E

SAR Test Report: A1228ds

Date of test: February 14, 2000

Laboratory: Electromagnetic Near Field and Radio Frequency Dosimetry Laboratory

Ericsson, Inc.

7001 Development Drive, P.O. Box 13969, Research Triangle Park, NC, 27709, USA

Test Responsible: Mark Douglas, Ph.D.

Senior Staff Engineer, Antenna Development Group

mark.douglas@ericsson.com

(919) 472-6334

Statement of Compliance

Ericsson, Inc. declares under its sole responsibility that the that the product

Ericsson A1228ds

to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(none)

© Ericsson, Inc. 2000

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Ericsson encourages all feedback, both positive and negative, on this test report.

ERIC330N >			REPORT			2 (13)
	Prepared (also subject responsible if other)		No.	00/050		
	RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:03	28/REP		
	Approved	Checked	Date	Rev	File	
	EUS/VR/X Mark Douglas	MGD	2000-02-15	В	S:\Mark\A1228ds.doc	

Table of Contents

1. Introduction	0
 2. Device Under Test 2.1 Antenna description 2.2 Device description 	0 0 0
3. Test equipment3.1 Dosimetric system3.2 Additional equipment	0 0 0
4. Electrical parameters of the tissue simulating liquid	0
5. System accuracy verification	0
6. Test results	0
References	0
Appendix 1: SAR distribution comparison for system accuracy verification	0
Appendix 2: SAR distribution plots	0
Appendix 3: Photographs of the device under test	0
Appendix 4: Position of device on Generic Twin Phantom	0
Appendix 5: Probe calibration parameters for ET3DV5 SN:1337	0

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:032	28/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 2000-02-15	Rev B	File S:\Mark\A1228ds.doc

1. Introduction

In this test report, compliance of the Ericsson A1228ds portable telephone with RF safety guidelines is demonstrated (applicable RF safety guidelines are given in [1]). The device was tested in accordance with the latest available test guidelines [1]. Detailed procedures of the test are described in the *Ericsson SAR Measurement Specification* [2].

2. Device Under Test

2.1 Antenna description

Type	Fixed stub			
Location	Left side			
Dimensions	length	30 mm		
	width at base	11 mm		
Configuration	Helix			

2.2 Device description

Device model	A1228ds	
Serial number	UA201641LR	
Mode	800 AMPS	800 TDMA
Multiple Access Scheme	FDMA	TDMA
Maximum Output Power Setting ¹	26 dBm	26 dBm
Factory Tolerance in Power Setting	± 0.25	± 0.25
Maximum Peak Output Power ²	26.25 dBm	26.25 dBm
Duty Cycle	1	1/3
Transmitting Frequency Range	824 – 849 MHz	824 – 849 MHz
Prototype or Production Unit ³	Prototype	

3. Test equipment

3.1 Dosimetric system

SAR measurements were made using the DASY3 professional system (software version 3.1c), manufactured by Schmid & Partner Engineering AG and installed Febuary, 1998. The total SAR assessment uncertainty (K=1) of the system is $\pm 16\%$ and includes a +15% offset (overestimation). The extended uncertainty (K=2) is $\pm 32\%$ with a +15% offset. This results in a total uncertainty range of -1% to +31% for K=1, or -17% to +47% for K=2. The equipment list is given below.

<u>Description</u>	Serial Number	Due Date
DASY3 DAE V1	345	10/00
E-field probe ETDV5	1337	3/00
Dipole Validation Kit, D900V2	049	12/00

¹ This is the conducted power measured at the antenna port when the device is set to its highest power setting. It is measured at the middle of the transmit frequency band. Note that the output power may be different at other frequencies.

² This equals the maximum output power setting plus the factory tolerance.

³ It shall be understood that a statement of compliance for a prototype unit also applies to production units [3].

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:03	28/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 2000-02-15	Rev B	File S:\Mark\A1228ds.doc

3.2 Additional equipment

<u>Description</u>	Serial Number	Due Date
Signal Generator HP8648C	3537A01598	9/00
Dielectric probe kit HP 85070B	US33020390	2/00
Network analyzer HP 8752C	3410A03105	7/00
Power meter HP 437B	3125U16190	5/00
Power sensor HP 8482H	2704A06235	5/00
Radio communications analyzer Anritsu	MB16186	10/00
MT8801B		

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the dielectric probe kit. These values are shown in the table below. The mass density, ρ , entered into the DASY3 program is also given. Recommended limits for maximum permittivity, minimum conductivity and maximum mass density are also shown [3]. It is seen that the measured parameters satisfy the recommendations, resulting in an overestimation of SAR.

f	Limits / Measured	Dielectric Paramete				
(MHz)		ϵ_r	σ (S/m)	$\rho (g/cm^3)$		
	Measured	41.6	0.91	1.00		
835	Recommended Limits [3]	46.1	0.74	1.03		
	Difference	-9.8%	+23.0%	-2.9%		

5. System accuracy verification

A system accuracy verification of the DASY3 was performed using the dipole validation kits listed in Section 3.1. The system verification test was conducted on the same day as the measurement of the DUT. The obtained results are displayed in the table below. It is seen that the system is operating within its specification, as the results are within $\pm 5\%$ of the reference values. Due to recent changes in the liquid dielectric parameters, reference values from the manufacturer were not available, so reference values were generated from careful measurements of the same liquid by our laboratory. The distributions of SAR compare well with those of the reference measurements (see Appendix 1).

f	Measured /	SAR (W/kg),	Die	lectric Para	meters	Temp.
(MHz)	Reference	1 gram	ϵ_r	σ (S/m)	ρ (g/cm ³)	(°C)
900	Measured	10.24	40.8	0.96	1.00	25
	Reference	10.13	40.0	0.95	1.00	23

6. Test results

The measured SAR values and conducted output powers are shown in Table 1. The device was tested on both the right-hand phantom (corresponding to the right side of the head) and the left-hand phantom. The SAR results shown are maximum SAR values averaged over 1 g of tissue.

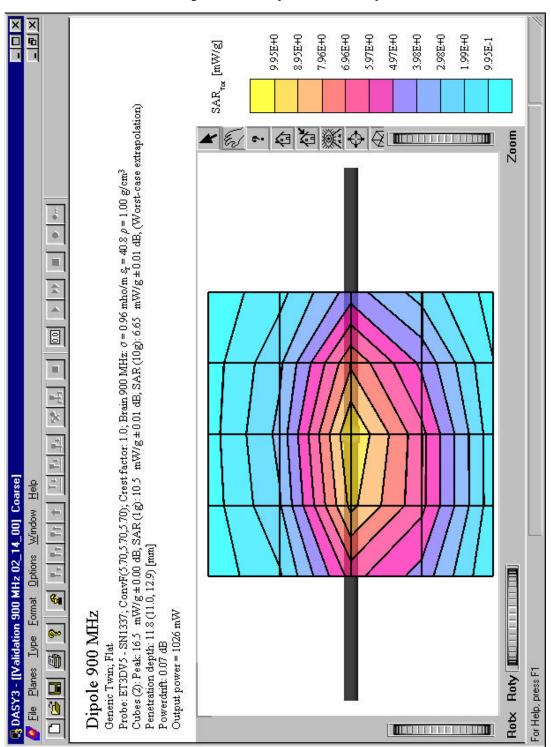
Test codes in the device were used to control the device during the SAR measurements. The phone was supplied with a fully-charged battery for the tests. The temperature of the test facility during the tests was 22.0 ± 1 °C, and the depth of the tissue simulating liquid was 15.3 cm.

				0 (10)
Prepared (also subject responsible if other)		No.		
RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:03	328/REP	
Approved	Checked	Date	Rev	File
EUS/VR/X Mark Douglas	MGD	2000-02-15	В	S:\Mark\A1228ds.doc

mode	f (MHz)	Output Power	SAR, 1g (W/kg)					
		(dBm)	(dBm) left-hand		righ	t-hand		
			measured	calculated to max. power ⁴	measured	calculated to max. power ⁴		
800	824	26.23	1.29	1.33	1.41	1.45		
AMPS	837	26.13	1.25	1.29	1.33	1.37		
	849	25.82	1.22	1.25	1.32	1.36		
800	824	25.83	0.398	0.512	0.433	0.558		
TDMA ⁵	837	25.15	0.374	0.482	0.396	0.510		
	849	25.15	0.364	0.469	0.395	0.509		

Table 1: SAR measurement results for the Ericsson A1228ds telephone at highest possible output power.

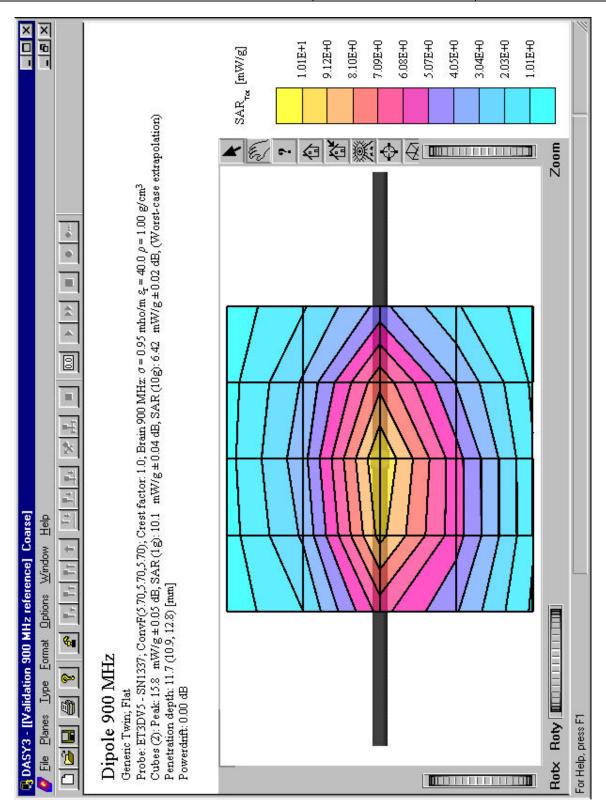
References


- [1] C. Törnevik, "Ericsson SAR measurement specification, part 1: Introduction and Purpose," Internal Document ERA/T/U-98:446, February, 1999.
- [2] C. Törnevik, M. Siegbahn, T. Persson, M. Douglas, and R. Plicanic, "Ericsson SAR measurement specification", Internal Document ERA/T/U-98:442, February 1999.
- [3] Federal Communications Commission, "Tissue Dielectric Properties," http://www.fcc.gov/fcc-bin/dielec.sh.

⁴ The maximum output power setting for each mode is measured at the middle of the transmit frequency band (see footnote 1). Therefore, the measured SAR is scaled to the maximum power by multiplying it by the ratio of the measured output power in the middle of the transmit band to the maximum output power setting. The same scaling factor applies across the band, regardless of what the output power is at the other frequencies.

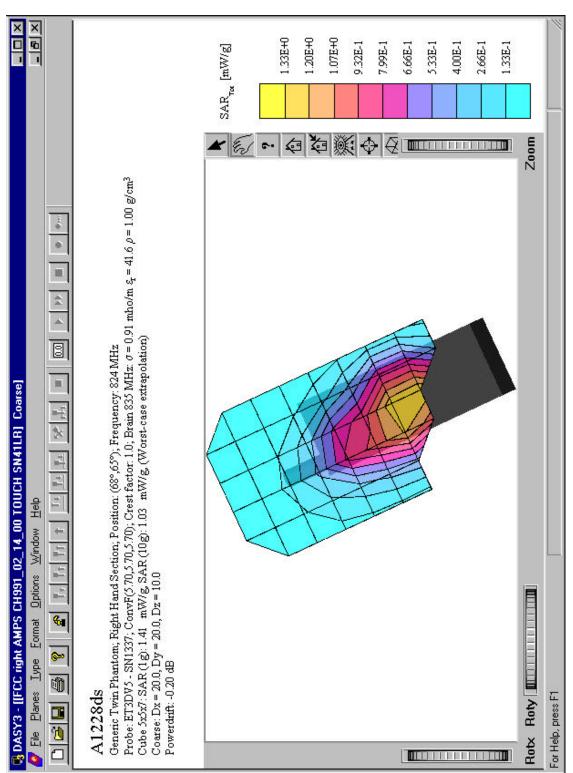
⁵ The output power in 800 MHz TDMA mode is lower than nominal for the device tested. Factory production units will have the power properly set within the allowable range as reported on the grant application.

Prepared (also subject responsible if other)		No.		1
RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:03	28/REP	I
Approved	Checked	Date	Rev	File
EUS/VR/X Mark Douglas	MGD	2000-02-15	В	S:\Mark\A1228ds.doc


Appendix 1: SAR distribution comparison for system accuracy verification

900 MHz SAR distribution of validation dipole antenna from system accuracy verification test.

				. ()
Prepared (also subject responsible if other)		No.		
DT/ELION/D/Maril Davida	040 470 0004	EUS/VR-00:03	20/DED	•
RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VK-00.03	20/KEF	
	Tai i i			I
Approved	Checked	Date	Rev	File
ELICA/D/V Mork Dougles	MCD	2000 02 45	D	S:\Mark\A1228ds.doc
EUS/VR/X Mark Douglas	MGD	2000-02-15	D	
_				



900 MHz SAR distribution of validation dipole antenna from reference measurement.

8 (13)

Prepared (also subject responsible if other)		No.		, ,
RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:03	28/REP	
Approved	Checked	Date	Rev	File
EUS/VR/X Mark Douglas	MGD	2000-02-15	В	S:\Mark\A1228ds.doc

Appendix 2: SAR distribution plots

Distribution of maximum SAR in 800 AMPS band.

				0 (10)
Prepared (also subject responsible if other)		No.		
RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:03	328/REP	
Approved	Checked	Date	Rev	File
EUS/VR/X Mark Douglas	MGD	2000-02-15	В	S:\Mark\A1228ds.doc

ERICSSON **#**

Distribution of maximum SAR in 800 TDMA band.

Confidential	
REPORT	

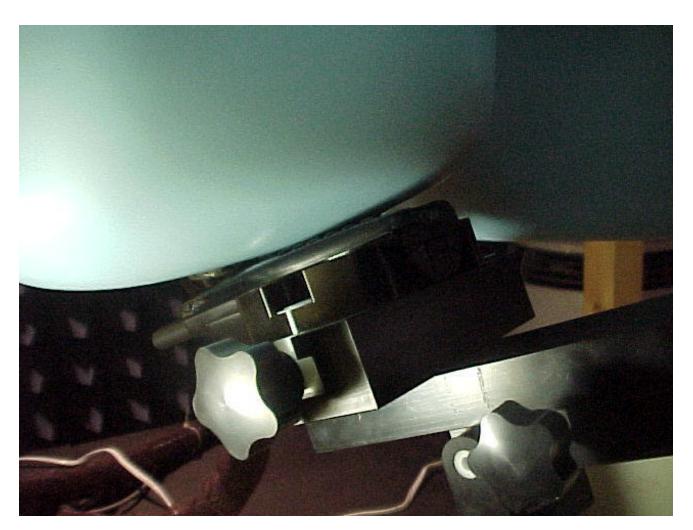
ERICSSON #	Confidential REPORT
Propagad (also subject responsible if other)	No

ERIC330N >	REPORT			10 (13)	
Prepared (also subject responsible if other)		No.			
RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:03	328/REP		
Approved	Checked	Date	Rev	File	
EUS/VR/X Mark Douglas	MGD	2000-02-15	В	S:\Mark\A1228ds.doc	

Appendix 3: Photographs of the device under test

Front view of device.

11 (13)


Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:03	28/REP	l
Approved	Checked	Date	Rev	File
EUS/VR/X Mark Douglas	MGD	2000-02-15	В	S:\Mark\A1228ds.doc

Side view of device.

Appendix 4: Position of device on Generic Twin Phantom

ORT 13 (13)

	Prepared (also subject responsible if other)		No.		
RT/EUS/VR/X Mark Douglas 919-472-6334		EUS/VR-00:0328/REP			
	Approved	Checked	Date	Rev	File
	EUS/VR/X Mark Douglas	MGD	2000-02-15	В	S:\Mark\A1228ds.doc

Appendix 5: Probe calibration parameters for ET3DV5 SN:1337

ET3DV SN:1337

DASY3 - Parameters of Probe: ET3DV SN:1337

Sensitivity in Free Space

NormX	2.32	$\mu V/(V/m)^2$
NormY	2.09	μ V/(V/m) ²
NormZ	2.16	$\mu V/(V/m)^2$

Diode Compression

DCP X	98	mV
DCP Y	98	mV
DCP Z	98	mV

Sensitivity in Tissue Simulating Liquid

450 MHz	ConvF X	6.0	extrapolated	ε _r =	48 ± 5%
	ConvF Y	6.0	extrapolated	σ=	0.50 ± 10% mho/m
	ConvF Z	6.0	extrapolated	(brain tissu	e simulating liquid)
900 MHz	ConvF X	5.7	± 10%	ε _r =	42.5 ± 5%
	ConvF Y	5.7	± 10%	σ=	0.86 ± 10% mho/m
	ConvF Z	5.7	± 10%	(brain tissu	e simulating liquid)
1500 MHz	ConvF X	5.3	interpolated	ε _r =	41 ± 5%
	ConvF Y	5.3	interpolated	σ=	1.32 ± 10% mho/m
	ConvF Z	5.3	interpolated	(brain tissu	e simulating liquid)
1800 MHz	ConvF X	5.0	± 10%	ε _r =	41 ± 5%
	ConvF Y	5.0	± 10%	σ=	1.69 ± 10% mho/m
	ConvF Z	5.0	± 10%	(brain tissu	e simulating liquid)

Sensor Offset

Probe Tip to Sensor Center	2.7	mm
Surface to Probe Tip	1.9 ± 0.2	mm