

element

Multi-Tech Systems, Inc.

(Int LoRa Ant): MTCAP3-L4G2D-A23UEA-D, MTCAP3-EN-A23UEA-D

(Ext LoRa Ant): MTCAP3-L4G2D-A23UEA-L, MTCAP3-EN-A23UEA-L

FCC 15.247:2025

RSS-Gen Issue 5:2018+A1:2019+A2:2021

RSS-247 Issue 3:2023

LoRa DTS Transceiver

Report: MLTI0373.1 Rev. 01, Issue Date: August 8, 2025

TABLE OF CONTENTS

Section	Page Number
Certificate of Test	3
Revision History	5
Accreditations.....	6
Facilities	7
Measurement Uncertainty	8
Test Setup Block Diagrams.....	9
Product Description	12
Power Settings and Antenna Information.....	13
Configurations	14
Modifications	17
Powerline Conducted Emissions.....	18
Spurious Radiated Emissions (SRD Internal).....	23
Spurious Radiated Emissions (Model Variants)	29
Spurious Radiated Emissions (SRD External)	36
Duty Cycle.....	43
Output Power	44
Equivalent Isotropic Radiated Power (EIRP).....	47
Band Edge Compliance	50
DTS Bandwidth (6 dB)	53
Occupied Bandwidth (99%).....	56
Spurious Conducted Emissions	59
Power Spectral Density	62
End of Report.....	65

CERTIFICATE OF TEST

Last Date of Test: May 20, 2025
Multi-Tech Systems, Inc.

EUT: (Int LoRa Ant): MTCAP3-L4G2D-A23UEA-D, MTCAP3-EN-A23UEA-D
(Ext LoRa Ant): MTCAP3-L4G2D-A23UEA-L, MTCAP3-EN-A23UEA-L

Radio Equipment Testing

Standards

Specification	Method
FCC 15.247:2025	
RSS-Gen Issue 5:2018+A1:2019+A2:2021	ANSI C63.10:2020 KDB 558074
RSS-247 Issue 3:2023	

Guidance

FCC KDB 558074 v05r02:2019

Results

Test Description	Result	FCC Section(s)	RSS Section(s)	ANSI C63.10 Section(s)	Comments
Powerline Conducted Emissions (Transmitter)	Pass	15.207	RSS-Gen 8.8	6.2	
Spurious Radiated Emissions	Pass	15.247(d), KDB 558074 - 8.6, 8.7	RSS-247 5.5	6.5, 6.6, 11.12.1, 11.13.2	
Duty Cycle	N/A	15.247, KDB 558074 -6.0	RSS-Gen 3.2	11.6	
Output Power	Pass	15.247(b), KDB 558074 - 8.3	RSS-247 5.4(d)	11.9.1.1	
Equivalent Isotropic Radiated Power (EIRP)	Pass	15.247(b), KDB 558074 - 8.3	RSS-247 5.4(d)	11.9.1.1	
Band Edge Compliance	N/A	15.247(d), KDB 558074 - 8.5	RSS-247 5.5	11.11	
DTS Bandwidth (6 dB)	Pass	15.247(a), KDB 558074 - 8.2	RSS-247 5.2(a)	11.8.2	
Occupied Bandwidth (99%)	N/A	KDB 558074 -2.1	RSS-Gen 6.7	6.9.3	
Spurious Conducted Emissions	Pass	15.247(d), KDB 558074 - 8.5	RSS-247 5.5	11.11	
Power Spectral Density	Pass	15.247(e), KDB 558074 - 8.4	RSS-247 5.2(b)	11.10.2	
Powerline Conducted Emissions (Receiver)	N/A	15.101, 15.107	RSS-Gen 5.2	ANSI C63.4 - 12.2.4	Not included per FCC 15.101 as this will be covered under SDoC rules for the FCC. RSS-Gen section 7 stated receiver requirements only apply to standalone receivers operating in the 30-960 MHz band and this is not a standalone receiver.
Radiated Emissions for Receiver	N/A	15.101, 15.109	RSS-Gen 5.2	ANSI C63.4 - 12.2.5	

Deviations From Test Standards

None

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

CERTIFICATE OF TEST

Approved By:

A handwritten signature in blue ink that reads "Trevor Buls".

Trevor Buls, Principal EMC Test Engineer
Signed for and on behalf of Element

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
01	Change "External LoRa Antenna: Monopole" to "External LoRa Antenna: Dipole" in the power settings and antenna document	2025-08-08	13

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

FDA - Recognized by the FDA as an Accreditation Scheme for Conformity Assessment (ASCA)-accredited testing laboratory for basic safety and essential performance.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS – Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

SCOPE

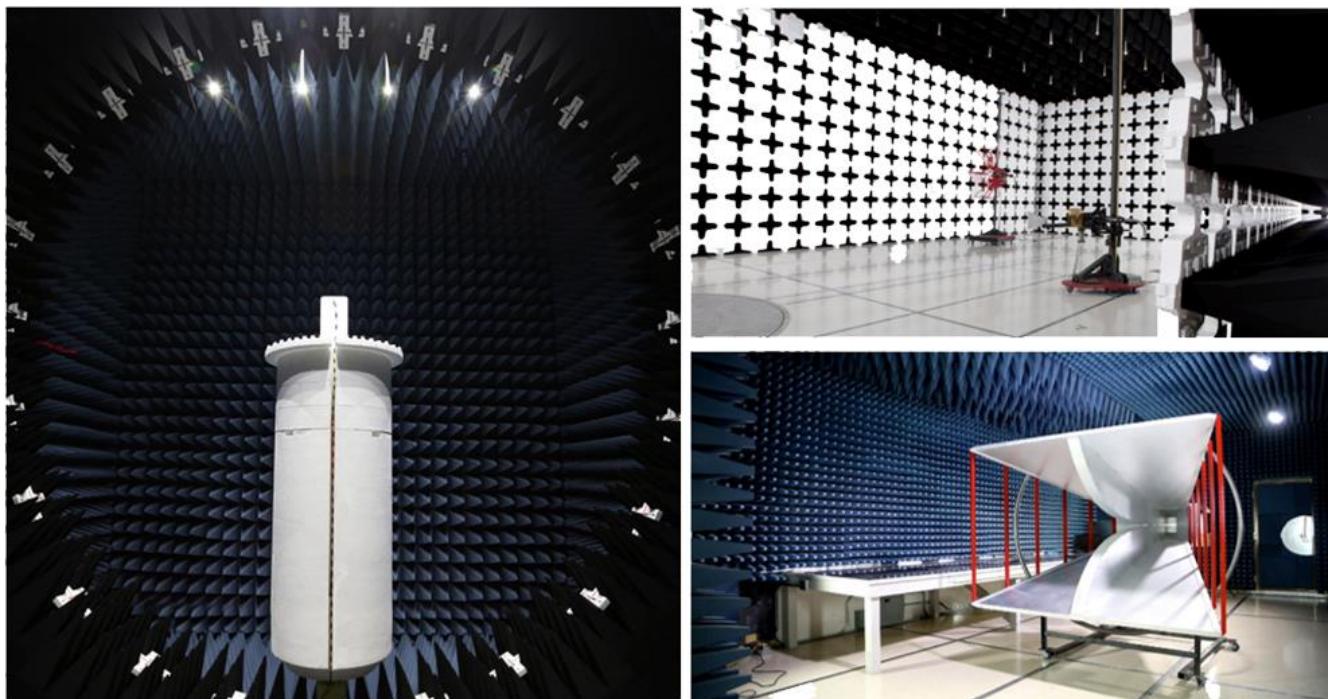
For details on the Scopes of our Accreditations, please visit:

[California](#)

[Minnesota](#)

[Oregon](#)

[Washington](#)


FACILITIES

Testing was performed at the following location(s)

Location	Labs ⁽¹⁾	Address	A2LA ⁽²⁾	ISED ⁽³⁾	BSMI ⁽⁴⁾	VCCI ⁽⁵⁾	CAB ⁽⁶⁾	FDA ⁽⁷⁾
<input type="checkbox"/> California	OC01-17	41 Tesla Irvine, CA 92618 (949) 861-8918	3310.04	2834B	SL2-IN-E-1154R	A-0029	US0158	TL-55
<input checked="" type="checkbox"/> Minnesota	MN01-11	9349 W Broadway Ave. Brooklyn Park, MN 55445 (612) 638-5136	3310.05	2834E	SL2-IN-E-1152R	A-0109	US0175	TL-57
<input type="checkbox"/> Oregon	EV01-12	6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	3310.02	2834D	SL2-IN-E-1017	A-0108	US0017	TL-56
<input type="checkbox"/> Washington	NC01-05	19201 120th Ave NE Bothell, WA 98011 (425) 984-6600	3310.06	2834F	SL2-IN-E-1153R	A-0110	US0157	TL-67
<input type="checkbox"/> Offsite	N/A	See Product Description	N/A	N/A	N/A	N/A	N/A	N/A

See data sheets for specific labs

- (1) The lab designations denote individual rooms within each location. (OC01, OC02, OC03, etc.)
- (2) A2LA Certificate No.
- (3) ISED Company No.
- (4) BSMI No.
- (5) VCCI Site Filing No.
- (6) CAB Identifier. Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MOC, NCC, OFCA
- (7) FDA ASCA No.

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation reported is based on statistical analysis that was performed by the laboratory. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty ($k=2$) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable) and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Various Measurements

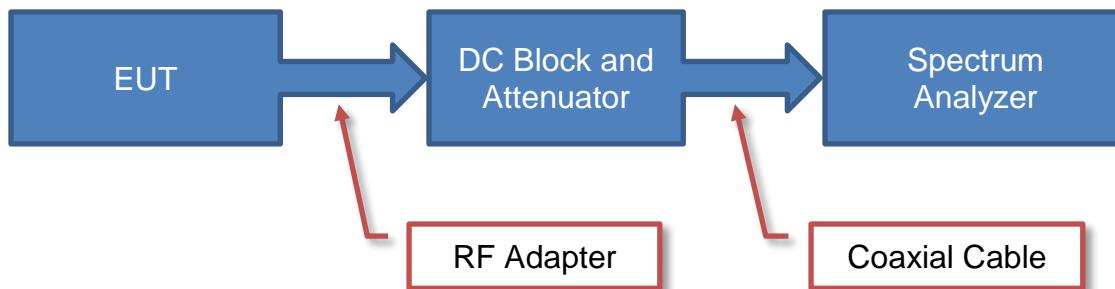
Test	All Labs (+/-)
Frequency Accuracy (%)	0.0007
Amplitude Accuracy (dB)	1.2
Conducted Power (dB)	1.2
Radiated Power via Substitution (dB)	0.7
Temperature (degrees C)	0.7
Humidity (% RH)	2.5
Voltage (AC) (%)	1
Voltage (DC) (%)	0.7

Field Strength Measurements (dB)

Range	MN05 (+/-)
10kHz-30MHz	1.8
30MHz-1GHz 3m	4.6
1GHz-6GHz	5.1
6GHz-40GHz	5.3

AC Powerline Conducted Emissions Measurements (dB)

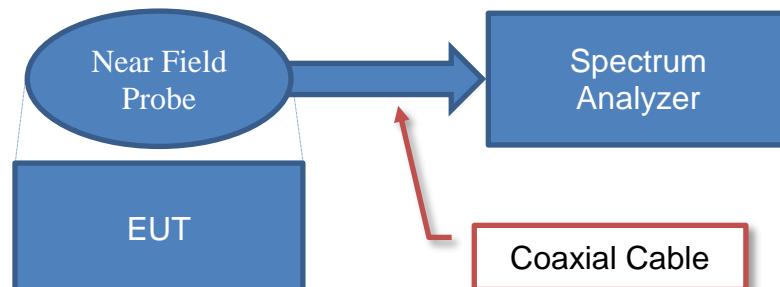
Range	MN03 (+/-)
9kHz-150kHz LISN	3.6
150kHz-30MHz LISN	3.2
150kHz-30MHz CVP	3
150kHz-30MHz Telecom-ISN	4.4


TEST SETUP BLOCK DIAGRAMS

Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

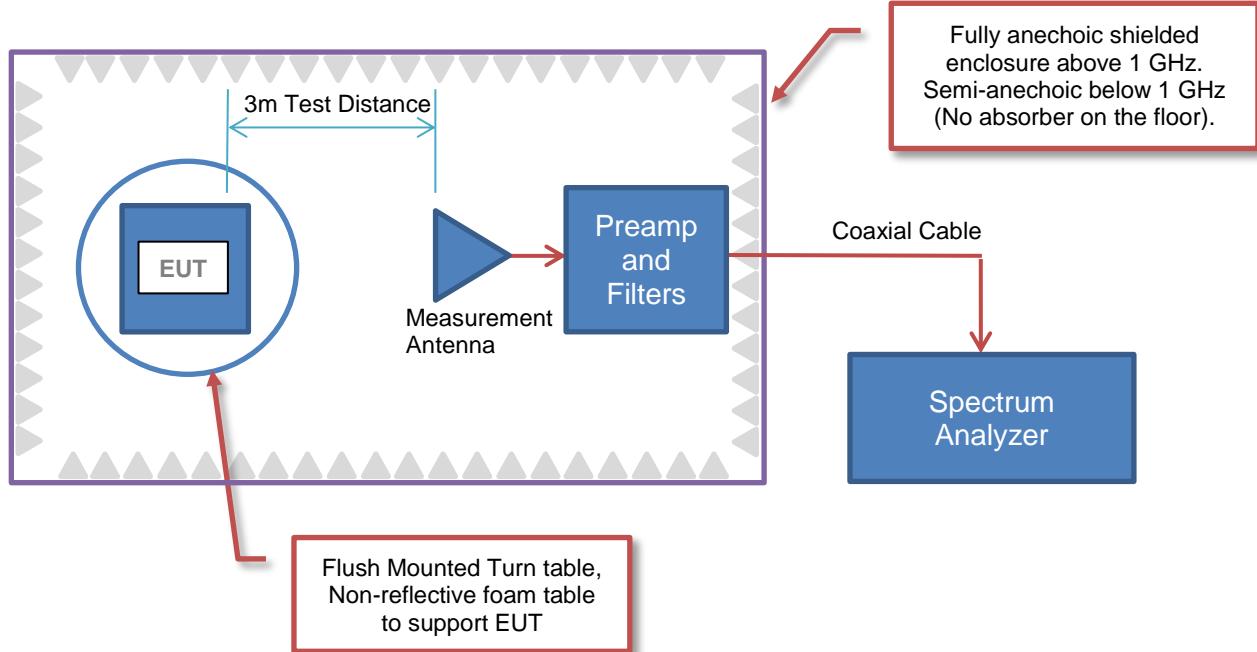
Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.


Antenna Port Conducted Measurements

Sample Calculation (logarithmic units)

$$\begin{array}{ccc} \text{Measured} & \text{Measured} & \text{Reference} \\ \text{Value} & = & \text{Level} \\ 71.2 & = & 42.6 \\ & & + \\ & & \text{Level} \\ & & \text{Offset} \\ & & 28.6 \end{array}$$

Near Field Test Fixture Measurements



Sample Calculation (logarithmic units)

$$\begin{array}{ccc} \text{Measured} & \text{Measured} & \text{Reference} \\ \text{Value} & = & \text{Level} \\ 71.2 & = & 42.6 \\ & & + \\ & & \text{Level} \\ & & \text{Offset} \\ & & 28.6 \end{array}$$

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

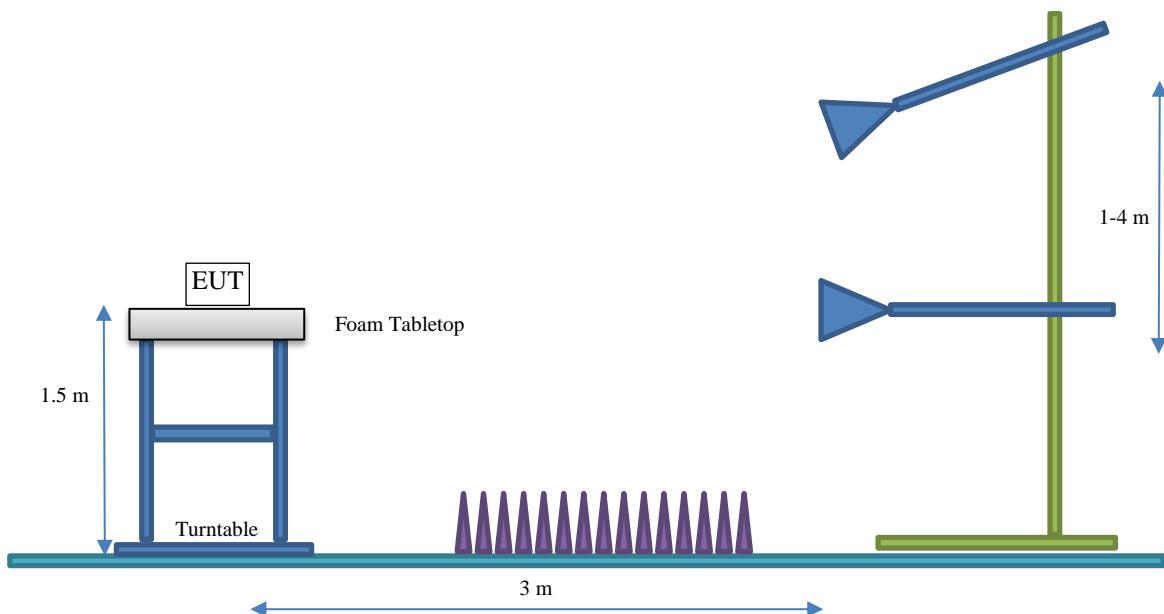
Sample Calculation (logarithmic units)

Radiated Emissions:

		Factor								
Measured Level (Amplitude)	+	Antenna Factor	Cable Factor	Amplifier Gain	+	Distance Adjustment Factor	+	External Attenuation	=	Field Strength
42.6	+	28.6	+ 3.1	- 40.8	+	0.0	+	0.0	=	33.5

Conducted Emissions:

		Factor			
Measured Level (Amplitude)	+	Transducer Factor	Cable Factor	External Attenuation	Adjusted Level
26.7	+	0.3	+ 0.1	20.0	= 47.1


Radiated Power (ERP/EIRP) – Substitution Method:

Measured Level into Substitution Antenna (Amplitude dBm)	+	Substitution Antenna Factor (dBi)	-	EIRP to ERP (if applicable)	=	Measured power (dBm ERP/EIRP)
10.0	+	6.0	-	2.15	=	13.9/16.0

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment under Test (EUT) Information

Company Name:	Multi-Tech Systems, Inc.
Address:	2205 Woodale Dr
City, State, Zip:	Mounds View, MN 55112
Test Requested By:	Tim Gunn
EUT:	(Int LoRa Ant): MTCAP3-L4G2D-A23UEA-D, MTCAP3-EN-A23UEA-D (Ext LoRa Ant): MTCAP3-L4G2D-A23UEA-L, MTCAP3-EN-A23UEA-L
First Date of Test:	March 21, 2025
Last Date of Test:	May 20, 2025
Receipt Date of Samples:	March 21, 2025
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The MultiTech Conduit® AP conveniently provides deep in-building connectivity and improved performance for network operators and enterprises connecting thousands of IoT assets by harnessing the power of the LoRaWAN® protocol. Easy to deploy, the Conduit AP access point extends LoRa® connectivity in commercial buildings like hotels, convention centers, offices and retail facilities providing coverage in difficult to reach areas cell tower or rooftop deployments may not penetrate. The Conduit AP offers a development environment for software developers and IT professionals alike. mPower™ edge intelligence features an easy-to-use graphical interface set-up and includes a built-in LoRa Network Server and Packet Forwarder to connect locally clustered assets on a private LoRaWAN network directly to your choice of IoT data platforms. The Conduit AP extends complex processing to the edge to reduce upstream communication and operational costs. The Conduit AP provides Ethernet IP backhaul or optional 4G-LTE IP backhaul.

The four listed models are similar. -L indicates an external LoRa antenna, -D indicates an internal LoRa antenna, and -EN- indicates the cell module is depopulated.

Testing Objective:

Seeking to demonstrate compliance of the LoRa radio with operation under FCC 15.247:2025 and RSS-Gen Issue 5:2018+A1:2019+A2:2021, RSS-247 Issue 3:2023 specifications under technology category Other.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information. The power settings below reflect the maximum power that the EUT is allowed to transmit at during normal operation.

ANTENNA GAIN (dBi)

Type	Provided by:	Frequency Range (MHz)	Gain (dBi)
Internal LoRa Antenna: Ceramic Chip	Kyocera AVX M620720	900-928	2.06
External LoRa Antenna: Dipole	Quectel YEIN002BA (Q8-D0958-S1)	900-928	2.5

The EUT was tested using the power settings provided by the manufacturer which were based upon:

- Test software settings
- Rated power settings

Firmware:

7.1.0-DEV

SETTINGS FOR ALL TESTS IN THIS REPORT

Channel	Power Setting
Low Channel (923.3 MHz)	PA1 PWID 14
Mid Channel (925.1 MHz)	PA1 PWID 13
High Channel (927.5 MHz)	PA1 PWID 14

CONFIGURATIONS

Configuration MLTI0373-1

EUT					
Description		Manufacturer		Model/Part Number	
Serial Number					
MultiTech Conduit MTCAP3 Series		Multi-Tech Systems, Inc		MTCAP3-L4G2D-A23UEA-L	
				5399780K	

Peripherals in Test Setup Boundary					
Description		Manufacturer		Model/Part Number	
Serial Number					
DongSong Power Supply		DongSong		DYS818-050250W-K	
				PN:DYS818-050250-24C18A	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power cable	No	1.5 m	Yes	MultiTech Conduit	DongSong Power Supply
Ethernet cable	No	20 m	No	MultiTech Conduit	Laptop PC

Configuration MLTI0373-2

EUT					
Description		Manufacturer		Model/Part Number	
Serial Number					
MultiTech Conduit MTCAP3 Series		Multi-Tech Systems, Inc		MTCAP3-L4G2D-A23UEA-L	
				5399780K	
Antenna		Quectel		Q8-D0958-S1	
				N/A	

Peripherals in Test Setup Boundary					
Description		Manufacturer		Model/Part Number	
Serial Number					
DongSong Power Supply		DongSong		DYS818-050250W-K	
				PN:DYS818-050250-24C18A	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power cable	No	1.5 m	Yes	MultiTech Conduit	DongSong Power Supply
Ethernet cable	No	20 m	No	MultiTech Conduit	Laptop PC

CONFIGURATIONS

Configuration MLTI0373-3

EUT						
Description		Manufacturer		Model/Part Number		Serial Number
Antenna		Quectel		Q8-D0958-S1		N/A
MultiTech Conduit MTCAP3 Series		Multi-Tech Systems, Inc		MTCAP3-EN-A23UEA-L		99999609

Peripherals in Test Setup Boundary						
Description		Manufacturer		Model/Part Number		Serial Number
DongSong Power Supply		DongSong		DYS818-050250W-K		PN:DYS818-050250-24C18A

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power cable	No	1.5 m	Yes	MultiTech Conduit	DongSong Power Supply
Ethernet cable	No	20 m	No	MultiTech Conduit	Laptop PC

Configuration MLTI0373-4

EUT						
Description		Manufacturer		Model/Part Number		Serial Number
MultiTech Conduit MTCAP3 Series		Multi-Tech Systems, Inc		MTCAP3-EN-A23UEA-D		99999614

Peripherals in Test Setup Boundary						
Description		Manufacturer		Model/Part Number		Serial Number
DongSong Power Supply		DongSong		DYS818-050250W-K		PN:DYS818-050250-24C18A

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power cable	No	1.5 m	Yes	MultiTech Conduit	DongSong Power Supply
Ethernet cable	No	20 m	No	MultiTech Conduit	Laptop PC

CONFIGURATIONS

Configuration MLTI0373-5

EUT					
Description		Manufacturer	Model/Part Number		Serial Number
MultiTech Conduit MTCAP3 Series		Multi-Tech Systems, Inc	MTCAP3-L4G2D-A23UEA-D		5399794K
Peripherals in Test Setup Boundary					
Description		Manufacturer	Model/Part Number		Serial Number
DongSong Power Supply		DongSong	DYS818-050250W-K		PN:DYS818-050250-24C18A
Remote Equipment Outside of Test Setup Boundary					
Description	Manufacturer	Model/Part Number		Serial Number	
Laptop PC	Lenovo Company	ThinkPad		EQ ID 13513	
AC Adapter	Lenovo Company	ADLX90NLT2A		11S45N0307Z1ZL437C86V	
Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power cable	No	1.5 m	Yes	MultiTech Conduit	DongSong Power Supply
Ethernet cable	No	20 m	No	MultiTech Conduit	Laptop PC
AC Power cable	No	1.0 m	No	AC Adapter	AC Mains
DC Power cable	No	1.6 m	Yes	AC Adapter	Laptop PC

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2025-03-21	Spurious Conducted Emissions	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2025-03-21	DTS Bandwidth (6 dB)	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2025-03-21	Equivalent Isotropic Radiated Power (EIRP)	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2025-03-21	Occupied Bandwidth (99%)	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2025-03-21	Output Power	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2025-03-21	Power Spectral Density	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	2025-03-26	Spurious Radiated Emissions (SRD Internal)	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
8	2025-03-26	Spurious Radiated Emissions (SRD External)	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
9	2025-04-02	Powerline Conducted Emissions (Transmitter)	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
10	2025-05-20	Band Edge Compliance	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

POWERLINE CONDUCTED EMISSIONS

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network.

Measurements are made using a LISN (Line Impedance Stabilization Network). The 50 Ω measuring port is terminated by a 50 Ω EMI meter or a 50 Ω resistive load. All 50 Ω measuring ports of the LISN are terminated by 50 Ω. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Gauss Instruments	TDEMI 30M	ARS	2024-05-07	2025-05-07
Cable - Conducted Cable Assembly	Northwest EMC	MNC, HGN, TYK, VAE	MNCA	2025-02-14	2026-02-14
LISN	Solar Electronics	9252-50-R-24-BNC	LIY	2025-03-30	2026-03-30

CONFIGURATIONS INVESTIGATED

MLTI0373-2

MODES INVESTIGATED

Transmitting LoRa Mid Ch 925.1 MHz

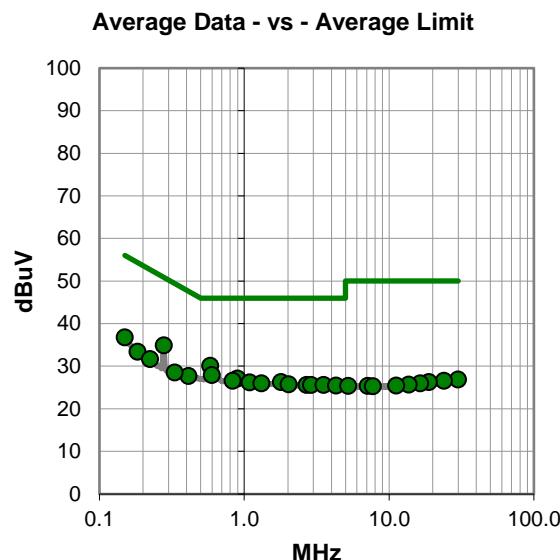
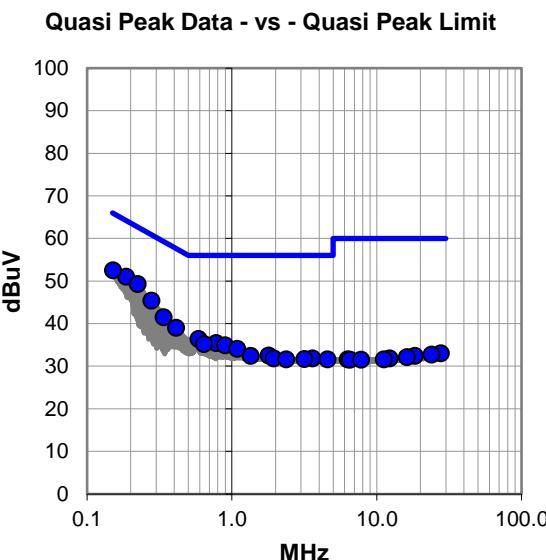
POWERLINE CONDUCTED EMISSIONS

EUT:	MTCAP3-L4G2D-A23UEA-L	Work Order:	MLTI0373
Serial Number:	5399780K	Date:	2025-04-02
Customer:	Multi-Tech Systems, Inc.	Temperature:	22.5°C
Attendees:	Michael Bendzick, Marcus Glass	Relative Humidity:	29.5%
Customer Project:	None	Bar. Pressure (PMSL):	992 mb
Tested By:	Marcelo Aguayo	Job Site:	MN03
Power:	110VAC/60Hz	Configuration:	MLTI0373-2

TEST PARAMETERS

Run #:	161	Line:	High Line	Add. Ext. Attenuation (dB):	0
--------	-----	-------	-----------	-----------------------------	---

COMMENTS



Mid channel was chosen based on the difference between power measurements on all channels being less than <0.3 dB.

EUT OPERATING MODES

Transmitting LoRa Mid Ch 925.1 MHz

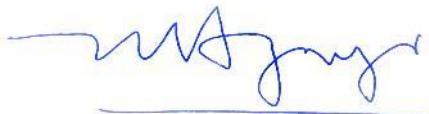
DEVIATIONS FROM TEST STANDARD

None

POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #161

Quasi Peak Data - vs - Quasi Peak Limit


Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.187	30.1	20.9	51.0	64.2	-13.2
0.152	31.4	21.1	52.5	65.9	-13.4
0.223	28.5	20.8	49.3	62.7	-13.4
0.278	24.8	20.6	45.4	60.9	-15.5
0.338	20.9	20.6	41.5	59.3	-17.8
0.411	18.4	20.6	39.0	57.6	-18.6
0.589	15.7	20.7	36.4	56.0	-19.6
0.777	14.7	20.7	35.4	56.0	-20.6
0.640	14.4	20.8	35.2	56.0	-20.8
0.896	14.2	20.7	34.9	56.0	-21.1
1.088	13.4	20.7	34.1	56.0	-21.9
1.795	11.8	20.7	32.5	56.0	-23.5
1.345	11.7	20.7	32.4	56.0	-23.6
1.947	11.1	20.7	31.8	56.0	-24.2
3.600	10.9	20.9	31.8	56.0	-24.2
3.170	10.9	20.8	31.7	56.0	-24.3
2.365	10.9	20.7	31.6	56.0	-24.4
4.561	10.7	20.9	31.6	56.0	-24.4
27.755	10.4	22.6	33.0	60.0	-27.0
23.943	10.4	22.3	32.7	60.0	-27.3
18.319	10.6	21.8	32.4	60.0	-27.6
16.137	10.4	21.7	32.1	60.0	-27.9
12.282	10.4	21.4	31.8	60.0	-28.2
6.288	10.7	20.9	31.6	60.0	-28.4
11.204	10.3	21.3	31.6	60.0	-28.4

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.582	9.4	20.7	30.1	46.0	-15.9
0.278	14.3	20.6	34.9	50.9	-16.0
0.597	7.2	20.7	27.9	46.0	-18.1
0.898	6.4	20.7	27.1	46.0	-18.9
0.150	15.7	21.1	36.8	56.0	-19.2
0.832	5.9	20.7	26.6	46.0	-19.4
1.795	5.6	20.7	26.3	46.0	-19.7
1.090	5.5	20.7	26.2	46.0	-19.8
0.411	7.1	20.6	27.7	47.6	-19.9
1.313	5.3	20.7	26.0	46.0	-20.0
2.027	5.1	20.7	25.8	46.0	-20.2
2.692	4.9	20.7	25.6	46.0	-20.4
2.892	4.9	20.7	25.6	46.0	-20.4
3.522	4.7	20.9	25.6	46.0	-20.4
4.291	4.6	20.9	25.5	46.0	-20.5
0.184	12.4	21.0	33.4	54.3	-20.9
0.332	7.9	20.6	28.5	49.4	-20.9
0.223	10.9	20.8	31.7	52.7	-21.0
29.894	4.0	22.9	26.9	50.0	-23.1
23.933	4.3	22.3	26.6	50.0	-23.4
18.809	4.5	21.8	26.3	50.0	-23.7
16.391	4.3	21.7	26.0	50.0	-24.0
13.669	4.3	21.4	25.7	50.0	-24.3
11.166	4.2	21.3	25.5	50.0	-24.5
5.216	4.5	20.9	25.4	50.0	-24.6

CONCLUSION

Pass

Tested By

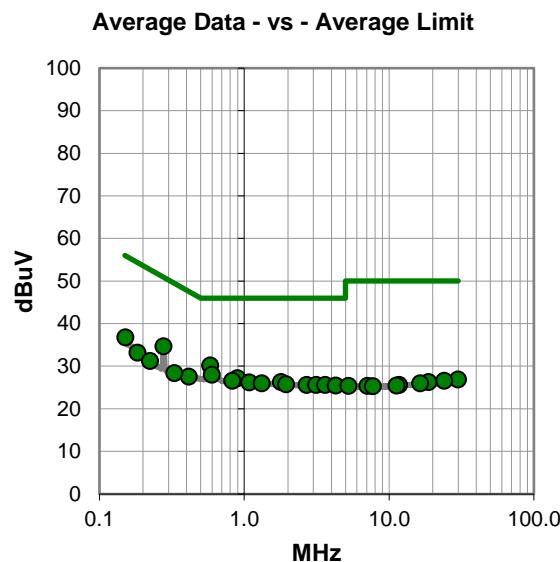
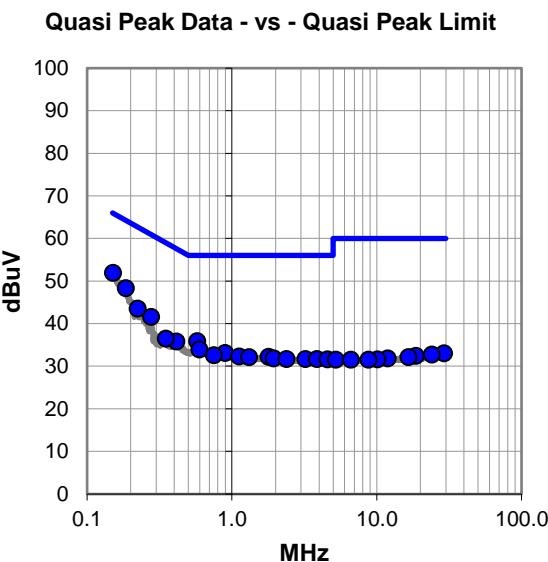
POWERLINE CONDUCTED EMISSIONS

EUT:	MTCAP3-L4G2D-A23UEA-L	Work Order:	MLTI0373
Serial Number:	5399780K	Date:	2025-04-02
Customer:	Multi-Tech Systems, Inc.	Temperature:	22.5°C
Attendees:	Michael Bendzick, Marcus Glass	Relative Humidity:	29.5%
Customer Project:	None	Bar. Pressure (PMSL):	992 mb
Tested By:	Marcelo Aguayo	Job Site:	MN03
Power:	110VAC/60Hz	Configuration:	MLTI0373-2

TEST PARAMETERS

Run #:	162	Line:	Neutral	Add. Ext. Attenuation (dB):	0
--------	-----	-------	---------	-----------------------------	---

COMMENTS



Mid channel was chosen based on the difference between power measurements on all channels being less than <0.3 dB.

EUT OPERATING MODES

Transmitting LoRa Mid Ch 925.1 MHz

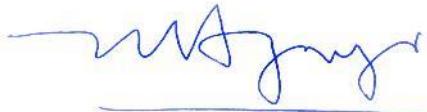
DEVIATIONS FROM TEST STANDARD

None

POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #162

Quasi Peak Data - vs - Quasi Peak Limit


Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.152	30.8	21.1	51.9	65.9	-14.0
0.185	27.4	20.9	48.3	64.3	-16.0
0.223	22.7	20.8	43.5	62.7	-19.2
0.277	21.0	20.6	41.6	60.9	-19.3
0.577	15.2	20.7	35.9	56.0	-20.1
0.414	15.1	20.7	35.8	57.6	-21.8
0.597	13.2	20.7	33.9	56.0	-22.1
0.350	15.9	20.6	36.5	59.0	-22.5
0.898	12.4	20.7	33.1	56.0	-22.9
0.750	11.8	20.8	32.6	56.0	-23.4
1.125	11.6	20.7	32.3	56.0	-23.7
1.796	11.5	20.7	32.2	56.0	-23.8
1.311	11.4	20.7	32.1	56.0	-23.9
1.944	11.1	20.7	31.8	56.0	-24.2
2.379	11.0	20.7	31.7	56.0	-24.3
3.224	10.9	20.8	31.7	56.0	-24.3
3.862	10.8	20.9	31.7	56.0	-24.3
4.573	10.7	20.9	31.6	56.0	-24.4
29.127	10.2	22.8	33.0	60.0	-27.0
23.962	10.4	22.3	32.7	60.0	-27.3
18.600	10.6	21.8	32.4	60.0	-27.6
16.569	10.4	21.7	32.1	60.0	-27.9
11.874	10.4	21.4	31.8	60.0	-28.2
10.086	10.4	21.2	31.6	60.0	-28.4
5.229	10.6	20.9	31.5	60.0	-28.5

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.582	9.5	20.7	30.2	46.0	-15.8
0.277	14.1	20.6	34.7	50.9	-16.2
0.597	7.3	20.7	28.0	46.0	-18.0
0.898	6.5	20.7	27.2	46.0	-18.8
0.152	15.7	21.1	36.8	55.9	-19.1
0.829	5.9	20.7	26.6	46.0	-19.4
1.795	5.6	20.7	26.3	46.0	-19.7
1.081	5.5	20.7	26.2	46.0	-19.8
0.414	6.9	20.7	27.6	47.6	-20.0
1.320	5.3	20.7	26.0	46.0	-20.0
1.943	5.1	20.7	25.8	46.0	-20.2
2.692	4.9	20.7	25.6	46.0	-20.4
3.142	4.8	20.8	25.6	46.0	-20.4
3.621	4.7	20.9	25.6	46.0	-20.4
4.286	4.6	20.9	25.5	46.0	-20.5
0.184	12.2	21.0	33.2	54.3	-21.1
0.330	7.8	20.6	28.4	49.5	-21.1
0.223	10.4	20.8	31.2	52.7	-21.5
29.897	4.0	22.9	26.9	50.0	-23.1
23.979	4.3	22.3	26.6	50.0	-23.4
18.731	4.5	21.8	26.3	50.0	-23.7
16.418	4.3	21.7	26.0	50.0	-24.0
11.742	4.2	21.4	25.6	50.0	-24.4
11.226	4.2	21.3	25.5	50.0	-24.5
5.248	4.5	20.9	25.4	50.0	-24.6

CONCLUSION

Pass

Tested By

SPURIOUS RADIATED EMISSIONS (SRD Internal)

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. A reference preview scan (pre-scan) is included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements within 2 MHz of the allowable band may have been taken using the integration method from ANSI C63.10 clause 11.13.3. This procedure uses the channel power feature of the spectrum analyzer to integrate the power of the emission within a 1 MHz bandwidth.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of $10 \times \log(1/dc)$.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Antenna - Double Ridge	ETS Lindgren	3115	AIP	2024-08-02	2026-08-02
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	2024-11-26	2025-11-26
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	2025-01-08	2026-01-08
Attenuator	Fairview Microwave	SA18H-20	VAF	2024-08-25	2025-08-25
Filter - High Pass	Micro-Tronics	HPM50108	LFM	2024-08-25	2025-08-25
Antenna - Standard Gain	ETS Lindgren	3160-07	AXP	NCR	NCR
Cable	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	2024-11-26	2025-11-26
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	2025-01-08	2026-01-08
Antenna - Standard Gain	ETS Lindgren	3160-08	AIQ	2025-02-04	2026-02-04
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVW	2025-01-08	2026-01-08
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAT	2025-01-08	2026-01-08
Antenna - Loop	ETS Lindgren	6502	AOB	2023-06-12	2025-06-12
Cable	ESM Cable Corp.	Bilog Cables	MNH	2024-11-26	2025-11-26
Antenna - Biconilog	ETS Lindgren	3142D	AXO	2023-10-02	2025-10-02
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	2024-10-09	2025-10-09

FREQUENCY RANGE INVESTIGATED

9 kHz TO 18000 MHz

SPURIOUS RADIATED EMISSIONS (SRD Internal)

POWER INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

MLTI0373-5

MODES INVESTIGATED

LoRa Radio Transmitting, CSS, Low Ch 923.3MHz, Mid Ch 925.1MHz, High Ch 927.5MHz 500KHz, 12 SF, Pwid 14

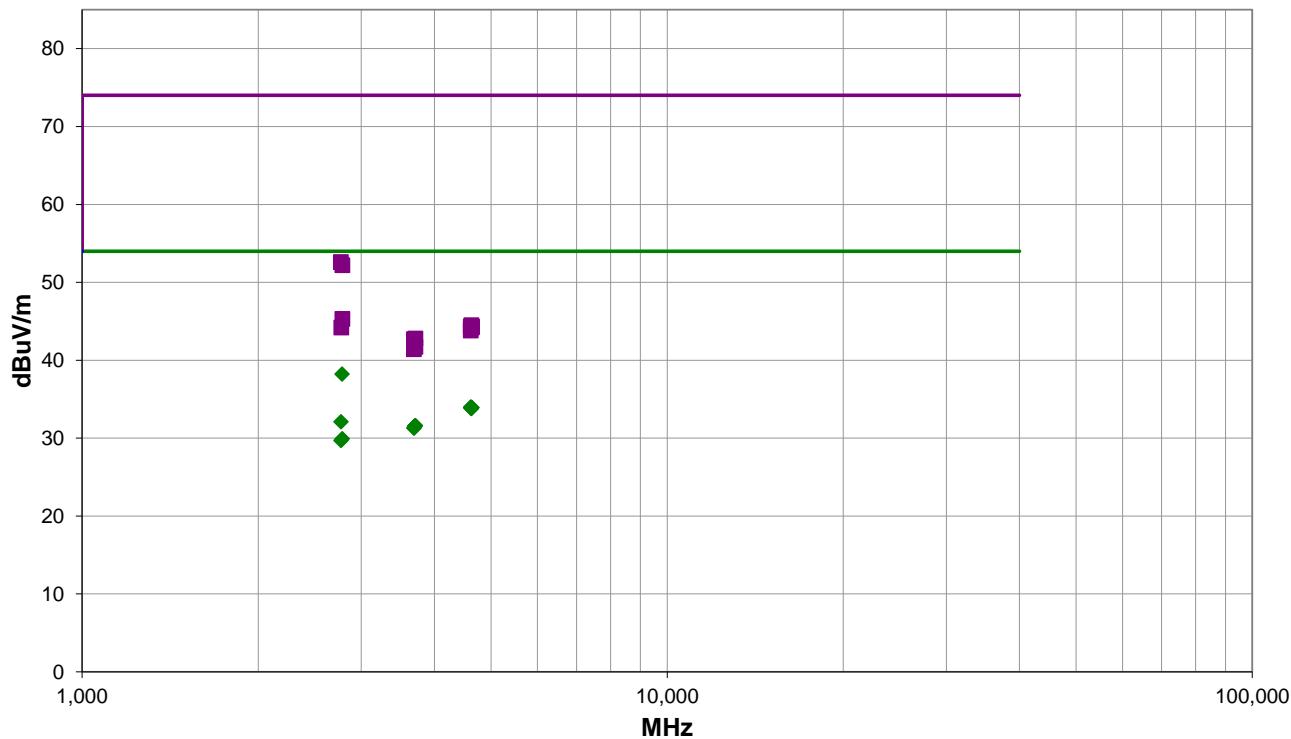
SPURIOUS RADIATED EMISSIONS (SRD Internal)

EUT:	MTCAP3-L4G2D-A23UEA-D	Work Order:	MLTI0373
Serial Number:	5399794k	Date:	2025-03-26
Customer:	Multi-Tech Systems, Inc.	Temperature:	22.7°C
Attendees:	Michael Bendzick, Marcus Glass	Relative Humidity:	27.7%
Customer Project:	None	Bar. Pressure (PMSL):	1021 mb
Tested By:	Marcelo Aguayo	Job Site:	MN05
Power:	110VAC/60Hz	Configuration:	MLTI0373-5

TEST PARAMETERS

Run #:	38	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)
--------	----	--------------------	---	---------------------	-----------

COMMENTS


Internal antenna unit

EUT OPERATING MODES

LoRa Radio Transmitting, CSS, Low Ch 923.3MHz, Mid Ch 925.1MHz, High Ch 927.5MHz 500KHz, 12 SF, Pwid 14

DEVIATIONS FROM TEST STANDARD

None

Run #: 38

PK AV QP

SPURIOUS RADIATED EMISSIONS (SRD Internal)

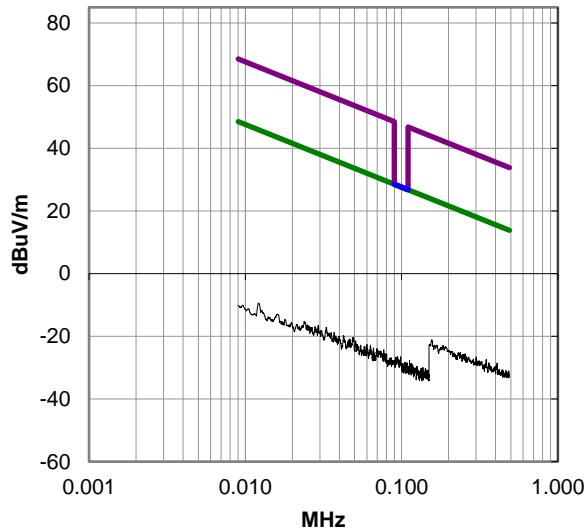
RESULTS - Run #38

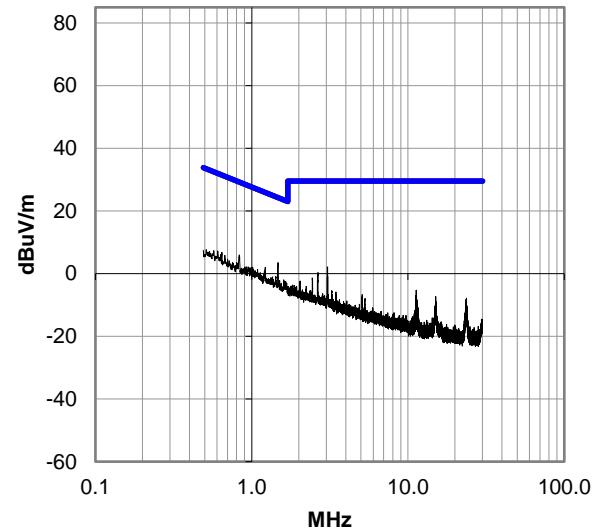
Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2783.042	40.3	-2.1	1.5	173.0	3.0	0.0	Horz	AV	0.0	38.2	54.0	-15.8	EUT Horz, High Ch
4618.067	30.0	4.0	1.06	252.0	3.0	0.0	Vert	AV	0.0	34.0	54.0	-20.0	EUT Horz, Low Ch
4616.542	30.0	3.9	1.5	342.0	3.0	0.0	Horz	AV	0.0	33.9	54.0	-20.1	EUT Horz, Low Ch
4639.125	29.8	4.1	1.29	156.9	3.0	0.0	Horz	AV	0.0	33.9	54.0	-20.1	EUT Horz, High Ch
4635.925	29.8	4.1	1.5	329.9	3.0	0.0	Vert	AV	0.0	33.9	54.0	-20.1	EUT Horz, High Ch
4625.367	29.7	4.1	3.24	149.9	3.0	0.0	Horz	AV	0.0	33.8	54.0	-20.2	EUT Horz, Mid Ch
4627.092	29.7	4.1	1.5	214.9	3.0	0.0	Vert	AV	0.0	33.8	54.0	-20.2	EUT Horz, Mid Ch
2767.833	54.6	-2.0	1.5	307.0	3.0	0.0	Horz	PK	0.0	52.6	74.0	-21.4	EUT Horz, Low Ch
2784.200	54.3	-2.1	1.5	173.0	3.0	0.0	Horz	PK	0.0	52.2	74.0	-21.8	EUT Horz, High Ch
2770.517	34.1	-2.0	3.86	156.0	3.0	0.0	Vert	AV	0.0	32.1	54.0	-21.9	EUT Horz, Low Ch
3710.050	30.6	1.0	2.73	182.9	3.0	0.0	Horz	AV	0.0	31.6	54.0	-22.4	EUT Horz, High Ch
3710.367	30.6	1.0	2.13	337.9	3.0	0.0	Vert	AV	0.0	31.6	54.0	-22.4	EUT Horz, High Ch
3702.642	30.6	0.9	1.5	346.0	3.0	0.0	Horz	AV	0.0	31.5	54.0	-22.5	EUT Horz, Mid Ch
3702.292	30.6	0.9	1.5	0.0	3.0	0.0	Vert	AV	0.0	31.5	54.0	-22.5	EUT Horz, Mid Ch
3692.975	30.5	0.8	1.5	45.0	3.0	0.0	Horz	AV	0.0	31.3	54.0	-22.7	EUT Horz, Low Ch
3693.225	30.5	0.8	1.5	325.9	3.0	0.0	Vert	AV	0.0	31.3	54.0	-22.7	EUT Horz, Low Ch
2783.958	32.0	-2.1	1.5	322.9	3.0	0.0	Vert	AV	0.0	29.9	54.0	-24.1	EUT Horz, High Ch
2771.067	31.7	-2.0	1.5	307.0	3.0	0.0	Horz	AV	0.0	29.7	54.0	-24.3	EUT Horz, Low Ch
2783.800	47.4	-2.1	1.5	322.9	3.0	0.0	Vert	PK	0.0	45.3	74.0	-28.7	EUT Horz, High Ch
4625.458	40.4	4.1	1.5	214.9	3.0	0.0	Vert	PK	0.0	44.5	74.0	-29.5	EUT Horz, Mid Ch
4623.150	40.2	4.1	3.24	149.9	3.0	0.0	Horz	PK	0.0	44.3	74.0	-29.7	EUT Horz, Mid Ch
4614.233	40.4	3.9	1.06	252.0	3.0	0.0	Vert	PK	0.0	44.3	74.0	-29.7	EUT Horz, Low Ch
4638.725	40.2	4.1	1.29	156.9	3.0	0.0	Horz	PK	0.0	44.3	74.0	-29.7	EUT Horz, High Ch
2772.283	46.2	-2.0	3.86	156.0	3.0	0.0	Vert	PK	0.0	44.2	74.0	-29.8	EUT Horz, Low Ch
4635.883	40.1	4.1	1.5	329.9	3.0	0.0	Vert	PK	0.0	44.2	74.0	-29.8	EUT Horz, High Ch
4615.792	39.9	3.9	1.5	342.0	3.0	0.0	Horz	PK	0.0	43.8	74.0	-30.2	EUT Horz, Low Ch
3710.233	41.8	1.0	2.13	337.9	3.0	0.0	Vert	PK	0.0	42.8	74.0	-31.2	EUT Horz, High Ch
3691.008	41.9	0.8	1.5	325.9	3.0	0.0	Vert	PK	0.0	42.7	74.0	-31.3	EUT Horz, Low Ch
3702.658	41.4	0.9	1.5	346.0	3.0	0.0	Horz	PK	0.0	42.3	74.0	-31.7	EUT Horz, Mid Ch
3698.567	41.3	0.8	1.5	0.0	3.0	0.0	Vert	PK	0.0	42.1	74.0	-31.9	EUT Horz, Mid Ch
3710.058	40.7	1.0	2.73	182.9	3.0	0.0	Horz	PK	0.0	41.7	74.0	-32.3	EUT Horz, High Ch
3690.717	40.6	0.8	1.5	45.0	3.0	0.0	Horz	PK	0.0	41.4	74.0	-32.6	EUT Horz, Low Ch

CONCLUSION

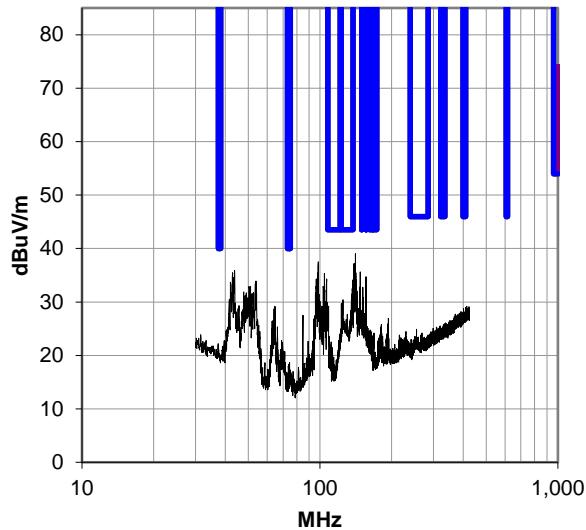
Pass

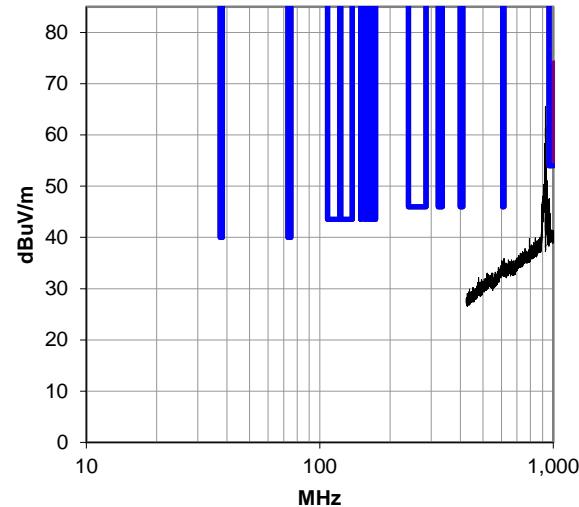
Tested By


SPURIOUS RADIATED EMISSIONS (SRD Internal)

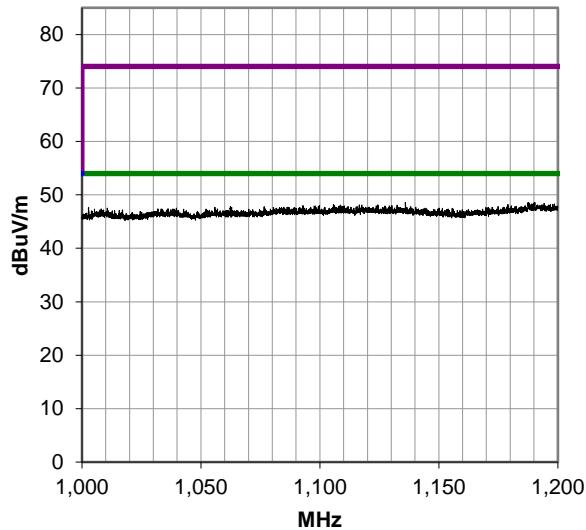

PRESCAN DATA

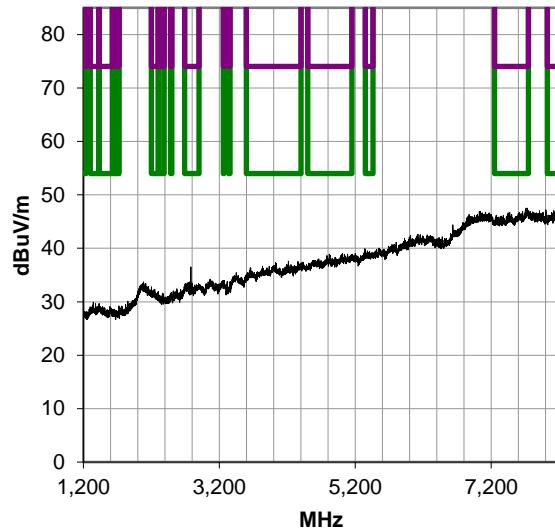
Radiated spurious emissions from the EUT are initially reviewed with Pre-scans (Preview scans). Pre-scans are performed, with the EUT transmitting on the lowest applicable data rate, for both vertical and horizontal polarizations. The Pre-scan plots below are shown with a peak detector and RBW for the following frequency ranges: 9 kHz RBW (< 30 MHz); 120 kHz RBW (30 - 1000 MHz); 1 MHz RBW (> 1 GHz). In the case where unintentional emissions are observed, an ambient or idle pre-scan with the radio off, will be shown for comparison.

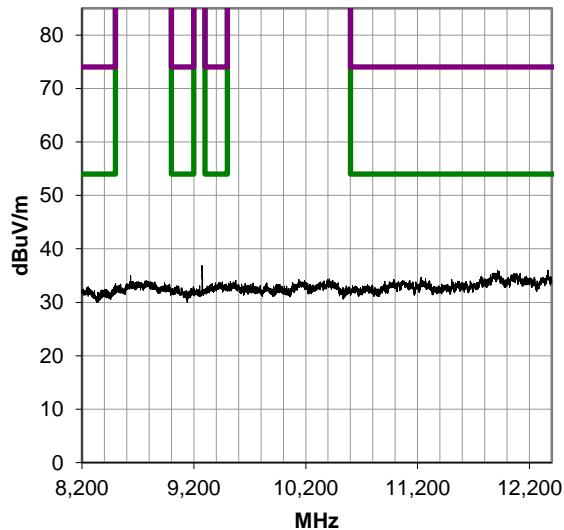

0.09-0.49 MHz, Run 258


0.49-30 MHz, Run 259

30-425 MHz, Run 244


425-1000 MHz, Run 243


SPURIOUS RADIATED EMISSIONS (SRD Internal)


1000-1200 MHz, Run 29

1200-8200 MHz, Run 30

8200-12400 MHz, Run 31

SPURIOUS RADIATED EMISSIONS (Model Variants)

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. A reference preview scan (pre-scan) is included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector
PK = Peak Detector
AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements within 2 MHz of the allowable band may have been taken using the integration method from ANSI C63.10 clause 11.13.3. This procedure uses the channel power feature of the spectrum analyzer to integrate the power of the emission within a 1 MHz bandwidth.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of $10 \times \log(1/dc)$.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Antenna - Double Ridge	ETS Lindgren	3115	AIP	2024-08-02	2026-08-02
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	2024-11-26	2025-11-26
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	2025-01-08	2026-01-08
Attenuator	Fairview Microwave	SA18H-20	VAF	2024-08-25	2025-08-25
Filter - High Pass	Micro-Tronics	HPM50108	LFM	2024-08-25	2025-08-25
Antenna - Standard Gain	ETS Lindgren	3160-07	AXP	NCR	NCR
Cable	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	2024-11-26	2025-11-26
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	2025-01-08	2026-01-08
Antenna - Standard Gain	ETS Lindgren	3160-08	AIQ	2025-02-04	2026-02-04
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVW	2025-01-08	2026-01-08
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAT	2025-01-08	2026-01-08

FREQUENCY RANGE INVESTIGATED

1 GHz TO 18000 MHz

POWER INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

MLTI0373-3
MLTI0373-4

SPURIOUS RADIATED EMISSIONS (Model Variants)

MODES INVESTIGATED

Transmitting LoRa Low Ch 923.3 MHz PA 1 PWID 14, Mid Ch 925.1 MHz PA 1 PWID 13 and High Ch 927.5 MHz PA 1 PWID 14

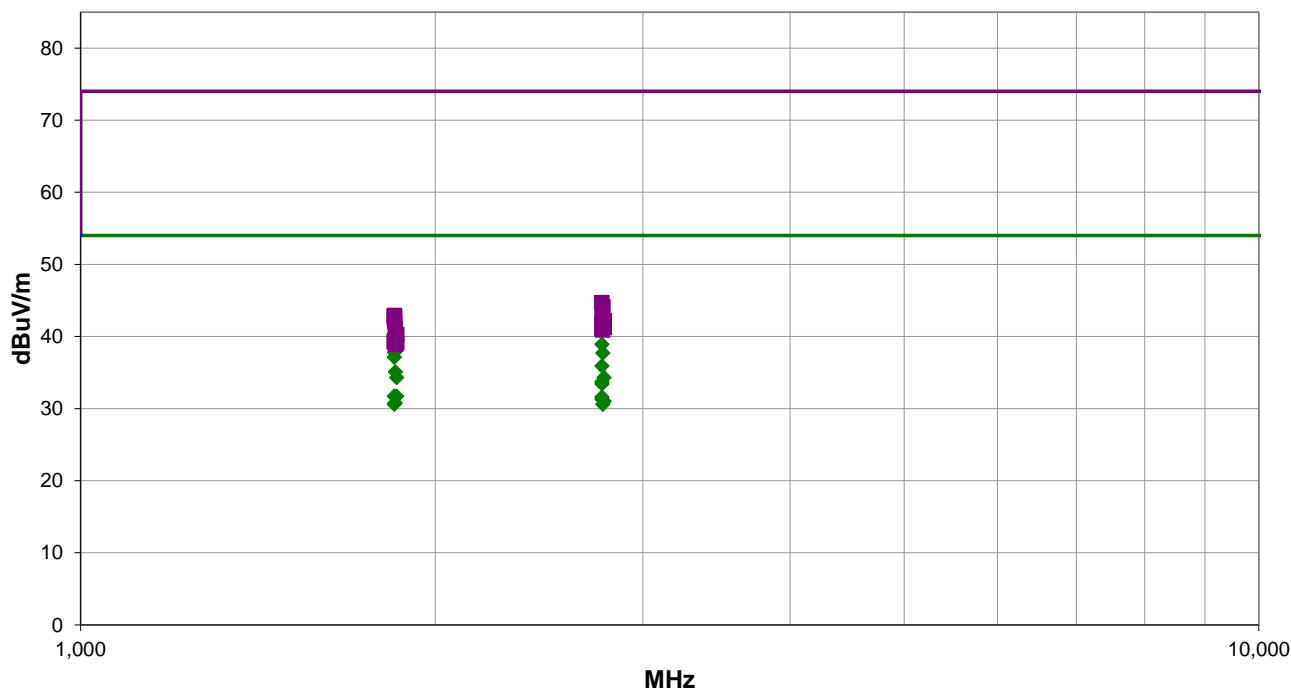
SPURIOUS RADIATED EMISSIONS (Model Variants)

EUT:	MTCAP3-EN-A23UEA-L	Work Order:	MLTI0373
Serial Number:	99999609	Date:	2025-03-31
Customer:	Multi-Tech Systems, Inc.	Temperature:	21.8°C
Attendees:	Michael Bendzick, Marcus Glass	Relative Humidity:	27.8%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Marcelo Aguayo	Job Site:	MN05
Power:	110VAC/60Hz	Configuration:	MLTI0373-3

TEST PARAMETERS

Run #:	121	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)
--------	-----	--------------------	---	---------------------	-----------

COMMENTS


None

EUT OPERATING MODES

Transmitting LoRa Low Ch 923.3 MHz PA 1 PWID 14, Mid Ch 925.1 MHz PA 1 PWID 13 and High Ch 927.5 MHz PA 1 PWID 14

DEVIATIONS FROM TEST STANDARD

None

Run #: 121

PK AV QP

SPURIOUS RADIATED EMISSIONS (Model Variants)

RESULTS - Run #121

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2770.192	40.9	-2.0	2.9	221.0	3.0	0.0	Horz	AV	0.0	38.9	54.0	-15.1	EUT Horz, Low Ch
1847.008	42.9	-4.5	4.0	304.9	3.0	0.0	Horz	AV	0.0	38.4	54.0	-15.6	EUT On Side, Low Ch
1846.508	42.8	-4.5	1.5	311.0	3.0	0.0	Horz	AV	0.0	38.3	54.0	-15.7	EUT Vert, Low Ch
1846.925	42.3	-4.5	3.5	184.0	3.0	0.0	Horz	AV	0.0	37.8	54.0	-16.2	EUT Horz, Low Ch
2774.700	39.8	-2.1	2.4	231.0	3.0	0.0	Horz	AV	0.0	37.7	54.0	-16.3	EUT Horz, Mid Ch
1846.425	41.6	-4.5	1.5	20.9	3.0	0.0	Vert	AV	0.0	37.1	54.0	-16.9	EUT Vert, Low Ch
2770.550	37.9	-2.0	1.5	155.0	3.0	0.0	Horz	AV	0.0	35.9	54.0	-18.1	EUT On Side, Low Ch
1849.892	39.6	-4.5	2.7	180.0	3.0	0.0	Horz	AV	0.0	35.1	54.0	-18.9	EUT Horz, Mid Ch
1854.642	38.8	-4.5	1.0	246.0	3.0	0.0	Horz	AV	0.0	34.3	54.0	-19.7	EUT Horz, High Ch
2782.017	36.4	-2.1	1.0	116.0	3.0	0.0	Vert	AV	0.0	34.3	54.0	-19.7	EUT Horz, High Ch
2770.025	35.7	-2.0	1.5	0.0	3.0	0.0	Vert	AV	0.0	33.7	54.0	-20.3	EUT Vert, Low Ch
2770.342	35.4	-2.0	1.6	134.0	3.0	0.0	Horz	AV	0.0	33.4	54.0	-20.6	EUT Vert, Low Ch
1854.525	36.2	-4.5	1.5	15.1	3.0	0.0	Vert	AV	0.0	31.7	54.0	-22.3	EUT Horz, High Ch
1846.658	36.2	-4.5	1.5	181.0	3.0	0.0	Vert	AV	0.0	31.7	54.0	-22.3	EUT Horz, Low Ch
2770.033	33.6	-2.0	1.5	96.9	3.0	0.0	Vert	AV	0.0	31.6	54.0	-22.4	EUT Horz, Low Ch
2770.042	33.3	-2.0	3.8	228.0	3.0	0.0	Vert	AV	0.0	31.3	54.0	-22.7	EUT On Side, Low Ch
2782.275	33.1	-2.1	1.0	23.0	3.0	0.0	Horz	AV	0.0	31.0	54.0	-23.0	EUT Horz, High Ch
1849.733	35.3	-4.5	1.5	98.0	3.0	0.0	Vert	AV	0.0	30.8	54.0	-23.2	EUT Horz, Mid Ch
1846.625	35.1	-4.5	1.5	37.9	3.0	0.0	Vert	AV	0.0	30.6	54.0	-23.4	EUT On Side, Low Ch
2775.158	32.7	-2.1	1.5	34.9	3.0	0.0	Vert	AV	0.0	30.6	54.0	-23.4	EUT Horz, Mid Ch
2769.683	46.7	-2.0	2.9	221.0	3.0	0.0	Horz	PK	0.0	44.7	74.0	-29.3	EUT Horz, Low Ch
2775.125	46.2	-2.1	2.4	231.0	3.0	0.0	Horz	PK	0.0	44.1	74.0	-29.9	EUT Horz, Mid Ch
2770.225	45.6	-2.0	1.5	155.0	3.0	0.0	Horz	PK	0.0	43.6	74.0	-30.4	EUT On Side, Low Ch
1846.400	47.4	-4.5	1.5	311.0	3.0	0.0	Horz	PK	0.0	42.9	74.0	-31.1	EUT Vert, Low Ch
1846.533	47.4	-4.5	4.0	304.9	3.0	0.0	Horz	PK	0.0	42.9	74.0	-31.1	EUT On Side, Low Ch
1846.067	47.1	-4.5	3.5	184.0	3.0	0.0	Horz	PK	0.0	42.6	74.0	-31.4	EUT Horz, Low Ch
2782.367	44.3	-2.1	1.0	116.0	3.0	0.0	Vert	PK	0.0	42.2	74.0	-31.8	EUT Horz, High Ch
1847.117	46.6	-4.5	1.5	20.9	3.0	0.0	Vert	PK	0.0	42.1	74.0	-31.9	EUT Vert, Low Ch
2769.442	43.7	-2.0	1.5	0.0	3.0	0.0	Vert	PK	0.0	41.7	74.0	-32.3	EUT Vert, Low Ch
2770.517	43.6	-2.0	1.6	134.0	3.0	0.0	Horz	PK	0.0	41.6	74.0	-32.4	EUT Vert, Low Ch
2782.492	43.4	-2.1	1.0	23.0	3.0	0.0	Horz	PK	0.0	41.3	74.0	-32.7	EUT Horz, High Ch
2770.592	43.3	-2.0	3.8	228.0	3.0	0.0	Vert	PK	0.0	41.3	74.0	-32.7	EUT On Side, Low Ch
2769.083	43.1	-2.0	1.5	96.9	3.0	0.0	Vert	PK	0.0	41.1	74.0	-32.9	EUT Horz, Low Ch
1849.542	45.6	-4.5	2.7	180.0	3.0	0.0	Horz	PK	0.0	41.1	74.0	-32.9	EUT Horz, Mid Ch
2774.300	43.0	-2.1	1.5	34.9	3.0	0.0	Vert	PK	0.0	40.9	74.0	-33.1	EUT Horz, Mid Ch
1854.958	44.8	-4.5	1.0	246.0	3.0	0.0	Horz	PK	0.0	40.3	74.0	-33.7	EUT Horz, High Ch
1846.792	44.0	-4.5	1.5	37.9	3.0	0.0	Vert	PK	0.0	39.5	74.0	-34.5	EUT On Side, Low Ch
1845.783	43.9	-4.6	1.5	181.0	3.0	0.0	Vert	PK	0.0	39.3	74.0	-34.7	EUT Horz, Low Ch
1854.850	43.6	-4.5	1.5	15.1	3.0	0.0	Vert	PK	0.0	39.1	74.0	-34.9	EUT Horz, High Ch
1849.858	43.4	-4.5	1.5	98.0	3.0	0.0	Vert	PK	0.0	38.9	74.0	-35.1	EUT Horz, Mid Ch

SPURIOUS RADIATED EMISSIONS (Model Variants)

CONCLUSION

Pass

Tested By

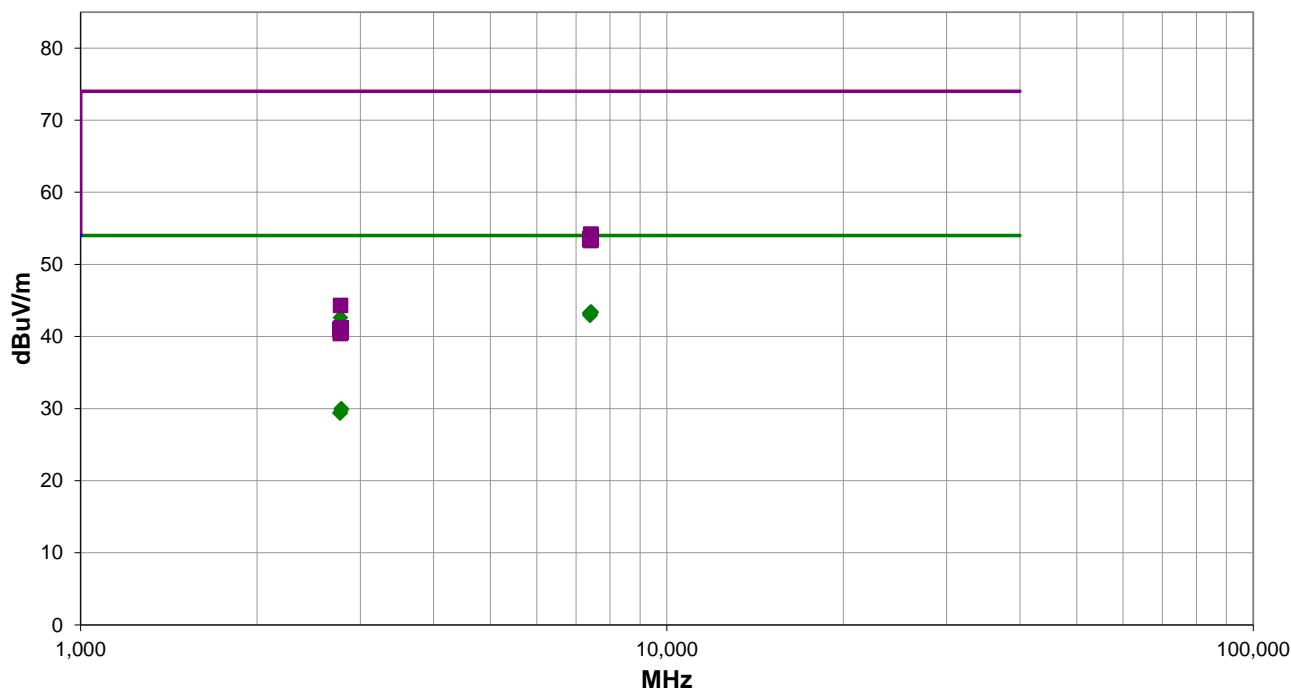
SPURIOUS RADIATED EMISSIONS (Model Variants)

EUT:	MTCAP3-EN-A23UEA-D	Work Order:	MLTI0373
Serial Number:	99999614	Date:	2025-03-31
Customer:	Multi-Tech Systems, Inc.	Temperature:	21.9°C
Attendees:	Michael Bendzick, Marcus Glass	Relative Humidity:	27.4%
Customer Project:	None	Bar. Pressure (PMSL):	1019 mb
Tested By:	Marcelo Aguayo	Job Site:	MN05
Power:	110VAC/60Hz	Configuration:	MLTI0373-4

TEST PARAMETERS

Run #:	137	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)
--------	-----	--------------------	---	---------------------	-----------

COMMENTS


None

EUT OPERATING MODES

Transmitting LoRa Low Ch 923.3 MHz PA 1 PWID 14, Mid Ch 925.1 MHz PA 1 PWID 13 and High Ch 927.5 MHz PA 1 PWID 14

DEVIATIONS FROM TEST STANDARD

None

Run #: 137

PK AV QP

SPURIOUS RADIATED EMISSIONS (Model Variants)

RESULTS - Run #137

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7421.458	29.8	13.6	1.5	239.9	3.0	0.0	Horz	AV	0.0	43.4	54.0	-10.6	EUT Horz, High Ch
7422.425	29.8	13.6	1.5	196.0	3.0	0.0	Vert	AV	0.0	43.4	54.0	-10.6	EUT Horz, High Ch
7421.333	29.7	13.6	1.5	23.9	3.0	0.0	Horz	AV	0.0	43.3	54.0	-10.7	EUT Vert, High Ch
7422.492	29.7	13.6	1.5	31.9	3.0	0.0	Vert	AV	0.0	43.3	54.0	-10.7	EUT Vert, High Ch
7422.017	29.7	13.6	1.5	9.0	3.0	0.0	Horz	AV	0.0	43.3	54.0	-10.7	EUT On Side, High Ch
7422.275	29.7	13.6	1.5	213.0	3.0	0.0	Vert	AV	0.0	43.3	54.0	-10.7	EUT On Side, High Ch
7383.950	29.8	13.4	3.6	94.0	3.0	0.0	Horz	AV	0.0	43.2	54.0	-10.8	EUT Horz, Low Ch
7385.592	29.8	13.4	3.5	56.9	3.0	0.0	Vert	AV	0.0	43.2	54.0	-10.8	EUT Horz, Low Ch
7400.158	29.5	13.5	1.5	204.9	3.0	0.0	Vert	AV	0.0	43.0	54.0	-11.0	EUT Horz, Mid Ch
7398.608	29.4	13.5	1.7	99.0	3.0	0.0	Horz	AV	0.0	42.9	54.0	-11.1	EUT Horz, Mid Ch
2775.192	44.7	-2.1	3.3	236.9	3.0	0.0	Vert	AV	0.0	42.6	54.0	-11.4	EUT Horz, Mid Ch
7417.833	40.6	13.6	1.5	23.9	3.0	0.0	Horz	PK	0.0	54.2	74.0	-19.8	EUT Vert, High Ch
7422.083	40.5	13.6	1.5	239.9	3.0	0.0	Horz	PK	0.0	54.1	74.0	-19.9	EUT Horz, High Ch
7420.117	40.4	13.6	1.5	196.0	3.0	0.0	Vert	PK	0.0	54.0	74.0	-20.0	EUT Horz, High Ch
7421.192	40.2	13.6	1.5	213.0	3.0	0.0	Vert	PK	0.0	53.8	74.0	-20.2	EUT On Side, High Ch
7400.608	40.1	13.5	1.7	99.0	3.0	0.0	Horz	PK	0.0	53.6	74.0	-20.4	EUT Horz, Mid Ch
7386.917	40.1	13.5	3.5	56.9	3.0	0.0	Vert	PK	0.0	53.6	74.0	-20.4	EUT Horz, Low Ch
7422.308	39.9	13.6	1.5	9.0	3.0	0.0	Horz	PK	0.0	53.5	74.0	-20.5	EUT On Side, High Ch
7384.092	40.1	13.4	3.6	94.0	3.0	0.0	Horz	PK	0.0	53.5	74.0	-20.5	EUT Horz, Low Ch
7421.875	39.8	13.6	1.5	31.9	3.0	0.0	Vert	PK	0.0	53.4	74.0	-20.6	EUT Vert, High Ch
7401.300	39.8	13.5	1.5	204.9	3.0	0.0	Vert	PK	0.0	53.3	74.0	-20.7	EUT Horz, Mid Ch
2784.517	32.1	-2.1	1.5	62.0	3.0	0.0	Vert	AV	0.0	30.0	54.0	-24.0	EUT Horz, High Ch
2783.583	31.9	-2.1	2.0	184.0	3.0	0.0	Horz	AV	0.0	29.8	54.0	-24.2	EUT Horz, High Ch
2773.408	31.5	-2.1	1.5	275.9	3.0	0.0	Horz	AV	0.0	29.4	54.0	-24.6	EUT Horz, Mid Ch
2770.483	31.4	-2.0	1.5	113.9	3.0	0.0	Horz	AV	0.0	29.4	54.0	-24.6	EUT Horz, Low Ch
2770.117	31.4	-2.0	1.5	258.9	3.0	0.0	Vert	AV	0.0	29.4	54.0	-24.6	EUT Horz, Low Ch
2774.658	46.4	-2.1	3.3	236.9	3.0	0.0	Vert	PK	0.0	44.3	74.0	-29.7	EUT Horz, Mid Ch
2782.758	43.3	-2.1	1.5	62.0	3.0	0.0	Vert	PK	0.0	41.2	74.0	-32.8	EUT Horz, High Ch
2769.708	43.1	-2.0	1.5	113.9	3.0	0.0	Horz	PK	0.0	41.1	74.0	-32.9	EUT Horz, Low Ch
2768.458	42.9	-2.0	1.5	258.9	3.0	0.0	Vert	PK	0.0	40.9	74.0	-33.1	EUT Horz, Low Ch
2783.458	42.7	-2.1	2.0	184.0	3.0	0.0	Horz	PK	0.0	40.6	74.0	-33.4	EUT Horz, High Ch
2774.200	42.5	-2.1	1.5	275.9	3.0	0.0	Horz	PK	0.0	40.4	74.0	-33.6	EUT Horz, Mid Ch

CONCLUSION

Pass

Tested By

SPURIOUS RADIATED EMISSIONS (SRD External)

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. A reference preview scan (pre-scan) is included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements within 2 MHz of the allowable band may have been taken using the integration method from ANSI C63.10 clause 11.13.3. This procedure uses the channel power feature of the spectrum analyzer to integrate the power of the emission within a 1 MHz bandwidth.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of $10 \times \log(1/dc)$.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Antenna - Double Ridge	ETS Lindgren	3115	AIP	2024-08-02	2026-08-02
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	2024-11-26	2025-11-26
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	2025-01-08	2026-01-08
Attenuator	Fairview Microwave	SA18H-20	VAF	2024-08-25	2025-08-25
Filter - High Pass	Micro-Tronics	HPM50108	LFM	2024-08-25	2025-08-25
Antenna - Standard Gain	ETS Lindgren	3160-07	AXP	NCR	NCR
Cable	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	2024-11-26	2025-11-26
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	2025-01-08	2026-01-08
Antenna - Biconilog	ETS Lindgren	3142D	AXO	2023-10-02	2025-10-02
Cable	ESM Cable Corp.	Bilog Cables	MNH	2024-11-26	2025-11-26
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	2024-10-09	2025-10-09
Filter - Low Pass	Micro-Tronics	LPM50004	LFK	2024-08-25	2025-08-25
Attenuator	Fairview Microwave	SA18E-10	TYA	2024-08-25	2025-08-25
Antenna - Loop	ETS Lindgren	6502	AOB	2023-06-12	2025-06-12
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAT	2025-01-08	2026-01-08

SPURIOUS RADIATED EMISSIONS (SRD External)

FREQUENCY RANGE INVESTIGATED

9 kHz TO 18000 MHz

POWER INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

MLTI0373-2

MODES INVESTIGATED

LoRa Radio Transmitting, CSS, High Ch 927.5 MHz, 500KHz, 12 SF, PWID 14

LoRa Radio Transmitting, CSS, Low Ch 923.2 MHz, 500KHz, 12 SF, PWID 14

LoRa Radio Transmitting, CSS, Mid Ch 925.1 MHz, 500KHz, 12 SF, PWID 14

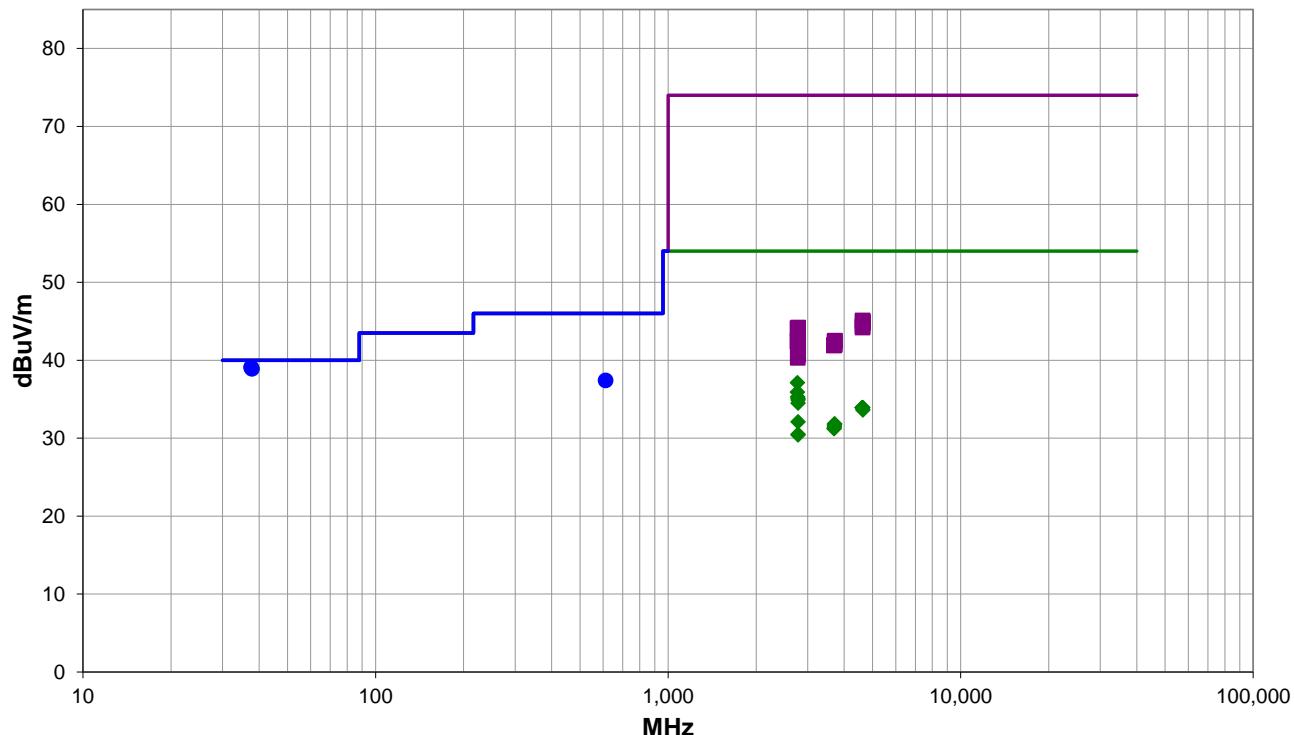
SPURIOUS RADIATED EMISSIONS (SRD External)

EUT:	MTCAP3-L4G2D-A23UEA-L	Work Order:	MLTI0373
Serial Number:	5399780K	Date:	2025-03-26
Customer:	Multi-Tech Systems, Inc.	Temperature:	22.1°C
Attendees:	Michael Bendzick, Marcus Glass	Relative Humidity:	27.2%
Customer Project:	None	Bar. Pressure (PMSL):	1022 mb
Tested By:	Arnauld Dedry	Job Site:	MN05
Power:	110VAC/60Hz	Configuration:	MLTI0373-2

TEST PARAMETERS

Run #:	11	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)
--------	----	--------------------	---	---------------------	-----------

COMMENTS


None

EUT OPERATING MODES

LoRa Radio Transmitting, CSS, Low Ch 923.3MHz, Mid Ch 925.1MHz & High Ch 927.0MHz, 500KHz, 12 SF, PWID 14

DEVIATIONS FROM TEST STANDARD

None

Run #: 11

■ PK ♦ AV ● QP

SPURIOUS RADIATED EMISSIONS (SRD External)

RESULTS - Run #11

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
37.527	42.4	-3.3	1.0	91.0	3.0	0.0	Vert	QP	0.0	39.1	40.0	-0.9	Eut Vert, High Ch
37.798	42.3	-3.4	1.0	58.0	3.0	0.0	Vert	QP	0.0	38.9	40.0	-1.1	Eut Vert, Mid Ch
611.635	16.6	10.8	2.0	195.0	3.0	10.0	Vert	QP	0.0	37.4	46.0	-8.6	EUT Vert, Low Ch
2772.800	45.0	-2.0	1.5	56.9	3.0	0.0	Vert	AV	0.0	43.0	54.0	-11.0	Eut Vert, Mid Ch
2770.308	39.1	-2.0	3.2	73.0	3.0	0.0	Horz	AV	0.0	37.1	54.0	-16.9	Eut on Side, Low Ch
2769.980	37.9	-2.0	3.9	48.0	3.0	0.0	Vert	AV	0.0	35.9	54.0	-18.1	Eut Vert, Low Ch
2775.470	37.4	-2.1	3.2	80.0	3.0	0.0	Horz	AV	0.0	35.3	54.0	-18.7	Eut On Side, Mid Ch
2781.875	37.2	-2.1	1.9	202.0	3.0	0.0	Horz	AV	0.0	35.1	54.0	-18.9	Eut On Side, High Ch
2781.992	37.0	-2.1	1.2	87.0	3.0	0.0	Horz	AV	0.0	34.9	54.0	-19.1	Eut Horz, High Ch
2781.817	36.6	-2.1	4.0	175.9	3.0	0.0	Vert	AV	0.0	34.5	54.0	-19.5	Eut Vert, High Ch
4625.710	29.8	4.1	1.5	286.9	3.0	0.0	Vert	AV	0.0	33.9	54.0	-20.1	Eut Vert, High Ch
4627.833	29.8	4.1	1.5	173.0	3.0	0.0	Vert	AV	0.0	33.9	54.0	-20.1	Eut Vert, Mid Ch
4614.920	30.0	3.9	1.5	34.0	3.0	0.0	Horz	AV	0.0	33.9	54.0	-20.1	Eut On Side, Mid Ch
4614.700	30.0	3.9	1.5	307.9	3.0	0.0	Horz	AV	0.0	33.9	54.0	-20.1	Eut on Side, Low Ch
4613.290	30.0	3.9	1.5	92.9	3.0	0.0	Vert	AV	0.0	33.9	54.0	-20.1	Eut Vert, Low Ch
4635.042	29.5	4.1	1.5	72.0	3.0	0.0	Horz	AV	0.0	33.6	54.0	-20.4	Eut On Side, High Ch
2782.150	34.2	-2.1	4.0	325.0	3.0	0.0	Vert	AV	0.0	32.1	54.0	-21.9	Eut On Side, High Ch
3710.333	30.8	1.0	1.5	253.0	3.0	0.0	Horz	AV	0.0	31.8	54.0	-22.2	Eut On Side, High Ch
3709.170	30.8	1.0	1.5	357.0	3.0	0.0	Vert	AV	0.0	31.8	54.0	-22.2	Eut Vert, High Ch
3706.690	30.8	0.9	2.3	153.0	3.0	0.0	Horz	AV	0.0	31.7	54.0	-22.3	Eut On Side, Mid Ch
3705.260	30.6	0.9	1.5	177.0	3.0	0.0	Vert	AV	0.0	31.5	54.0	-22.5	Eut Vert, Low Ch
3702.608	30.4	0.9	1.5	279.0	3.0	0.0	Vert	AV	0.0	31.3	54.0	-22.7	Eut Vert, Mid Ch
3694.142	30.4	0.8	3.3	15.0	3.0	0.0	Horz	AV	0.0	31.2	54.0	-22.8	Eut on Side, Low Ch
2782.717	32.6	-2.1	1.6	336.9	3.0	0.0	Horz	AV	0.0	30.5	54.0	-23.5	Eut Vert, High Ch
2782.183	32.5	-2.1	1.5	306.0	3.0	0.0	Vert	AV	0.0	30.4	54.0	-23.6	Eut Horz, High Ch
4622.540	41.0	4.1	1.5	92.9	3.0	0.0	Vert	PK	0.0	45.1	74.0	-28.9	Eut Vert, Low Ch
4626.880	40.9	4.1	1.5	286.9	3.0	0.0	Vert	PK	0.0	45.0	74.0	-29.0	Eut Vert, High Ch
4635.000	40.7	4.1	1.5	72.0	3.0	0.0	Horz	PK	0.0	44.8	74.0	-29.2	Eut On Side, High Ch
4624.580	40.7	4.1	1.5	34.0	3.0	0.0	Horz	PK	0.0	44.8	74.0	-29.2	Eut On Side, Mid Ch
4623.667	40.3	4.1	1.5	173.0	3.0	0.0	Vert	PK	0.0	44.4	74.0	-29.6	Eut Vert, Mid Ch
2782.217	46.3	-2.1	1.9	202.0	3.0	0.0	Horz	PK	0.0	44.2	74.0	-29.8	Eut On Side, High Ch
4617.317	40.2	4.0	1.5	307.9	3.0	0.0	Horz	PK	0.0	44.2	74.0	-29.8	Eut on Side, Low Ch
2770.342	46.1	-2.0	3.2	73.0	3.0	0.0	Horz	PK	0.0	44.1	74.0	-29.9	Eut on Side, Low Ch
2782.192	44.8	-2.1	1.2	87.0	3.0	0.0	Horz	PK	0.0	42.7	74.0	-31.3	Eut Horz, High Ch
3718.500	41.5	1.0	1.5	357.0	3.0	0.0	Vert	PK	0.0	42.5	74.0	-31.5	Eut Vert, High Ch
2782.250	44.5	-2.1	4.0	175.9	3.0	0.0	Vert	PK	0.0	42.4	74.0	-31.6	Eut Vert, High Ch
3705.940	41.5	0.9	2.3	153.0	3.0	0.0	Horz	PK	0.0	42.4	74.0	-31.6	Eut On Side, Mid Ch
2769.890	44.4	-2.0	3.9	48.0	3.0	0.0	Vert	PK	0.0	42.4	74.0	-31.6	Eut Vert, Low Ch
2775.300	44.3	-2.1	3.2	80.0	3.0	0.0	Horz	PK	0.0	42.2	74.0	-31.8	Eut On Side, Mid Ch
3712.392	41.0	1.0	1.5	253.0	3.0	0.0	Horz	PK	0.0	42.0	74.0	-32.0	Eut On Side, High Ch

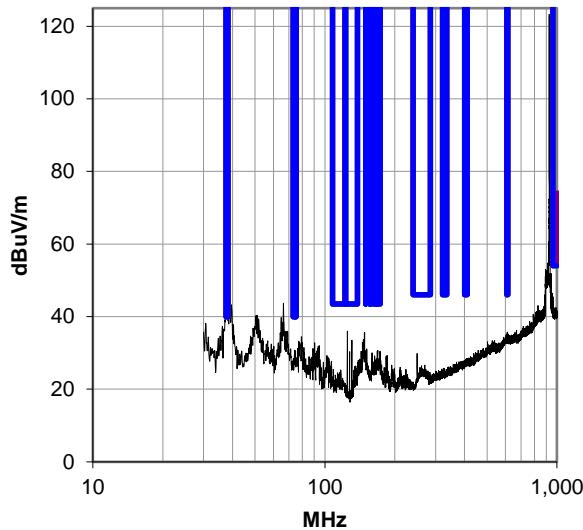
SPURIOUS RADIATED EMISSIONS (SRD External)

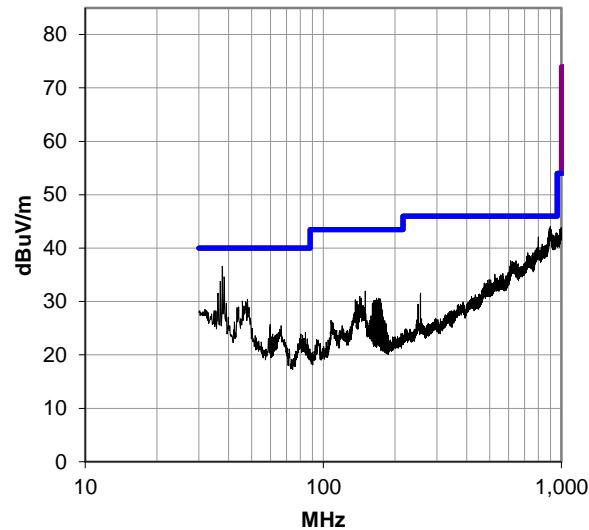
Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
3702.325	41.1	0.9	1.5	279.0	3.0	0.0	Vert	PK	0.0	42.0	74.0	-32.0	Eut Vert, Mid Ch
2783.467	44.0	-2.1	1.5	306.0	3.0	0.0	Vert	PK	0.0	41.9	74.0	-32.1	Eut Horz, High Ch
3694.008	41.1	0.8	3.3	15.0	3.0	0.0	Horz	PK	0.0	41.9	74.0	-32.1	Eut on Side, Low Ch
3688.010	41.1	0.8	1.5	177.0	3.0	0.0	Vert	PK	0.0	41.9	74.0	-32.1	Eut Vert, Low Ch
2781.575	43.5	-2.1	4.0	325.0	3.0	0.0	Vert	PK	0.0	41.4	74.0	-32.6	Eut On Side, High Ch
2782.267	42.8	-2.1	1.6	336.9	3.0	0.0	Horz	PK	0.0	40.7	74.0	-33.3	Eut Vert, High Ch
2775.250	42.4	-2.1	1.5	56.9	3.0	0.0	Vert	PK	0.0	40.3	74.0	-33.7	Eut Vert, Mid Ch

CONCLUSION

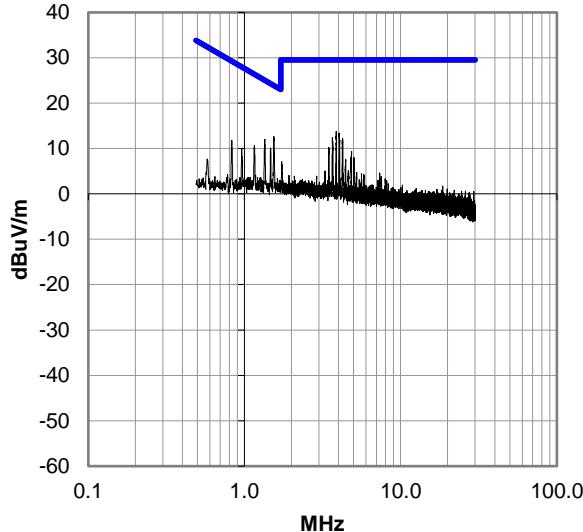
Pass

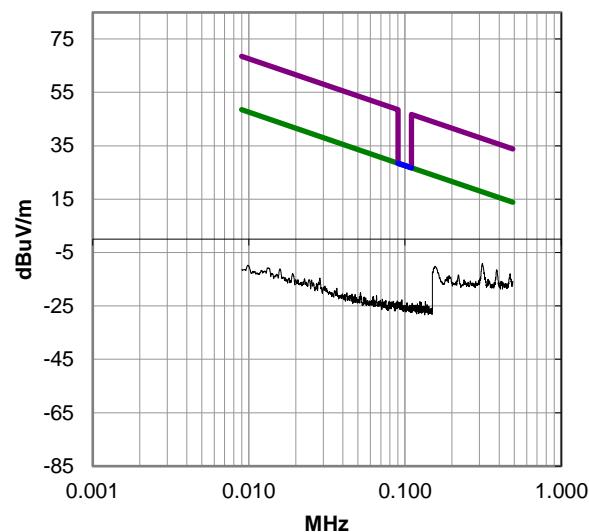
Tested By


SPURIOUS RADIATED EMISSIONS (SRD External)

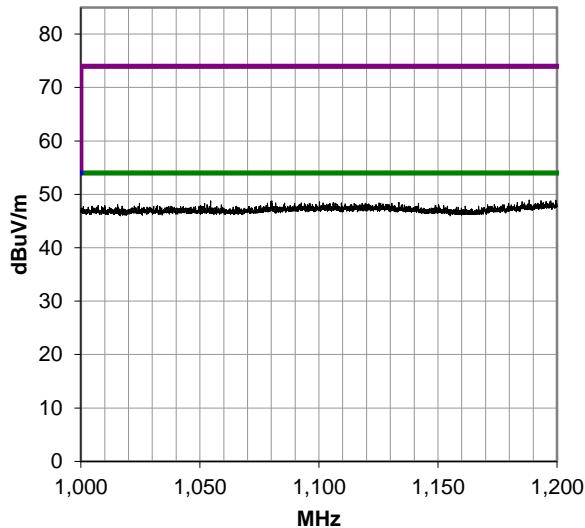

PRESCAN DATA

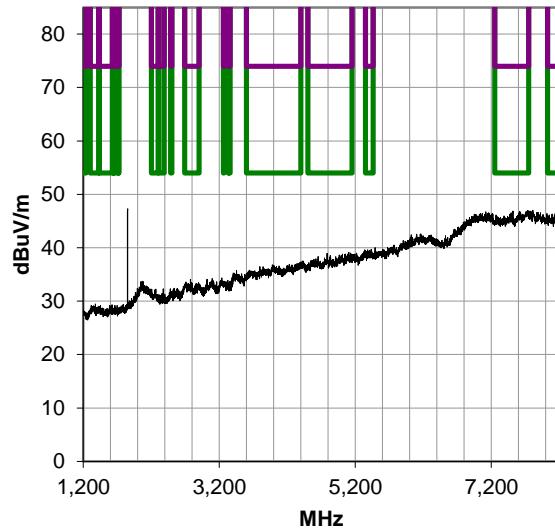
Radiated spurious emissions from the EUT are initially reviewed with Pre-scans (Preview scans). Pre-scans are performed, with the EUT transmitting on the lowest applicable data rate, for both vertical and horizontal polarizations. The Pre-scan plots below are shown with a peak detector and RBW for the following frequency ranges: 9 kHz RBW (< 30 MHz); 120 kHz RBW (30 - 1000 MHz); 1 MHz RBW (> 1 GHz). In the case where unintentional emissions are observed, an ambient or idle pre-scan with the radio off, will be shown for comparison.

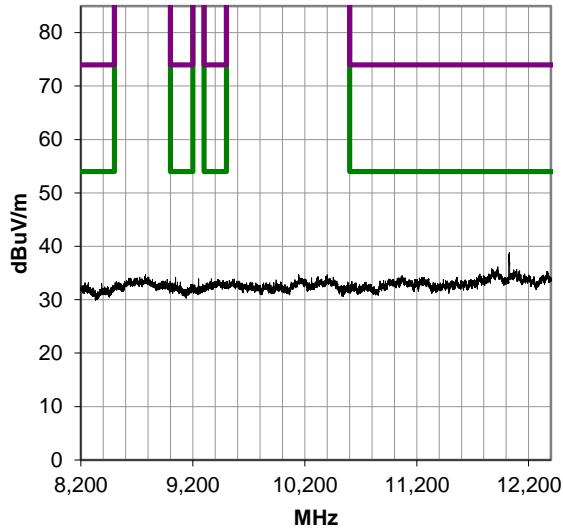

External Antenna, 30-1000 MHz, Run 52
Transmit On


External Antenna, 30-1000 MHz, Run 1
Transmit Off

External Antenna, 0.49-30 MHz, Run 55


External Antenna, 0.009-0.49 MHz, Run 56


SPURIOUS RADIATED EMISSIONS (SRD External)


External Antenna, 1000-1200 MHz, Run 4

External Antenna, 1200-8200 MHz, Run 5

External Antenna, 8200-12400 MHz, Run 6

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The test software provided for operation in a fixed, single channel mode allows the EUT to operate continuously at 100% Duty Cycle.

OUTPUT POWER

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

Prior to measuring output power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The method AVGSA-2 in section 11.9.2.2.4 of ANSI C63.10:2020 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding $[10 \log (1 / D)]$, where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2024-05-27	2025-05-27
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2024-05-22	2025-05-22
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2024-08-28	2025-08-28
Block - DC	Fairview Microwave	SD3379	ANH	2024-08-28	2025-08-28
Generator - Signal	Agilent	N5182A	TIF	2023-07-27	2026-07-27

OUTPUT POWER

EUT:	MTCAP3-L4G2D-A23UEA-L	Work Order:	MLTI0373
Serial Number:	5399780K	Date:	2025-03-21
Customer:	Multi-Tech Systems, Inc.	Temperature:	23.2°C
Attendees:	Michael Bendzick, Marcus Glass	Relative Humidity:	27.6%
Customer Project:	None	Bar. Pressure (PMSL):	1001 mbar
Tested By:	Arnauld Dedry, Christopher Heintzelman	Job Site:	MN11
Power:	120VAC/60Hz	Configuration:	MLTI0373-1

COMMENTS

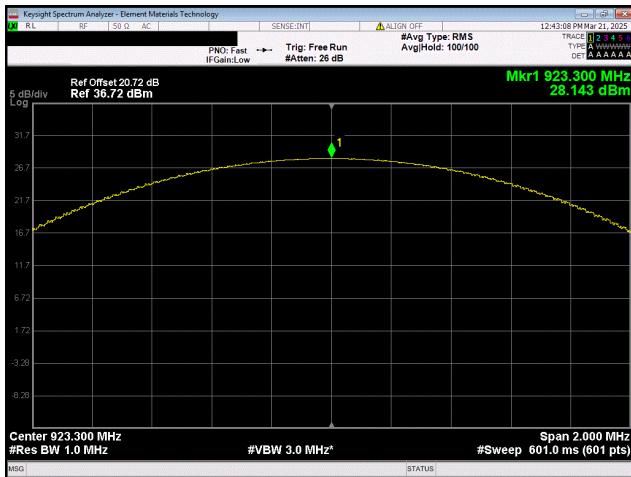
The RBw was increased above 5% of the measured OBW, but less than or equal to 1 MHz. The increased RBW would not impact the results since the measured OBW is less than the RBw value used during this testing.

DEVIATIONS FROM TEST STANDARD

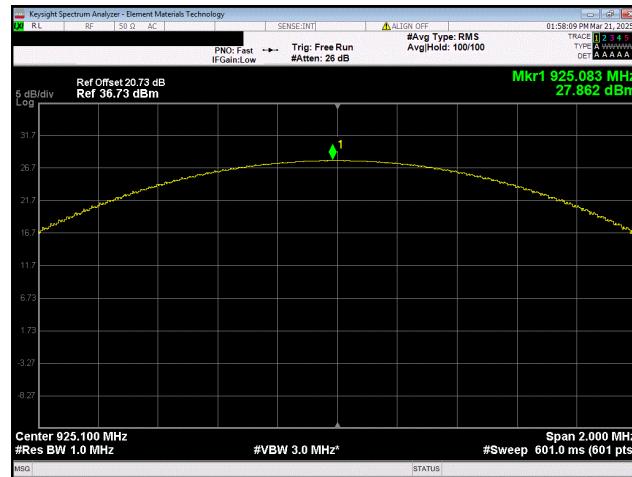
None

CONCLUSION

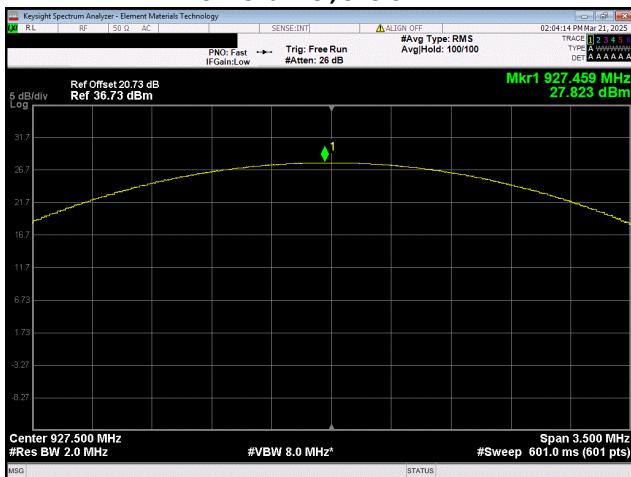
Pass



Tested By


TEST RESULTS

	Avg Cond Pwr (dBm)	Duty Cycle Factor (dB)	Out Pwr (dBm)	Limit (dBm)	Result
LoRa CSS					
Low Channel, 923.3 MHz	28.143	0	28.1	30	Pass
Mid Channel, 925.1 MHz	27.862	0	27.9	30	Pass
High Channel, 927.5 MHz	27.823	0	27.8	30	Pass


OUTPUT POWER

LoRa CSS
Low Channel, 923.3 MHz

LoRa CSS
Mid Channel, 925.1 MHz

LoRa CSS
High Channel, 927.5 MHz

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

Prior to measuring output power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The method AVGSA-2 in section 11.9.2.2.4 of ANSI C63.10:2020 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding $[10 \log (1 / D)]$, where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

Equivalent Isotropic Radiated Power (EIRP) = Max Measured Power + Antenna gain (dBi)

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2024-05-27	2025-05-27
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2024-05-22	2025-05-22
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2024-08-28	2025-08-28
Block - DC	Fairview Microwave	SD3379	ANH	2024-08-28	2025-08-28
Generator - Signal	Agilent	N5182A	TIF	2023-07-27	2026-07-27

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

EUT:	MTCAP3-L4G2D-A23UEA-L	Work Order:	MLTI0373
Serial Number:	5399780K	Date:	2025-03-21
Customer:	Multi-Tech Systems, Inc.	Temperature:	21.4°C
Attendees:	Michael Bendzick, Marcus Glass	Relative Humidity:	24.6%
Customer Project:	None	Bar. Pressure (PMSL):	1010 mbar
Tested By:	Arnauld Dedry, Christopher Heintzelman	Job Site:	MN11
Power:	120VAC/60Hz	Configuration:	MLTI0373-1

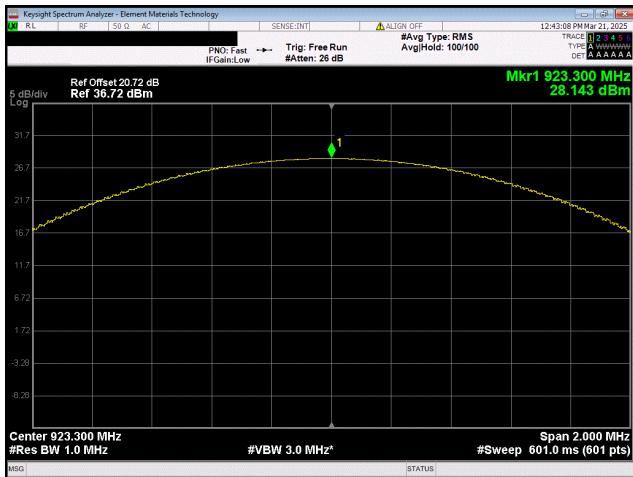
COMMENTS

The highest antenna gain used for this project was used for the EIRP calculation.

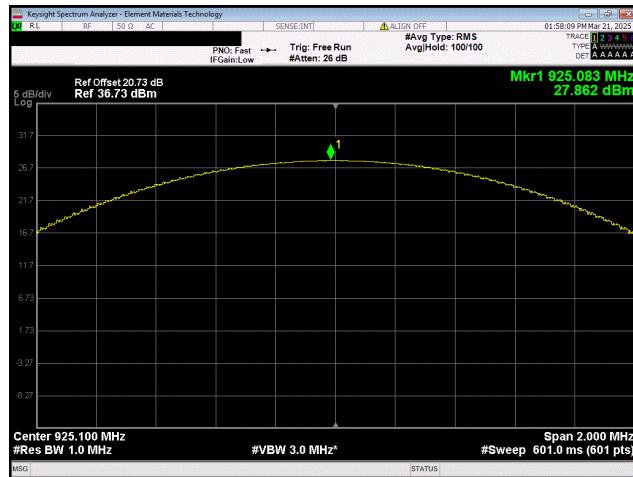
DEVIATIONS FROM TEST STANDARD

None

CONCLUSION


Pass

Tested By


TEST RESULTS

	Avg Cond Pwr (dBm)	Duty Cycle Factor (dB)	Out Pwr (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Result
LoRa CSS							
Low Channel, 923.3 MHz	28.143	0	28.1	2.5	30.6	36	Pass
Mid Channel, 925.1 MHz	27.862	0	27.9	2.5	30.4	36	Pass
High Channel, 927.5 MHz	27.823	0	27.8	2.5	30.3	36	Pass


EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

LoRa CSS
Low Channel, 923.3 MHz

LoRa CSS
Mid Channel, 925.1 MHz

LoRa CSS
High Channel, 927.5 MHz

BAND EDGE COMPLIANCE

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge. The analyzer screen captures for this test show an example of the emission mask for the test mode also used during the radiated spurious emissions at the restricted band edges test.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B	TFX	2023-05-14	2026-05-14
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2024-09-03	2025-09-03
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2024-08-28	2025-08-28
Block - DC	Fairview Microwave	SD3379	ANH	2024-08-28	2025-08-28
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2024-05-27	2025-05-27

BAND EDGE COMPLIANCE

EUT:	MTCAP3-L4G2D-A23UEA-L	Work Order:	MLTI0373
Serial Number:	5399780K	Date:	2025-05-20
Customer:	Multi-Tech Systems, Inc.	Temperature:	22.3°C
Attendees:	Marcus Glass	Relative Humidity:	38.5%
Customer Project:	None	Bar. Pressure (PMSL):	1007 mbar
Tested By:	Christopher Heintzelman	Job Site:	MN11
Power:	110VAC/60Hz	Configuration:	MLTI0373-1

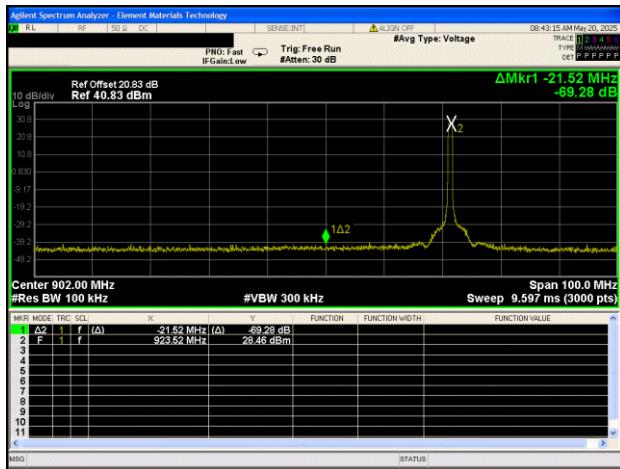
COMMENTS

Reference level offset includes measurement cable, 20dB attenuator, and DC block.

DEVIATIONS FROM TEST STANDARD

None

CONCLUSION


Pass

Tested By

TEST RESULTS

	Value (dBc)	Limit ≤ (dBc)	Result
Normal Test Conditions			
LoRa, CSS, 500 kHz BW, Low Channel, 923.3 MHz	-69.28	-30	Pass
LoRa, CSS, 500 kHz BW, High Channel, 927.5 MHz	-38.09	-30	Pass

BAND EDGE COMPLIANCE

Normal Test Conditions

LoRa, CSS, 500 kHz BW, Low Channel, 923.3 MHz

Normal Test Conditions

LoRa, CSS, 500 kHz BW, High Channel, 927.5 MHz

DTS BANDWIDTH

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The EUT was set to the channels and modes listed in the datasheet.

The 6dB DTS bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2024-05-27	2025-05-27
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2024-05-22	2025-05-22
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2024-08-28	2025-08-28
Block - DC	Fairview Microwave	SD3379	ANH	2024-08-28	2025-08-28
Generator - Signal	Agilent	N5182A	TIF	2023-07-27	2026-07-27

DTS BANDWIDTH

EUT:	MTCAP3-L4G2D-A23UEA-L	Work Order:	MLTI0373
Serial Number:	5399780K	Date:	2025-03-21
Customer:	Multi-Tech Systems, Inc.	Temperature:	23.2°C
Attendees:	Michael Bendzick, Marcus Glass	Relative Humidity:	27.7%
Customer Project:	None	Bar. Pressure (PMSL):	1001 mbar
Tested By:	Arnauld Dedry, Christopher Heintzelman	Job Site:	MN11
Power:	120VAC/60Hz	Configuration:	MLTI0373-1

COMMENTS

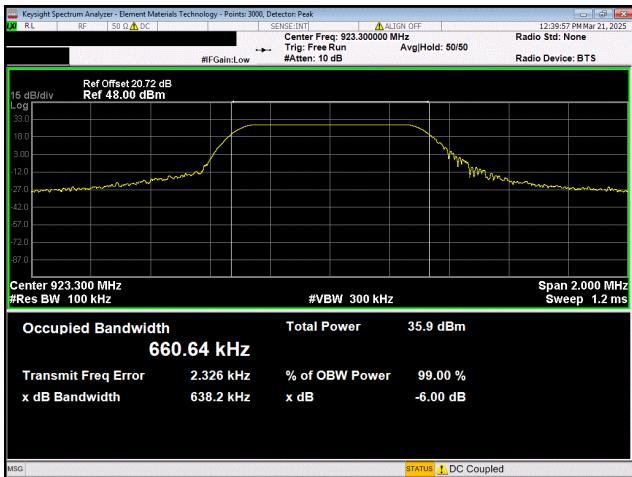
None

DEVIATIONS FROM TEST STANDARD

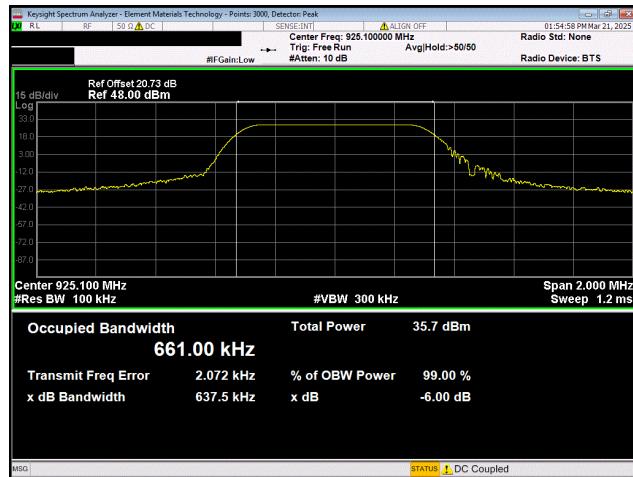
None

CONCLUSION

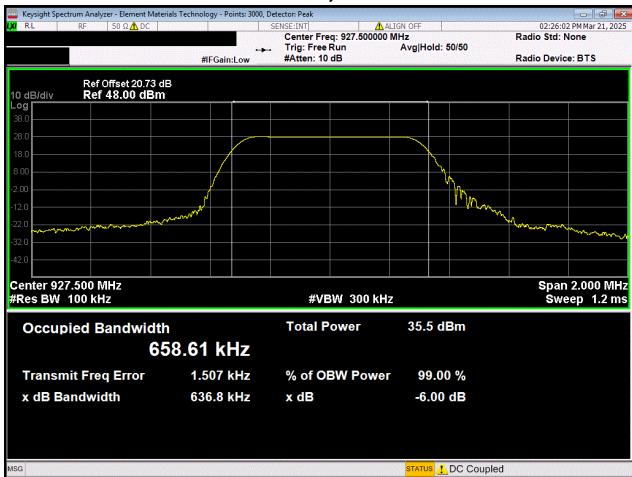
Pass



Tested By


TEST RESULTS

	Value	Limit (>)	Result
LoRa CSS			
Low Channel, 923.3 MHz	638.151 kHz	500 kHz	Pass
Mid Channel, 925.1 MHz	637.506 kHz	500 kHz	Pass
High Channel, 927.5 MHz	636.762 kHz	500 kHz	Pass


DTS BANDWIDTH

LoRa CSS
Low Channel, 923.3 MHz

LoRa CSS
Mid Channel, 925.1 MHz

LoRa CSS
High Channel, 927.5 MHz

OCCUPIED BANDWIDTH

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The 99% occupied bandwidth was measured with the EUT configured for continuous modulated operation.

Per ANSI C63.10:2020, 6.9.3, the spectrum analyzer was configured as follows:

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) of the spectrum analyzer was set to the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) bandwidth was set to at least 3 times the resolution bandwidth. The analyzer sweep time was set to auto to prevent video filtering or averaging. A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

The spectrum analyzer occupied bandwidth measurement function was used to sum the power of the transmission in linear terms to obtain the 99% bandwidth.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2024-05-27	2025-05-27
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2024-05-22	2025-05-22
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2024-08-28	2025-08-28
Generator - Signal	Agilent	N5182A	TIF	2023-07-27	2026-07-27
Block - DC	Fairview Microwave	SD3379	ANH	2024-08-28	2025-08-28

OCCUPIED BANDWIDTH

EUT:	MTCAP3-L4G2D-A23UEA-L	Work Order:	MLTI0373
Serial Number:	5399780K	Date:	2025-03-21
Customer:	Multi-Tech Systems, Inc.	Temperature:	23.2°C
Attendees:	Michael Bendzick, Marcus Glass	Relative Humidity:	27.7%
Customer Project:	None	Bar. Pressure (PMSL):	1001 mbar
Tested By:	Arnauld Dedry, Christopher Heintzelman	Job Site:	MN11
Power:	120VAC/60Hz	Configuration:	MLTI0373-1

COMMENTS

None

DEVIATIONS FROM TEST STANDARD

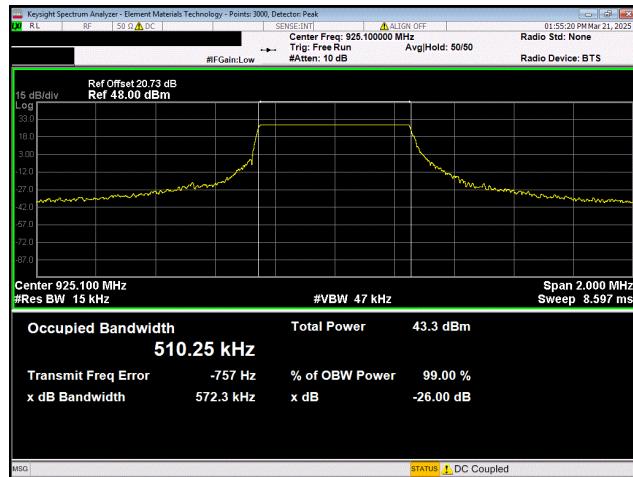
None

CONCLUSION

Pass



Tested By


TEST RESULTS

	Value	Limit	Result
LoRa CSS			
Low Channel, 923.3 MHz	509.236 kHz	N/A	N/A
Mid Channel, 925.1 MHz	510.251 kHz	N/A	N/A
High Channel, 927.5 MHz	512.172 kHz	N/A	N/A

OCCUPIED BANDWIDTH

LoRa CSS
Low Channel, 923.3 MHz

LoRa CSS
Mid Channel, 925.1 MHz

LoRa CSS
High Channel, 927.5 MHz

SPURIOUS CONDUCTED EMISSIONS

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the fundamental was measured with a 100 kHz resolution bandwidth and the highest value was recorded. The rest of the spectrum was then measured with a 100 kHz resolution bandwidth and the highest value was found. The difference between the value found on the fundamental and the rest of the spectrum was compared against the limit to determine compliance.

The reference level offset for the fundamental screen capture was based on a measured value of the loss between the spectrum analyzer and the EUT which was verified at the time of test. The remaining screen capture(s) use an internal transducer factor on the analyzer to correct the displayed trace based on the cable loss over frequency. The reference level offset for the additional screen capture(s) is then based on the expected attenuator value and any other losses.

Fundamental Offset = Ref Lvl Offset showing measured composite factor of all losses

Remaining Screen capture(s) Offset = "Internal" cable loss factor not shown on screen capture + Ref Lvl Offset showing expected attenuator value and any other losses

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2024-05-27	2025-05-27
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2024-05-22	2025-05-22
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2024-08-28	2025-08-28
Block - DC	Fairview Microwave	SD3379	ANH	2024-08-28	2025-08-28
Generator - Signal	Agilent	N5182A	TIF	2023-07-27	2026-07-27

SPURIOUS CONDUCTED EMISSIONS

EUT:	MTCAP3-L4G2D-A23UEA-L	Work Order:	MLTI0373
Serial Number:	5399780K	Date:	2025-03-21
Customer:	Multi-Tech Systems, Inc.	Temperature:	23.2°C
Attendees:	Michael Bendzick, Marcus Glass	Relative Humidity:	27.7%
Customer Project:	None	Bar. Pressure (PMSL):	1001 mbar
Tested By:	Arnauld Dedry, Christopher Heintzelman	Job Site:	MN11
Power:	120VAC/60Hz	Configuration:	MLTI0373-1

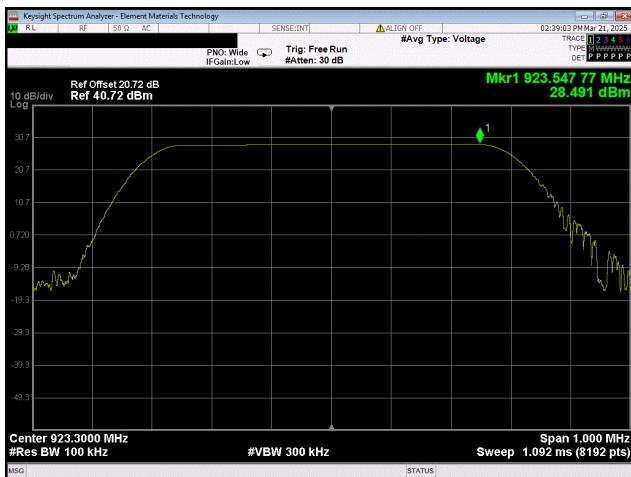
COMMENTS

None

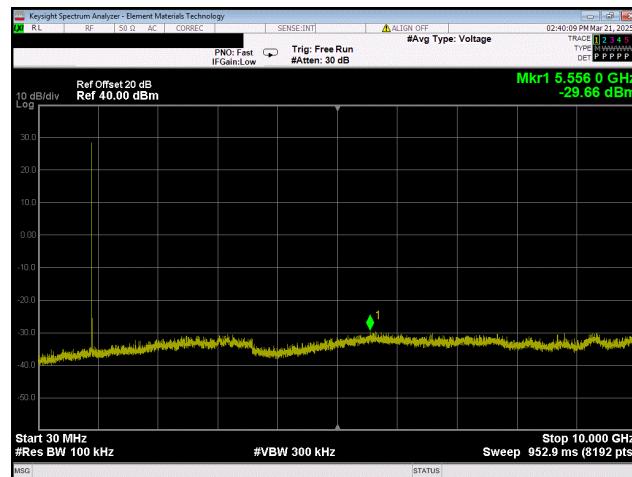
DEVIATIONS FROM TEST STANDARD

None

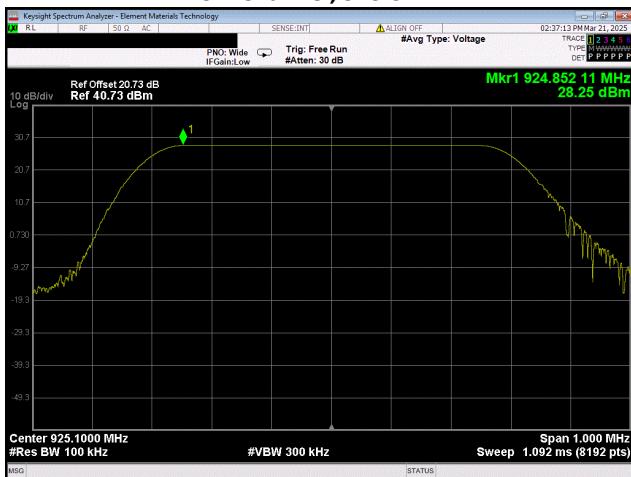
CONCLUSION

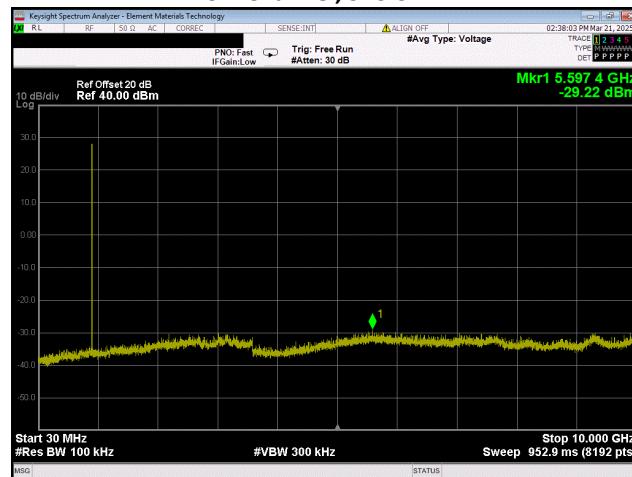

Pass

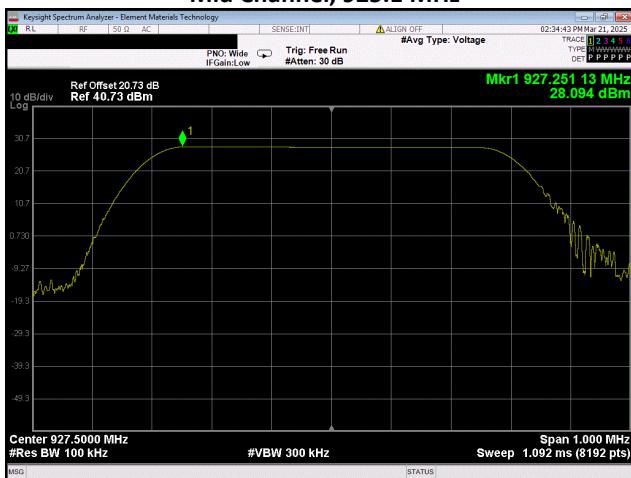
Tested By

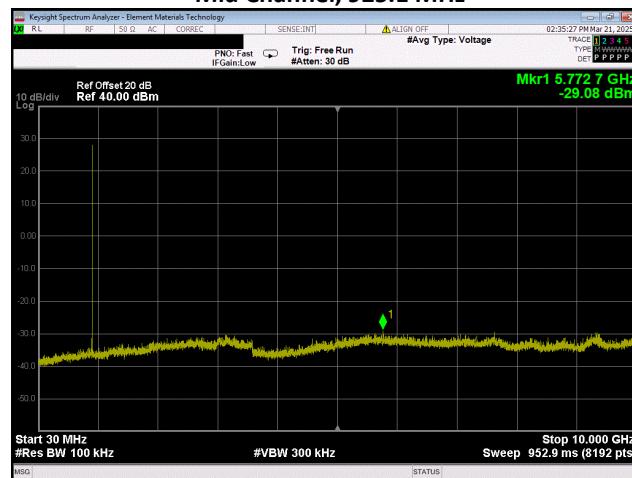

TEST RESULTS

	Frequency Range	Measured Freq (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result
LoRa CSS					
Low Channel, 923.3 MHz	Fundamental 30 MHz - 10 GHz	923.55 5556.04	N/A -58.16	N/A -30	N/A Pass
Mid Channel, 925.1 MHz	Fundamental 30 MHz - 10 GHz	924.85 5597.43	N/A -57.47	N/A -30	N/A Pass
High Channel, 927.5 MHz	Fundamental 30 MHz - 10 GHz	927.25 5772.7	N/A -57.17	N/A -30	N/A Pass


SPURIOUS CONDUCTED EMISSIONS


LoRa CSS
Low Channel, 923.3 MHz


LoRa CSS
Low Channel, 923.3 MHz


LoRa CSS
Mid Channel, 925.1 MHz

LoRa CSS
Mid Channel, 925.1 MHz

LoRa CSS
High Channel, 927.5 MHz

LoRa CSS
High Channel, 927.5 MHz

POWER SPECTRAL DENSITY

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The power spectral density was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method AVGPSD-1 in section 11.10.3 of ANSI C63.10:2020 was used to make the measurement. This method uses trace averaging and RMS detection across the full power of the burst. This method is allowed as the same method has been used to determine the conducted output power.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA18S5W-20	RFX	2024-05-27	2025-05-27
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2024-05-22	2025-05-22
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2024-08-28	2025-08-28
Block - DC	Fairview Microwave	SD3379	ANH	2024-08-28	2025-08-28
Generator - Signal	Agilent	N5182A	TIF	2023-07-27	2026-07-27

POWER SPECTRAL DENSITY

EUT:	MTCAP3-L4G2D-A23UEA-L	Work Order:	MLTI0373
Serial Number:	5399780K	Date:	2025-03-21
Customer:	Multi-Tech Systems, Inc.	Temperature:	21.4°C
Attendees:	Michael Bendzick, Marcus Glass	Relative Humidity:	24.8%
Customer Project:	None	Bar. Pressure (PMSL):	1010 mbar
Tested By:	Arnauld Dedry, Christopher Heintzelman	Job Site:	MN11
Power:	120VAC/60Hz	Configuration:	MLTI0373-1

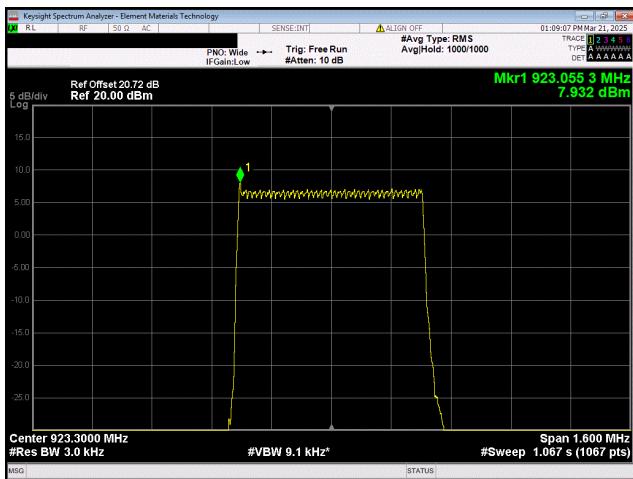
COMMENTS

None

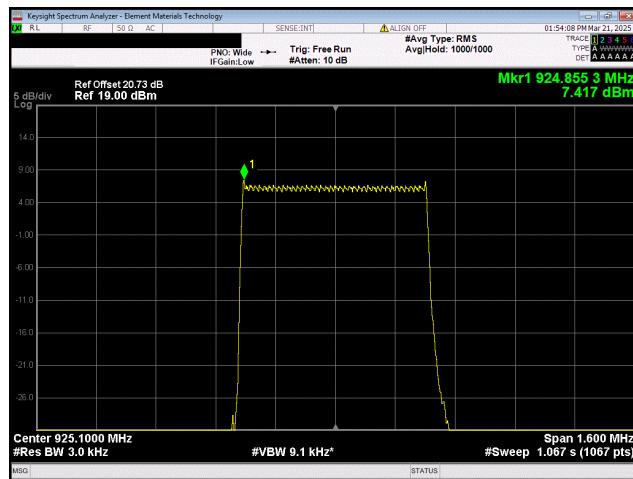
DEVIATIONS FROM TEST STANDARD

None

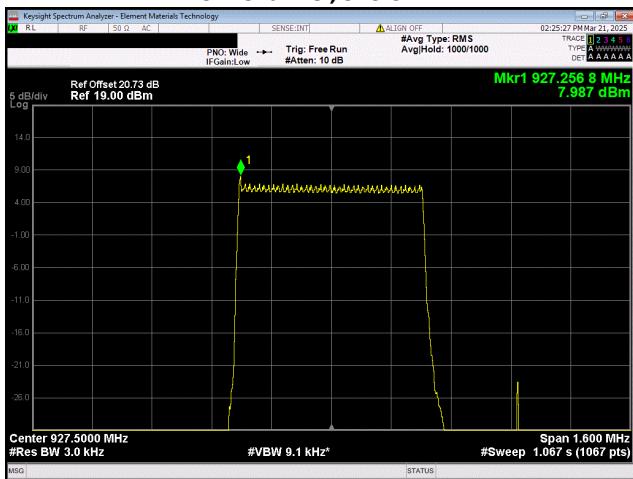
CONCLUSION


Pass

Tested By


TEST RESULTS

	Value dBm/100kHz	Duty Cycle Factor (dB)	Value dBm/3kHz	Limit ≤ (dBm / 3 kHz)	Results
LoRa CSS					
Low Channel, 923.3 MHz	7.932	0	7.9	8	Pass
Mid Channel, 925.1 MHz	7.417	0	7.4	8	Pass
High Channel, 927.5 MHz	7.987	0	8	8	Pass


POWER SPECTRAL DENSITY

LoRa CSS
Low Channel, 923.3 MHz

LoRa CSS
Mid Channel, 925.1 MHz

LoRa CSS
High Channel, 927.5 MHz

End of Test Report