
element

Multi-Tech Systems, Inc.

Antenna PCTEL PN MFB9155NF

Antenna Pattern Measurements

Report: MLTI0281, Issue Date: February 23, 2023

Approved by:

Eric Brandon, Department Manager

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS – Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

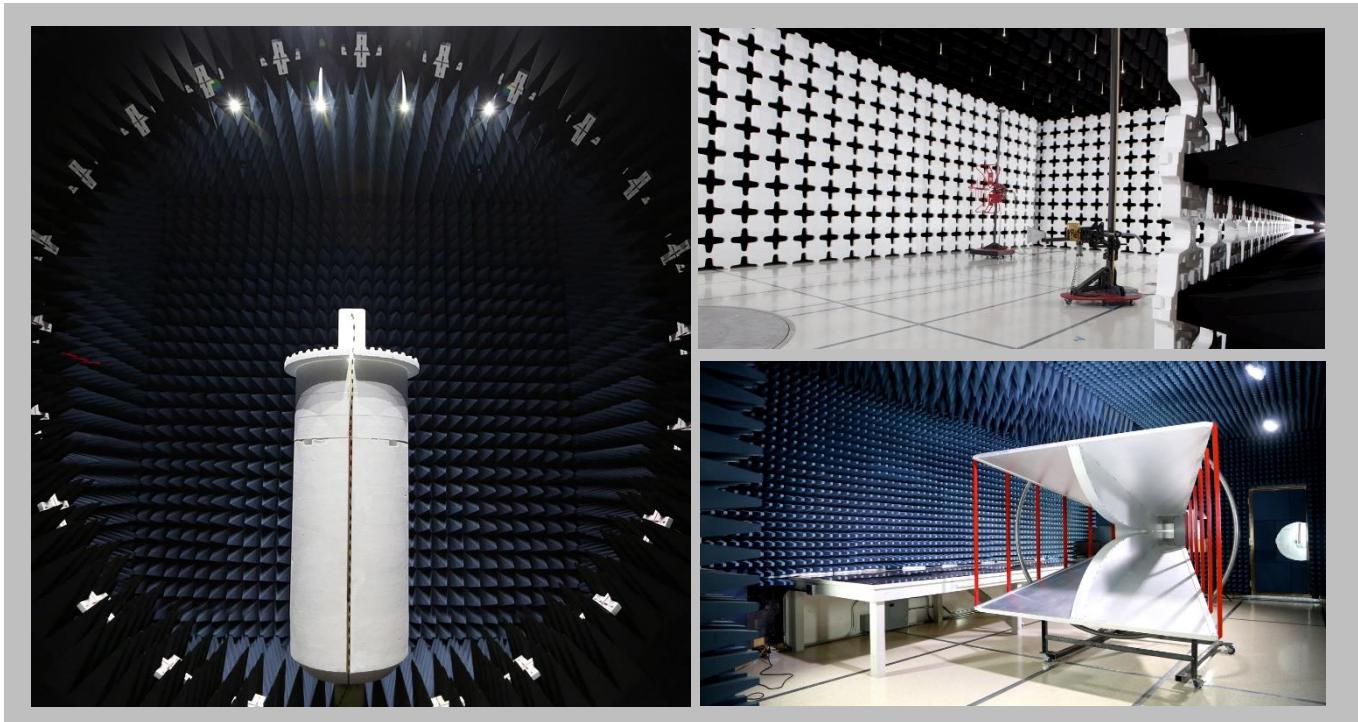
SCOPE

For details on the Scopes of our Accreditations, please visit:

[California](#)

[Minnesota](#)

[Oregon](#)


[Texas](#)

[Washington](#)

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612) 638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120th Ave NE Bothell, WA 98011 (425) 984-6600
A2LA				
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06
Innovation, Science and Economic Development Canada				
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1
BSMI				
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
VCCI				
A-0029	A-0109	A-0108	A-0201	A-0110
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA				
US0158	US0175	US0017	US0191	US0157

PRODUCT DESCRIPTION

Client and Equipment under Test (EUT) Information

Company Name:	Multi-Tech Systems, Inc.
Address:	2205 Woodale Drive
City, State, Zip:	Saint Paul, MN 55112
Test Requested By:	Tim Gunn
EUT:	Antenna PCTEL PN MFB9155NF
First Date of Test:	November 18, 2022
Last Date of Test:	November 18, 2022
Receipt Date of Samples:	November 18, 2022
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The mCard™ gateway accessory cards provide the flexibility needed to manage a wide range of different wired and wireless interfaces and associated communication protocols required to connect sensors, appliances, and assets to the Conduit® programmable gateway.

Testing Objective:

To obtain 3D antenna pattern measurements and calculated antenna performance values

EUT Photo:

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2022-11-18	Active 3D Antenna Pattern Measurements	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

PASSIVE 3D ANTENNA PATTERN MEASUREMENTS

OTA 2018.01.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Chamber - OTA	ETS Lindgren	AMS-8923-195	OTA	4/19/2021	36 mo
Network Analyzer	Keysight Technologies	AGIL-E5071C-PKG 10	R329	3/22/2022	18 mo

TEST DESCRIPTION

Using the modes of operation and configurations noted within this report, a radiated pattern measurement test was performed. The frequency ranges investigated (scanned), are also noted in this report.

The EUT was placed on a low dielectric constant support structure (Phi Axis Positioner) in the 3D center of the measurement zone using a laser alignment system. The antenna port of the EUT is connected to an RF feed cable which is connected to a Vector Network Analyzer (VNA) at its opposite end.

The test begins with a measurement path configured (via ETS-Lindgren EMQuest Data Acquisition and Analysis Software) such that an electrical path is present from the Theta polarization element of the -165° detector antenna, to port 2 of the VNA. The VNA drives the EUT through the desired frequency range at the desired IFBW and an insertion loss measurement is obtained. The measurement path is then reconfigured (again via EMQuest) such that an electrical path is present from the Phi polarization element of the -165° detector antenna, to port 2 of the VNA. The VNA drives the EUT through the desired frequency range at the desired IFBW and an insertion loss measurement is obtained. This process is repeated at each of the 23 detector antennas in turn. This process is repeated for every rotation of the Phi Axis Positioner up to 180° - Phi Axis Resolution. When this process is complete, EMQuest applies factors from a Range Calibration and Normalization to produce a final data set with 1D/2D/3D patterns and tabular values such as antenna efficiency, Equivalent Isotropic Radiated Power (EIRP), Total Radiated Power (TRP), etc.

A measurement uncertainty estimation has been performed for this testing. When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

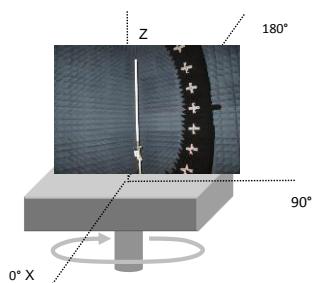
Procedures for the Range Calibration and Normalization can be found in Element Materials Technology document: WP Antenna Pattern Measurements (3D)

PASSIVE 3D ANTENNA PATTERN MEASUREMENTS

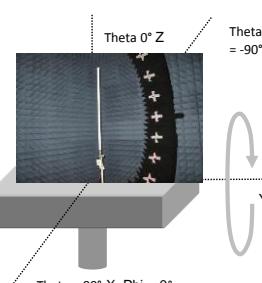
OTA 2018.01.04

EUT:	Antenna PCTEL PN MFB9155NF
Serial Number:	None
Customer:	Multi-Tech Systems, Inc.
Attendees:	Brent Nielsen
Customer Project:	None
Tested By:	Christopher Heintzelman
Test Run Description:	Passive_Run1

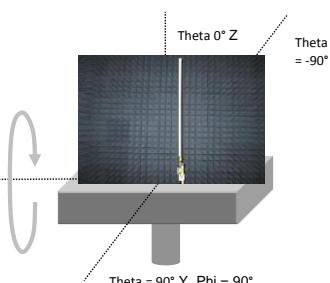
Work Order:	MLTI0281
Date:	11/18/2022
Temperature:	20.5 °C
Relative Humidity:	23.3% RH
Bar. Pressure:	1023 mbar
Job Site:	MN10

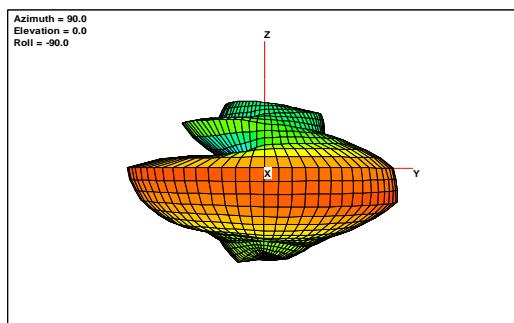

COMMENTS

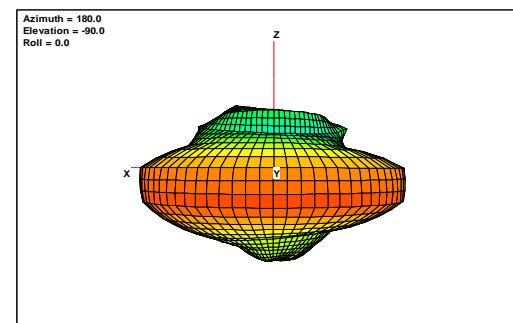
None


3D PATTERN DATA

Max Gain (dBi)	4.43	860	861	862	863	864	865	866	867	868	869	870
Frequency (MHz)	860	861	862	863	864	865	866	867	868	869	870	
Ant. Port Input Pwr. (dBm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tot. Rad. Pwr. (dBm)	-1.44	-1.43	-1.46	-1.48	-1.46	-1.44	-1.45	-1.48	-1.51	-1.49	-1.48	
Peak EIRP (dBm)	4.27	4.32	4.34	4.33	4.33	4.36	4.39	4.39	4.37	4.38	4.43	
Directivity (dBi)	5.71	5.76	5.79	5.80	5.79	5.80	5.84	5.88	5.88	5.87	5.91	
Efficiency (%)	-1.44	-1.43	-1.46	-1.48	-1.46	-1.44	-1.45	-1.48	-1.51	-1.49	-1.48	
Efficiency (%)	71.77	71.89	71.51	71.20	71.42	71.77	71.69	71.09	70.69	70.95	71.17	
Gain (dBi)	4.27	4.32	4.34	4.33	4.33	4.36	4.39	4.39	4.37	4.38	4.43	
Average Gain (dB)	-1.44	-1.43	-1.46	-1.48	-1.46	-1.44	-1.45	-1.48	-1.51	-1.49	-1.48	
E-Plane 3 dB BW (°)	22.00	22.00	21.00	22.00	22.00	22.00	22.00	22.00	22.00	23.00	23.00	
Frequency (MHz)	871	900	902	904	906	908	910	912	914	916	918	
Ant. Port Input Pwr. (dBm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Tot. Rad. Pwr. (dBm)	-1.49	-1.32	-1.27	-1.19	-1.13	-1.03	-1.05	-1.04	-1.07	-1.07	-1.10	
Peak EIRP (dBm)	4.47	4.93	4.93	5.01	5.03	5.07	5.03	4.98	4.99	4.91	4.86	
Directivity (dBi)	5.97	6.25	6.19	6.20	6.16	6.10	6.09	6.02	6.06	5.98	5.96	
Efficiency (dB)	-1.49	-1.32	-1.27	-1.19	-1.13	-1.03	-1.05	-1.04	-1.07	-1.07	-1.10	
Efficiency (%)	70.89	73.76	74.73	75.96	77.08	78.83	78.43	78.68	78.25	78.18	77.55	
Gain (dBi)	4.47	4.93	4.93	5.01	5.03	5.07	5.03	4.98	4.99	4.91	4.86	
Average Gain (dB)	-1.49	-1.32	-1.27	-1.19	-1.13	-1.03	-1.05	-1.04	-1.07	-1.07	-1.10	
E-Plane 3 dB BW (°)	22.00	24.00	25.00	25.00	26.00	27.00	27.00	27.00	28.00	29.00	30.00	
Frequency (MHz)	920	922	924	926	928	930						
Ant. Port Input Pwr. (dBm)	0.00	0.00	0.00	0.00	0.00	0.00						
Tot. Rad. Pwr. (dBm)	-1.22	-1.31	-1.47	-1.56	-1.72	-1.89						
Peak EIRP (dBm)	4.84	4.80	4.71	4.69	4.59	4.51						
Directivity (dBi)	6.06	6.11	6.19	6.25	6.31	6.40						
Efficiency (dB)	-1.22	-1.31	-1.47	-1.56	-1.72	-1.89						
Efficiency (%)	75.59	73.92	71.23	69.85	67.35	64.72						
Gain (dBi)	4.84	4.80	4.71	4.69	4.59	4.51						
Average Gain (dB)	-1.22	-1.31	-1.47	-1.56	-1.72	-1.89						
E-Plane 3 dB BW (°)	26.00	25.00	24.00	23.00	23.00	22.00						


Azimuth Cut (Theta Axis = 90°)


Elevation Cut (Phi Axis = 0°)


Elevation Cut (Phi Axis = 90°)

Total Power - 918 MHz

Total Power - 918 MHz

End of Test Report