

# **NORTHWEST EMC**

**Multi-Tech Systems, Inc.**

**MTDOT-915**

**FCC 15.247:2016**

**902 - 928 MHz Band Radio**

**Report # MLTI0052**



NVLAP Lab Code: 200881-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

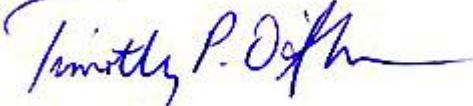
# CERTIFICATE OF TEST

Last Date of Test: April 21, 2016  
Multi-Tech Systems, Inc.  
Model: MTDOT-915

## Radio Equipment Testing

### Standards

| Specification   | Method                       |
|-----------------|------------------------------|
| FCC 15.247:2016 | ANSI C63.10:2013, KDB 453039 |


### Results

| Method Clause | Test Description                    | Applied | Results | Comments                                                                            |
|---------------|-------------------------------------|---------|---------|-------------------------------------------------------------------------------------|
| 6.2           | Powerline Conducted Emissions       | No      | N/A     | See NWEMC Report # MLTI0045 used for original certification. FCC ID: AU792U13A16857 |
| 6.5, 6.6      | Spurious Radiated Emissions         | No      | N/A     | See NWEMC Report # MLTI0045 used for original certification. FCC ID: AU792U13A16857 |
| 7.5           | Duty Cycle                          | Yes     | Pass    |                                                                                     |
| 7.8.2         | Carrier Frequency Separation        | Yes     | Pass    |                                                                                     |
| 7.8.3         | Number of Hopping Frequencies       | Yes     | Pass    |                                                                                     |
| 7.8.4         | Dwell Time                          | Yes     | Pass    |                                                                                     |
| 7.8.5         | Output Power                        | Yes     | Pass    |                                                                                     |
| 7.8.6         | Band Edge Compliance                | No      | N/A     | See NWEMC Report # MLTI0045 used for original certification. FCC ID: AU792U13A16857 |
| 7.8.6         | Band Edge Compliance - Hopping Mode | Yes     | Pass    |                                                                                     |
| 7.8.7         | Occupied Bandwidth                  | No      | N/A     | See NWEMC Report # MLTI0045 used for original certification. FCC ID: AU792U13A16857 |
| 7.8.8         | Spurious Conducted Emissions        | No      | N/A     | See NWEMC Report # MLTI0045 used for original certification. FCC ID: AU792U13A16857 |
| 11.10.2       | Power Spectral Density              | Yes     | Pass    |                                                                                     |

### Deviations From Test Standards

None

### Approved By:



Tim O'Shea, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

# REVISION HISTORY

| Revision Number | Description | Date | Page Number |
|-----------------|-------------|------|-------------|
| 00              | None        |      |             |

# ACCREDITATIONS AND AUTHORIZATIONS

## United States

**FCC** - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

**A2LA** - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

**NVLAP** - Each laboratory is accredited by NVLAP to ISO 17025

## Canada

**IC** - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

## European Union

**European Commission** – Validated by the European Commission as a Notified Body under the R&TTE Directive.

## Australia/New Zealand

**ACMA** - Recognized by ACMA as a CAB for the acceptance of test data.

## Korea

**MSIP / RRA** - Recognized by KCC's RRA as a CAB for the acceptance of test data.

## Japan

**VCCI** - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

## Taiwan

**BSMI** – Recognized by BSMI as a CAB for the acceptance of test data.

**NCC** - Recognized by NCC as a CAB for the acceptance of test data.

## Singapore

**IDA** – Recognized by IDA as a CAB for the acceptance of test data.

## Israel

**MOC** – Recognized by MOC as a CAB for the acceptance of test data.

## Hong Kong

**OFCA** – Recognized by OFCA as a CAB for the acceptance of test data.

## Vietnam

**MIC** – Recognized by MIC as a CAB for the acceptance of test data.

## SCOPE

For details on the Scopes of our Accreditations, please visit:

<http://www.nwemc.com/accreditations/>

<http://gsi.nist.gov/global/docs/cabs/designations.html>

# MEASUREMENT UNCERTAINTY

## Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

| <u>Test</u>                           | <u>+ MU</u> | <u>- MU</u> |
|---------------------------------------|-------------|-------------|
| Frequency Accuracy (Hz)               | 0.0007%     | -0.0007%    |
| Amplitude Accuracy (dB)               | 1.2 dB      | -1.2 dB     |
| Conducted Power (dB)                  | 0.3 dB      | -0.3 dB     |
| Radiated Power via Substitution (dB)  | 0.7 dB      | -0.7 dB     |
| Temperature (degrees C)               | 0.7°C       | -0.7°C      |
| Humidity (% RH)                       | 2.5% RH     | -2.5% RH    |
| Voltage (AC)                          | 1.0%        | -1.0%       |
| Voltage (DC)                          | 0.7%        | -0.7%       |
| Field Strength (dB)                   | 5.2 dB      | -5.2 dB     |
| AC Powerline Conducted Emissions (dB) | 2.4 dB      | -2.4 dB     |

# FACILITIES



| California                                                                      | Minnesota                                                                               | New York                                                                | Oregon                                                                           | Texas                                                                  | Washington                                                                           |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Labs OC01-13<br>41 Tesla<br>Irvine, CA 92618<br>(949) 861-8918                  | Labs MN01-08, MN10<br>9349 W Broadway Ave.<br>Brooklyn Park, MN 55445<br>(612)-638-5136 | Labs NY01-04<br>4939 Jordan Rd.<br>Elbridge, NY 13060<br>(315) 554-8214 | Labs EV01-12<br>22975 NW Evergreen Pkwy<br>Hillsboro, OR 97124<br>(503) 844-4066 | Labs TX01-09<br>3801 E Plano Pkwy<br>Plano, TX 75074<br>(469) 304-5255 | Labs NC01-05<br>19201 120 <sup>th</sup> Ave NE<br>Bothell, WA 98011<br>(425)984-6600 |
| <b>NVLAP</b>                                                                    |                                                                                         |                                                                         |                                                                                  |                                                                        |                                                                                      |
| NVLAP Lab Code: 200676-0                                                        | NVLAP Lab Code: 200881-0                                                                | NVLAP Lab Code: 200761-0                                                | NVLAP Lab Code: 200630-0                                                         | NVLAP Lab Code: 201049-0                                               | NVLAP Lab Code: 200629-0                                                             |
| <b>Industry Canada</b>                                                          |                                                                                         |                                                                         |                                                                                  |                                                                        |                                                                                      |
| 2834B-1, 2834B-3                                                                | 2834E-1                                                                                 | N/A                                                                     | 2834D-1, 2834D-2                                                                 | 2834G-1                                                                | 2834F-1                                                                              |
| <b>BSMI</b>                                                                     |                                                                                         |                                                                         |                                                                                  |                                                                        |                                                                                      |
| SL2-IN-E-1154R                                                                  | SL2-IN-E-1152R                                                                          | N/A                                                                     | SL2-IN-E-1017                                                                    | SL2-IN-E-1158R                                                         | SL2-IN-E-1153R                                                                       |
| <b>VCCI</b>                                                                     |                                                                                         |                                                                         |                                                                                  |                                                                        |                                                                                      |
| A-0029                                                                          | A-0109                                                                                  | N/A                                                                     | A-0108                                                                           | A-0201                                                                 | A-0110                                                                               |
| <b>Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA</b> |                                                                                         |                                                                         |                                                                                  |                                                                        |                                                                                      |
| US0158                                                                          | US0175                                                                                  | N/A                                                                     | US0017                                                                           | US0191                                                                 | US0157                                                                               |



# PRODUCT DESCRIPTION

## Client and Equipment Under Test (EUT) Information

|                                 |                        |
|---------------------------------|------------------------|
| <b>Company Name:</b>            | Multi-Tech Systems     |
| <b>Address:</b>                 | 2205 Woodale Drive     |
| <b>City, State, Zip:</b>        | Mounds View, MN, 55112 |
| <b>Test Requested By:</b>       | Mike Lynch             |
| <b>Model:</b>                   | MTDOT-915              |
| <b>First Date of Test:</b>      | April 21, 2016         |
| <b>Last Date of Test:</b>       | April 21, 2016         |
| <b>Receipt Date of Samples:</b> | April 11, 2016         |
| <b>Equipment Design Stage:</b>  | Production             |
| <b>Equipment Condition:</b>     | No Damage              |

## Information Provided by the Party Requesting the Test

### Functional Description of the EUT:

The MultiConnect® mDot™ is a secure, CE/FCC certified, ARM® mbed® programmable, low-power RF module, that provides long-range, low bit rate M2M data connectivity to sensors, industrial equipment and remote appliances.

### Testing Objective:

To demonstrate compliance of Class II Permissive Changes to FCC ID: AU792U13A16857.

# CONFIGURATIONS

## Configuration MLTI0052- 1

| <b>EUT</b>            |                          |                          |                      |  |
|-----------------------|--------------------------|--------------------------|----------------------|--|
| <b>Description</b>    | <b>Manufacturer</b>      | <b>Model/Part Number</b> | <b>Serial Number</b> |  |
| Wireless Module (EUT) | Multi-Tech Systems, Inc. | MTDOT-915                | 18349449             |  |

| <b>Peripherals in test setup boundary</b> |                          |                          |                      |  |
|-------------------------------------------|--------------------------|--------------------------|----------------------|--|
| <b>Description</b>                        | <b>Manufacturer</b>      | <b>Model/Part Number</b> | <b>Serial Number</b> |  |
| Development Board (EUT)                   | Multi-Tech Systems, Inc. | 83150                    | 0040                 |  |
| AC/DC Adapter                             | Enercell                 | Dual USB Port AC Adapter | None                 |  |

| <b>Remote Equipment Outside of Test Setup Boundary</b> |                     |                          |                              |  |
|--------------------------------------------------------|---------------------|--------------------------|------------------------------|--|
| <b>Description</b>                                     | <b>Manufacturer</b> | <b>Model/Part Number</b> | <b>Serial Number</b>         |  |
| Laptop (EUT)                                           | Dell                | Studio                   | Unknown                      |  |
| AC Adapter (Laptop)                                    | Dell                | DA90PE1-00               | CN-0WK890-48661-95C-D0MT-A03 |  |

| <b>Cables</b>           |               |                   |                |                         |                         |
|-------------------------|---------------|-------------------|----------------|-------------------------|-------------------------|
| <b>Cable Type</b>       | <b>Shield</b> | <b>Length (m)</b> | <b>Ferrite</b> | <b>Connection 1</b>     | <b>Connection 2</b>     |
| DC Cable (Laptop)       | No            | 1.8m              | Yes            | AC Adapter (Laptop)     | Laptop                  |
| AC Mains Cable (Laptop) | No            | 0.9m              | No             | AC Mains                | AC Adapter (Laptop)     |
| USB Power Cable         | Yes           | 0.5m              | No             | AC/DC Adapter           | Development Board (EUT) |
| USB to Serial Adapter   | No            | 1.5m              | Yes            | Serial Cable            | Laptop                  |
| Serial Cable            | Yes           | 1.9m              | No             | Development Board (EUT) | USB to Serial Adapter   |

# MODIFICATIONS

## Equipment Modifications

| Item | Date      | Test                              | Modification                         | Note                                                                | Disposition of EUT                                |
|------|-----------|-----------------------------------|--------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|
| 1    | 4/21/2016 | Output Power                      | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Northwest EMC following the test. |
| 2    | 4/21/2016 | Power Spectral Density            | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Northwest EMC following the test. |
| 3    | 4/21/2016 | Duty Cycle                        | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Northwest EMC following the test. |
| 4    | 4/21/2016 | Band Edge Compliance Hopping Mode | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Northwest EMC following the test. |
| 5    | 4/21/2016 | Number of Hopping Frequencies     | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Northwest EMC following the test. |
| 6    | 4/21/2016 | Carrier Frequency Separation      | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Northwest EMC following the test. |
| 7    | 4/21/2016 | Dwell Time                        | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | Scheduled testing was completed.                  |

# DUTY CYCLE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model           | ID  | Last Cal.  | Interval (mo) |
|------------------------------|--------------------|-----------------|-----|------------|---------------|
| Meter - Multimeter           | Fluke              | 117             | MLS | 1/20/2014  | 36            |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 2/26/2016  | 12            |
| Block - DC                   | Fairview Microwave | SD3379          | AMI | 9/18/2015  | 12            |
| Cable                        | ESM Cable Corp.    | TTBJ141 KMKM-72 | MNU | 9/18/2015  | 12            |
| Generator - Signal           | Agilent            | N5183A          | TIK | 10/17/2014 | 36            |
| Analyzer - Spectrum Analyzer | Agilent            | E4440A          | AAX | 3/24/2016  | 12            |

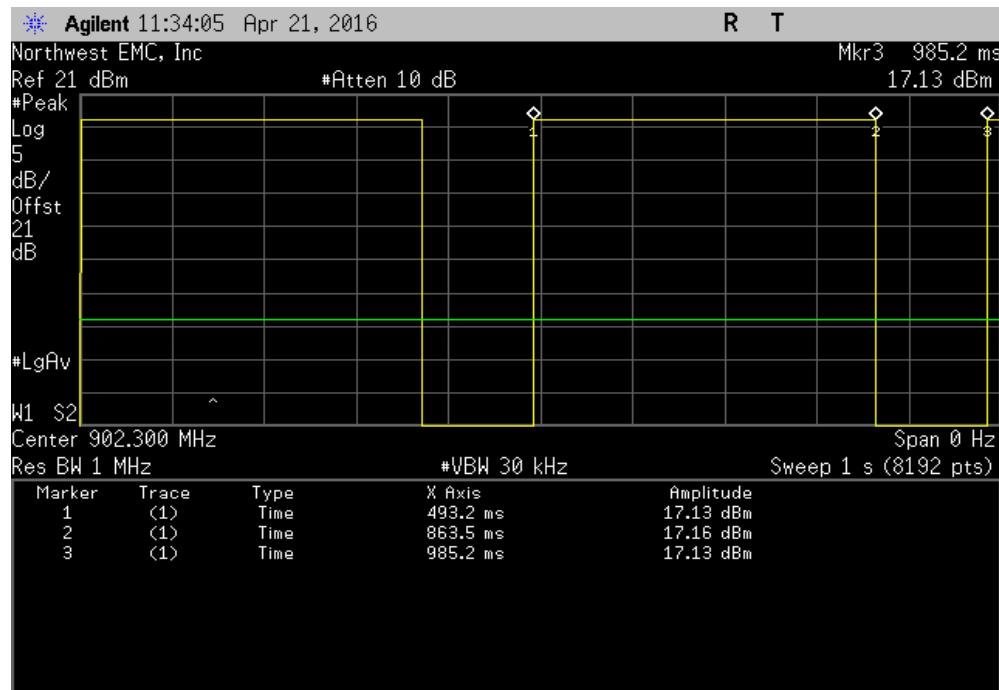
## TEST DESCRIPTION

The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

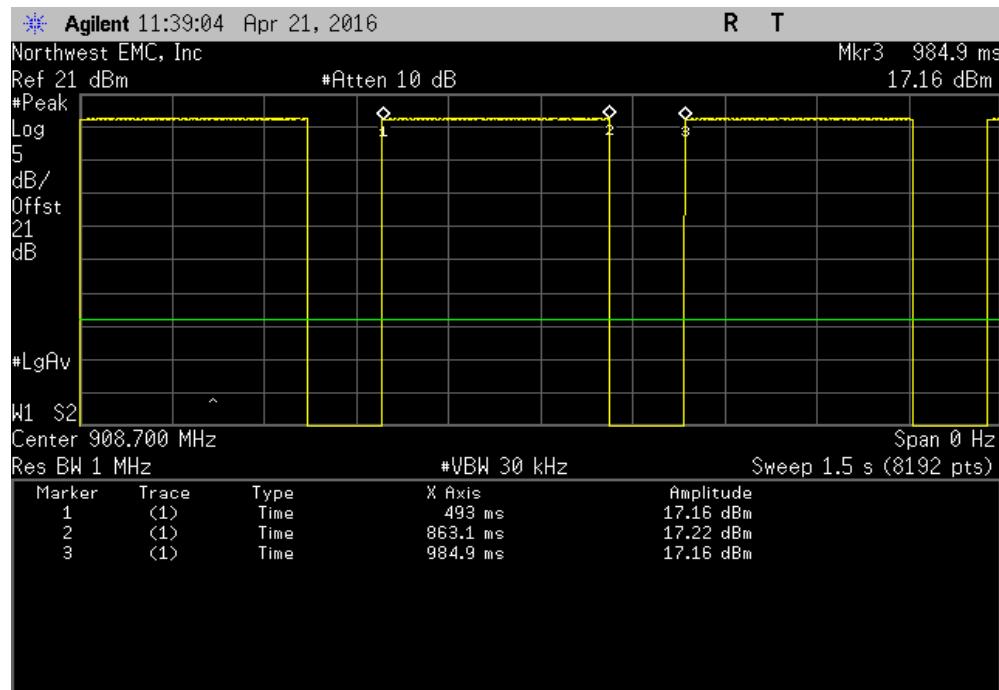

If the transmit duty cycle < 98 percent, burst gating may have been used during some of the other tests in this report to only take the measurement during the burst duration.

# DUTY CYCLE

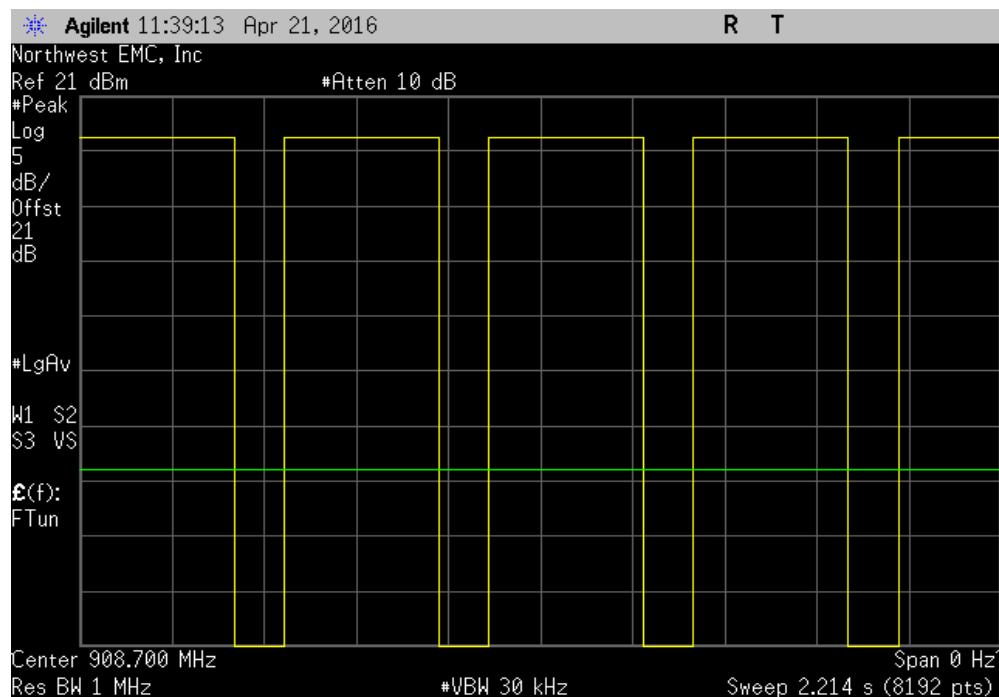
| EUT:                          | MTDOT-915          | Work Order:       | MLTI0052                                                                          |                  |           |           |         |
|-------------------------------|--------------------|-------------------|-----------------------------------------------------------------------------------|------------------|-----------|-----------|---------|
| Serial Number:                | 18349449           | Date:             | 04/21/16                                                                          |                  |           |           |         |
| Customer:                     | Multi-Tech Systems | Temperature:      | 22.6°C                                                                            |                  |           |           |         |
| Attendees:                    | Marcus Glass       | Humidity:         | 45%                                                                               |                  |           |           |         |
| Project:                      | None               | Barometric Pres.: | 980.4                                                                             |                  |           |           |         |
| Tested by:                    | Jared Ison         | Power:            | 5 VDC                                                                             |                  |           |           |         |
| TEST SPECIFICATIONS           |                    | Test Method       |                                                                                   |                  |           |           |         |
| FCC 15.247:2016               |                    | ANSI C63.10:2013  |                                                                                   |                  |           |           |         |
| COMMENTS                      |                    |                   |                                                                                   |                  |           |           |         |
| None                          |                    |                   |                                                                                   |                  |           |           |         |
| DEVIATIONS FROM TEST STANDARD |                    |                   |                                                                                   |                  |           |           |         |
| None                          |                    |                   |                                                                                   |                  |           |           |         |
| Configuration #               | 1                  | Signature         |  |                  |           |           |         |
|                               |                    | Pulse Width       | Period                                                                            | Number of Pulses | Value (%) | Limit (%) | Results |
| Low Channel, 902.3 MHz        |                    | 370.296 ms        | 491.953 ms                                                                        | 1                | 75.3      | N/A       | N/A     |
| Low Channel, 902.3 MHz        |                    | N/A               | N/A                                                                               | 5                | N/A       | N/A       | N/A     |
| Mid Channel, 908.7 MHz        |                    | 370.076 ms        | 491.878 ms                                                                        | 1                | 75.2      | N/A       | N/A     |
| Mid Channel, 908.7 MHz        |                    | N/A               | N/A                                                                               | 5                | N/A       | N/A       | N/A     |
| High Channel, 914.9 MHz       |                    | 369.691 ms        | 491.86 ms                                                                         | 1                | 75.2      | N/A       | N/A     |
| High Channel, 914.9 MHz       |                    | N/A               | N/A                                                                               | 5                | N/A       | N/A       | N/A     |

# DUTY CYCLE

| Low Channel, 902.3 MHz |            |                  |           |           |         |  |
|------------------------|------------|------------------|-----------|-----------|---------|--|
| Pulse Width            | Period     | Number of Pulses | Value (%) | Limit (%) | Results |  |
| 370.296 ms             | 491.953 ms | 1                | 75.3      | N/A       | N/A     |  |

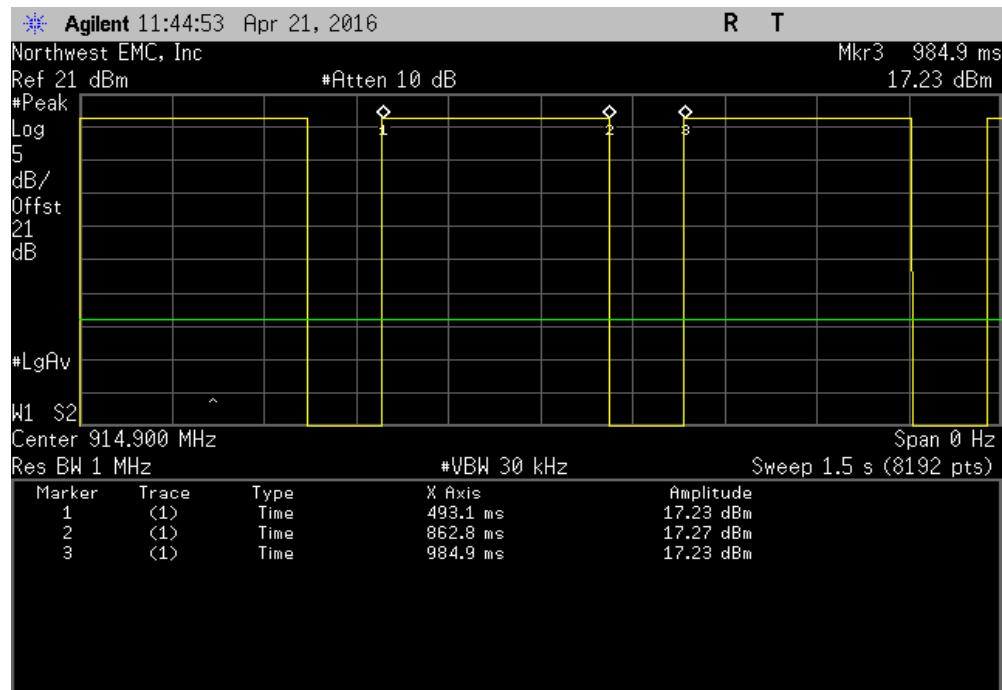



| Low Channel, 902.3 MHz |        |                  |           |           |         |     |
|------------------------|--------|------------------|-----------|-----------|---------|-----|
| Pulse Width            | Period | Number of Pulses | Value (%) | Limit (%) | Results |     |
| N/A                    | N/A    | 5                | N/A       | N/A       | N/A     | N/A |

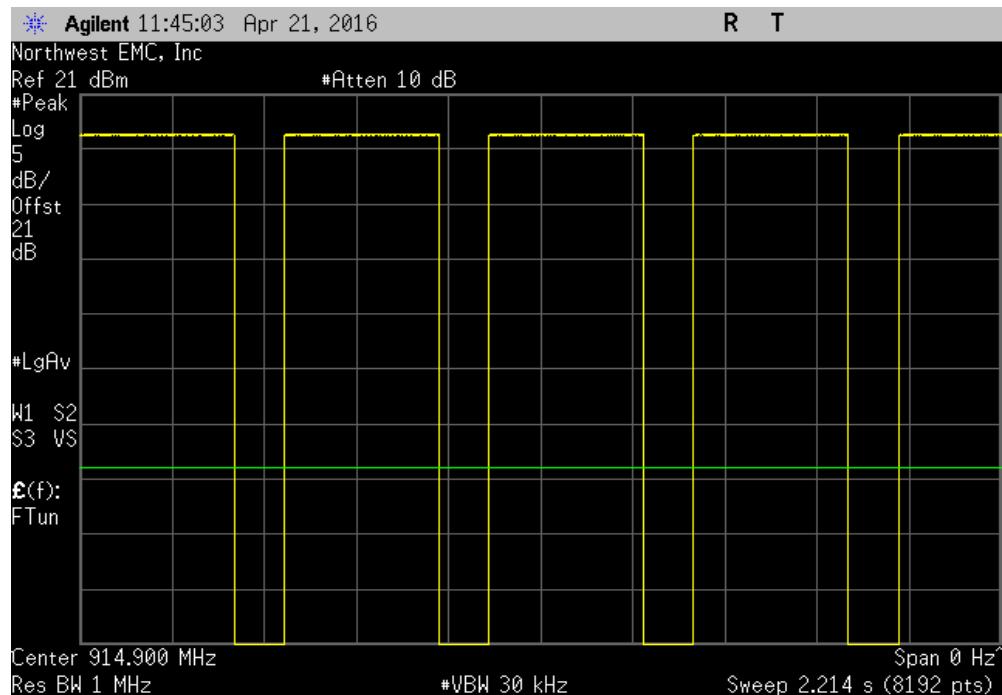



# DUTY CYCLE

| Mid Channel, 908.7 MHz |            |                  |           |           |         |  |
|------------------------|------------|------------------|-----------|-----------|---------|--|
| Pulse Width            | Period     | Number of Pulses | Value (%) | Limit (%) | Results |  |
| 370.076 ms             | 491.878 ms | 1                | 75.2      | N/A       | N/A     |  |




| Mid Channel, 908.7 MHz |        |                  |           |           |         |     |
|------------------------|--------|------------------|-----------|-----------|---------|-----|
| Pulse Width            | Period | Number of Pulses | Value (%) | Limit (%) | Results |     |
| N/A                    | N/A    | 5                | N/A       | N/A       | N/A     | N/A |




# DUTY CYCLE

| High Channel, 914.9 MHz |           |                  |           |           |         |  |
|-------------------------|-----------|------------------|-----------|-----------|---------|--|
| Pulse Width             | Period    | Number of Pulses | Value (%) | Limit (%) | Results |  |
| 369.691 ms              | 491.86 ms | 1                | 75.2      | N/A       | N/A     |  |



| High Channel, 914.9 MHz |        |                  |           |           |         |     |
|-------------------------|--------|------------------|-----------|-----------|---------|-----|
| Pulse Width             | Period | Number of Pulses | Value (%) | Limit (%) | Results |     |
| N/A                     | N/A    | 5                | N/A       | N/A       | N/A     | N/A |



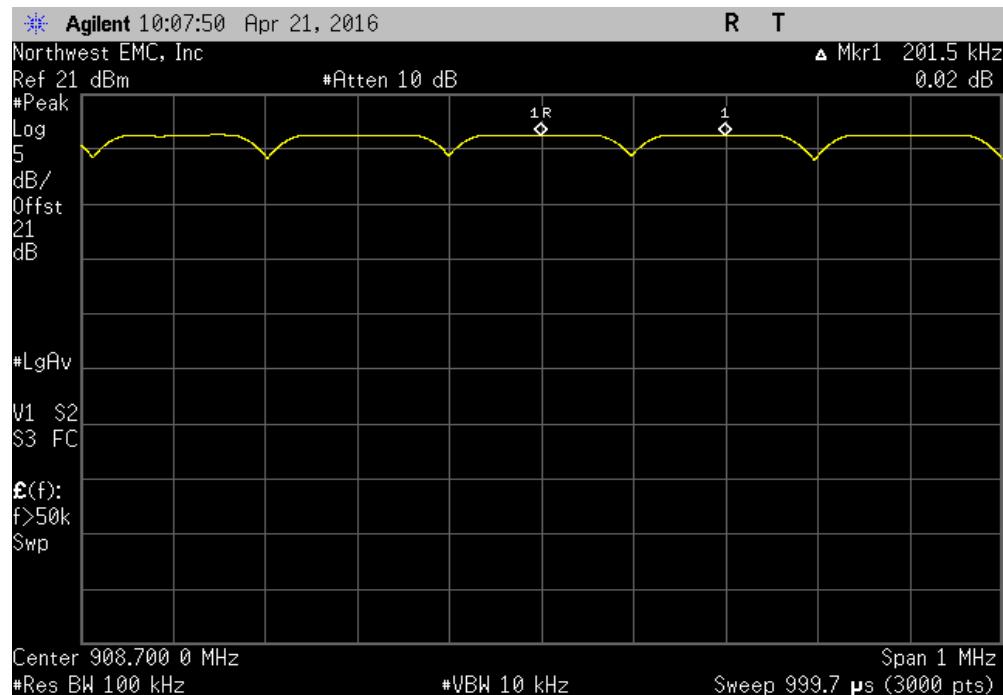
# CARRIER FREQUENCIES SEPARATION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model           | ID  | Last Cal.  | Interval (mo) |
|------------------------------|--------------------|-----------------|-----|------------|---------------|
| Meter - Multimeter           | Fluke              | 117             | MLS | 1/20/2014  | 36            |
| Generator - Signal           | Agilent            | N5183A          | TIK | 10/17/2014 | 36            |
| Cable                        | ESM Cable Corp.    | TTBJ141 KMKM-72 | MNU | 9/18/2015  | 12            |
| Block - DC                   | Fairview Microwave | SD3379          | AMI | 9/18/2015  | 12            |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 2/26/2016  | 12            |
| Block - DC                   | Fairview Microwave | SD3379          | AMI | 9/18/2015  | 12            |
| Analyzer - Spectrum Analyzer | Agilent            | E4440A          | AAX | 3/24/2016  | 12            |

## TEST DESCRIPTION


The channel carrier frequencies in the 902-928 MHz band must be separated by 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Or, if the output power is less than 125 mW, the channel separation can be 25 kHz or 2/3 of the 20dB bandwidth. The EUT was operated in pseudorandom hopping mode. The spectrum was scanned across two adjacent peaks. The separation between the peaks of these channels was measured.

# CARRIER FREQUENCIES SEPARATION

|                                                                                                        |                    |                   |                                                                                   |
|--------------------------------------------------------------------------------------------------------|--------------------|-------------------|-----------------------------------------------------------------------------------|
| EUT:                                                                                                   | MTDOT-915          | Work Order:       | MLTI0052                                                                          |
| Serial Number:                                                                                         | 18349449           | Date:             | 04/21/16                                                                          |
| Customer:                                                                                              | Multi-Tech Systems | Temperature:      | 22.6°C                                                                            |
| Attendees:                                                                                             | Marcus Glass       | Humidity:         | 45%                                                                               |
| Project:                                                                                               | None               | Barometric Pres.: | 980.4                                                                             |
| Tested by:                                                                                             | Jared Ison         | Job Site:         | MN08                                                                              |
| TEST SPECIFICATIONS                                                                                    |                    | Power:            | 5 VDC                                                                             |
| FCC 15.247:2016                                                                                        |                    | Test Method       | ANSI C63.10:2013                                                                  |
| COMMENTS                                                                                               |                    |                   |                                                                                   |
| Test command TXW=0, AT+Sendi=100,5555, was used in order to count the number channels in hopping mode. |                    |                   |                                                                                   |
| DEVIATIONS FROM TEST STANDARD                                                                          |                    |                   |                                                                                   |
| None                                                                                                   |                    |                   |                                                                                   |
| Configuration #                                                                                        | 1                  | Signature         |  |
|                                                                                                        |                    | Value             | Limit                                                                             |
|                                                                                                        |                    | 201.5 kHz         | (2) 138.2 kHz                                                                     |
|                                                                                                        |                    | Results           |                                                                                   |
|                                                                                                        |                    | Pass              |                                                                                   |
| Hopping Mode                                                                                           |                    |                   |                                                                                   |

# CARRIER FREQUENCIES SEPARATION

| Hopping Mode |  |  | Value     | Limit (≥) | Results |
|--------------|--|--|-----------|-----------|---------|
|              |  |  | 201.5 kHz | 138.2 kHz | Pass    |



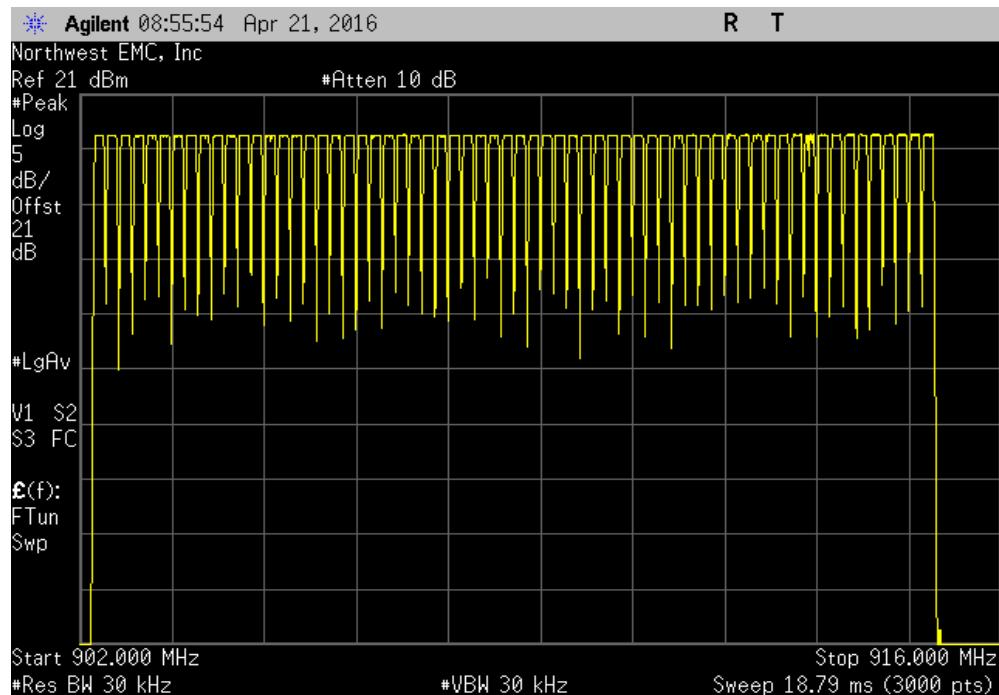
# NUMBER OF HOPPING FREQUENCIES

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model           | ID  | Last Cal.  | Interval (mo) |
|------------------------------|--------------------|-----------------|-----|------------|---------------|
| Meter - Multimeter           | Fluke              | 117             | MLS | 1/20/2014  | 36            |
| Generator - Signal           | Agilent            | N5183A          | TIK | 10/17/2014 | 36            |
| Block - DC                   | Fairview Microwave | SD3379          | AMI | 9/18/2015  | 12            |
| Cable                        | ESM Cable Corp.    | TTBJ141 KMKM-72 | MNU | 9/18/2015  | 12            |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 2/26/2016  | 12            |
| Analyzer - Spectrum Analyzer | Agilent            | E4440A          | AAX | 3/24/2016  | 12            |

## TEST DESCRIPTION


The number of hopping frequencies was measured across the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.

# NUMBER OF HOPPING FREQUENCIES

|                                                                                                        |                    |                    |                                                                                   |
|--------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------------------------------------------------------------------------------|
| EUT:                                                                                                   | MTDOT-915          | Work Order:        | MLTI0052                                                                          |
| Serial Number:                                                                                         | 18349449           | Date:              | 04/21/16                                                                          |
| Customer:                                                                                              | Multi-Tech Systems | Temperature:       | 22.6°C                                                                            |
| Attendees:                                                                                             | Marcus Glass       | Humidity:          | 45%                                                                               |
| Project:                                                                                               | None               | Barometric Pres.:  | 980.4                                                                             |
| Tested by:                                                                                             | Jared Ison         | Job Site:          | MN08                                                                              |
| TEST SPECIFICATIONS                                                                                    |                    | Test Method        |                                                                                   |
| FCC 15.247:2016                                                                                        |                    | ANSI C63.10:2013   |                                                                                   |
| COMMENTS                                                                                               |                    |                    |                                                                                   |
| Test command TXW=0, AT+Sendi=100,5555, was used in order to count the number channels in hopping mode. |                    |                    |                                                                                   |
| DEVIATIONS FROM TEST STANDARD                                                                          |                    |                    |                                                                                   |
| None                                                                                                   |                    |                    |                                                                                   |
| Configuration #                                                                                        | 1                  | Signature          |  |
|                                                                                                        |                    | Number of Channels | Limit                                                                             |
| Hopping Mode                                                                                           |                    | 64                 | 50                                                                                |
|                                                                                                        |                    | Results            | Pass                                                                              |

# NUMBER OF HOPPING FREQUENCIES

| Hopping Mode |  |  |  | Number of Channels | Limit | Results |
|--------------|--|--|--|--------------------|-------|---------|
|              |  |  |  | 64                 | 50    | Pass    |



# DWELL TIME

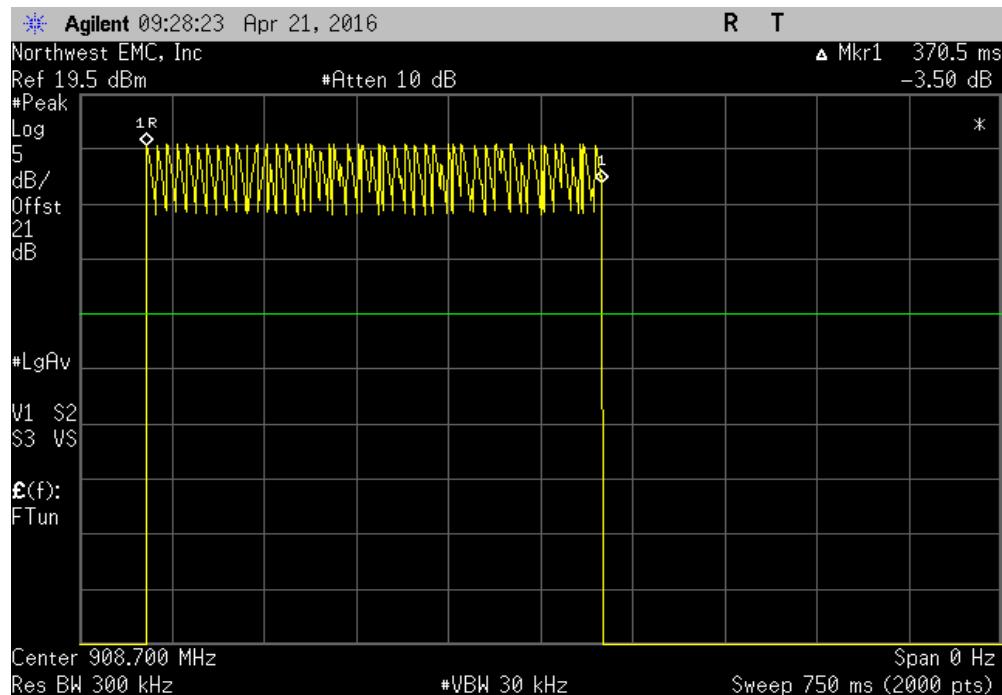
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

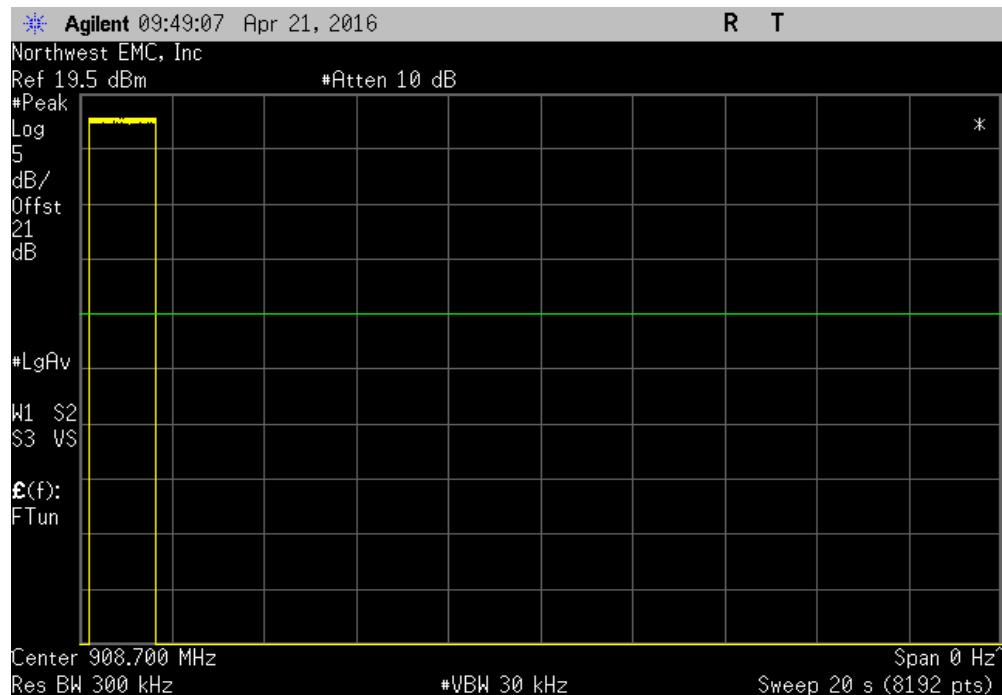
| Description                  | Manufacturer       | Model           | ID  | Last Cal.  | Interval (mo) |
|------------------------------|--------------------|-----------------|-----|------------|---------------|
| Meter - Multimeter           | Fluke              | 117             | MLS | 1/20/2014  | 36            |
| Generator - Signal           | Agilent            | N5183A          | TIK | 10/17/2014 | 36            |
| Block - DC                   | Fairview Microwave | SD3379          | AMI | 9/18/2015  | 12            |
| Cable                        | ESM Cable Corp.    | TTBJ141 KMKM-72 | MNU | 9/18/2015  | 12            |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 2/26/2016  | 12            |
| Analyzer - Spectrum Analyzer | Agilent            | E4440A          | AAX | 3/24/2016  | 12            |

## TEST DESCRIPTION

The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.


The dwell time limit is based on the Number of Hopping Channels \* 400 mS. For this device it would be 64 Channels \* 400mS = 25.6 Sec.

# DWELL TIME

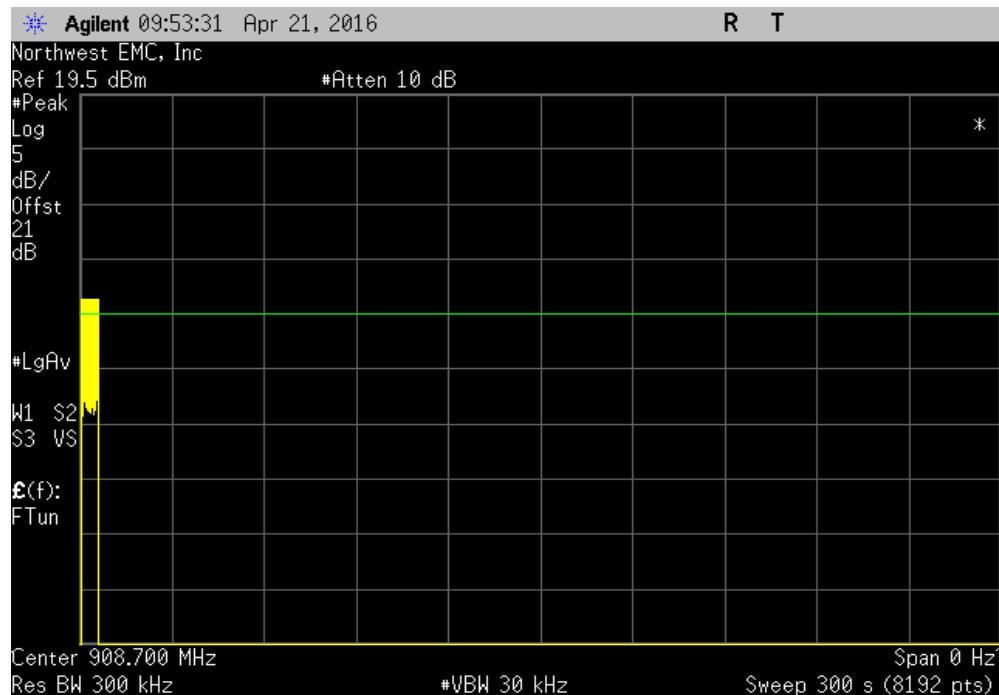

| EUT:                          | MTDOT-915          | Work Order:       | MLTI0052                                                                          |                       |                            |            |         |
|-------------------------------|--------------------|-------------------|-----------------------------------------------------------------------------------|-----------------------|----------------------------|------------|---------|
| Serial Number:                | 18349449           | Date:             | 04/21/16                                                                          |                       |                            |            |         |
| Customer:                     | Multi-Tech Systems | Temperature:      | 22.6°C                                                                            |                       |                            |            |         |
| Attendees:                    | Marcus Glass       | Humidity:         | 45%                                                                               |                       |                            |            |         |
| Project:                      | None               | Barometric Pres.: | 980.4                                                                             |                       |                            |            |         |
| Tested by:                    | Jared Ison         | Job Site:         | MN08                                                                              |                       |                            |            |         |
| TEST SPECIFICATIONS           |                    | Test Method       |                                                                                   |                       |                            |            |         |
| FCC 15.247:2016               |                    | ANSI C63.10:2013  |                                                                                   |                       |                            |            |         |
| COMMENTS                      |                    |                   |                                                                                   |                       |                            |            |         |
| EUT in hopping mode.          |                    |                   |                                                                                   |                       |                            |            |         |
| DEVIATIONS FROM TEST STANDARD |                    |                   |                                                                                   |                       |                            |            |         |
| None                          |                    |                   |                                                                                   |                       |                            |            |         |
| Configuration #               | 1                  | Signature         |  |                       |                            |            |         |
|                               |                    | Pulse Width (ms)  | Number of Pulses                                                                  | Average No. of Pulses | On Time (ms) During 25.6 s | Limit (ms) | Results |
| Hopping Mode                  |                    | 370.51            | N/A                                                                               | N/A                   | N/A                        | N/A        | N/A     |
| Hopping Mode                  |                    | N/A               | 1                                                                                 | N/A                   | N/A                        | N/A        | N/A     |
| Hopping Mode                  |                    | N/A               | 1                                                                                 | N/A                   | N/A                        | N/A        | N/A     |
| Hopping Mode                  |                    | N/A               | 1                                                                                 | N/A                   | N/A                        | N/A        | N/A     |
| Hopping Mode                  |                    | N/A               | 1                                                                                 | N/A                   | N/A                        | N/A        | N/A     |
| Hopping Mode                  |                    | 370.51            | N/A                                                                               | 1                     | 370.51                     | 400        | Pass    |

# DWELL TIME

| Hopping Mode     |                  |                       |                            |            |         |     |
|------------------|------------------|-----------------------|----------------------------|------------|---------|-----|
| Pulse Width (ms) | Number of Pulses | Average No. of Pulses | On Time (ms) During 25.6 s | Limit (ms) | Results |     |
| 370.51           | N/A              | N/A                   | N/A                        | N/A        | N/A     | N/A |



| Hopping Mode     |                  |                       |                            |            |         |     |
|------------------|------------------|-----------------------|----------------------------|------------|---------|-----|
| Pulse Width (ms) | Number of Pulses | Average No. of Pulses | On Time (ms) During 25.6 s | Limit (ms) | Results |     |
| N/A              | 1                | N/A                   | N/A                        | N/A        | N/A     | N/A |




# DWELL TIME

| Hopping Mode     |                  |                       |                            |            |         |     |
|------------------|------------------|-----------------------|----------------------------|------------|---------|-----|
| Pulse Width (ms) | Number of Pulses | Average No. of Pulses | On Time (ms) During 25.6 s | Limit (ms) | Results |     |
| N/A              | 1                | N/A                   | N/A                        | N/A        | N/A     | N/A |



| Hopping Mode     |                  |                       |                            |            |         |     |
|------------------|------------------|-----------------------|----------------------------|------------|---------|-----|
| Pulse Width (ms) | Number of Pulses | Average No. of Pulses | On Time (ms) During 25.6 s | Limit (ms) | Results |     |
| N/A              | 1                | N/A                   | N/A                        | N/A        | N/A     | N/A |



# DWELL TIME

| Hopping Mode     |                  |                       |                            |            |         |     |
|------------------|------------------|-----------------------|----------------------------|------------|---------|-----|
| Pulse Width (ms) | Number of Pulses | Average No. of Pulses | On Time (ms) During 25.6 s | Limit (ms) | Results |     |
| N/A              | 1                | N/A                   | N/A                        | N/A        | N/A     | N/A |



| Hopping Mode     |                  |                       |                            |            |         |  |
|------------------|------------------|-----------------------|----------------------------|------------|---------|--|
| Pulse Width (ms) | Number of Pulses | Average No. of Pulses | On Time (ms) During 25.6 s | Limit (ms) | Results |  |
| 370.51           | N/A              | 1                     | 370.51                     | 400        | Pass    |  |

Calculation Only

No Screen Capture Required

# OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model           | ID  | Last Cal.  | Interval (mo) |
|------------------------------|--------------------|-----------------|-----|------------|---------------|
| Meter - Multimeter           | Fluke              | 117             | MLS | 1/20/2014  | 36            |
| Generator - Signal           | Agilent            | N5183A          | TIK | 10/17/2014 | 36            |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 2/26/2016  | 12            |
| Block - DC                   | Fairview Microwave | SD3379          | AMI | 9/18/2015  | 12            |
| Cable                        | ESM Cable Corp.    | TTBJ141 KMKM-72 | MNU | 9/18/2015  | 12            |
| Analyzer - Spectrum Analyzer | Agilent            | E4440A          | AAX | 3/24/2016  | 12            |

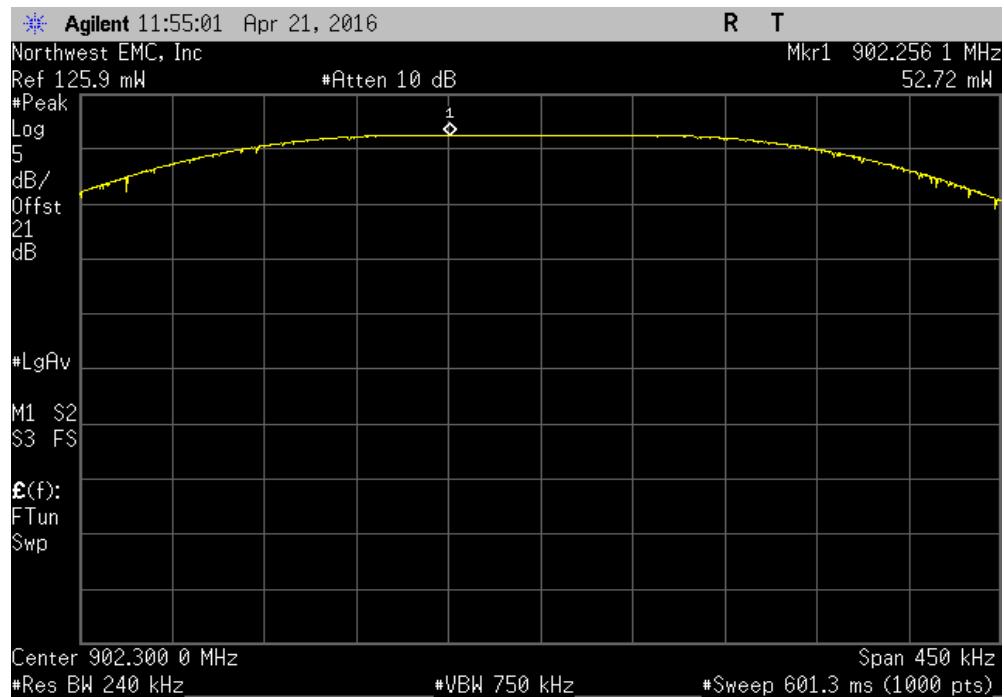
## TEST DESCRIPTION

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

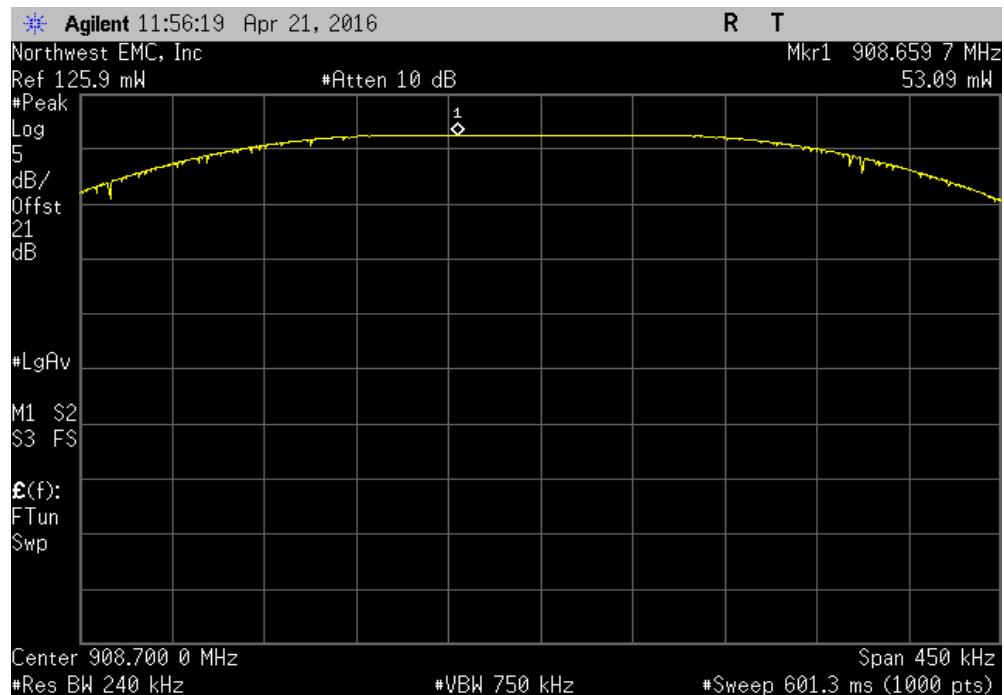
Prior to measuring peak transmit power the DTS bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The method found in ANSI C63.10:2013 Section 11.10.2 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio..

**De Facto EIRP Limit:** Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36 dBm.

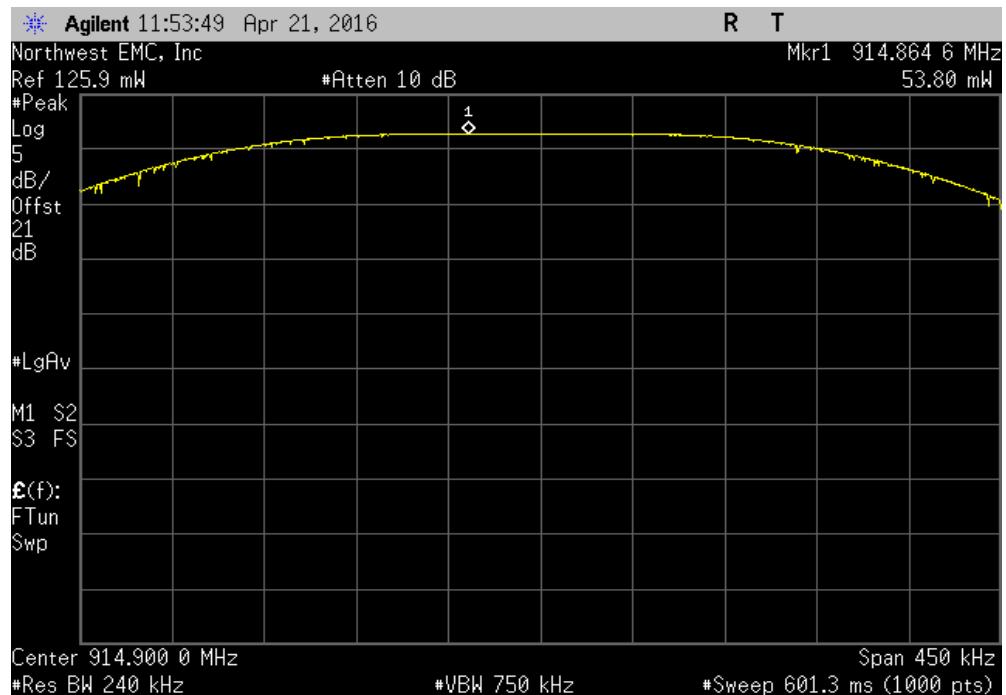

# OUTPUT POWER

|                                                                             |                    |                   |                                                                                   |
|-----------------------------------------------------------------------------|--------------------|-------------------|-----------------------------------------------------------------------------------|
| EUT:                                                                        | MTDOT-915          | Work Order:       | MLTI0052                                                                          |
| Serial Number:                                                              | 18349449           | Date:             | 04/21/16                                                                          |
| Customer:                                                                   | Multi-Tech Systems | Temperature:      | 22.6°C                                                                            |
| Attendees:                                                                  | Marcus Glass       | Humidity:         | 45%                                                                               |
| Project:                                                                    | None               | Barometric Pres.: | 980.4                                                                             |
| Tested by:                                                                  | Jared Ison         | Job Site:         | MN08                                                                              |
| TEST SPECIFICATIONS                                                         |                    | Power:            | 5 VDC                                                                             |
| FCC 15.247:2016                                                             |                    | Test Method       | ANSI C63.10:2013                                                                  |
| COMMENTS                                                                    |                    |                   |                                                                                   |
| Peak method was to determine output power due to class 2 permissive change. |                    |                   |                                                                                   |
| DEVIATIONS FROM TEST STANDARD                                               |                    |                   |                                                                                   |
| None                                                                        |                    |                   |                                                                                   |
| Configuration #                                                             | 1                  | Signature         |  |
|                                                                             |                    | Value             | Limit (-)                                                                         |
|                                                                             |                    | 52.723 mW         | 1 W                                                                               |
|                                                                             |                    | 53.088 mW         | 1 W                                                                               |
|                                                                             |                    | 53.802 mW         | 1 W                                                                               |
|                                                                             |                    |                   | Pass                                                                              |
|                                                                             |                    |                   | Pass                                                                              |
|                                                                             |                    |                   | Pass                                                                              |


Low Channel, 902.3 MHz  
Mid Channel, 908.7 MHz  
High Channel, 914.9 MHz

# OUTPUT POWER

| Low Channel, 902.3 MHz |  |  | Value     | Limit<br>(<) | Result |
|------------------------|--|--|-----------|--------------|--------|
|                        |  |  | 52.723 mW | 1 W          | Pass   |




| Mid Channel, 908.7 MHz |  |  | Value     | Limit<br>(<) | Result |
|------------------------|--|--|-----------|--------------|--------|
|                        |  |  | 53.088 mW | 1 W          | Pass   |



# OUTPUT POWER

| High Channel, 914.9 MHz |  |  | Value     | Limit<br>(<) | Result |
|-------------------------|--|--|-----------|--------------|--------|
|                         |  |  | 53.802 mW | 1 W          | Pass   |



# BAND EDGE COMPLIANCE -HOPPING MODE



XMit 2015.01.14

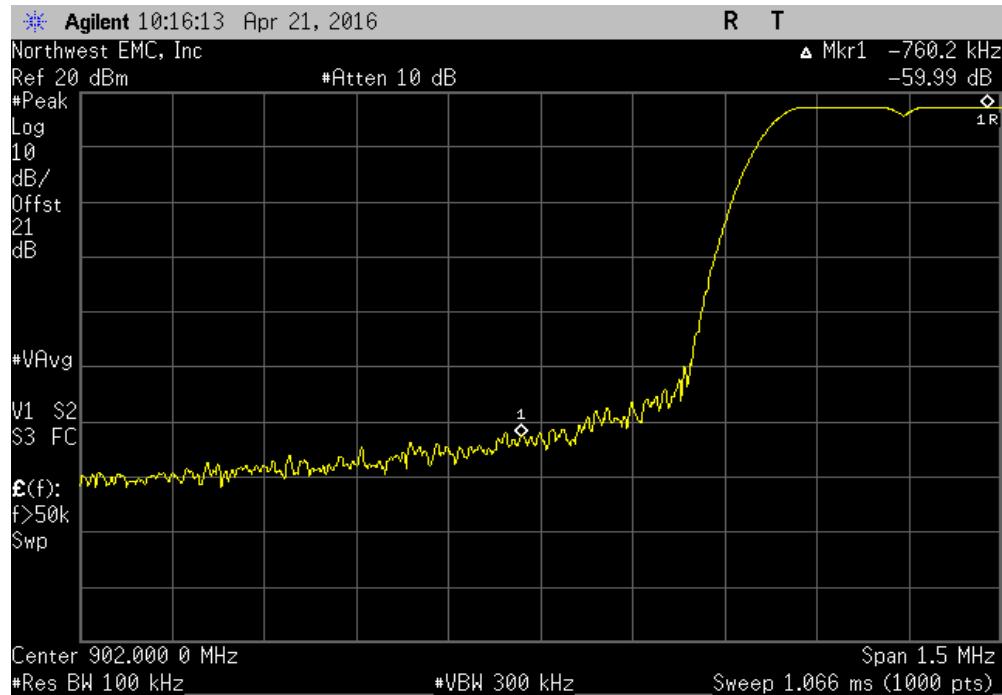
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

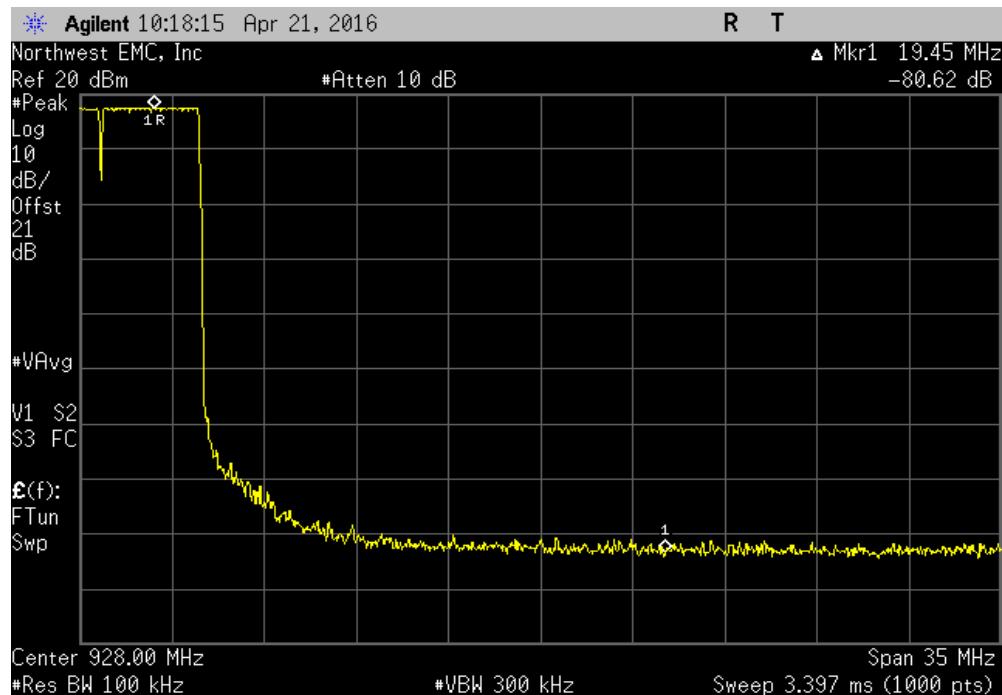
| Description                  | Manufacturer       | Model           | ID  | Last Cal.  | Interval (mo) |
|------------------------------|--------------------|-----------------|-----|------------|---------------|
| Meter - Multimeter           | Fluke              | 117             | MLS | 1/20/2014  | 36            |
| Generator - Signal           | Agilent            | N5183A          | TIK | 10/17/2014 | 36            |
| Block - DC                   | Fairview Microwave | SD3379          | AMI | 9/18/2015  | 12            |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 2/26/2016  | 12            |
| Cable                        | ESM Cable Corp.    | TTBJ141 KMKM-72 | MNU | 9/18/2015  | 12            |
| Analyzer - Spectrum Analyzer | Agilent            | E4440A          | AAX | 3/24/2016  | 12            |

## TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to its normal pseudo-random hopping sequence. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet.


The spectrum was scanned below the lower band edge and above the higher band edge.

# BAND EDGE COMPLIANCE -HOPPING MODE


|                                                                                                        |                    |                   |                                                                                   |
|--------------------------------------------------------------------------------------------------------|--------------------|-------------------|-----------------------------------------------------------------------------------|
| EUT:                                                                                                   | MTDOT-915          | Work Order:       | MLTI0052                                                                          |
| Serial Number:                                                                                         | 18349449           | Date:             | 04/21/16                                                                          |
| Customer:                                                                                              | Multi-Tech Systems | Temperature:      | 22.6°C                                                                            |
| Attendees:                                                                                             | Marcus Glass       | Humidity:         | 45%                                                                               |
| Project:                                                                                               | None               | Barometric Pres.: | 980.4                                                                             |
| Tested by:                                                                                             | Jared Ison         | Power:            | 5 VDC                                                                             |
| TEST SPECIFICATIONS                                                                                    |                    | Test Method       |                                                                                   |
| FCC 15.247:2016                                                                                        |                    | ANSI C63.10:2013  |                                                                                   |
| COMMENTS                                                                                               |                    |                   |                                                                                   |
| Test command TXW=0, AT+Sendi=100,5555, was used in order to count the number channels in hopping mode. |                    |                   |                                                                                   |
| DEVIATIONS FROM TEST STANDARD                                                                          |                    |                   |                                                                                   |
| None                                                                                                   |                    |                   |                                                                                   |
| Configuration #                                                                                        | 1                  | Signature         |  |
|                                                                                                        |                    | Value<br>(dBc)    | Limit<br>≤ (dBc)                                                                  |
| Hopping Mode                                                                                           |                    | -59.99<br>-80.62  | -20<br>-20                                                                        |
|                                                                                                        |                    |                   | Pass                                                                              |
|                                                                                                        |                    |                   | Pass                                                                              |

# BAND EDGE COMPLIANCE -HOPPING MODE

| Hopping Mode, Low Channel, 902.3 MHz |  |  |  | Value<br>(dBc) | Limit<br>$\leq$ (dBc) | Result |
|--------------------------------------|--|--|--|----------------|-----------------------|--------|
|                                      |  |  |  | -59.99         | -20                   | Pass   |



| Hopping Mode, High Channel, 914.9 MHz |  |  |  | Value<br>(dBc) | Limit<br>$\leq$ (dBc) | Result |
|---------------------------------------|--|--|--|----------------|-----------------------|--------|
|                                       |  |  |  | -80.62         | -20                   | Pass   |



# POWER SPECTRAL DENSITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

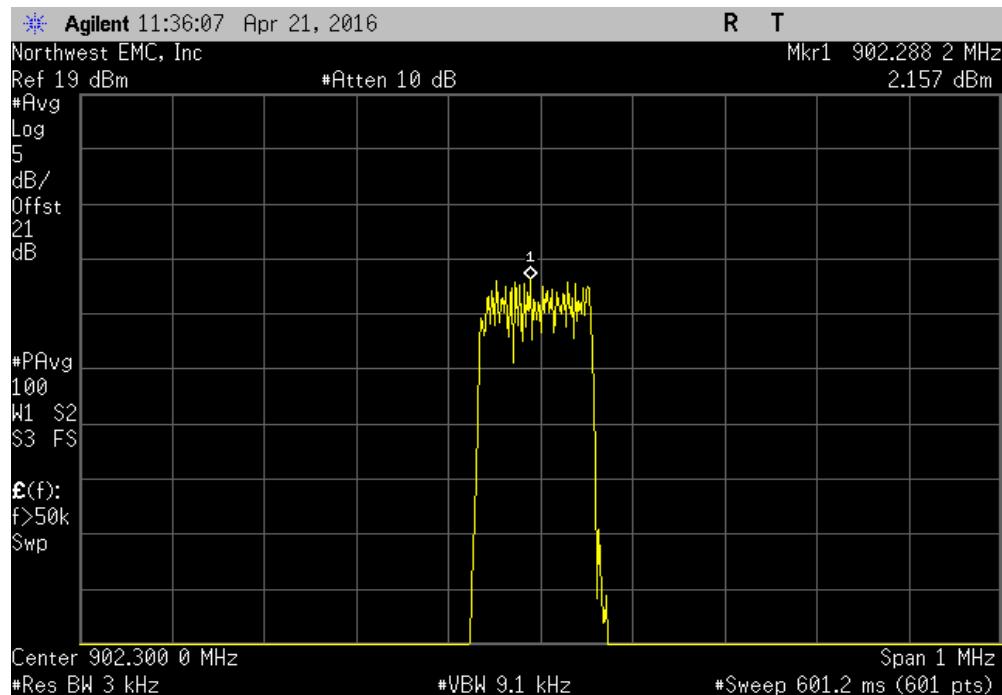
## TEST EQUIPMENT

| Description                  | Manufacturer       | Model           | ID  | Last Cal.  | Interval (mo) |
|------------------------------|--------------------|-----------------|-----|------------|---------------|
| Meter - Multimeter           | Fluke              | 117             | MLS | 1/20/2014  | 36            |
| Generator - Signal           | Agilent            | N5183A          | TIK | 10/17/2014 | 36            |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 2/26/2016  | 12            |
| Block - DC                   | Fairview Microwave | SD3379          | AMI | 9/18/2015  | 12            |
| Cable                        | ESM Cable Corp.    | TTBJ141 KMKM-72 | MNU | 9/18/2015  | 12            |
| Analyzer - Spectrum Analyzer | Agilent            | E4440A          | AAX | 3/24/2016  | 12            |

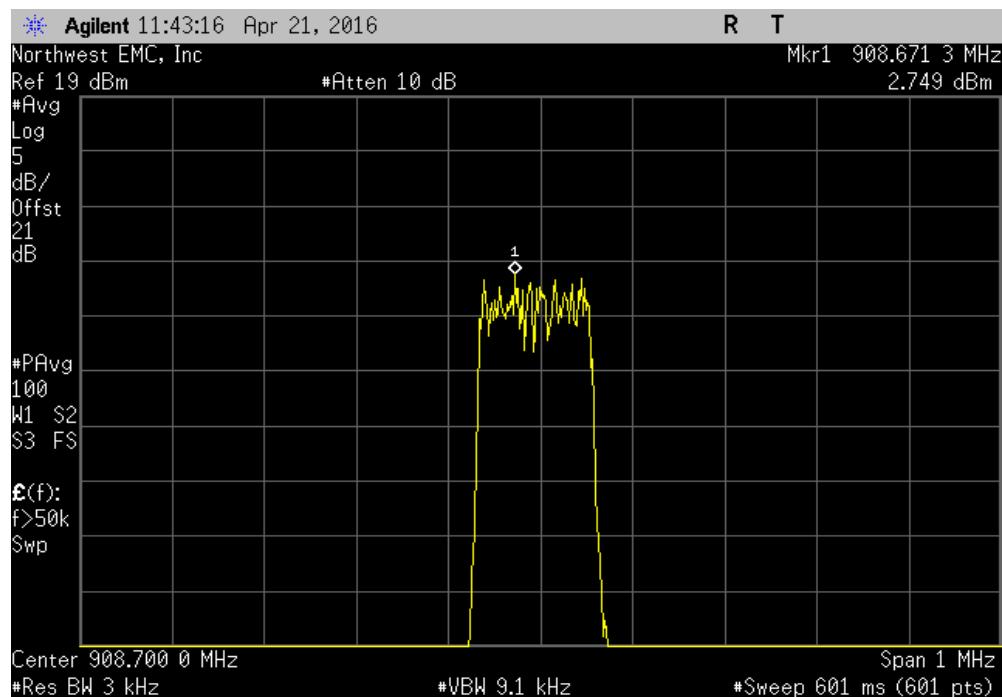
## TEST DESCRIPTION

The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

A direct connection was made between the RF output of the EUT and a spectrum analyzer. External attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

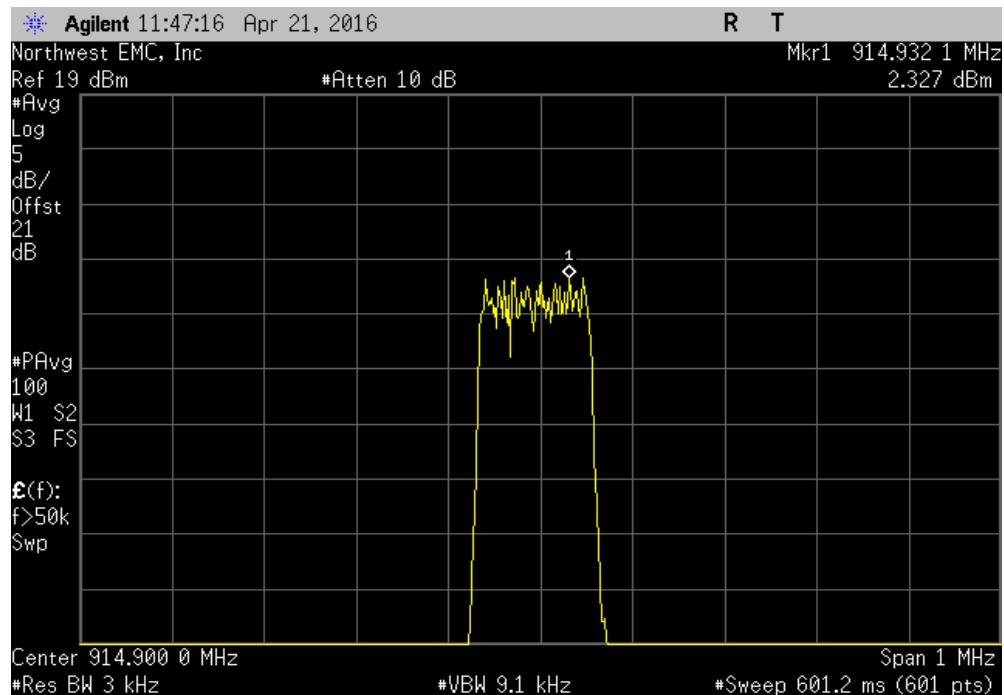

Per the procedure outlined in ANSI C63.10 the AVGPSD-2 method for power spectral density was measured in a 3 kHz RBW.

# POWER SPECTRAL DENSITY


| EUT:                          | MTDOT-915          | Work Order:        | MLTI0052                  |                      |                          |         |
|-------------------------------|--------------------|--------------------|---------------------------|----------------------|--------------------------|---------|
| Serial Number:                | 18349449           | Date:              | 04/21/16                  |                      |                          |         |
| Customer:                     | Multi-Tech Systems | Temperature:       | 22.6°C                    |                      |                          |         |
| Attendees:                    | Marcus Glass       | Humidity:          | 45%                       |                      |                          |         |
| Project:                      | None               | Barometric Pres.:  | 980.4                     |                      |                          |         |
| Tested by:                    | Jared Ison         | Job Site:          | MN08                      |                      |                          |         |
| TEST SPECIFICATIONS           |                    | Power:             | 5 VDC                     |                      |                          |         |
| FCC 15.247:2016               |                    | Test Method        | ANSI C63.10:2013          |                      |                          |         |
| COMMENTS                      |                    |                    |                           |                      |                          |         |
| None                          |                    |                    |                           |                      |                          |         |
| DEVIATIONS FROM TEST STANDARD |                    |                    |                           |                      |                          |         |
| None                          |                    |                    |                           |                      |                          |         |
| Configuration #               | 1                  | Signature          |                           |                      |                          |         |
|                               |                    | Power<br>(dBm/kHz) | Duty Cycle<br>Factor (dB) | Density<br>(dBm/kHz) | Limit<br>≤ (dBm / 3 kHz) | Results |
| Low Channel, 902.3 MHz        |                    | 2.157              | 1.2                       | 3.4                  | 8                        | Pass    |
| Mid Channel, 908.7 MHz        |                    | 2.749              | 1.2                       | 4                    | 8                        | Pass    |
| High Channel, 914.9 MHz       |                    | 2.327              | 1.2                       | 3.6                  | 8                        | Pass    |

# POWER SPECTRAL DENSITY

| Low Channel, 902.3 MHz |                           |                      |                               |         |  |
|------------------------|---------------------------|----------------------|-------------------------------|---------|--|
| Power<br>(dBm/kHz)     | Duty Cycle<br>Factor (dB) | Density<br>(dBm/kHz) | Limit<br>$\leq$ (dBm / 3 kHz) | Results |  |
| 2.157                  | 1.2                       | 3.4                  | 8                             | Pass    |  |




| Mid Channel, 908.7 MHz |                           |                      |                               |         |  |
|------------------------|---------------------------|----------------------|-------------------------------|---------|--|
| Power<br>(dBm/kHz)     | Duty Cycle<br>Factor (dB) | Density<br>(dBm/kHz) | Limit<br>$\leq$ (dBm / 3 kHz) | Results |  |
| 2.749                  | 1.2                       | 4                    | 8                             | Pass    |  |



# POWER SPECTRAL DENSITY

| High Channel, 914.9 MHz |                           |                      |                          |         |  |
|-------------------------|---------------------------|----------------------|--------------------------|---------|--|
| Power<br>(dBm/kHz)      | Duty Cycle<br>Factor (dB) | Density<br>(dBm/kHz) | Limit<br>≤ (dBm / 3 kHz) | Results |  |
| 2.327                   | 1.2                       | 3.6                  | 8                        | Pass    |  |

