



**ADDENDUM TO FC02-087**

**FOR THE**  
**MODE S TRANSPONDER, KT 73**  
**FCC PART 87**  
**COMPLIANCE**

**DATE OF ISSUE: OCTOBER 24, 2002**

**PREPARED FOR:**

Honeywell International Inc.  
23500 West 105th St., MS 56  
Olathe, KS 66061-6615

P.O. No.: A00008370  
W.O. No.: 79530

**PREPARED BY:**

Mary Ellen Clayton  
CKC Laboratories, Inc.  
5473A Clouds Rest  
Mariposa, CA 95338

Date of test: September 30 - October 3, 2002

**Report No.: FC02-087A**

This report contains a total of 39 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

## TABLE OF CONTENTS

|                                                                                       |    |
|---------------------------------------------------------------------------------------|----|
| Administrative Information .....                                                      | 3  |
| Summary of Results .....                                                              | 4  |
| Conditions for Compliance .....                                                       | 4  |
| Approvals .....                                                                       | 4  |
| Equipment Under Test (EUT) Description .....                                          | 5  |
| Equipment Under Test .....                                                            | 6  |
| Peripheral Devices .....                                                              | 6  |
| Temperature and Humidity During Testing .....                                         | 7  |
| 2.1033(c)(3) User's Manual .....                                                      | 7  |
| 2.1033(c)(4) Type of Emissions .....                                                  | 7  |
| 2.1033(c)(5) Frequency Range .....                                                    | 7  |
| 2.1033(c)(6) Operating Power .....                                                    | 7  |
| 2.1033(c)(7) Maximum Power Rating .....                                               | 7  |
| 2.1033(c)(8) DC Voltages .....                                                        | 7  |
| 2.1033(c)(9) Tune-Up Procedure .....                                                  | 7  |
| 2.1033(c)(10) Schematics and Circuitry Description .....                              | 7  |
| 2.1033(c)(11) Label and Placement .....                                               | 7  |
| 2.1033(c)(12) Submittal Photos .....                                                  | 7  |
| 2.1033(c)(13) Modulation Information .....                                            | 8  |
| 2.1033(c)(14)/2.1046/87.131 - RF Power Output .....                                   | 9  |
| 2.1033(c)(14)/2.1047(b) - Modulation Characteristics - Audio Frequency Response ..... | 16 |
| 2.1033(c)(14)/2.1047(b)/87.141 - Modulation Limiting Response .....                   | 16 |
| 2.1033(c)(14)/2.1049(i) / 87.135/87.139 - Occupied Bandwidth .....                    | 23 |
| 2.1033(c)(14)/2.1051/87.139 - Spurious Emissions at Antenna Terminal .....            | 27 |
| 2.1033(c)(14)/2.1053/87.139 - Field Strength of Spurious Radiation .....              | 34 |
| 2.1033(c)(14)/2.1055/87.133/87.147 - Frequency Stability .....                        | 37 |
| 2.1091 – MPE Calculations .....                                                       | 39 |

**CKC Laboratories, Inc. has received Certificates of Accreditation from the following agencies:**  
A2LA (USA); BSMI (Taiwan); Nemko (Norway); and GOST (Russia).

**CKC Laboratories, Inc has received test site Registration Acceptance from the following agencies:**  
FCC (USA); VCCI (Japan); and Industry Canada.

**CKC Laboratories, Inc. has received Letters of Acceptance through an MRA for the following agencies:**  
ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); Radio Communications Agency (RA); HOKLAS (Hong Kong); Bakom (Swiss); BIPT (Belgium); Denmark Telestyrelsen; RvA (Netherlands); SEE (Luxembourg) SITTEL (Bolivia); and UKAS (UK).

## ADMINISTRATIVE INFORMATION

**DATE OF TEST:** September 30 - October 3, 2002

**DATE OF RECEIPT:** September 30, 2002

**PURPOSE OF TEST:** To demonstrate the compliance of the Mode S Transponder, KT 73 with the requirements for FCC Part 87 devices. The purpose of Addendum A is to revise the MPE calculations and revise the plots on pages 19-21 to show the emissions masks.

**TEST METHOD:** FCC Part 87

**FREQUENCY RANGE TESTED:** 9 kHz - 12 GHz

**MANUFACTURER:** Honeywell International Inc.  
23500 West 105th St., MS 56  
Olathe, KS 66061-6615

**REPRESENTATIVE:** Larry Haddix

**TEST LOCATION:** CKC Laboratories, Inc.  
5473A Clouds Rest  
Mariposa, CA 95338

## SUMMARY OF RESULTS

As received, the Honeywell International Inc. Mode S Transponder, KT 73 was found to be fully compliant with the following standards and specifications:

### **United States**

- FCC Part 87

### **CONDITIONS FOR COMPLIANCE**

No modifications to the EUT were necessary to comply. Conducted emissions not required for this device.

### **APPROVALS**

#### **QUALITY ASSURANCE:**



Steve Behm, Director of Engineering Services



Joyce Walker, Quality Assurance Administrative Manager



Chuck Kendall, EMC/Lab Manager

#### **TEST PERSONNEL:**



Randy Clark, EMC Engineer



Monika Brandle, EMC Engineer/  
Evaluation Engineer

## **EQUIPMENT UNDER TEST (EUT) DESCRIPTION**

The EUT tested by CKC Laboratories was a production unit.

The KT 73 General Aviation Mode S Transponder is designed to meet TSO C-112 for a Level 2 ATCRBS/Mode Select Airborne Transponder System. It is a panel mount transponder that replies to ATCRBS Mode A and C, Intermode, and Mode S interrogations.

Since the KT 73 is a Level 2 transponder it can handle Standard Length Message (SLM) Comm A & Comm B Mode S data link protocols.

The KT 73 is compliant with TSO-C112 Class 2A requirements. It will pass Surveillance (UF 4 and UF 5) and Comm-A (UF 20 and UF 21) (minus the 24 bit Aircraft Address) to the ADLP (Airborne Data Link Processor).

The KT 73 is capable of receiving messages from the ADLP and sending the messages to the ground in Comm-B (DF 20 and DF 21) replies. The transponder/ADLP communicate using an RS-232 hardware interface and the RS-232 protocol developed by Lincoln Labs.

The KT 73 has the ability to enter and display an 8-digit alphanumeric Flight ID code. The Flight ID information can be entered by the pilot via front panel controls or received from an ADLP. Flight ID can be selected for display from the front panel.

The KT 73 is capable of accepting altitude information via Gillham (Mode C Gray Code), ARINC 429 or serial RS-232 and will work with conventional ATCRBS blade or quarter-wave monopole type antennas.

The KT 73 contains BITE (Built In Test Equipment) so the operational health of the unit is constantly monitored. When an error is detected the unit will flash an amber FAIL light on the front of the unit. In test mode, it will display an error code on the front panel display to diagnose problems.

The KT 73 has an Air/Ground discrete that, when connected to a strut switch on the aircraft, can disable ATCRBS and Mode S All-Call replies when the aircraft is on the ground. A front panel switch position is available to be used by the pilot instead of the strut switch.

The KT 73 is capable of interfacing to the Traffic Information Service (TIS). This data link is intended to improve the safety and efficiency of “see and avoid” flight by providing automatic display to the pilot of nearby traffic and warnings of any potentially threatening conditions.

The KT 73 is capable of Automatic Dependent Surveillance – Broadcast (ADS-B) operation. This is a function of an aircraft or surface vehicle that transmits position, altitude, vector, and other information for use by other aircraft, surface vehicles, or ground facilities. The KT 73 will have the capability to transmit extended squitters. The KT 73 will also have the capability to operate in the Extended Squitter/Non Transponder mode.

## EQUIPMENT UNDER TEST

### Mode S Transponder

Manuf: Honeywell  
Model: KT 73  
Serial: Y503  
FCC ID: ASYKT73 (pending)

## PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

### Coaxial Coupler

Manuf: Narda  
Model: 3202B-20  
Serial: 61893  
FCC ID: DoC

### KT 73 Test Box

Manuf: Honeywell  
Model: 71-09893-0010  
Serial: 190-3162-04  
FCC ID: DoC

### IFR Test Set

Manuf: IFR  
Model: S-1403DL w/MLD  
Serial: 28500633  
FCC ID: DoC

### IFR Test Set

Manuf: IFR  
Model: ATC-1400A  
Serial: 204006889  
FCC ID: DoC

**TEMPERATURE AND HUMIDITY DURING TESTING**

The temperature during testing was within +15°C and + 35°C.  
The relative humidity was between 20% and 75%.

**2.1033(c)(3) USER'S MANUAL**

The necessary information is contained in a separate document.

**2.1033 (c)(4) TYPE OF EMISSIONS**

12M6V1D

**2.1033(c)(5) FREQUENCY RANGE**

1090-1092 MHz

**2.1033(c)(6) OPERATING POWER**

251 Watts typical

**2.1033(c)(7) MAXIMUM POWER RATING**

For this particular class, frequency, emission and maximum power will be determined by the appropriate standards during the certification process.

**2.1033(c)(8) DC VOLTAGES**

The voltage applied to the Power Oscillator, Q1, and the Power Amp, Q2, is 50 VDC from a regulated supply included in the unit. The pulse current during an RF power pulse is 16 amps.

**2.1033(c)(9) TUNE-UP PROCEDURE**

The necessary information is contained in a separate document.

**2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION**

The necessary information is contained in a separate document.

**2.1033(c)(11) LABEL AND PLACEMENT**

The necessary information is contained in a separate document.

**2.1033(c)(12) SUBMITTAL PHOTOS**

The necessary information is contained in a separate document.

## **2.1033(c)(13) MODULATION INFORMATION**

The unit employs pulse modulation prescribed by FAA TSO-C112. This requires pulses of  $0.450 \pm 0.100$  microseconds for ATCRBS and  $500 \pm 0.050$  microseconds for Mode S with rise times of  $0.100$  microsecond maximum and falltimes of  $0.200$  microseconds maximum for both. The KT73 transmitter includes a 1090 MHz frequency source, a 70 W class C power oscillator then provides the drive power needed for the 450 W class C final power amplifier. A low pass filter between the transmitter and the RF I/O port with a 3 dB corner frequency of 1.3 GHz attenuates the transmitter's carrier harmonics. The maximum rated condition, Mode S reply, has a 120 microsecond length with four pulses in the first eight microseconds, which is called the preamble, and pulses of  $0.5$  or  $1.0$  microsecond length filling in the next 112 microseconds, which is called the data block. Binary data is coded by the pulse position in the one microsecond frames.

## 2.1033(c)(14)/2.1046/87.131 - RF POWER OUTPUT

Test Location: CKC Laboratories Inc. • 5473A Clouds Rest • Mariposa CA 95338 • 1 800 500 4EMC (4362)

Customer: **Honeywell**  
 Specification: **2.1046/87.131**  
 Work Order #: **79530** Date: 10/01/2002  
 Test Type: **2.1046 - RF Power Output** Time: 15:14:51  
 Equipment: **Mode S Transponder** Sequence#: 1  
 Manufacturer: Honeywell Tested By: Monika Brandle  
 Model: KT 73  
 S/N: Y503

***Equipment Under Test (\* = EUT):***

| Function            | Manufacturer | Model # | S/N  |
|---------------------|--------------|---------|------|
| Mode S Transponder* | Honeywell    | KT 73   | Y503 |

***Support Devices:***

| Function        | Manufacturer | Model #        | S/N         |
|-----------------|--------------|----------------|-------------|
| Coaxial Coupler | Narda        | 3202B-20       | 61893       |
| KT 73 Test Box  | Honeywell    | 71-09893-0010  | 190-3162-04 |
| IFR Test Set    | IFR          | S-1403DL w/MLD | 28500633    |
| IFR Test Set    | IFR          | ATC-1400A      | 204006889   |

***Test Conditions / Notes:***

The EUT is a panel mount transponder operating in ATCRBS Mode A IDENT 0000. An IFR Test Set is used to continuously interrogate the transponder. RBW/VBW = 3 MHz. The output power was measured using different bandwidth resolutions. It was determined that the full power was integrated using a 3 MHz resolution bandwidth. Note: The limits for output power vary. In accordance with Part 87.131, the class of station is "Radionavigation". For this particular class, frequency, emission and maximum power will be determined by the appropriate standards during the certification process.

***Transducer Legend:***

|                  |                      |
|------------------|----------------------|
| T1=20dB DC 61893 | T2=30dBpd            |
| T3=Cable GHz #9  | T4=Cust Cable 311601 |

***Measurement Data:***

Reading listed by margin.

Test Distance: None

| # | Freq<br>MHz | Rdng<br>dB $\mu$ V | T1<br>dB | T2<br>dB | T3<br>dB | T4<br>dB | Dist<br>Table | Corr<br>dB $\mu$ V | Spec<br>dB $\mu$ V | Margin<br>dB | Polar<br>Ant |
|---|-------------|--------------------|----------|----------|----------|----------|---------------|--------------------|--------------------|--------------|--------------|
| 1 | 1091.320M   | 109.9              | +19.5    | +30.0    | +0.4     | +0.9     | +0.0          | 160.7              | 162.0              | -1.3         | None         |

Test Location: CKC Laboratories Inc. • 5473A Clouds Rest • Mariposa CA 95338 • 1 800 500 4EMC (4362)

Customer: **Honeywell**  
 Specification: **2.1046/87.131**  
 Work Order #: **79530** Date: 10/01/2002  
 Test Type: **2.1046 - RF Power Output** Time: 15:20:32  
 Equipment: **Mode S Transponder** Sequence#: 2  
 Manufacturer: Honeywell Tested By: Monika Brandle  
 Model: KT 73  
 S/N: Y503

***Equipment Under Test (\* = EUT):***

| Function            | Manufacturer | Model # | S/N  |
|---------------------|--------------|---------|------|
| Mode S Transponder* | Honeywell    | KT 73   | Y503 |

***Support Devices:***

| Function        | Manufacturer | Model #        | S/N         |
|-----------------|--------------|----------------|-------------|
| Coaxial Coupler | Narda        | 3202B-20       | 61893       |
| KT 73 Test Box  | Honeywell    | 71-09893-0010  | 190-3162-04 |
| IFR Test Set    | IFR          | S-1403DL w/MLD | 28500633    |
| IFR Test Set    | IFR          | ATC-1400A      | 204006889   |

***Test Conditions / Notes:***

The EUT is a panel mount transponder operating in ATCRBS Mode A IDENT 7777. An IFR Test Set is used to continuously interrogate the transponder. RBW/VBW = 3 MHz. The output power was measured using different bandwidth resolutions. It was determined that the full power was integrated using a 3 MHz resolution bandwidth. Note: The limits for output power vary. In accordance with Part 87.131, the class of station is "Radionavigation". For this particular class, frequency, emission and maximum power will be determined by the appropriate standards during the certification process.

***Transducer Legend:***

|                  |                      |
|------------------|----------------------|
| T1=20dB DC 61893 | T2=30dBpd            |
| T3=Cable GHz #9  | T4=Cust Cable 311601 |

***Measurement Data:*** Reading listed by margin. Test Distance: None

| # | Freq<br>MHz | Rdng<br>dB $\mu$ V | T1<br>dB | T2<br>dB | T3<br>dB | T4<br>dB | Dist<br>Table | Corr<br>dB $\mu$ V | Spec<br>dB $\mu$ V | Margin<br>dB | Polar<br>Ant |
|---|-------------|--------------------|----------|----------|----------|----------|---------------|--------------------|--------------------|--------------|--------------|
| 1 | 1091.800M   | 110.0              | +19.5    | +30.0    | +0.4     | +0.9     | +0.0          | 160.8              | 162.0              | -1.2         | None         |

Test Location: CKC Laboratories Inc. • 5473A Clouds Rest • Mariposa CA 95338 • 1 800 500 4EMC (4362)

Customer: **Honeywell**  
 Specification: **2.1046/87.131**  
 Work Order #: **79530** Date: 10/01/2002  
 Test Type: **2.1046 - RF Power Output** Time: 16:50:56  
 Equipment: **Mode S Transponder** Sequence#: 3  
 Manufacturer: Honeywell Tested By: Monika Brandle  
 Model: KT 73  
 S/N: Y503

***Equipment Under Test (\* = EUT):***

| Function            | Manufacturer | Model # | S/N  |
|---------------------|--------------|---------|------|
| Mode S Transponder* | Honeywell    | KT 73   | Y503 |

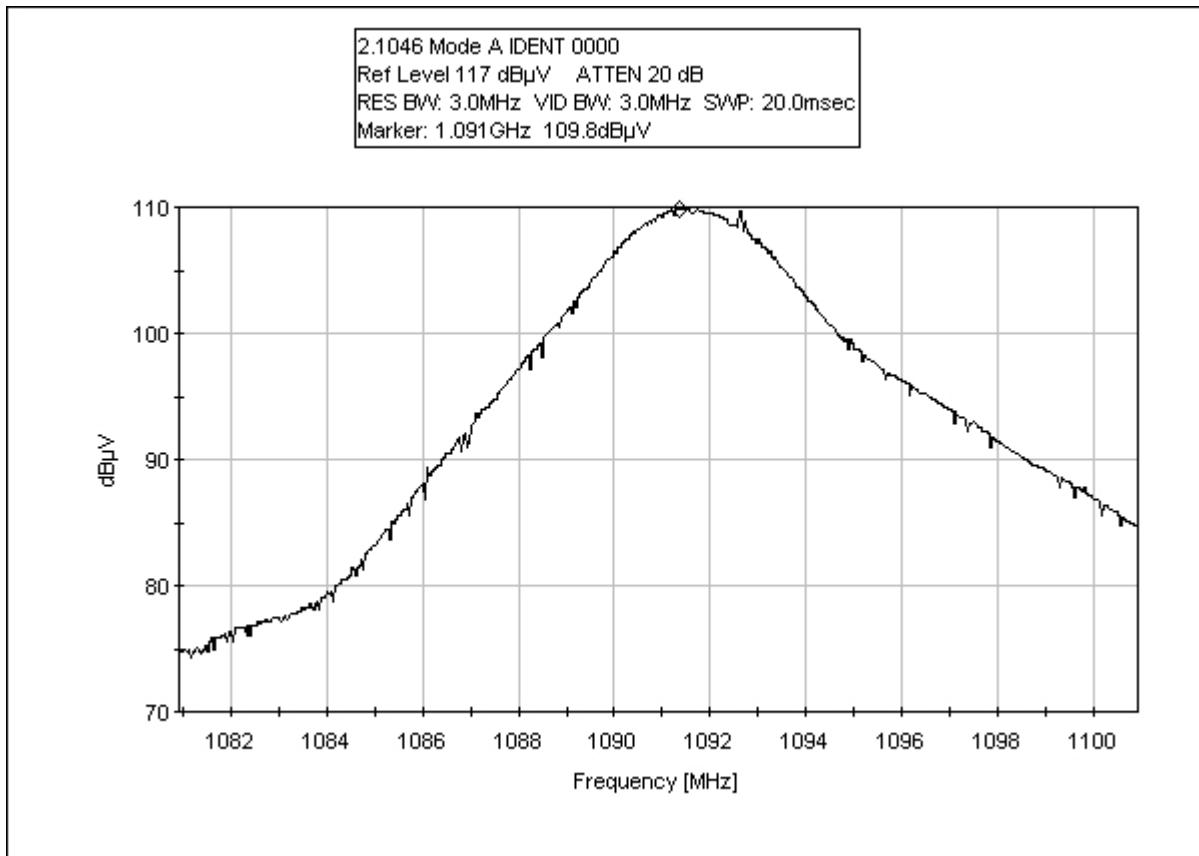
***Support Devices:***

| Function        | Manufacturer | Model #        | S/N         |
|-----------------|--------------|----------------|-------------|
| Coaxial Coupler | Narda        | 3202B-20       | 61893       |
| KT 73 Test Box  | Honeywell    | 71-09893-0010  | 190-3162-04 |
| IFR Test Set    | IFR          | S-1403DL w/MLD | 28500633    |
| IFR Test Set    | IFR          | ATC-1400A      | 204006889   |

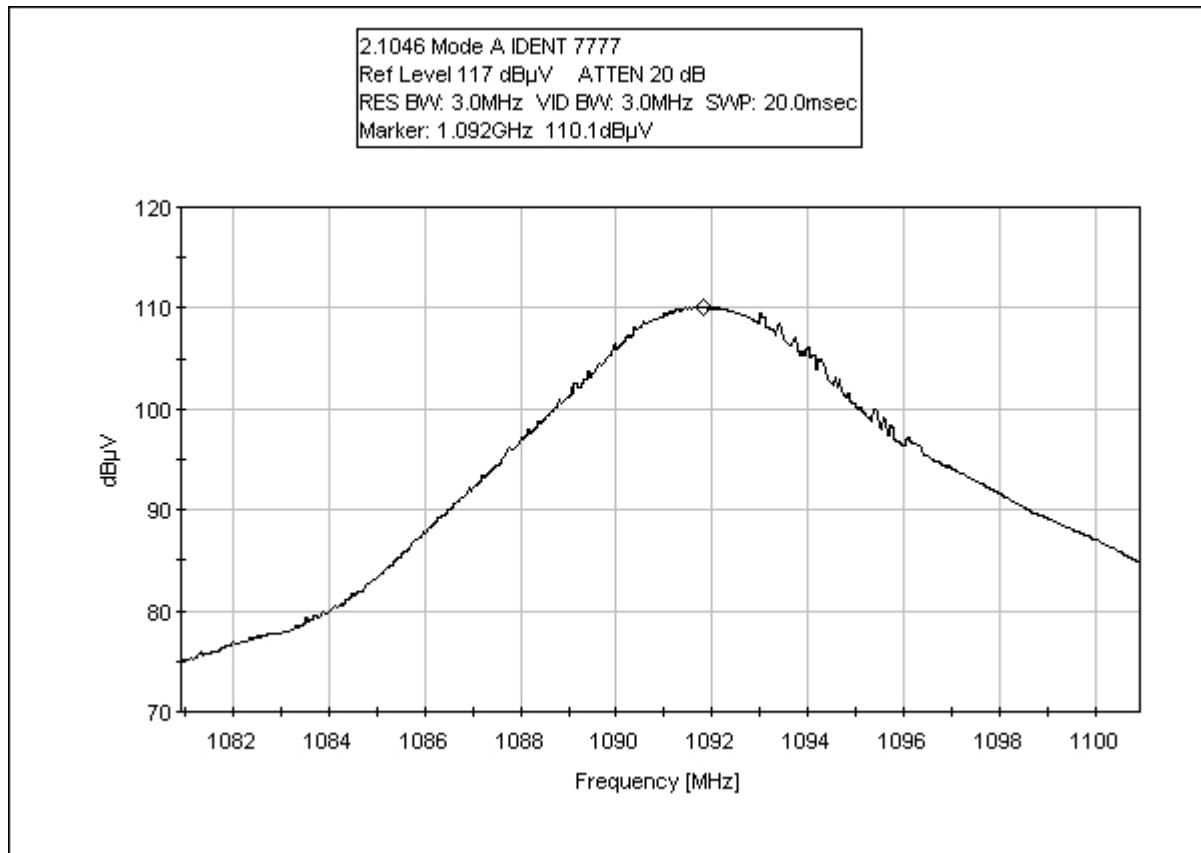
***Test Conditions / Notes:***

The EUT is a panel mount transponder operating in Mode S. An IFR Test Set is used to continuously interrogate the transponder. RBW/VBW = 3 MHz. The output power was measured using different bandwidth resolutions. It was determined that the full power was integrated using a 3 MHz resolution bandwidth. Note: The limits for output power vary. In accordance with Part 87.131, the class of station is "Radionavigation". For this particular class, frequency, emission and maximum power will be determined by the appropriate standards during the certification process.

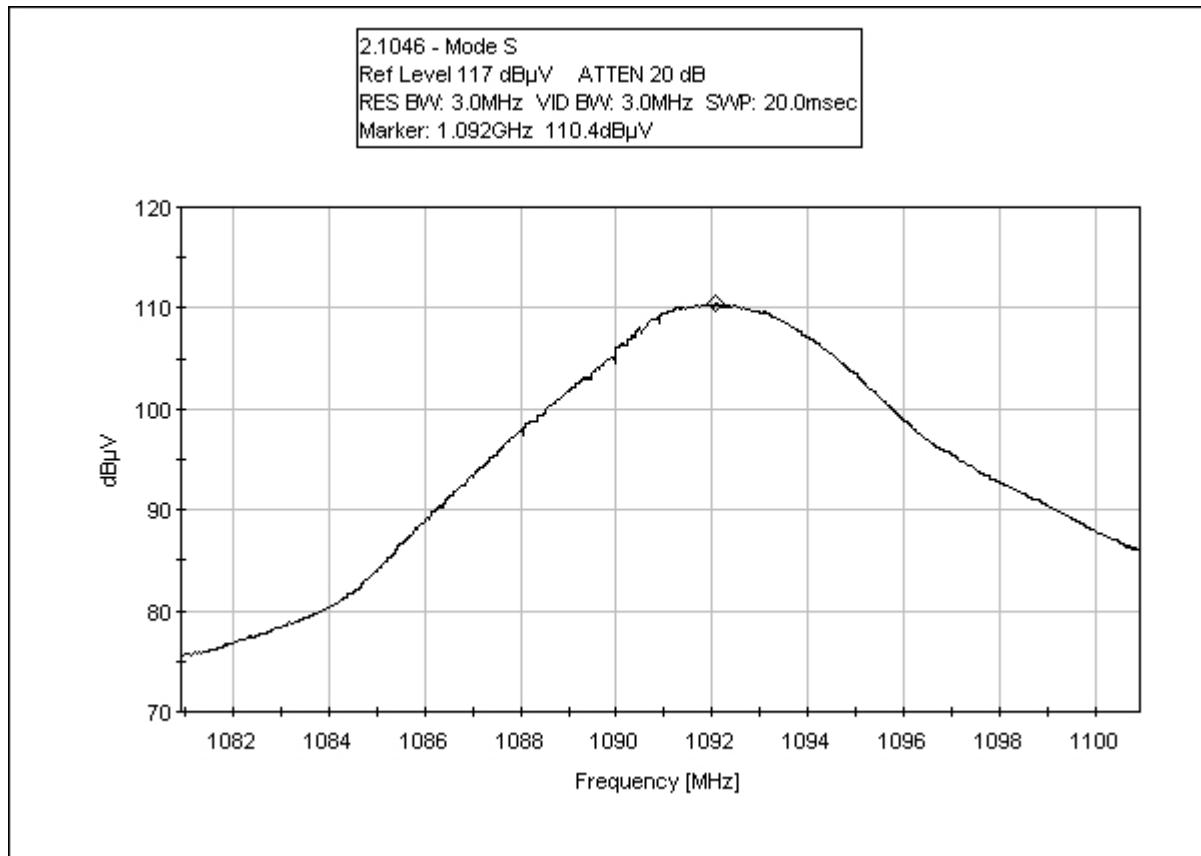
***Transducer Legend:***


|                  |                   |
|------------------|-------------------|
| T1=20dB DC 61893 | T2=30dBpd         |
| T3=Cable GHz #9  | T4=BW Corr Factor |

***Measurement Data:*** Reading listed by margin. Test Distance: None


| # | Freq<br>MHz | Rdng<br>dB $\mu$ V | T1<br>dB | T2<br>dB | T3<br>dB | T4<br>dB | Dist<br>Table | Corr<br>dB $\mu$ V | Spec<br>dB $\mu$ V | Margin<br>dB | Polar<br>Ant |
|---|-------------|--------------------|----------|----------|----------|----------|---------------|--------------------|--------------------|--------------|--------------|
| 1 | 1092.120M   | 110.2              | +19.5    | +30.0    | +0.4     | +0.9     | +0.0          | 161.0              | 162.0              | -1.0         | None         |

This reading shows the worst case RF power output at 161 dB $\mu$ V = 251 Watts.

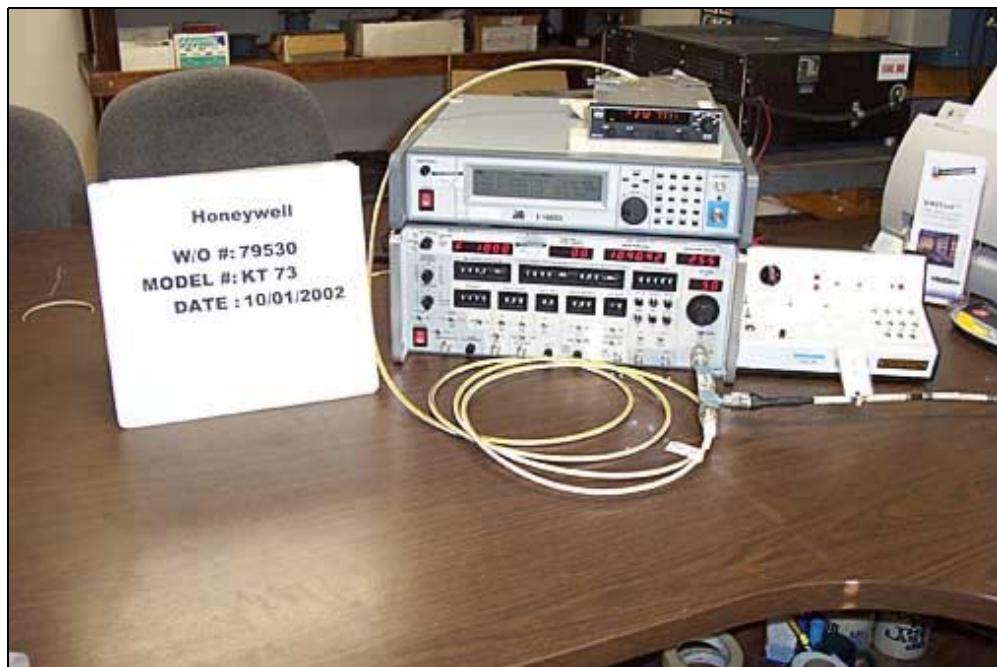

**MODE A IDENT 0000 PLOT**



**MODE A IDENT 7777 PLOT**



## MODE S PLOT




### TEST EQUIPMENT

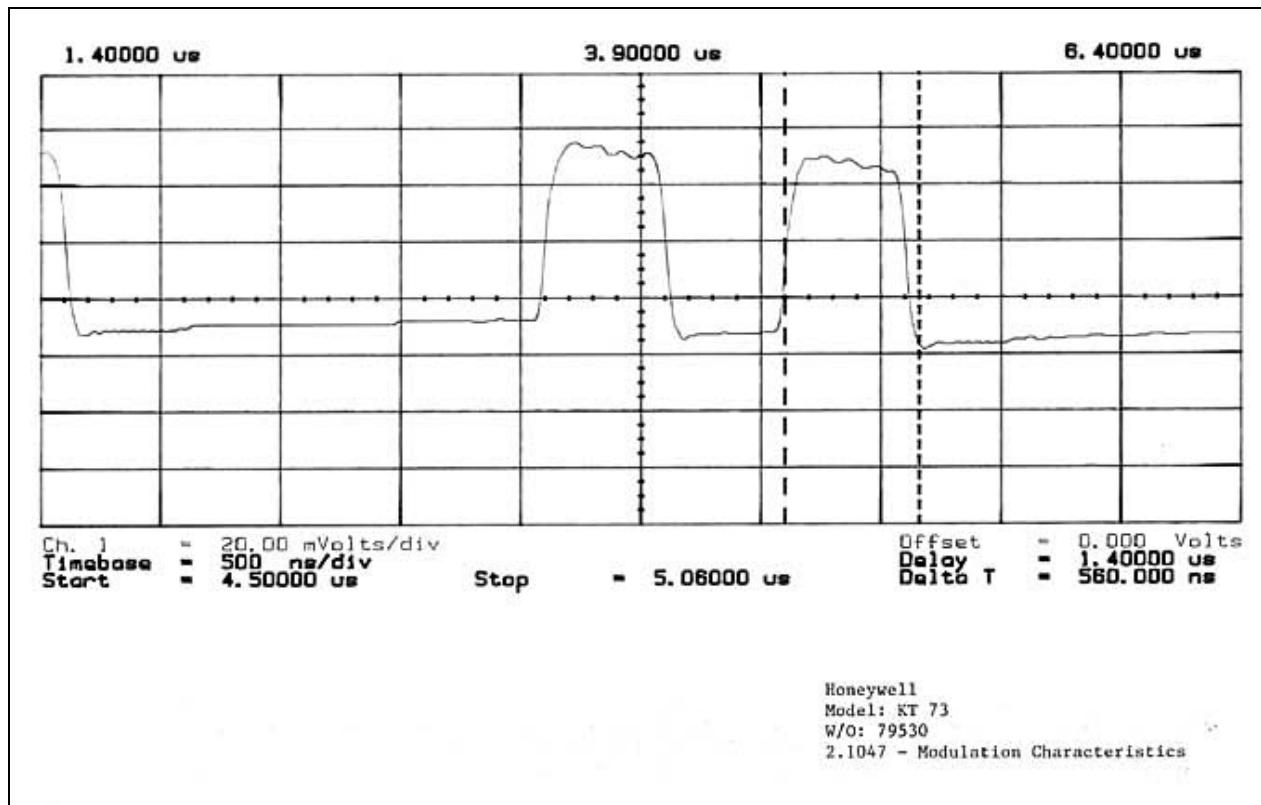
| Equipment         | Manufacturer | Model #    | Serial #   | Asset # | Cal Date | Cal Due |
|-------------------|--------------|------------|------------|---------|----------|---------|
| QP Adapter        | HP           | 85650A     | 2811A01267 | 00478   | 1/30/02  | 1/30/03 |
| S/A Display       | HP           | 8566B      | 2403A08241 | 00489   | 1/30/02  | 1/30/03 |
| Spectrum Analyzer | HP           | 8566B      | 2209A01404 | 00490   | 1/30/02  | 1/30/03 |
| Power Supply      | Sorenson     | DCR-60-30B | 0176       | 00765   | 7/17/02  | 7/17/03 |



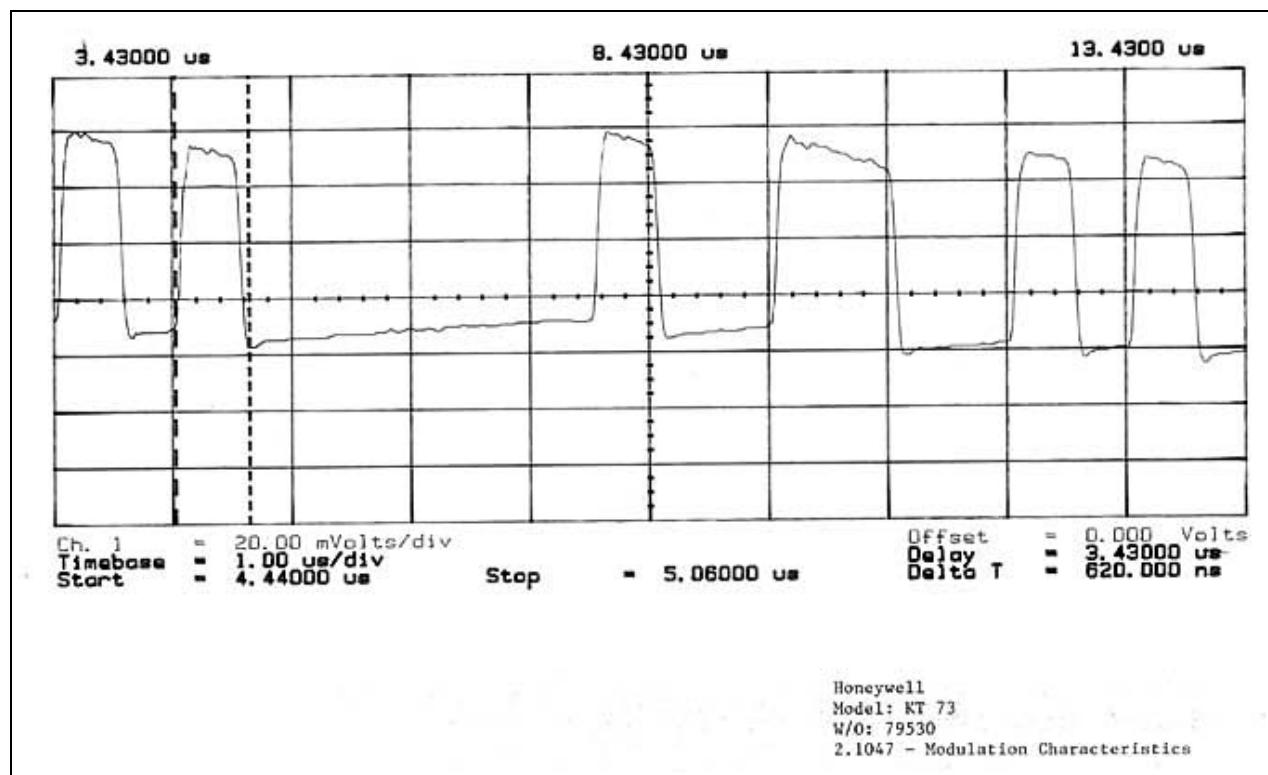
RF Power



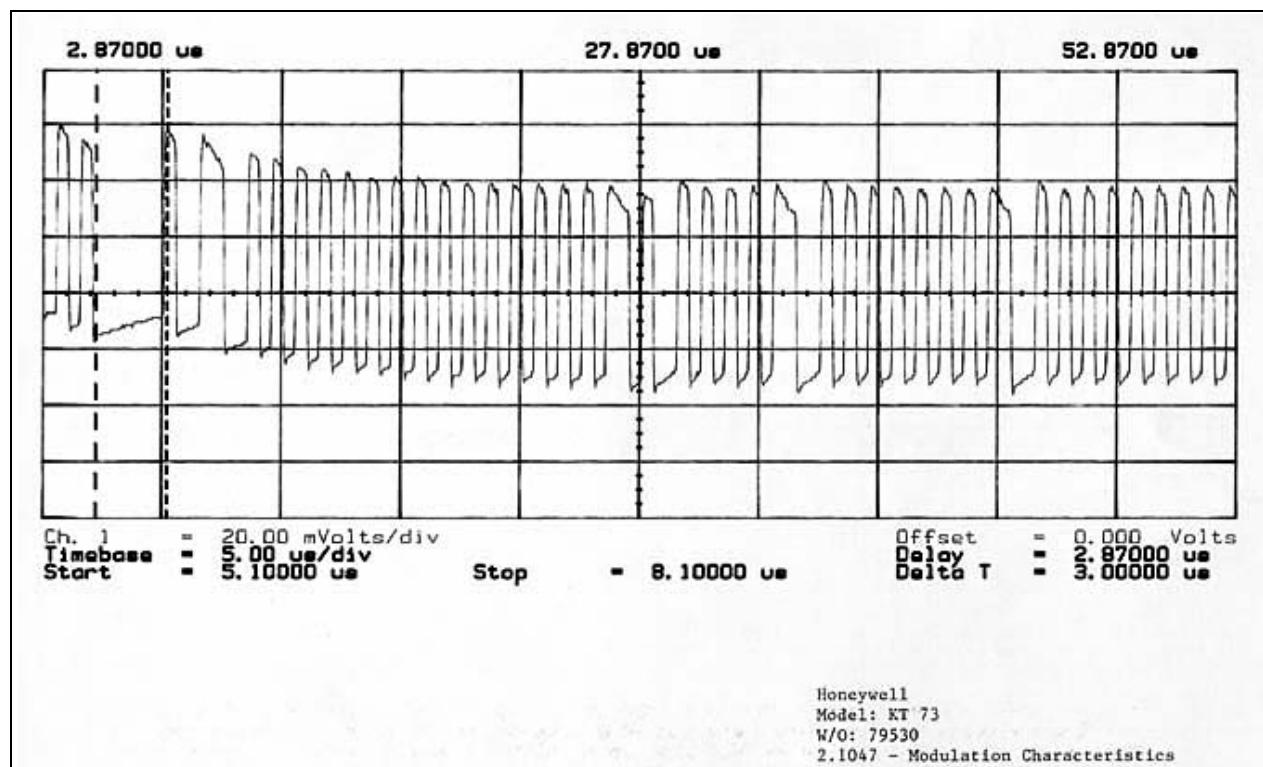
Close-up of IFR Connections


**2.1033(c)(14)/2.1047(a) - MODULATION CHARACTERISTICS - AUDIO FREQUENCY  
RESPONSE**

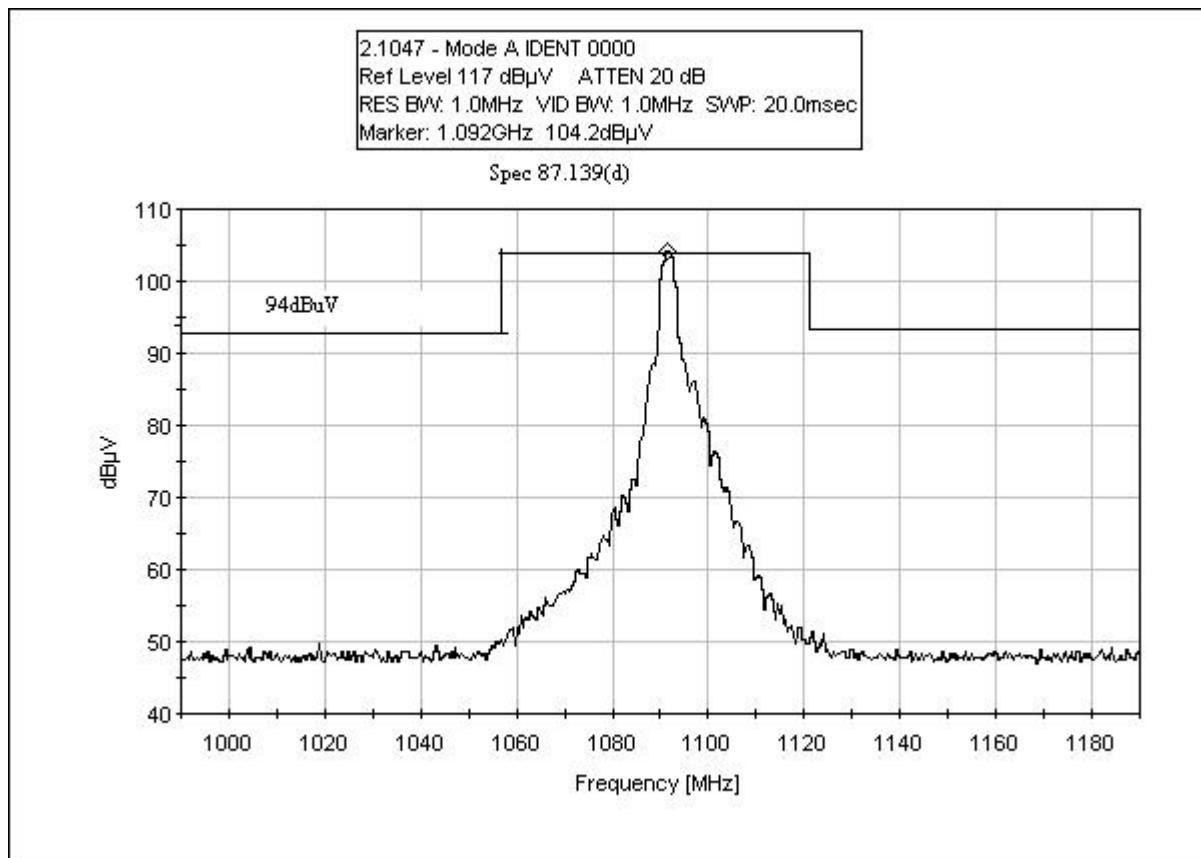
**Not applicable to this unit.**


## 2.1033(c)(14)/2.1047(b)/87.141 MODULATION CHARACTERISTICS – Modulation Limiting Response

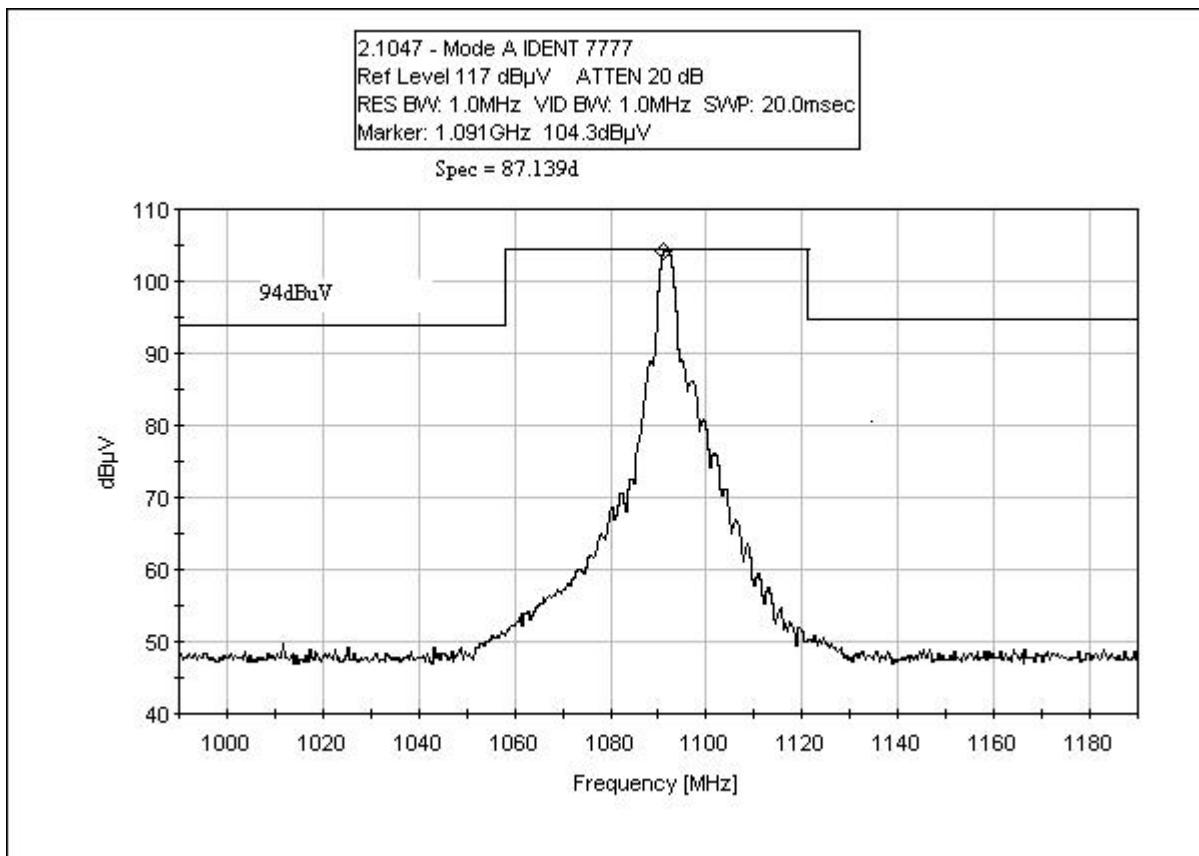
**Test Conditions:** The EUT is a panel mount transponder operating at 1090 MHz with an input voltage of 28VDC. The transponder is operating in its worst case modulation, Mode S, which was determined during antenna conducted measurements. An IFR Test Set is used to continuously interrogate the transponder.


## MODULATION PLOT

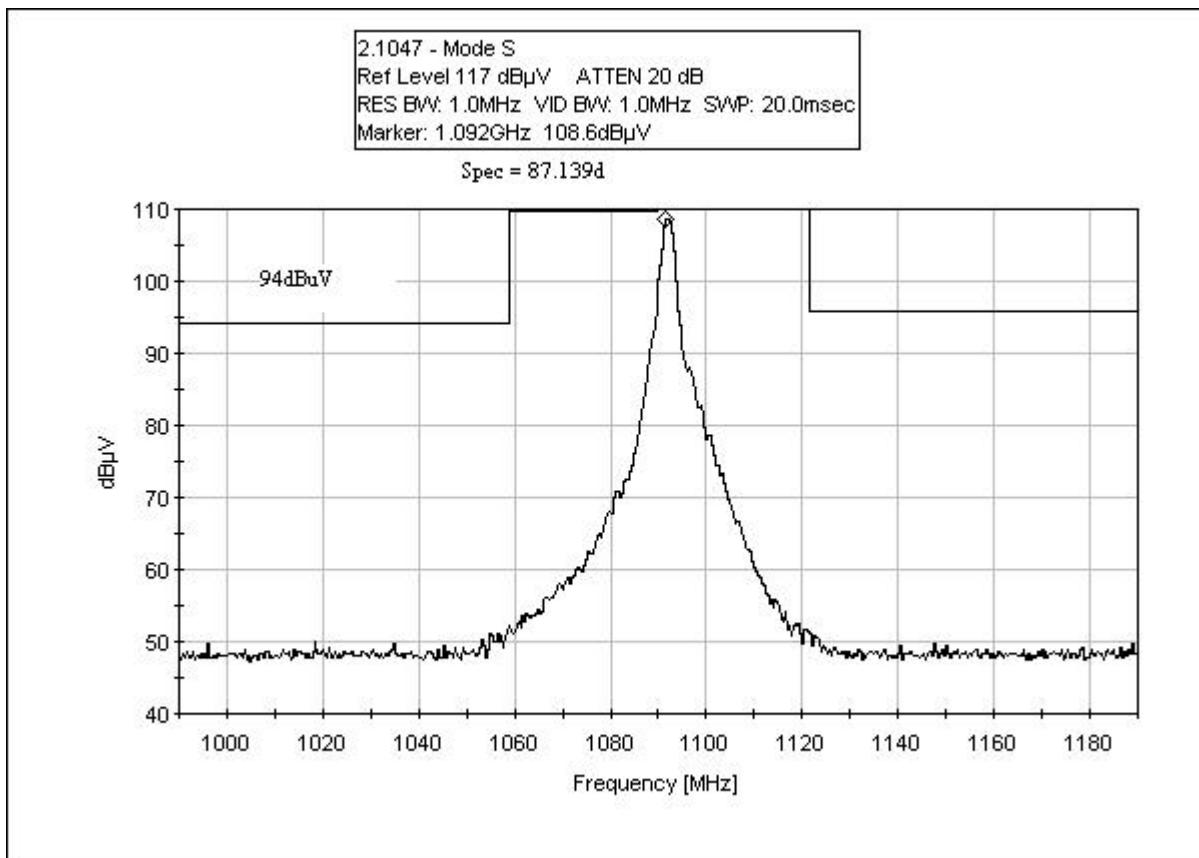


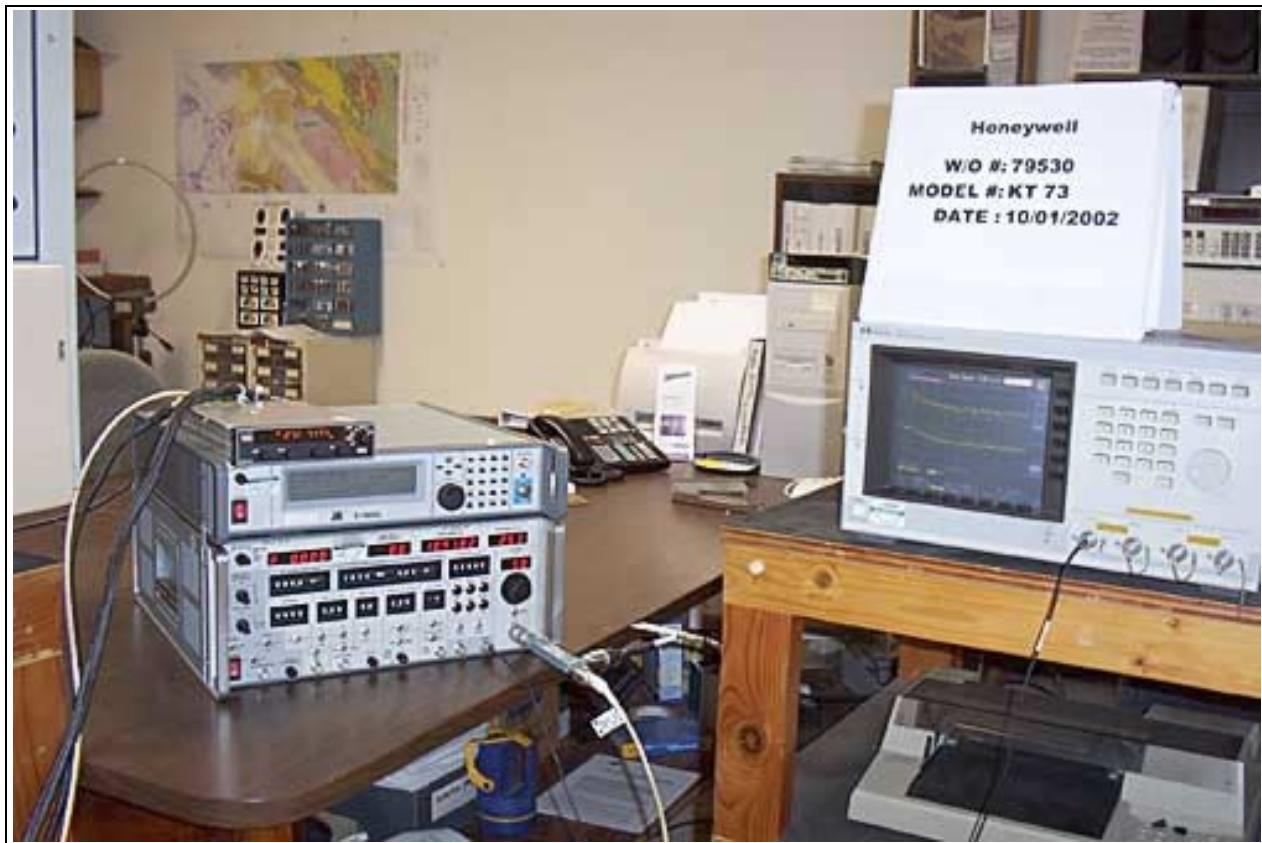

## MODULATION PLOT




## MODULATION PLOT




### MODULATION MODE A IDENT PLOT




**MODULATION MODE A IDENT 7777 PLOT**

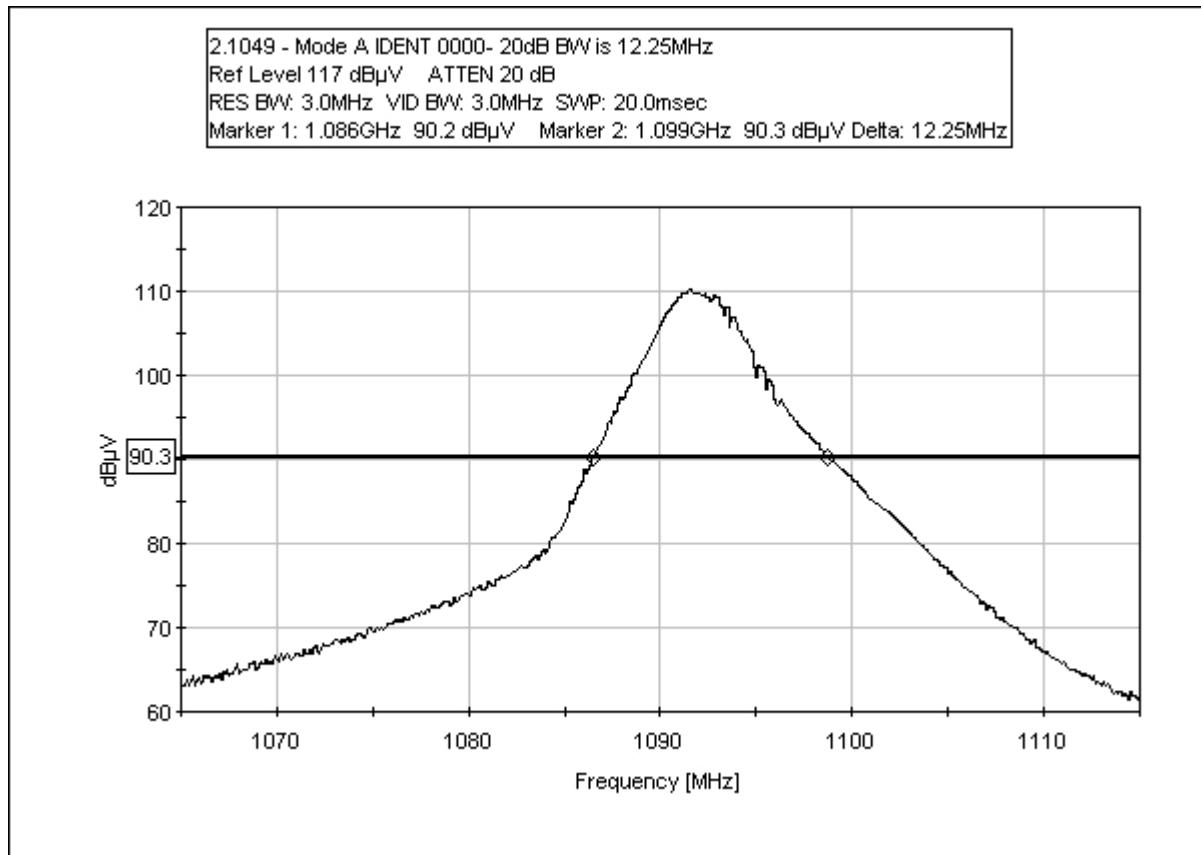


### MODULATION MODE S PLOT

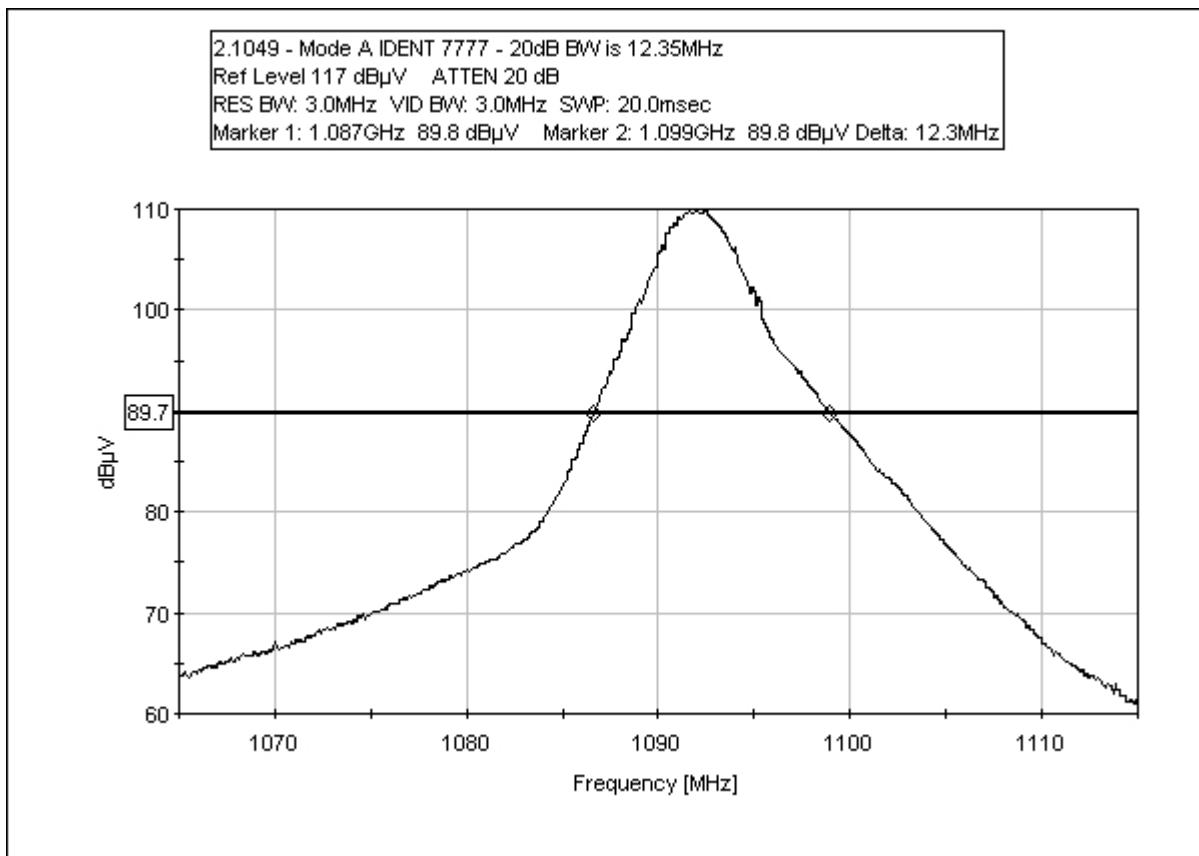




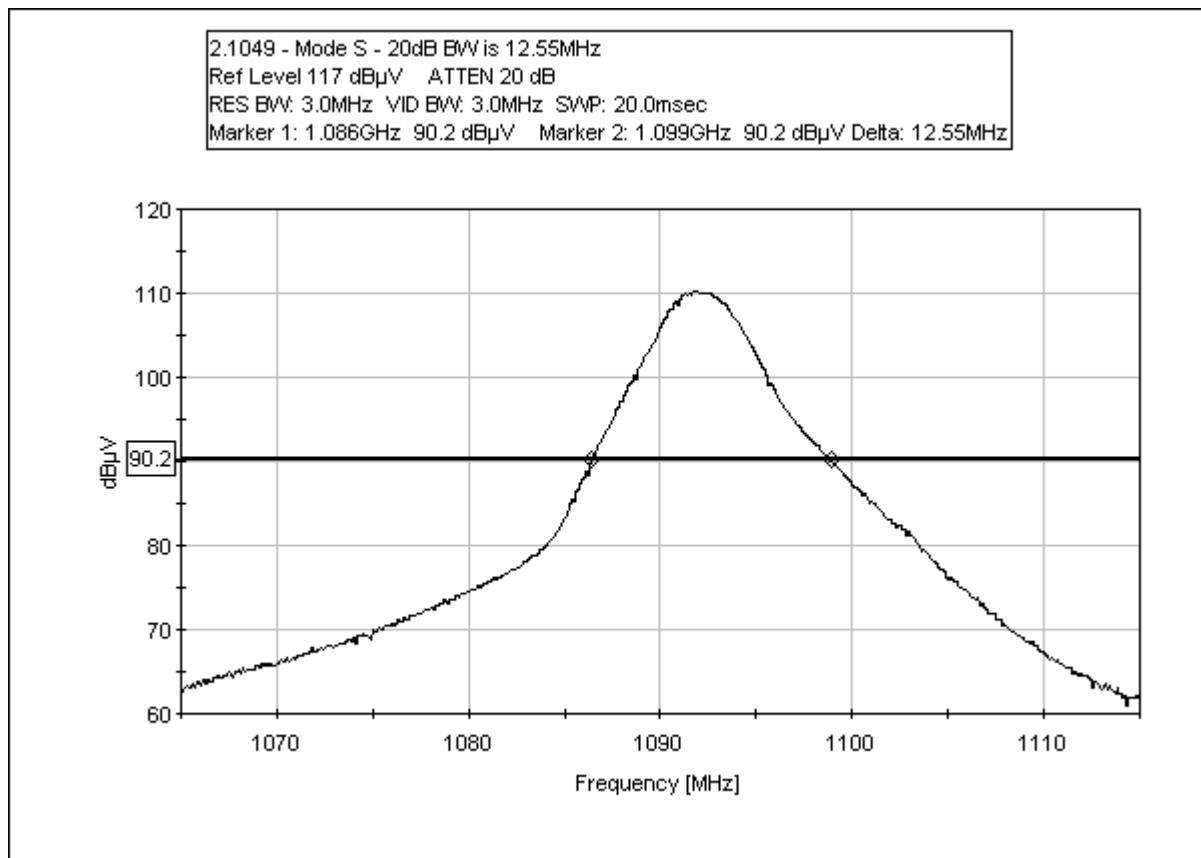
### Modulation


#### TEST EQUIPMENT

| <i>Equipment</i> | <i>Manufacturer</i> | <i>Model #</i> | <i>Serial #</i> | <i>Asset #</i> | <i>Cal Date</i> | <i>Cal Due</i> |
|------------------|---------------------|----------------|-----------------|----------------|-----------------|----------------|
| Digital O-Scope  | HP                  | 54111D         | 3051A03191      | 02008          | 9/28/02         | 9/28/03        |


**2.1033(c)(14)/2.1049(i)/87.135/87.139 - OCCUPIED BANDWIDTH**

**Test Conditions:** The EUT is a panel mount transponder operating in Mode A IDENT 0000, Mode A IDENT 7777, or Mode S. An IFR Test Set is used to continuously interrogate the transponder. The maximum measured BW was 12.55 MHz.


**OCCUPIED BANDWIDTH MODE A IDENT 0000 PLOT**



**OCCUPIED BANDWIDTH MODE A IDENT 7777 PLOT**



### OCCUPIED BANDWIDTH MODE S PLOT



#### TEST EQUIPMENT

| Equipment         | Manufacturer | Model #    | Serial #   | Asset # | Cal Date | Cal Due |
|-------------------|--------------|------------|------------|---------|----------|---------|
| QP Adapter        | HP           | 85650A     | 2811A01267 | 00478   | 1/30/02  | 1/30/03 |
| S/A Display       | HP           | 8566B      | 2403A08241 | 00489   | 1/30/02  | 1/30/03 |
| Spectrum Analyzer | HP           | 8566B      | 2209A01404 | 00490   | 1/30/02  | 1/30/03 |
| Power Supply      | Sorenson     | DCR-60-30B | 0176       | 00765   | 7/17/02  | 7/17/03 |



Occupied Bandwidth



Close-up of IFR Connections

**2.1033(c)(14)/2.1051/87.139 - SPURIOUS EMISSIONS AT ANTENNA TERMINAL**

| <b>ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE</b> |                     |                  |                   |
|--------------------------------------------------------|---------------------|------------------|-------------------|
| TEST                                                   | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
| RADIATED EMISSIONS                                     | 9 kHz               | 150 kHz          | 200 Hz            |
| RADIATED EMISSIONS                                     | 150 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS                                     | 30 MHz              | 1000 MHz         | 120 kHz           |
| RADIATED EMISSIONS                                     | 1000 MHz            | 12 GHz           | 1 MHz             |

Test Location: CKC Laboratories Inc. •5473A Clouds Rest • Mariposa CA 95338 • 1 800 500 4EMC (4362)

Customer: **Honeywell**  
 Specification: **2.1051/87.139d**  
 Work Order #: **79530** Date: 10/02/2002  
 Test Type: **2.1051 -Spurious Emissions At** Time: 13:18:34  
 Equipment: **Mode S Transponder** Sequence#: 4  
 Manufacturer: Honeywell Tested By: Monika Brandle  
 Model: KT 73  
 S/N: Y503

***Equipment Under Test (\* = EUT):***

| Function            | Manufacturer | Model # | S/N  |
|---------------------|--------------|---------|------|
| Mode S Transponder* | Honeywell    | KT 73   | Y503 |

***Support Devices:***

| Function        | Manufacturer | Model #        | S/N         |
|-----------------|--------------|----------------|-------------|
| Coaxial Coupler | Narda        | 3202B-20       | 61893       |
| KT 73 Test Box  | Honeywell    | 71-09893-0010  | 190-3162-04 |
| IFR Test Set    | IFR          | S-1403DL w/MLD | 28500633    |
| IFR Test Set    | IFR          | ATC-1400A      | 204006889   |

***Test Conditions / Notes:***

The EUT is a panel mount transponder operating in ATCRBS Mode A IDENT 0000. An IFR Test Set is used to continuously interrogate the transponder. Frequency Range Scanned: 9 kHz-12 GHz. CISPR Bandwidths were used for the conducted measurements at the antenna terminal.  $P_o=251\text{Watts}$   $P_y=(251)(450\text{ns})(14)(1200) = 1.9\text{Watts}$  where  $P_y=(P_o)(T_w)(N)(R)$   $P_y = \text{Mean Transmitter Power}$   $P_o = \text{Peak Output Power}$   $T_w = \text{Pulse width (Seconds)}$   $R = \text{Reply Rate (Hz)}$ . Therefore  $\text{Limit} = 43 + 10\log(P_y) = 43 + 10\log(1.9\text{W}) = 43 + 2.7819 = 45.78\text{dBc}$ ; Therefore  $1.9\text{Watts} = 32.78\text{dBm}$  Spurious limit =  $32.78 - 45.78\text{dB} = -13\text{dBm}$ . Note: The limits for output power vary. In accordance with Part 87.131, the class of station is "Radionavigation". For this particular class, frequency, emission and maximum power will be determined by the appropriate standards during the certification process.

***Transducer Legend:***

|                  |                      |
|------------------|----------------------|
| T1=20dB DC 61893 | T2=30dBpd            |
| T3=Cable GHz #9  | T4=Cust Cable 311601 |
| T5=HPF 1.5GHz    |                      |

| <b>Measurement Data:</b> |                |                    | Reading listed by margin. |          |          |          | Test Distance: None |                    |                    |              |       |
|--------------------------|----------------|--------------------|---------------------------|----------|----------|----------|---------------------|--------------------|--------------------|--------------|-------|
| #                        | Freq<br>MHz    | Rdng<br>dB $\mu$ V | T1<br>dB                  | T2<br>dB | T3<br>dB | T4<br>dB | Dist<br>Table       | Corr<br>dB $\mu$ V | Spec<br>dB $\mu$ V | Margin<br>dB | Polar |
| 1                        | 2180.000M      | 23.0<br>+0.4       | +17.4                     | +31.1    | +0.5     | +1.2     | +0.0                | 73.6               | 94.0               | -20.4        | None  |
| 2                        | 5341.500M      | 24.8<br>+0.9       | +16.5                     | +26.7    | +1.2     | +1.8     | +0.0                | 71.9               | 94.0               | -22.1        | None  |
| 3                        | 3270.000M      | 22.1<br>+0.2       | +17.4                     | +29.5    | +0.9     | +1.4     | +0.0                | 71.5               | 94.0               | -22.5        | None  |
| 4                        | 4360.000M      | 22.4<br>+0.5       | +17.4                     | +28.4    | +0.6     | +1.5     | +0.0                | 70.8               | 94.0               | -23.2        | None  |
| 5                        | 6670.700M      | 29.7<br>+0.4       | +13.6                     | +22.7    | +1.0     | +2.5     | +0.0                | 69.9               | 94.0               | -24.1        | None  |
| 6                        | 9686.899M      | 28.5<br>+0.9       | +15.5                     | +20.3    | +1.0     | +3.0     | +0.0                | 69.2               | 94.0               | -24.8        | None  |
| 7                        | 8662.200M      | 28.3<br>+0.3       | +14.6                     | +20.8    | +1.2     | +2.9     | +0.0                | 68.1               | 94.0               | -25.9        | None  |
| 8                        | 7700.700M      | 27.7<br>+0.5       | +13.7                     | +21.4    | +1.3     | +2.8     | +0.0                | 67.4               | 94.0               | -26.6        | None  |
| 9                        | 919.000M       | 27.4<br>+20.1      | +0.0                      | +0.0     | +0.0     | +0.0     | +0.0                | 47.5               | 94.0               | -46.5        | None  |
| 10                       | 134.800M       | 44.5<br>+0.0       | +0.0                      | +0.0     | +0.0     | +0.0     | +0.0                | 44.5               | 94.0               | -49.5        | None  |
| 11                       | 2.594M         | 40.7<br>+0.0       | +0.0                      | +0.0     | +0.0     | +0.0     | +0.0                | 40.7               | 94.0               | -53.3        | None  |
| 12                       | 2.852M         | 40.5<br>+0.0       | +0.0                      | +0.0     | +0.0     | +0.0     | +0.0                | 40.5               | 94.0               | -53.5        | None  |
| 13                       | 3.275M         | 38.0<br>+0.0       | +0.0                      | +0.0     | +0.0     | +0.0     | +0.0                | 38.0               | 94.0               | -56.0        | None  |
| 14                       | 4.598M         | 32.9<br>+0.0       | +0.0                      | +0.0     | +0.0     | +0.0     | +0.0                | 32.9               | 94.0               | -61.1        | None  |
| 15                       | 132.800M       | 32.3<br>+0.0       | +0.0                      | +0.0     | +0.0     | +0.0     | +0.0                | 32.3               | 94.0               | -61.7        | None  |
| 16                       | 12052.600<br>M | 27.8<br>-0.1       | +0.0                      | +0.0     | +2.0     | +0.0     | +0.0                | 29.7               | 94.0               | -64.3        | None  |
| 17                       | 5.820M         | 29.2<br>+0.0       | +0.0                      | +0.0     | +0.0     | +0.0     | +0.0                | 29.2               | 94.0               | -64.8        | None  |

Test Location: CKC Laboratories Inc. •5473A Clouds Rest • Mariposa CA 95338 • 1 800 500 4EMC (4362)

Customer: **Honeywell**  
 Specification: **2.1051/87.139d**  
 Work Order #: **79530** Date: 10/02/2002  
 Test Type: **2.1051 -Spurious Emissions At** Time: 13:21:03  
 Antenna Terminal  
 Equipment: **Mode S Transponder** Sequence#: 5  
 Manufacturer: Honeywell Tested By: Monika Brandle  
 Model: KT 73  
 S/N: Y503

***Equipment Under Test (\* = EUT):***

| Function            | Manufacturer | Model # | S/N  |
|---------------------|--------------|---------|------|
| Mode S Transponder* | Honeywell    | KT 73   | Y503 |

***Support Devices:***

| Function        | Manufacturer | Model #        | S/N         |
|-----------------|--------------|----------------|-------------|
| Coaxial Coupler | Narda        | 3202B-20       | 61893       |
| KT 73 Test Box  | Honeywell    | 71-09893-0010  | 190-3162-04 |
| IFR Test Set    | IFR          | S-1403DL w/MLD | 28500633    |
| IFR Test Set    | IFR          | ATC-1400A      | 204006889   |

***Test Conditions / Notes:***

The EUT is a panel mount transponder operating in ATCRBS Mode A IDENT 7777. An IFR Test Set is used to continuously interrogate the transponder. Frequency Range Scanned: 9 kHz-12 GHz. CISPR Bandwidths were used for the conducted measurements at the antenna terminal. Po=251Watts Py=(251)(450ns)(14)(1200) = 1.9Watts where Py=(Po)(Tw)(N)(R) Py = Mean Transmitter Power Po= Peak Output Power Tw= Pulse width (Seconds) R = Reply Rate (Hz) Therefore Limit = 43 + 10log(Py) = 43 +10Log(1.9W) = 43 + 2.7819 = 45.78dBc. Therefore 1.9Watts = 32.78dBm Spurious limit = 32.78--45.78dB= -13dBm. Note: The limits for output power vary. In accordance with Part 87.131, the class of station is "Radionavigation". For this particular class, frequency, emission and maximum power will be determined by the appropriate standards during the certification process.

***Transducer Legend:***

|                  |                      |
|------------------|----------------------|
| T1=20dB DC 61893 | T2=30dBpd            |
| T3=Cable GHz #9  | T4=Cust Cable 311601 |
| T5=HPF 1.5GHz    |                      |

| # | Freq      | Rdng       | Reading listed by margin. |       |      |      | Test Distance: None |            |            |        |
|---|-----------|------------|---------------------------|-------|------|------|---------------------|------------|------------|--------|
|   |           |            | T1                        | T2    | T3   | T4   | Dist                | Corr       | Spec       | Margin |
|   | MHz       | dB $\mu$ V | dB                        | dB    | dB   | dB   | Table               | dB $\mu$ V | dB $\mu$ V | dB     |
| 1 | 2180.000M | 23.0       | +17.4<br>+0.4             | +31.1 | +0.5 | +1.2 | +0.0                | 73.6       | 94.0       | -20.4  |
| 2 | 5341.500M | 24.8       | +16.5<br>+0.9             | +26.7 | +1.2 | +1.8 | +0.0                | 71.9       | 94.0       | -22.1  |
| 3 | 3270.000M | 22.1       | +17.4<br>+0.2             | +29.5 | +0.9 | +1.4 | +0.0                | 71.5       | 94.0       | -22.5  |
| 4 | 4360.000M | 22.4       | +17.4<br>+0.5             | +28.4 | +0.6 | +1.5 | +0.0                | 70.8       | 94.0       | -23.2  |
| 5 | 6670.700M | 29.7       | +13.6<br>+0.4             | +22.7 | +1.0 | +2.5 | +0.0                | 69.9       | 94.0       | -24.1  |

|    |                |              |               |       |      |      |      |      |      |       |      |
|----|----------------|--------------|---------------|-------|------|------|------|------|------|-------|------|
| 6  | 9686.899M      | 28.5         | +15.5<br>+0.9 | +20.3 | +1.0 | +3.0 | +0.0 | 69.2 | 94.0 | -24.8 | None |
| 7  | 8662.200M      | 28.3         | +14.6<br>+0.3 | +20.8 | +1.2 | +2.9 | +0.0 | 68.1 | 94.0 | -25.9 | None |
| 8  | 7700.700M      | 27.7         | +13.7<br>+0.5 | +21.4 | +1.3 | +2.8 | +0.0 | 67.4 | 94.0 | -26.6 | None |
| 9  | 920.000M       | 32.7         | +0.0<br>+19.5 | +0.0  | +0.0 | +0.0 | +0.0 | 52.2 | 94.0 | -41.8 | None |
| 10 | 3.496M         | 41.6         | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 41.6 | 94.0 | -52.4 | None |
| 11 | 2.139M         | 40.6         | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 40.6 | 94.0 | -53.4 | None |
| 12 | 133.600M       | 39.6         | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 39.6 | 94.0 | -54.4 | None |
| 13 | 4.187M         | 39.1         | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 39.1 | 94.0 | -54.9 | None |
| 14 | 2.824M         | 35.4         | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 35.4 | 94.0 | -58.6 | None |
| 15 | 6.230M         | 35.0         | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 35.0 | 94.0 | -59.0 | None |
| 16 | 8.350M         | 32.1         | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 32.1 | 94.0 | -61.9 | None |
| 17 | 12052.600<br>M | 27.8<br>-0.1 | +0.0          | +0.0  | +2.0 | +0.0 | +0.0 | 29.7 | 94.0 | -64.3 | None |
| 18 | 16.530M        | 27.1         | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 27.1 | 94.0 | -66.9 | None |

Test Location: CKC Laboratories Inc. • 5473A Clouds Rest • Mariposa CA 95338 • 1 800 500 4EMC (4362)

Customer: **Honeywell**  
 Specification: **2.1051/87.139d**  
 Work Order #: **79530** Date: 10/02/2002  
 Test Type: **2.1051 -Spurious Emissions At** Time: 13:27:37  
 Antenna Terminal  
 Equipment: **Mode S Transponder** Sequence#: 6  
 Manufacturer: Honeywell Tested By: Monika Brandle  
 Model: KT 73  
 S/N: Y503

***Equipment Under Test (\* = EUT):***

| Function            | Manufacturer | Model # | S/N  |
|---------------------|--------------|---------|------|
| Mode S Transponder* | Honeywell    | KT 73   | Y503 |

***Support Devices:***

| Function        | Manufacturer | Model #        | S/N         |
|-----------------|--------------|----------------|-------------|
| Coaxial Coupler | Narda        | 3202B-20       | 61893       |
| KT 73 Test Box  | Honeywell    | 71-09893-0010  | 190-3162-04 |
| IFR Test Set    | IFR          | S-1403DL w/MLD | 28500633    |
| IFR Test Set    | IFR          | ATC-1400A      | 204006889   |

***Test Conditions / Notes:***

The EUT is a panel mount transponder operating in Mode S. An IFR Test Set is used to continuously interrogate the transponder. Frequency Range Scanned: 9 kHz-12 GHz. CISPR Bandwidths were used for the conducted measurements at the antenna terminal.  $Po=251\text{Watts}$   $Py=(251)(450\text{ns})(14)(1200) = 1.9\text{Watts}$  where  $Py=(Po)(Tw)(N)(R)$   $Py = \text{Mean Transmitter Power}$   $Po = \text{Peak Output Power}$   $Tw = \text{Pulse width (Seconds)}$   $R = \text{Reply Rate (Hz)}$  Therefore  $\text{Limit} = 43 + 10\log(Py) = 43 + 10\log(1.9\text{W}) = 43 + 2.7819 = 45.78\text{dBc}$ . Therefore  $1.9\text{Watts} = 32.78\text{dBm}$  Spurious limit =  $32.78 - 45.78\text{dB} = -13\text{dBm}$ . Note: The limits for output power vary. In accordance with Part 87.131, the class of station is "Radionavigation". For this particular class, frequency, emission and maximum power will be determined by the appropriate standards during the certification process.

***Transducer Legend:***

|                  |                      |
|------------------|----------------------|
| T1=20dB DC 61893 | T2=30dBpd            |
| T3=Cable GHz #9  | T4=Cust Cable 311601 |
| T5=HPF 1.5GHz    |                      |

| # | Freq      | Rdng       | Reading listed by margin. |       |      |      | Test Distance: None |            |            |        |
|---|-----------|------------|---------------------------|-------|------|------|---------------------|------------|------------|--------|
|   |           |            | T1                        | T2    | T3   | T4   | Dist                | Corr       | Spec       | Margin |
|   |           |            | T5                        |       |      |      | Table               | dB $\mu$ V | dB $\mu$ V | Polar  |
|   | MHz       | dB $\mu$ V | dB                        | dB    | dB   | dB   | Table               | dB $\mu$ V | dB $\mu$ V | Ant    |
| 1 | 2028.200M | 24.2       | +17.4<br>+0.5             | +31.3 | +0.5 | +1.2 | +0.0                | 75.1       | 94.0       | -18.9  |
| 2 | 3191.100M | 24.3       | +17.4<br>+0.2             | +29.6 | +0.9 | +1.4 | +0.0                | 73.8       | 94.0       | -20.2  |
| 3 | 4538.600M | 25.2       | +17.4<br>+0.4             | +28.3 | +0.5 | +1.6 | +0.0                | 73.4       | 94.0       | -20.6  |
| 4 | 5484.200M | 24.8       | +16.2<br>+0.9             | +26.2 | +1.2 | +1.9 | +0.0                | 71.2       | 94.0       | -22.8  |
| 5 | 6707.400M | 30.5       | +13.6<br>+0.4             | +22.6 | +0.9 | +2.6 | +0.0                | 70.6       | 94.0       | -23.4  |

|    |            |      |               |       |      |      |      |      |      |       |      |
|----|------------|------|---------------|-------|------|------|------|------|------|-------|------|
| 6  | 9909.000M  | 28.9 | +15.6<br>+0.8 | +20.2 | +1.1 | +3.0 | +0.0 | 69.6 | 94.0 | -24.4 | None |
| 7  | 8725.200M  | 27.6 | +14.7<br>+0.3 | +20.8 | +1.3 | +2.9 | +0.0 | 67.6 | 94.0 | -26.4 | None |
| 8  | 7554.100M  | 27.8 | +13.6<br>+0.4 | +21.5 | +1.1 | +2.8 | +0.0 | 67.2 | 94.0 | -26.8 | None |
| 9  | 1050.200M  | 35.5 | +0.0<br>+23.6 | +0.0  | +0.4 | +0.0 | +0.0 | 59.5 | 94.0 | -34.5 | None |
| 10 | 919.700M   | 35.0 | +0.0<br>+19.7 | +0.0  | +0.0 | +0.0 | +0.0 | 54.7 | 94.0 | -39.3 | None |
| 11 | 1038.800M  | 27.6 | +0.0<br>+21.2 | +0.0  | +0.4 | +0.0 | +0.0 | 49.2 | 94.0 | -44.8 | None |
| 12 | 3.062M     | 45.9 | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 45.9 | 94.0 | -48.1 | None |
| 13 | 134.300M   | 45.7 | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 45.7 | 94.0 | -48.3 | None |
| 14 | 2.078M     | 41.3 | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 41.3 | 94.0 | -52.7 | None |
| 15 | 4.061M     | 40.1 | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 40.1 | 94.0 | -53.9 | None |
| 16 | 5.080M     | 37.4 | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 37.4 | 94.0 | -56.6 | None |
| 17 | 6.020M     | 35.9 | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 35.9 | 94.0 | -58.1 | None |
| 18 | 8.050M     | 34.6 | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 34.6 | 94.0 | -59.4 | None |
| 19 | 4.985M     | 33.5 | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 33.5 | 94.0 | -60.5 | None |
| 20 | 10.060M    | 32.6 | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 32.6 | 94.0 | -61.4 | None |
| 21 | 10879.200M | 28.2 | +0.0<br>+0.7  | +0.0  | +2.6 | +0.0 | +0.0 | 31.5 | 94.0 | -62.5 | None |
| 22 | 11977.400M | 28.1 | +0.0<br>-0.1  | +0.0  | +2.0 | +0.0 | +0.0 | 30.0 | 94.0 | -64.0 | None |
| 23 | 12.070M    | 29.7 | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 29.7 | 94.0 | -64.3 | None |
| 24 | 15.280M    | 27.7 | +0.0<br>+0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 27.7 | 94.0 | -66.3 | None |

**TEST EQUIPMENT**

| <i>Equipment</i>  | <i>Manufacturer</i> | <i>Model #</i> | <i>Serial #</i> | <i>Asset #</i> | <i>Cal Date</i> | <i>Cal Due</i> |
|-------------------|---------------------|----------------|-----------------|----------------|-----------------|----------------|
| QP Adapter        | HP                  | 85650A         | 2811A01267      | 00478          | 1/30/02         | 1/30/03        |
| S/A Display       | HP                  | 8566B          | 2403A08241      | 00489          | 1/30/02         | 1/30/03        |
| Spectrum Analyzer | HP                  | 8566B          | 2209A01404      | 00490          | 1/30/02         | 1/30/03        |
| Power Supply      | Sorenson            | DCR-60-30B     | 0176            | 00765          | 7/17/02         | 7/17/03        |



Spurious Emissions



Close-up of IFR Connections

## 2.1033(c)(14)/2.1053/87.139 - FIELD STRENGTH OF SPURIOUS RADIATION

| ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE |                     |                  |                   |
|-------------------------------------------------|---------------------|------------------|-------------------|
| TEST                                            | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
| RADIATED EMISSIONS                              | 9 kHz               | 150 kHz          | 200 Hz            |
| RADIATED EMISSIONS                              | 150 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS                              | 30 MHz              | 1000 MHz         | 120 kHz           |
| RADIATED EMISSIONS                              | 1000 MHz            | 12 GHz           | 1 MHz             |

**Test Conditions:** The EUT is a panel mount transponder operating at 1090MHz with an input voltage of 28VDC. The transponder is operating in its worst case modulation, Mode S, which was determined during antenna conducted measurements. An IFR Test Set is remotely located and used to continuously interrogate the transponder. Frequency Range investigated: 9 kHz-12 GHz.

Derivation of 87.139 limit: Ant Gain = -.85dBi, Output power at the antenna terminal was measured as 161dBuV = 251Watts = 24dBW

ERP in Watts = 251Watts

$$\begin{aligned}
 \text{EIRP} &= \text{Ant Terminal Measurement} + \text{Ant Gain (dBi)} - 2\text{dB Cable Loss (per manufacturer)} \\
 &= 24\text{dBW} + -.85\text{dBi} - 2\text{dB} \\
 &= 21.15\text{dBW}
 \end{aligned}$$

Note: The limits for output power vary. In accordance with Part 87.131, the class of station is "Radionavigation". For this particular class, frequency, emission and maximum power will be determined by the appropriate standards during the certification process.

Operating Frequency: 851 – 869 MHz

Channels: Low, middle, high

Highest Measured Output Power: 54.00 ERP(dBm)= 251 ERP(Watts)

Distance: 3 meters

Limit: 43+10Log(P) 67.00 dBc

| Freq. (MHz) | Reference Level (dBm) | Antenna Polarity (H/V) | dBc    |
|-------------|-----------------------|------------------------|--------|
| 4,357.96    | -30.6                 | Vert                   | 84.60  |
| 2,183.10    | -35.10                | Vert                   | 89.10  |
| 4,360.08    | -28.50                | Horiz                  | 82.50  |
| 3,261.64    | -32.70                | Horiz                  | 86.70  |
| 2,183.44    | -26.20                | Horiz                  | 80.20  |
| 32.25       | -71.00                | Vert                   | 125.00 |
| 35.30       | -58.30                | Vert                   | 112.30 |

#### TEST EQUIPMENT

| Equipment         | Manufacturer | Model #     | Serial #   | Asset # | Cal Date | Cal Due  |
|-------------------|--------------|-------------|------------|---------|----------|----------|
| Antenna, Bicon    | A&H          | SAS-200/542 | 156        | 00225   | 12/06/01 | 12/6/02  |
| Antenna, Log      | A&H          | SAS-200/510 | 154        | 01330   | 6/19/02  | 6/19/03  |
| Preamp            | HP           | 8447D       | 1937A02604 | 00099   | 3/21/02  | 3/21/03  |
| Preamp            | HP           | 8449B       | 3008A00301 | 02010   | 10/19/01 | 10/19/02 |
| QP Adapter        | HP           | 85650A      | 2811A01267 | 00478   | 1/30/02  | 1/30/03  |
| S/A Display       | HP           | 8566B       | 2403A08241 | 00489   | 1/30/02  | 1/30/03  |
| Spectrum Analyzer | HP           | 8566B       | 2209A01404 | 00490   | 1/30/02  | 1/30/03  |
| Antenna, Horn     | EMCO         | 3115        | 4085       | 00656   | 03/19/02 | 03/19/03 |



Radiated Emissions - Front View



Radiated Emissions - Back View

## 2.1033(c)(14)/2.1055/87.133/87.147 - FREQUENCY STABILITY

**Test Conditions:** The EUT is a panel mount transponder operating at 1090MHz with an input voltage of 28VDC. The transponder is operating in its worst case modulation, Mode S, which was determined during antenna conducted measurements. An IFR Test Set is used to continuously interrogate the transponder.

**Customer:** Honeywell  
**WO#:** 79530  
**Date:** 04-Nov-02  
**Test Engineer:** Monika Brandle

**Device Model #:** KT 73  
**Operating Voltage:** 28 VDC  
**Frequency Limit:** 2.9 %  
**Frequency Limit:** 2.7 MHz T=550us, BW = 12.55MHz

87.133(d) For radar transmitters, except non-pulse signal radio altimeters, the frequency at which maximum emission occurs must be within the authorized frequency band and must not be closer than  $1.5/T$  MHz to the upper and lower limits of the authorized bandwidth where  $T$  is the pulse duration in microseconds. TSO Frequency Deviation = 1MHz

### Temperature Variations

| Channel Frequency: | Channel 1 (MHz) | Dev. (MHz) |
|--------------------|-----------------|------------|
| <b>1091.92</b>     |                 |            |
| Temp (C)           | Voltage         |            |
| -20                | 28              | 1091.42000 |
| -10                | 28              | 1091.00000 |
| 0                  | 28              | 1090.96000 |
| 10                 | 28              | 1091.28000 |
| 20                 | 28              | 1091.92000 |
| 30                 | 28              | 1092.16000 |
| 40                 | 28              | 1092.11000 |
| 50                 | 28              | 1092.38000 |

### Voltage Variations ( $\pm 15\%$ )

| Channel Frequency: | Channel 1 (MHz) | Dev. (MHz) |
|--------------------|-----------------|------------|
| <b>1091.92</b>     |                 |            |
| 20                 | 23.8            | 1091.77000 |
| 20                 | 28              | 1091.80000 |
| 20                 | 32.2            | 1092.04000 |

|                            |                |
|----------------------------|----------------|
| <b>Max Deviation (MHz)</b> | <b>0.96000</b> |
| <b>Max Deviation (%)</b>   | <b>0.08792</b> |
|                            | <b>PASS</b>    |



### Temperature Testing

#### TEST EQUIPMENT USED FOR FCC TESTS 2.1055

| <i>Equipment</i>  | <i>Manufacturer</i> | <i>Model #</i> | <i>Serial #</i> | <i>Asset #</i> | <i>Cal Date</i> | <i>Cal Due</i> |
|-------------------|---------------------|----------------|-----------------|----------------|-----------------|----------------|
| QP Adapter        | HP                  | 85650A         | 2811A01267      | 00478          | 1/30/02         | 1/30/03        |
| S/A Display       | HP                  | 8566B          | 2403A08241      | 00489          | 1/30/02         | 1/30/03        |
| Spectrum Analyzer | HP                  | 8566B          | 2209A01404      | 00490          | 1/30/02         | 1/30/03        |
| Power Supply      | Sorenson            | DCR-60-30B     | 0176            | 00765          | 7/17/02         | 7/17/03        |
| Thermometer       | Omega               | HH-26K         | T-202884        | 02242          | 8/30/02         | 8/30/03        |
| Temp Chamber      | Thermotron          | S-1.2 MiniMax  | 11899           | 01879          | 2/7/02          | 2/7/03         |

## 2.1091- MPE CALCULATIONS

Calculations prepared for:

*Honeywell*  
 23500 West 105th Street  
 Olathe KS 66061-6615

Calculations prepared by:

*Monika Brandle*  
 CKC Laboratories, Inc.  
 5473A Clouds Rest Road  
 Mariposa, CA 95338

Model Number: KT 73

FCC Identification:

Fundamental Operating Frequency: 1090MHz

Maximum Rated Output Power: 251 Watts

Measured Output Power: 251 Watts

Mean Output Power: 2.3 Watts

$EIRP = \text{ANT Cond (dB)} + \text{Cust ANT Gain (dBi)}$

$EIRP = 33.6\text{dBm} + .85\text{dBi} = -32.75\text{dBm}$  or 1.88Watts

Power Output and Operating Frequency Information used for these calculations were from:

CKC Laboratories, Inc. Mean Output Power was calculated as follows:

$Po = 251\text{Watts}$

$Py = (251)(550\text{ns})(14)(1200) = 2.3\text{Watts}$

Where

$Py = (Po)(Tw)(N)(R)$

$Py$  = Mean Transmitter Power

$Po$  = Peak Output Power

$Tw$  = Pulse width (Seconds) Manufacturer declares a pulse width of 450nS-550nS

$N$  = number of pulses

$R$  = Reply Rate (Hz)

MPE Limit in accordance with 1.1310(b): Limits for general population/uncontrolled exposure

MPE Limit =  $f/1500$ , where  $f$  = Frequency in MHz

MPE Limit for 1090 MHz =  $1090/1500 = 0.726667\text{mW/cm}^2$

| Power Output (Watts) | Power Output (EIRP) | Power Density Limit (mW/cm <sup>2</sup> ) | Minimum Distance (cm) |
|----------------------|---------------------|-------------------------------------------|-----------------------|
| 2.3 (Mean)           | 1.88W               | 0.726667                                  | 14.35213087           |

Power Density (mW/cm<sup>2</sup>) =  $(EIRP) / (d^2 * 4 * \pi)$

EIRP = Measured or Calculated EIRP, in mWatts

$d$  = Distance in centimeters

Under normal operating conditions, the antenna is designed to maintain a separation distance of 14.3 centimeters from all persons. As can be seen from the MPE results, this device passes the limits specified in 1.1310 at a distance of 14.3cm at a rated average output power of 1.88 Watts.