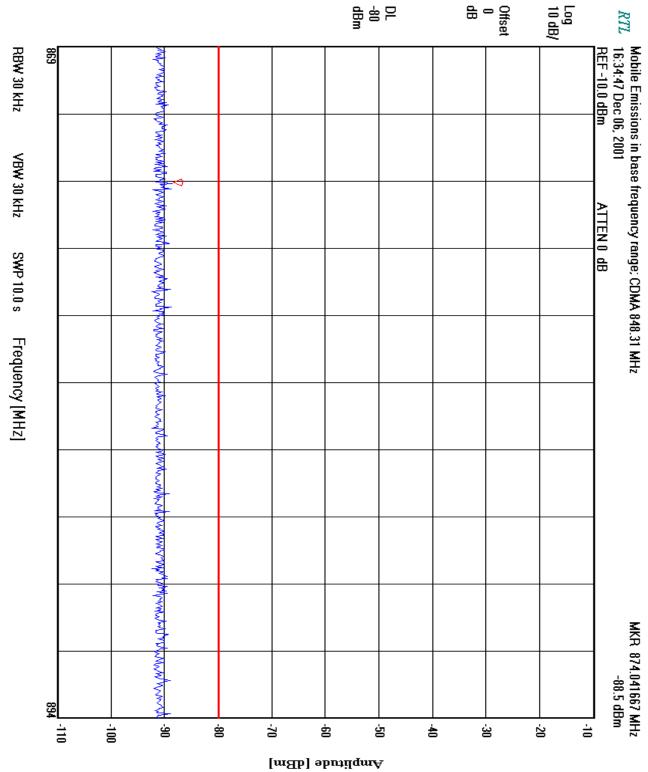


8.4 FCC PART 22.917 (F) MOBILE EMISSIONS IN BASE FREQUENCY RANGE


Mobile emissions in base frequency range. The mean power of any emissions appearing in the base station frequency range from cellular mobile transmitters operated must be attenuated to a level not to exceed 80 dBm at the transmit antenna connector.







9 RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053

9.1 RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053

Radiated and harmonic emissions were measured at our 3-meter outdoor site. The EUT was placed on the turntable with the transmitter transmitting into a non-radiating load. A receiving antenna located 3 meters from the turntable received any signal radiated from the transmitter and its operating accessories. The receiving antenna was varied from 1 to 4 meters and the polarization was varied to determine the worst-case emission level, the EUT was tested in 3 orthogonal planes.

9.2 RADIATED SPURIOUS TEST EQUIPMENT

TABLE 9-1: RADIATED SPURIOUS TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901053	Schaffner Chase	CBL6112B	Bi-Log Antenna (20 MHz – 2 GHz)	2648	5/22/02
901184	Agilent Technologies	E4416A	EPM-P Power Meter, single channel	GB41050573	7/5/02
901186	Agilent Technologies	E9323A (50MHz- 6GHz)	Peak & Avg. Power Sensor	US40410380	6/25/02
900931	Hewlett Packard	8566B	Spectrum Analyzer (100 Hz – 22 GHz)	3138A07771	5/16/02
900917	Hewlett Packard	8648C	Signal Generator (100kHz – 3200 MHz)	3537A01741	4/10/02
900928	Hewlett Packard	83752A	Syntesized Sweeper (0.01 GHz – 20 GHz)	3610A00866	5/11/02

9.3 FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA - §2.1053

Operating Frequency (MHz): 836.49

Channel: 383

Measured Cond. Pwr. (dBm): 34.21 Measured ERP (dBm): N/A

Modulation: Analog Distance: 3

Limit: 47.21 dBc

TABLE 9-2: FIELD STRENGTH DATA §2.1053 (CELLULAR AMPS)

Frequency (MHz)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss (dB)	Horn Antenna Gain (dBd)	POL (H/V)	ERP (dBc)	Margin (dB)
1672.98	41.60	-48.46	1.3	4.72	Н	79.25	-32.04
2509.47	53.48	-41.45	1.6	5.16	Н	72.11	-24.90
3345.96	46.74	-48.19	2.1	7.01	Н	77.49	-30.28
4182.45	18.56	-69.75	1.3	6.29	Н	98.97	-51.76
5018.94	13.93	-76.67	1.7	8.95	Н	103.63	-56.42
5855.43	24.38	-65.85	1.5	6.55	Н	95.01	-47.80
6691.92	19.43	-69.69	3.1	7.65	Н	99.35	-52.14
7528.41	18.48	-71.45	4.2	7.55	Н	102.31	-55.10
8364.9	17.59	-70.88	3	8.35	Н	99.74	-52.53

The spectrum analyzer was set to the following settings:

- 1. Resolution Bandwidth ≤100 kHz
- 2. Video Bandwidth 10 Hz
- 3. Sweep Speed 5 Second
- 4. Detector Mode = Positive Peak

Notes:

ERP Measurements by Substitution Method:

The EUT was placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters in three orthogonal planes. The field strength was recorded from a calibrated spectrum analyzer for each channel being tested. A horn antenna was substituted in place of the EUT. The horn was fed from a signal generator, and the level was adjusted to the same field strength level as the EUT. The conducted power from the signal generator was recorded. The final ERP level was determined by subtracting the cable loss and adding the dipole gain in dBd.

Operating Frequency (MHz): 837.00

Channel: 400
Measured Cond. Pwr. (dBm): 20.7
Measured ERP (dBm): N/A

Modulation: CDMA
Distance: 3

Limit: 33.7 dBc

TABLE 9-3: FIELD STRENGTH DATA §2.1053 (CELLULAR CDMA)

Frequency (MHz)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss (dB)	Horn Antenna Gain (dBd)	POL (H/V)	ERP (dBc)	Margin (dB)
1674	21.21	-69.13	1.3	4.72	Н	86.41	-52.71
2511	29.15	-65.99	1.7	5.16	Н	83.23	-49.53
3348	41.26	-53.65	2.0	7.02	Н	69.33	-35.63
4185							
5022							
5859							
6696							
7533							
8370							

The spectrum analyzer was set to the following settings:

- 5. Resolution Bandwidth ≤100 kHz
- 6. Video Bandwidth 10 Hz
- 7. Sweep Speed 5 Second
- 8. Detector Mode = Positive Peak

Notes:

ERP Measurements by Substitution Method:

The EUT was placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters in three orthogonal planes. The field strength was recorded from a calibrated spectrum analyzer for each channel being tested. A horn antenna was substituted in place of the EUT. The horn was fed from a signal generator, and the level was adjusted to the same field strength level as the EUT. The conducted power from the signal generator was recorded. The final ERP level was determined by subtracting the cable loss and adding the dipole gain in dBd.

Operating Frequency (MHz): 1878.75

Channel: 575

Measured Cond. Pwr. (dBm): 22.56 Measured ERP (dBm): N/A

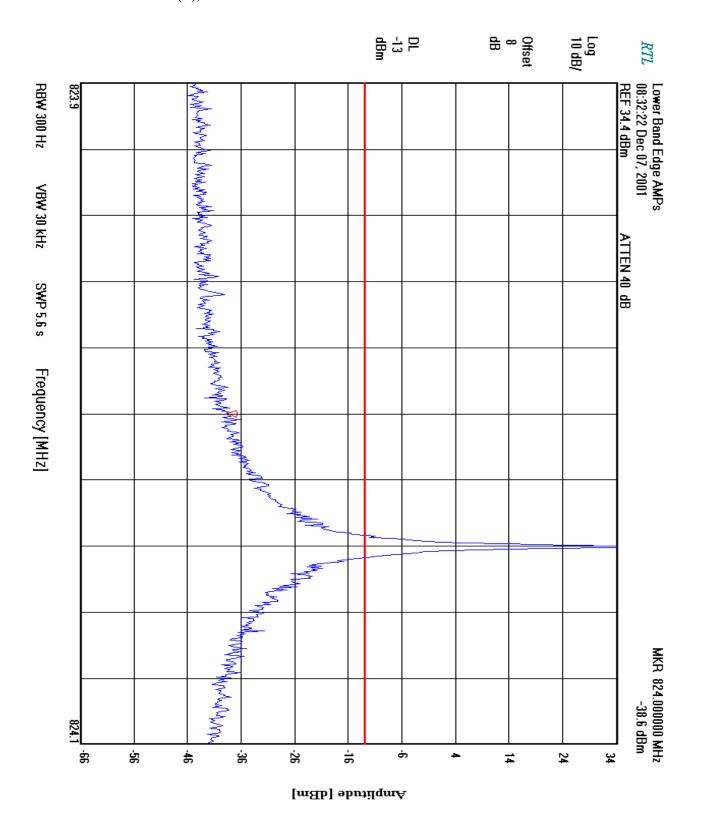
Modulation: CDMA
Distance: 3
Limit: 35.56

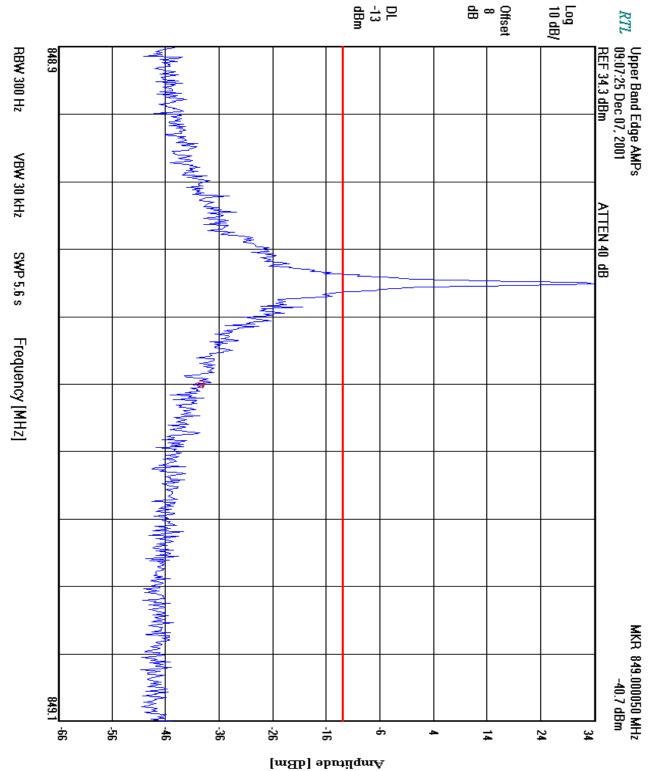
TABLE 9-4: FIELD STRENGTH DATA §2.1053 (PCS CDMA)

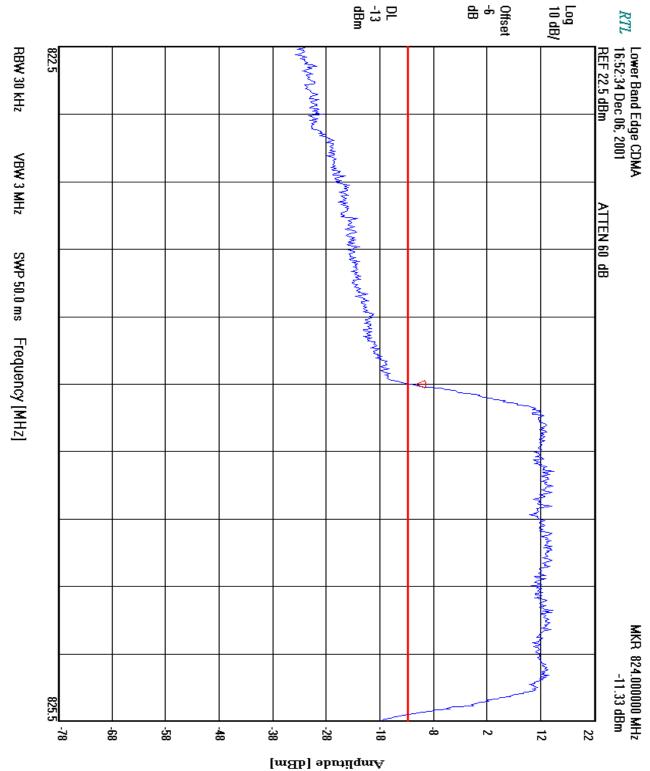
Frequency (MHz)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss (dB)	Horn Antenna Gain (dBi)	POL (H/V)	EIRP (dBc)	Margin (dB)
3757.50						<100	
5636.25						<100	
7515.00						<100	
9393.75						<100	
11272.50						<100	
13151.25						<100	
15030.00						<100	
16908.75						<100	
18787.50	_					<100	

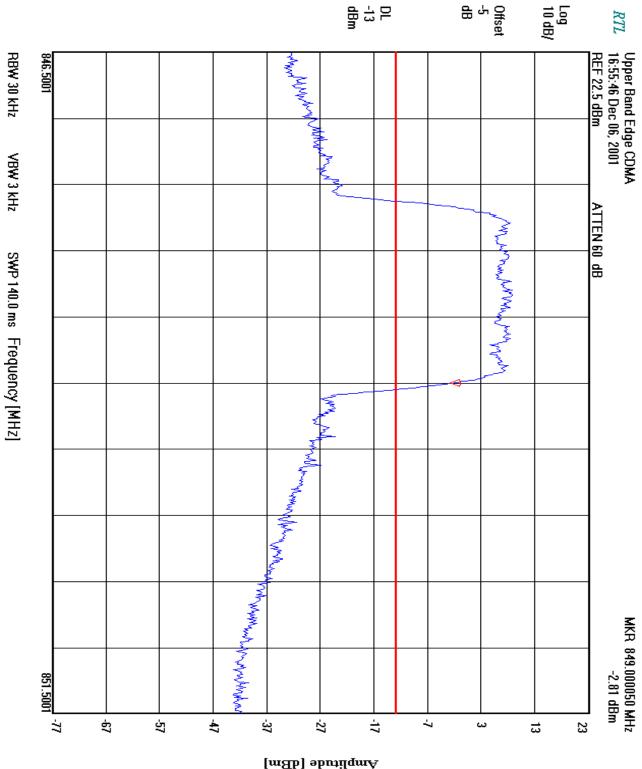
The spectrum analyzer was set to the following settings:

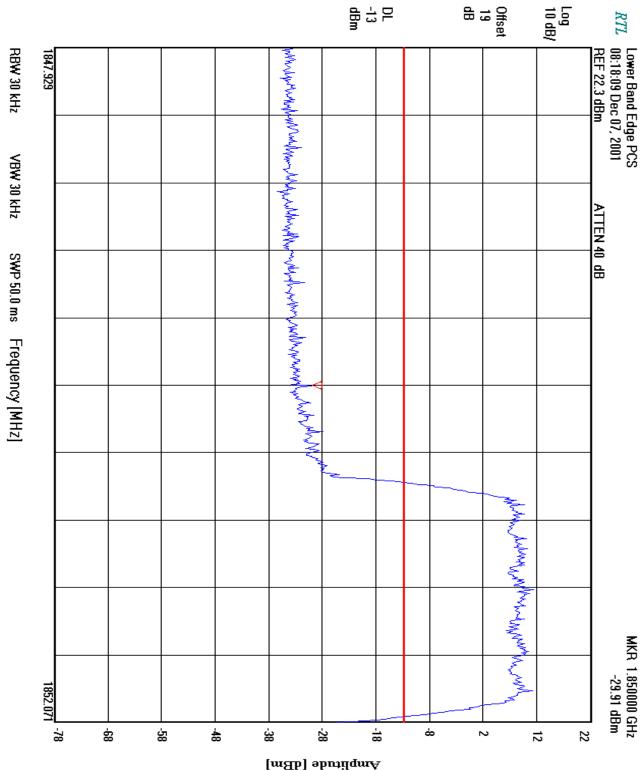
- 9. Resolution Bandwidth ≤100 kHz
- 10. Video Bandwidth 10 Hz
- 11. Sweep Speed 5 Second
- 12. Detector Mode = Positive Peak

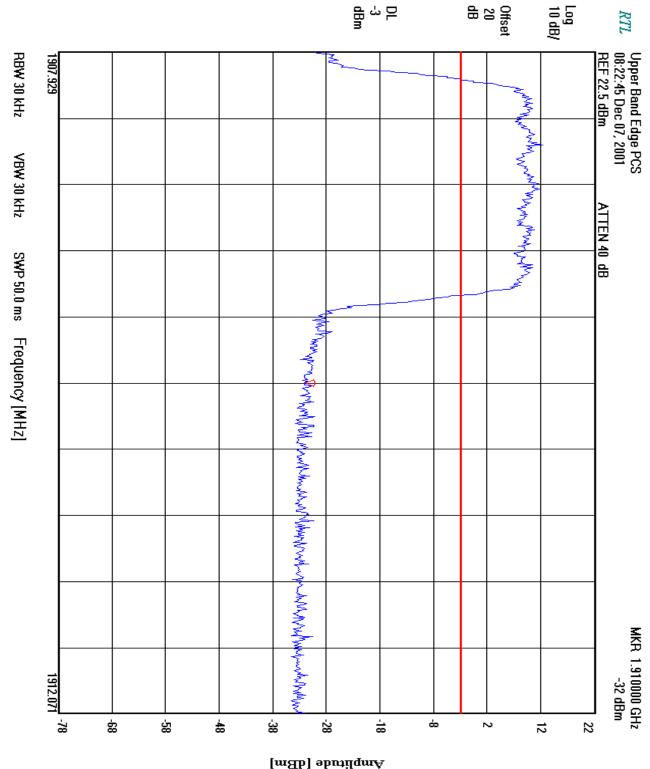

Notes:


ERP Measurements by Substitution Method:


The EUT was placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees through 3 orthogonal planes, and changing the height of the receive antenna from 1 to 4 meters. The field strength was recorded from a calibrated spectrum analyzer for each channel being tested. A horn aantenna was substituted in place of the EUT. The horn was fed through a cable from a signal generator and the power at the signal generator was monitored. The level of the signal generator was adjusted to the same field strength level as the EUT. The conducted power of the signal generator was recorded. The horn gain was then determined and the EIRP level was determined by subtracting the cable loss and adding the horn gain in dBi.


9.4 FCC PART 22.901(D); PART 24.229 AND PART 24.238 - BAND-EDGE COMPLIANCE





10 FREQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055

The frequency stability and RF power, measured at the antenna connector using a communications test set as the specified load, are plotted against supply voltage variations and temperature variations at the highest power levels for each modulation type. All measurements are made at the center of the frequency band.

10.1 MEASUREMENT METHOD:

The frequency stability of the transmitter was measured by:

- Temperature: The temperature was varied from -30°C to +60°C at intervals no more than 10°C throughout the temperature range using an environmental chamber. A period of time sufficient to stabilize all of the components in the equipment shall be allowed prior to each frequency measurement.
- 2. Primary Supply Voltage: The primary supply voltage was varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied. The EUT was tested down to the battery endpoint.

10.2 FREQUENCY STABILITY TEST EQUIPMENT

TABLE 10-1: FREQUENCY STABILITY TEST EQUIPMENT

Manufacturer	Model	Part Type
Anritsu	MT8802A	Radio Communications Test Set
Hewlett Packard	E3631A	Power Supply
Hewlett Packard	E3610A	Power Supply
Hewlett Packard	E4418B	Power Meter
ESPEC	SH-240	Temperature Chamber

10.3 TIME PERIOD AND PROCEDURE:

- 1. The carrier frequency of the transmitter was measured at room temperature (25°C to provide a reference).
- 2. The equipment was subjected to a "soak" at -30°C without any power applied.
- 3. After the "soak" at -30°C, the measurement of the carrier frequency of the transmitter was made within a three-minute interval after applying power to the transmitter.
- 4. Frequency measurements were made at 10°C intervals up to +60°C, then back to room temperature. A minimum period of one hour was provided to allow stabilization of the equipment at each temperature level.

10.4 FREQUENCY TOLERANCE §22.355:

The minimum frequency stability shall 2.5 ppm for this device

TABLE 10-2: FREQUENCY TOLERANCE §22.355

Frequency Range	Base, Fixed	Mobile ≤ 3 Watts	Mobile <= 3 Watts
(MHz)	(ppm)	(ppm)	(ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929	5.0	N/A	N/A
929 to 960	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

10.5 FREQUENCY STABILITY § 24.235

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

10.6 FREQUENCY STABILITY TEST DATA - §2.1055

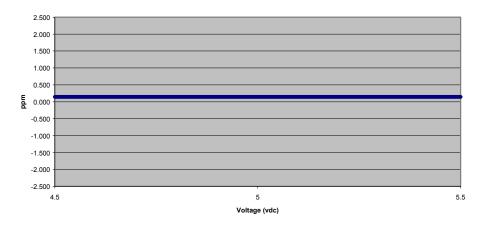
 Operating Frequency:
 836.49; 837; and 1878.75
 MHz

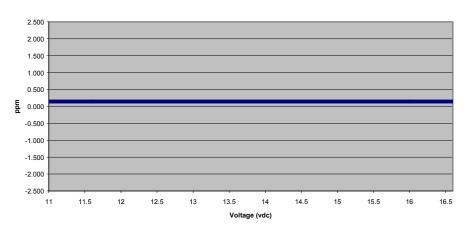
 Channel:
 383; 400; and 575
 VDC

 Reference Voltage:
 5 and 13.8
 VDC

 Deviation Limit:
 0.00025
 % or 2.5
 ppn

TABLE 10-3: FREQUENCY STABILITY DATA - §2.1055


Exhibit	Input Voltage	Temperature (°C)	Modulation (Freq)
1	$5.0 \pm 10\%, 13.8 \pm 20\%$	25	AMPS (800)
2	5.0, 13.8	-30 to +50	AMPS (800)
3	$5.0 \pm 10\%, 13.8 \pm 20\%$	25	CDMA (800)
4	5.0, 13.8	-30 to +50	CDMA (800)
5	$5.0 \pm 10\%, 13.8 \pm 20\%$	25	CDMA (1900)
6	5.0, 13.8	-30 to +50	CDMA (1900)


EXHIBIT 10-1: VOLTAGE FREQUENCY STABILITY - §2.1055; AMPS (800)

Voltage	Temperature	Freq. Error
(5V nom./13.8V nom.)	(°C)	(Hz)
4.5/11.0	25	119.2
4.6/11.6	25	120.2
4.7/12.1	25	120.3
4.8/12.7	25	118.8
4.9/13.2	25	120.4
5.0/13.8	25	119.3
5.1/14.3	25	119.6
5.2/14.9	25	120.4
5.3/15.5	25	120.1
5.4/16.0	25	119.2
5.5/16.6	25	120.3

Voltage Frequency Stability

Voltage Frequency Stability

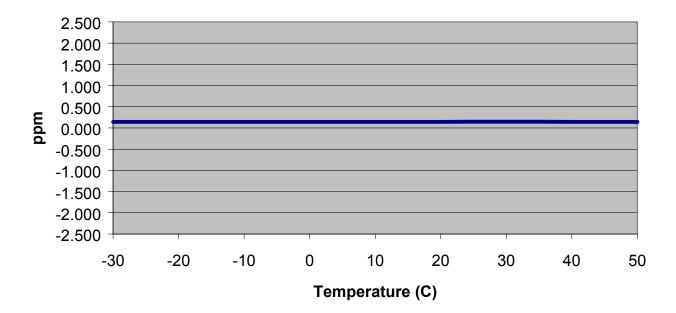
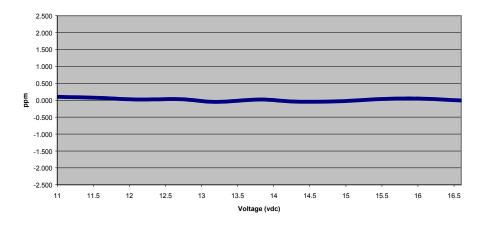
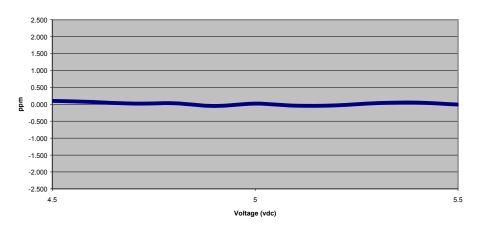


EXHIBIT 10-2: TEMPERATURE FREQUENCY STABILITY - §2.1055; AMPS (800)

(°C)	(5V nom./13.8V nom.)	(Hz)
-30	5.0/13.8	119.7
-20	5.0/13.8	119.7
-10	5.0/13.8	118.9
0	5.0/13.8	120.7
10	5.0/13.8	120.4
20	5.0/13.8	120.0
30	5.0/13.8	121.6
40	5.0/13.8	120.3
50	5.0/13.8	119.1

Temperature Frequency Stability




EXHIBIT 10-3: VOLTAGE FREQUENCY STABILITY - §2.1055; CDMA (800)

Voltage	Temperature	Freq. Error
(5V nom./13.8V nom.)	(°C)	(Hz)
4.5/11.0	25	85.8
4.6/11.6	25	57.0
4.7/12.1	25	18.6
4.8/12.7	25	27.4
4.9/13.2	25	-42.0
5.0/13.8	25	17.3
5.1/14.3	25	-32.7
5.2/14.9	25	-26.7
5.3/15.5	25	30.8
5.4/16.0	25	41.6
5.5/16.6	25	-4.7

Voltage Frequency Stability

Voltage Frequency Stability

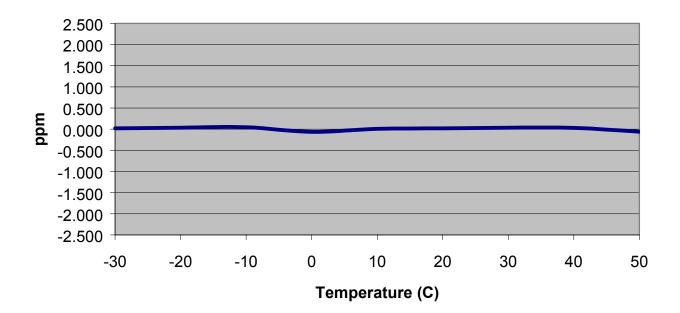
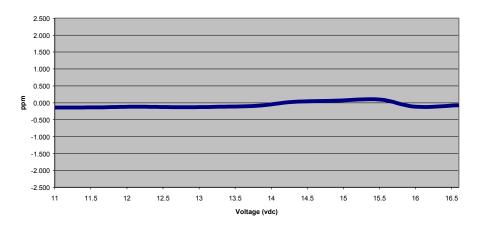
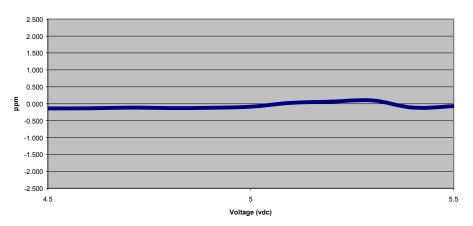


EXHIBIT 10-4: TEMPERATURE FREQUENCY STABILITY - §2.1055; CDMA (800)

(°C)	(5V nom./13.8V nom.)	(Hz)
-30	5.0/13.8	15.2
-20	5.0/13.8	27.5
-10	5.0/13.8	37.8
0	5.0/13.8	-53.7
10	5.0/13.8	6.4
20	5.0/13.8	17.2
30	5.0/13.8	28.0
40	5.0/13.8	26.0
50	5.0/13.8	-50.1

Temperature Frequency Stability




EXHIBIT 10-5: VOLTAGE FREQUENCY STABILITY - §2.1055; CDMA (1900)

Voltage	Temperature	Freq. Error
(5V nom./13.8V nom.)	(°C)	(Hz)
4.5/11.0	25	-117.7
4.6/11.6	25	-112.7
4.7/12.1	25	-95.0
4.8/12.7	25	-109.4
4.9/13.2	25	-100.1
5.0/13.8	25	-71.3
5.1/14.3	25	21.7
5.2/14.9	25	54.3
5.3/15.5	25	80.0
5.4/16.0	25	-97.0
5.5/16.6	25	-61.8

Voltage Frequency Stability

Voltage Frequency Stability

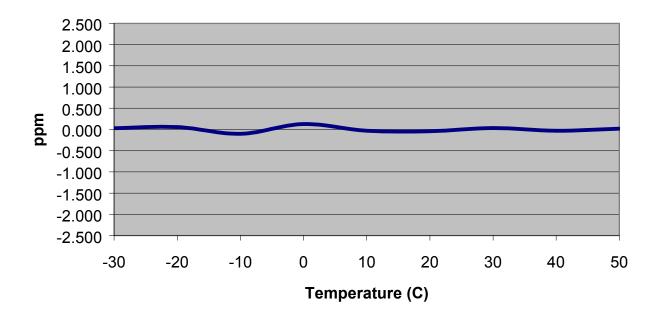


EXHIBIT 10-6: TEMPERATURE FREQUENCY STABILITY - §2.1055; CDMA (1900)

(°C)	(5V nom./13.8V nom.)	(Hz)
-30	5.0/13.8	26.6
-20	5.0/13.8	48.5
-10	5.0/13.8	-85.1
0	5.0/13.8	107.2
10	5.0/13.8	-25.4
20	5.0/13.8	-35.3
30	5.0/13.8	28.4
40	5.0/13.8	-23.8
50	5.0/13.8	16.5

Temperature Frequency Stability

11 CONCLUSION

The data in this measurement report shows that the Sony Ericsson Mobile Communications (USA, Inc.), CM-42 FCC ID: AXATR-423-A2 complies with all the requirements of Parts 2 and 22.901 of the FCC Rules and Industry Canada RSS-129.