

Test Report

FCC CFR47 Part 87 and Industry Canada RSS-141

Application for Grant of Certification

For

Model: KSN 770

118-136.992 MHz **Aviation Communications Transceiver**

> FCC ID: ASYKSN770 IC: 10900A-KSN770

> > For

Honeywell International Inc.

23500 W. 105th Street Olathe, KS 66061

Test Report Number 121210

Authorized Signatory: Sot DRogers

Scot D. Rogers

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Honeywell International Inc.

Model: KSN 770 Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210 SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 1 of 36

ROGERS LABS, INC.

4405 West 259th Terrace Louisburg, KS 66053 Phone / Fax (913) 837-3214

Test Report For Application of Certification

Honeywell International Inc.

23500 W. 105th Street Olathe, KS 66061

Mr. Kim Hinkle **FCC Coordinator**

Model: KSN 770

Aviation Communications Transceiver

FCC ID: ASYKSN770 IC: 10900A-KSN770

Frequency Range: 118.000-136.992 MHz

Test Date: December 10, 2012

Certifying Engineer: Scot DRogers

Scot D. Rogers Rogers Labs, Inc.

4405 West 259th Terrace Louisburg, KS 66053

Telephone/Facsimile: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

Honeywell International Inc.

Model: KSN 770 Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210 SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 2 of 36

Table of Contents

TABLE OF CONTENTS	3
REVISION HISTORY	4
FORWARD	5
OPINION / INTERPRETATION OF RESULTS	5
APPLICABLE STANDARDS & TEST PROCEDURES	5
ENVIRONMENTAL CONDITIONS	5
APPLICATION FOR CERTIFICATION	6
SYSTEM DESCRIPTION	
Test Setup Diagram UNITS OF MEASUREMENTS	
TEST SITE LOCATIONS	7
LIST OF TEST EQUIPMENT	8
TRANSMITTER POWER OUTPUT	9
Measurements Required	9
Test Arrangement	9
Table 1 Transmitter Power Results	10
Figure 1 Maximum Power Output Across Frequency Band (14 Volt Operation)	11
MODULATION CHARACTERISTICS	12
Measurements Required	12
Test Arrangement	12
Modulation Characteristic Results	12
Figure 4 Modulation Characteristics	
OCCUPIED BANDWIDTH	13
Measurements Required	13
Test Arrangement	13
Table 2 Occupied Bandwidth Results	14
Figure 6 Occupied Band Width Carrier frequency 118.000 MHz	15

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

Honeywell International Inc. Model: KSN 770 Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 3 of 36

Figure 9 Occupied Band Width Carrier frequency 136.992 MHz	16
SPURIOUS EMISSIONS AT ANTENNA TERMINALS	17
Measurements Required	17
Test Arrangement	17
Table 3 Spurious Emissions at Antenna Terminal Data and Results (11.8 watt)	18
Table 4 Spurious Emissions at Antenna Terminal Data and Results (12.0 watt)	19
Table 5 Spurious Emissions at Antenna Terminal Data and Results (20.0 watt)	20
Figure 10 Spurious Emissions at Antenna Terminal (11.8 watt)	21
Figure 11 Spurious Emissions at Antenna Terminal (12.0 watt)	21
Figure 12 Spurious Emissions at Antenna Terminal (20.0 watt)	
Figure 13 Emission Mask (11.8 watt)	
Figure 15 Emission Mask (20.0 watt)	
FIELD STRENGTH OF SPURIOUS RADIATION (UNWANTED EMISSIONS)	24
Measurements Required	
Test Arrangement	24
Table 4 General Spurious Radiated Emission Results	26
Table 5 Spurious Radiated Emission Results for 118.000 MHz Operation	27
Table 6 Spurious Radiated Emission Results for 127.000 MHz Operation	27
Table 7 Spurious Radiated Emission Results for 136.975 MHz Operation	27
Table 8 Spurious Radiated Emission Results for 136.992 MHz Operation	28
FREQUENCY STABILITY	28
Measurements Required	28
Test Arrangement	28
Table 8 Frequency Stability vs. Temperature Results	30
Table 9 Frequency Stability vs. Input Power Supply Voltage Results	30
ANNEX	31
Annex A Measurement Uncertainty Calculations	32
Annex B Rogers Labs Test Equipment List	33
Annex C Rogers Qualifications	34
Annex D FCC Test Site Registration Letter	35
Annex E Industry Canada Test Site Registration Letter	36

Revision History

Revision 1 issued March 5, 2013

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Honeywell International Inc.

Model: KSN 770 Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210 SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013

Page 4 of 36

Forward

In accordance with the Federal Communications, Code of Federal Regulations dated October 1, 2012, Part 2 Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.915, 2.925, 2.926, 2.1031 through 2.1057, and Part 87, Subchapter D, Paragraphs 87.131 through 87.147, and Industry Canada RSS-141 Issue 2, June 2010 the following information is submitted for consideration in obtaining Grant of Certification.

Opinion / Interpretation of Results

Tests Performed	Results
Emissions Tests	
Requirements per CFR47 paragraphs 2.1031-2.1057 and RSS-141, Issue 2	Complies
Requirements per CFR47 paragraphs 87.131 and RSS-141 paragraph 5.1	Complies
Requirements per CFR47 paragraphs 87.133 and RSS-141 paragraph 5.1	Complies
Requirements per CFR47 paragraphs 87.135 and RSS-141 paragraph 5.1	Complies
Requirements per CFR47 paragraphs 87.139 and RSS-141 paragraph 5.2.2	Complies
Requirements per CFR47 paragraphs 87.141 and RSS-141 paragraph 5.1	Complies

Applicable Standards & Test Procedures

In accordance with the Federal Communications Code of Federal Regulations, dated October 1, 2012, Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, and applicable paragraphs of Part 87, and RSS-141, Issue 2 the following is submitted for consideration in obtaining Grant of Certification. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in ANSI C63.4-2009 and TIA/EIA 603.

Environmental Conditions

Ambient Temperature 20.5° C Relative Humidity 38% Atmospheric Pressure 1019.2 mb

Rogers Labs, Inc. Honeywell International Inc. SN: 133

 4405 West 259th Terrace
 Model: KSN 770
 FCC ID: ASYKSN770

 Louisburg, KS 66053
 Test #: 121210
 IC: 10900A-KSN770

 Phone/Fax: (913) 837-3214
 Test to: FCC Parts 2, 87, and RSS-141
 Date: March 5, 2013

 Revision 1
 File: Honeywell KSN770 TstRpt 121210
 Page 5 of 36

Application for Certification

1) Manufacturer: Honeywell International Inc. 23500 W. 105th Street Olathe, KS 66062

2) Identification: FCC I.D.: ASYKSN770 IC: 10900A-KSN770

3) Instruction Book: Refer to exhibit for Draft Instruction Manual.

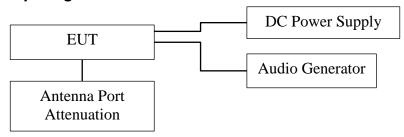
4) Emission Type: Emissions designator 5k60A3E (25 kHz) or 5k60A3E (8.33 kHz)

- 5) Frequency Range: 118-136.975 MHz (25 kHz channel operation) and 118—136.992 (8.33 kHz channel operation)
- 6) Operating Power Level: 11.6 W @ 14V, 12.0 W @ 28V or 20.0 W, @ 28V
- 7) Maximum P_o: Maximum allowable power output of 55 Watts as defined per CFR47 paragraph 87.131 and RSS-141 paragraph 5.1.
- 8) Power into final amplifying circuitry: Power delivered into final amplifier
 14.0 volts @ 3.0 amps (14V), 28.0 volts @ 3.2 amps (28V), 28.0 volts @ 3.5 amps (28V)
- 9) Tune Up Procedure for Output Power: Each unit is tested during production and factory set per manufacturer procedures. The design offers no alignment procedure outside manufacturer.
- 10) Circuit Diagrams; description of circuits, frequency stability, spurious suppression, and power and modulation limiting: Refer to provided exhibits for Circuit information and theory of operation.
- 11) Photograph or drawing of the Identification Plate: Refer to exhibits for Photograph or Drawing.
- 12) Drawings of Construction and Layout: Refer to exhibits for Components Layout and Chassis Drawings.
- 13) Detail Description of Digital Modulation: Not applicable
- 14) Data required by CFR47 paragraphs 2.1046 through 2.1057 are contained in this application.
- 15) External power amplifier requirements do not apply to this device or application.
- 16) AM broadcast requirements do not apply to this device or application.
- 17) Requirements of CFR47 paragraph 25.129 do not apply to this device or application.
- 18) The device is not a software-defined radio and requirements of 2.944 do not apply to this application.

Rogers Labs, Inc. Honeywell International Inc. SN: 133
4405 West 259th Terrace Model: KSN 770 FCC ID: ASYKSN770

 Louisburg, KS 66053
 Test #: 121210
 IC: 10900A-KSN770

 Phone/Fax: (913) 837-3214
 Test to: FCC Parts 2, 87, and RSS-141
 Date: March 5, 2013


 Revision 1
 File: Honeywell KSN770 TstRpt 121210
 Page 6 of 36

System Description

The KSN 770 is an aeronautical communications transceiver incorporating navigational receivers. The device is marketed as an Aircraft panel mounted avionics unit. The design includes an Aviation-Band VHF Transceiver with 25 kHz and 8.33 kHz Channel Spacing, Navigational receiver operation in 108-118 MHz, Glide slope operation in 328.6-335.4 MHz, and WAAS GPS receiver. The transmitter operational frequency band is either 118.000 to 136.975 MHz (25 kHz mode) or 118.000 to 136.992 MHz (8.33 kHz mode). The design offers manufacturer ability to configure each unit to operate in one of three configurations; 1) 14-volt installation offering transmit operation of 11.6 watts, 2) 28-volt installation offering transmit operation of 12.0 watts, and 3) 28-volt installation offering transmit operation of 20.0 watts.

Test Setup Diagram

Units of Measurements

AC Line Conducted EMI Data is in dBuV; dB referenced to one microvolt.

Radiated EMI Data is in dBµV/m; dB/m referenced to one microvolt per meter

Antenna Conducted Data is in dBm, dB referenced to one milliwatt

Test Site Locations

The AC power line conducted emissions testing performed in a shielded Conducted EMI

screen room located at Rogers Labs, Inc., 4405 W. 259th Terrace,

Louisburg, KS.

The radiated emissions testing performed at the 3 meters, Open Area Test Radiated EMI

Site (OATS) located at Rogers Labs, Inc., 4405 W. 259th Terrace,

Louisburg, KS.

Site Registration Refer to Annex for FCC Site Registration Letter, # 90910, and Industry

Canada Site Registration Letter, IC3041A-1.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

Honeywell International Inc. Model: KSN 770

Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210 SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013

Page 7 of 36

List of Test Equipment

A Rohde & Schwarz ESU40 and/or Hewlett Packard 8591EM Spectrum Analyzer was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Rohde & Schwarz ESU40 and/or Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table. Refer to the appendix for a complete list of test equipment.

Analyzer Settings			
I	AC Line Conducted Emissions	:	
RBW	AVG. BW	Detector Function	
9 kHz	30 kHz	Peak/Quasi Peak	
Ra	adiated Emissions 30-1000 MI	Нz	
RBW	AVG. BW	Detector Function	
100 kHz	100 kHz	Peak	
120 kHz	300 kHz	Peak/Quasi Peak	
Radiated Emissions Above 1000 MHz			
RBW	Video BW	Detector Function	
1 MHz	1 MHz	Peak / Average	

<u>Equipment</u>	<u>Manufacturer</u>	<u>Model</u>	<u>Band</u>	Cal Date	<u>Due</u>
LISN	Comp. Design FC	CC-LISN-2-MOD.CD	.15-30MHz	10/12	10/13
Antenna	ARA	BCD-235-B	20-350MHz	10/12	10/13
Antenna	EMCO	3147	200-1000MHz	10/12	10/13
	Com Power	AH-118	1-18 GHz	10/11	10/13
Antenna	Com Power	AH-840	18-40 GHz	10/12	10/13
Mntenna 🖂	Standard	FXRY638A	10-18 GHz	3/12	5/13
	EMCO	6509	.001-30 MHz	2/12	2/13
Antenna	EMCO	3143	20-1200 MHz	5/12	5/13
Antenna	Sunol	JB-6	30-1000 MHz	5/12	5/13
Analyzer	HP	8591EM	9kHz-1.8GHz	5/12	5/13
Analyzer	HP	8562A	9kHz-110GHz	5/12	5/13
Analyzer 🖂	Rohde & Schwarz	ESU40	20Hz-40GHz	5/12	5/13
	Com-Power	PA-010	100Hz-30MHz	10/12	10/13
Margar Amplifier	Com-Power	CPPA-102	1-1000 MHz	10/12	10/13
	Com-Power	PA-122	0.5-22 GHz	10/12	10/13

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fay: (913) 837 321

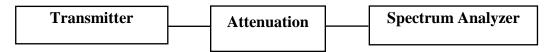
Phone/Fax: (913) 837-3214 Revision 1 Honeywell International Inc. Model: KSN 770

Model: KSN 7/0 Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 8 of 36



Transmitter Power Output

Measurements Required

Measurements shall be made to establish the radio frequency power delivered by the transmitter into the standard output termination. The power output shall be monitored and recorded and no adjustment shall be made to the transmitter after the test has begun, except as noted below: If the power output is adjustable, measurements shall be made for the highest and lowest power levels. Transmitter output power is factory defined based on purchased options and installation requirements. The design provides for fixed output power rating dependent on input voltage and purchased options. Three output power ratings are available, 11.6 watts, 12.0 watts, or 20.0 watts.

Test Arrangement

The radio frequency power output was measured at the antenna terminal by placing 40-dB attenuation in the antenna line and observing transmitter output emission with the spectrum analyzer. The spectrum analyzer offered an impedance of 50Ω to match the impedance of the standard antenna. A Rohde & Schwarz ESU40 Spectrum Analyzer was used to measure the radio frequency power at the antenna port. Data was taken in dBm and converted to watts as shown in the following Table. Refer to Figures 1 through 3 showing maximum output power of each of the transmitter output options. Data was taken per CFR47 Paragraph 2.1046(a) and applicable paragraphs of Part 87 and RSS-141.

 P_{dBm} = power in dB above 1 milliwatt

Milliwatts $= 10^{(PdBm/10)}$

Watts = (Milliwatts)(0.001)(W/mW)

Milliwatts = $10^{(40.64/10)}$

= 11.588 mW

= 11.6 Watts Peak power

Rogers Labs, Inc. Honeywell International Inc. SN: 133

 4405 West 259th Terrace
 Model: KSN 770
 FCC ID: ASYKSN770

 Louisburg, KS 66053
 Test #: 121210
 IC: 10900A-KSN770

 Phone/Fax: (913) 837-3214
 Test to: FCC Parts 2, 87, and RSS-141
 Date: March 5, 2013

Revision 1 File: Honeywell KSN770 TstRpt 121210 Page 9 of 36

Table 1 Transmitter Power Results

Frequency	Input Voltage	P_{dBm}	P_{mw}	P_{w}
118.000	14 Vdc	40.64	11,587.8	11.6
127.000	14 Vdc	40.60	11,481.5	11.5
136.975	14 Vdc	40.60	11,481.5	11.5
136.992	14 Vdc	40.60	11,481.5	11.5
118.000	28 Vdc	40.77	11,939.9	11.9
127.000	28 Vdc	40.71	11,776.1	11.8
136.975	28 Vdc	40.79	11,995.0	12.0
136.992	28 Vdc	40.80	12,022.6	12.0
118.000	28 Vdc	43.02	20,044.7	20.0
127.000	28 Vdc	43.02	20,044.7	20.0
136.975	28 Vdc	43.00	19,952.6	20.0
136.992	28 Vdc	43.00	19,952.6	20.0

The EUT demonstrated compliance with specifications of CFR47 Paragraph 2.1046(a) and applicable Parts of 2 and 87.131 and RSS-141 paragraph 5.1. There are no deviations to the specifications.

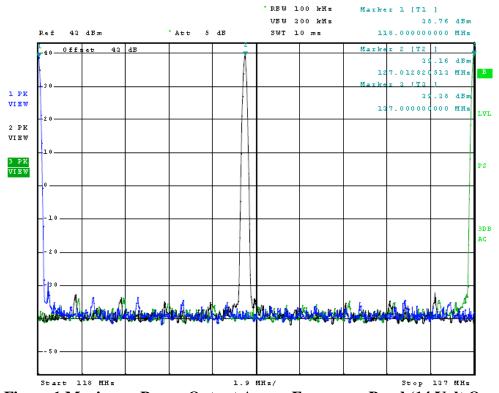


Figure 1 Maximum Power Output Across Frequency Band (14 Volt Operation)

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

Honeywell International Inc. Model: KSN 770

Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210 SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 10 of 36

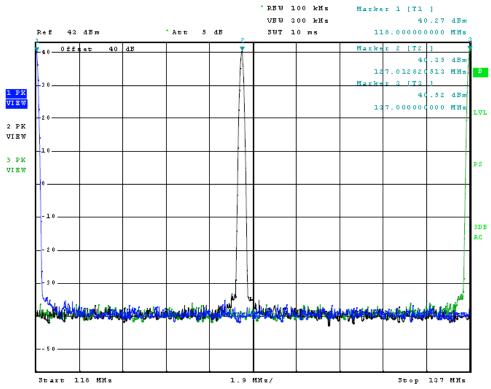


Figure 2 Maximum Power Output Across Frequency Band (28 Volt, 12 W, Operation)

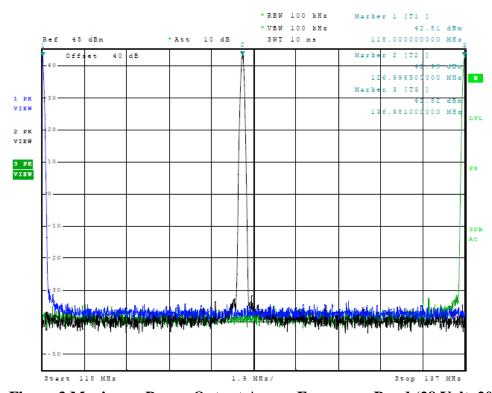


Figure 3 Maximum Power Output Across Frequency Band (28 Volt, 20 W, Operation)

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214

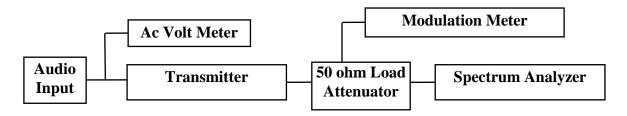
Revision 1

Honeywell International Inc.

Model: KSN 770 Test #: 121210

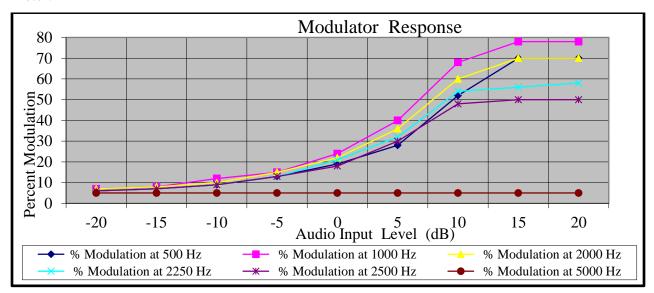
Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210 SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 11 of 36



Modulation Characteristics

Measurements Required


A curve or equivalent data, which shows that the equipment will meet the modulation requirements of the rules, under which the equipment is licensed, shall be submitted. The radio frequency output was coupled to a Spectrum Analyzer and a modulation meter. The spectrum analyzer was used to observe the radio frequency spectrum with the transmitter operating in its various modes. The modulation meter was used to measure the percent modulation.

Test Arrangement

Modulation Characteristic Results

Figure 4 shows the modulation characteristics of six frequencies while the input voltage was varied. The frequency is held constant and the percent modulation is read from the modulation meter.

Figure 4 Modulation Characteristics

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

Honeywell International Inc. Model: KSN 770

Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210 SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 12 of 36

Figure 5 displays the graph made showing the audio frequency response of the modulator. The frequency generator was set to 1 kHz frequency and injected into the audio input port of the EUT. The input voltage amplitude was adjusted to obtain 50% modulation at 1000 Hz. This level was then taken as the 0-dB reference. The frequency of the generator was then varied and the output voltage level was adjusted to maintain the 50% modulation. The output level required for 50% modulation then recorded. This level was normalized to the level required for 50% modulation at 1000 Hz.

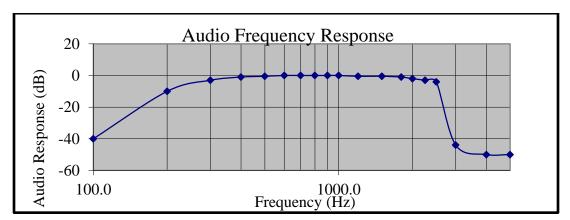


Figure 5 Audio Frequency Response

The EUT demonstrated compliance with specifications of CFR47 Paragraph 2.1046(a) and applicable Parts of 2 and 87.141 and RSS-141. There are no deviations to the specifications.

Occupied Bandwidth

Measurements Required

The occupied bandwidth, that is the frequency bandwidth such that below its lower and above its upper frequency limits, the mean powers radiated are equal to 0.5 percent of the total mean power radiated by a given emission.

Test Arrangement

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Phone/Fax: (913) 837-32 Revision 1 Honeywell International Inc.

Model: KSN 770 Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 13 of 36

A Rohde & Schwarz ESU 40 spectrum analyzer was used to observe the radio frequency spectrum with the transmitter operating in normal modes. Characteristics for audio communications were obtained with the EUT modulated by a frequency of 2500 Hz at a level 16 dB above 50% modulation. Other modulation schemes were measured using appropriate input signals as defined by other standards. The power ratio in dB representing 99% of the total mean power was recorded from the spectrum analyzer measurements. Refer to figures 6 through 9 displaying plots of 99% power occupied bandwidth measurements.

Table 2 Occupied Bandwidth Results

Frequency (MHz)	Measured Occupied bandwidth (kHz)	Designator
118.000	5.480	5k60
127.000	5.480	5k60
136.975	5.480	5k60
136.992	5.481	5k60

The EUT demonstrated compliance with specifications of CFR47 Paragraph 2.1046(a) and applicable Parts of 2 and 87.135 and RSS-141 paragraph 5.1. There are no deviations to the specifications.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Phone/Fax: (913) 837-321 Revision 1 Honeywell International Inc. Model: KSN 770

Test #: 121210 Test to: FCC Parts 2, 87

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 14 of 36

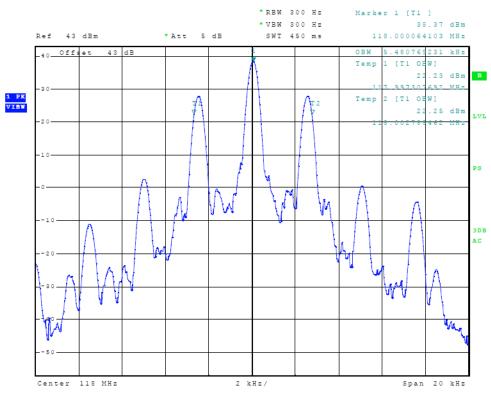


Figure 6 Occupied Band Width Carrier frequency 118.000 MHz

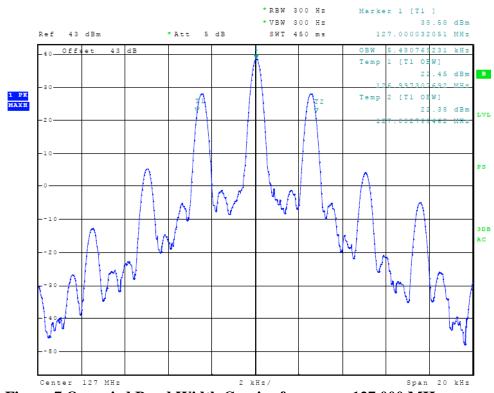


Figure 7 Occupied Band Width Carrier frequency 127.000 MHz

Honeywell International Inc. Model: KSN 770

Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133 FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 15 of 36

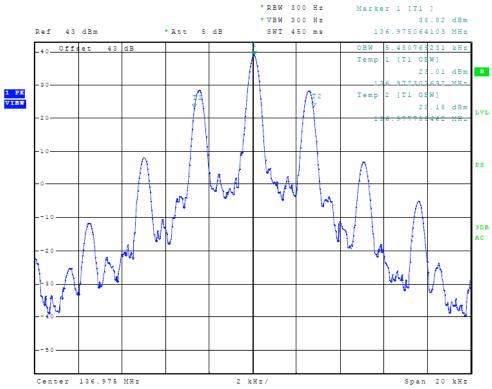


Figure 8 Occupied Band Width Carrier frequency 136.975 MHz

Figure 9 Occupied Band Width Carrier frequency 136.992 MHz

Honeywell International Inc. Model: KSN 770

Test #: 121210
Test to: FCC Part

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133 FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 16 of 36

Spurious Emissions at Antenna Terminals

Measurements Required

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Refer to figures 10 through 13 for plots of spurious emissions at antenna port. Refer to figures 14 through 15 for plots with emission mask.

For transmitters with A3E or A9W emissions, the mean power of any emissions shall be attenuated below the mean power of the transmitter, P as follows:

- (a) When the frequency is removed from the equipment's channel center frequency by more than 50% up to and including 100% of the channel bandwidth, the attenuation shall be at least 25 dB, measured with a bandwidth of 300 Hz;
- (b) When the frequency is removed from the equipment's channel center frequency by more than 100% up to and including 250% of the channel bandwidth, the attenuation shall be at least 35 dB, measured with a bandwidth of 300 Hz;
- (c) When the frequency is removed from the equipment's channel center frequency by more than 250% of the channel bandwidth, the attenuation for on-board aircraft transmitters shall be at least 40 dB; and the attenuation for ground transmitters shall be at least 43 + 10 log₁₀ P (in watts) dB, measured with a bandwidth of 3 kHz.

Transmitter Power	Limit = 43 + 10 Log (Po)	dBc
11.8	43 + 10 Log (11.8)	53.6
12.0	43 + 10 Log (12.0)	53.8
20.0	43 + 10 Log (20.0)	56.0

Test Arrangement

Transmitter	Attenuation	Spectrum Analyzer

The radio frequency output was coupled to a Rohde & Schwarz ESU40 Spectrum Analyzer during antenna port conducted emissions measurements. The spectrum analyzer was used to observe the radio frequency spectrum with the transmitter modulated per section 2.1049 and operated in all normal modes. The frequency spectrum from 30 MHz to 1,500 MHz was observed and plot produced of the frequency spectrum displayed on the test equipment. Data was taken per CFR47 2.1051, 2.1057, and applicable paragraphs of Part 87.139, and RSS-141. There are no deviations to the specifications.

Rogers Labs, Inc. Honeywell International Inc. SN: 133

 4405 West 259th Terrace
 Model: KSN 770
 FCC ID: ASYKSN770

 Louisburg, KS 66053
 Test #: 121210
 IC: 10900A-KSN770

 Phone/Fax: (913) 837-3214
 Test to: FCC Parts 2, 87, and RSS-141
 Date: March 5, 2013

Revision 1 File: Honeywell KSN770 TstRpt 121210 Page 17 of 36

Table 3 Spurious Emissions at Antenna Terminal Data and Results (11.8 watt)

Channel MHz	Spurious Freq. (MHz)	Measured Level (dBm)	Level Below Carrier (dBc)
118.000	236.0	-30.55	-71.2
	354.0	-52.55	-93.2
	472.0	-53.51	-94.2
	590.0	-50.95	-91.6
	708.0	-54.97	-95.6
	826.0	-55.00	-95.6
127.000	254.0	-25.88	-66.5
	381.0	-52.15	-92.8
	508.0	-54.38	-95.0
	635.0	-50.12	-90.7
	762.0	-54.91	-95.5
	889.0	-55.08	-95.7
136.975	274.0	-30.31	-70.9
	410.9	-52.12	-92.7
	547.9	-55.31	-95.9
	684.9	-49.71	-90.3
	821.9	-54.61	-95.2
	958.8	-53.38	-94.0
136.992	274.0	-31.74	-72.3
	411.0	-53.70	-94.3
	548.0	-55.49	-96.1
	685.0	-51.71	-92.3
	822.0	-55.03	-95.6
	958.9	-53.15	-93.8

Revision 1

Honeywell International Inc. Model: KSN 770

Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 18 of 36

Table 4 Spurious Emissions at Antenna Terminal Data and Results (12.0 watt)

Channel MHz	Spurious Freq. (MHz)	Measured Level (dBm)	Level Below Carrier (dBc)
118.000	236.0	-22.18	-62.8
	354.0	-52.21	-92.9
	472.0	-56.83	-97.5
	590.0	-57.82	-98.5
	708.0	-58.11	-98.8
	826.0	-58.18	-98.8
127.000	254.0	-21.40	-62.0
	381.0	-49.34	-89.9
	508.0	-51.03	-91.6
	635.0	-55.23	-95.8
	762.0	-54.71	-95.3
	889.0	-53.26	-93.9
136.975	274.0	-27.30	-67.9
	410.9	-50.07	-90.7
	547.9	-52.14	-92.7
	684.9	-49.57	-90.2
	821.9	-54.90	-95.5
	958.8	-48.52	-89.1
136.992	274.0	-24.95	-65.6
	411.0	-50.30	-90.9
	548.0	-52.74	-93.3
	685.0	-49.70	-90.3
	822.0	-53.72	-94.3
	958.9	-48.35	-89.0

Honeywell International Inc. Model: KSN 770 Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210 SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 19 of 36

Table 5 Spurious Emissions at Antenna Terminal Data and Results (20.0 watt)

Channel MHz	Spurious Freq. (MHz)	Measured Level (dBm)	Level Below Carrier (dBc)
118.000	236.0	-21.37	-64.4
	354.0	-43.68	-86.7
	472.0	-51.07	-94.1
	590.0	-51.95	-95.0
	708.0	-52.85	-95.9
	826.0	-51.80	-94.8
127.000	254.0	-18.76	-61.8
	381.0	-42.63	-85.7
	508.0	-48.37	-91.4
	635.0	-50.05	-93.1
	762.0	-52.29	-95.3
	889.0	-52.12	-95.1
136.975	274.0	-20.14	-63.1
	410.9	-29.39	-72.4
	547.9	-49.80	-92.8
	684.9	-50.14	-93.1
	821.9	-51.53	-94.5
	958.8	-43.91	-86.9
136.992	274.0	-20.63	-63.6
	411.0	-35.58	-78.6
	548.0	-50.34	-93.3
	685.0	-50.43	-93.4
	822.0	-51.87	-94.9
	958.9	-43.40	-86.4

Revision 1

Honeywell International Inc. Model: KSN 770

Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 20 of 36

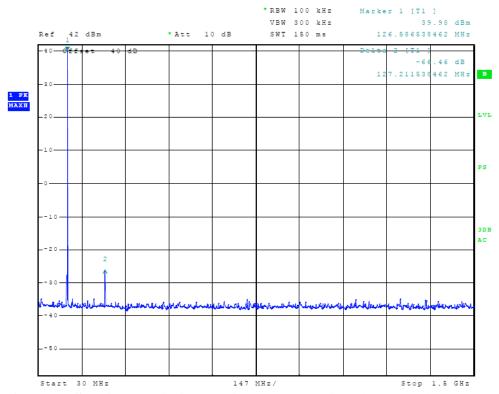


Figure 10 Spurious Emissions at Antenna Terminal (11.8 watt)

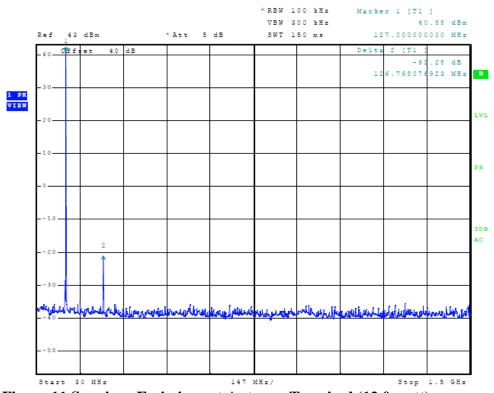


Figure 11 Spurious Emissions at Antenna Terminal (12.0 watt)

Honeywell International Inc. Model: KSN 770

Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133 FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 21 of 36

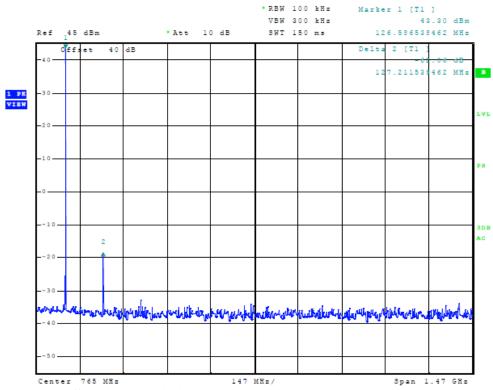


Figure 12 Spurious Emissions at Antenna Terminal (20.0 watt)

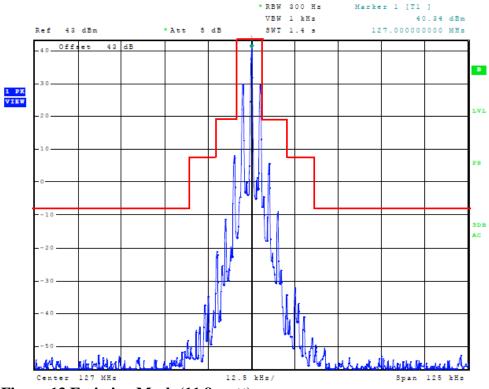


Figure 13 Emission Mask (11.8 watt)

Honeywell International Inc. Model: KSN 770

Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133 FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 22 of 36

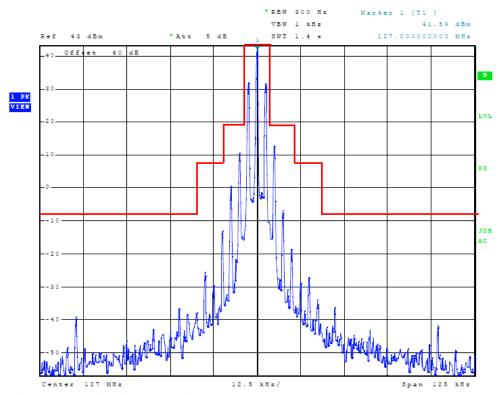


Figure 14 Emission Mask (12.0 watt)

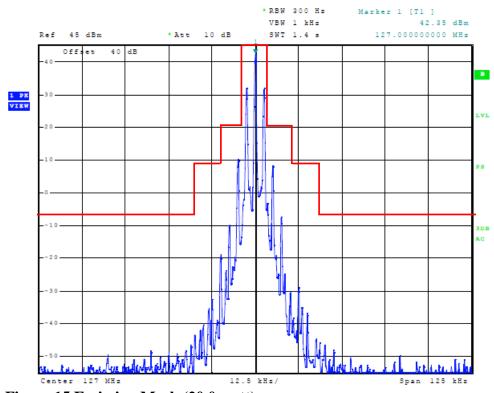


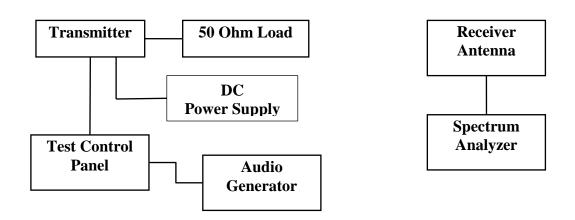
Figure 15 Emission Mask (20.0 watt)

Honeywell International Inc. Model: KSN 770

Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133 FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 23 of 36



Field Strength of Spurious Radiation (Unwanted Emissions)

Measurements Required

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. This equipment is typically remote mounted with interface cabling connecting the display control unit to the cabinet. The test sample offered for testing required interfacing with additional test control panels offering operation and communications with all functions of transmitter.

Test Arrangement

The test setup was assembled in a screen room for preliminary screening. The transmitter was placed on a wooden turntable 0.8 meters above the ground plane and at a distance of 1 meter from the receive antenna, plots were taken of the radiated emissions. A final radiated emission testing was performed with the transmitter placed on a wooden turntable 0.8 meters above the ground plane and at a distance of 3 meters from the Field Strength Measuring (FSM) antenna. The EUT was operational and radiating into a 50Ω load. The receiving antenna was raised and lowered from 1m to 4m in height to obtain the maximum reading of spurious radiation from the EUT, cabinet, and interface cabling. The turntable was rotated though 360 degrees to locate the position registering the highest amplitude of emission. The frequency spectrum was then searched for spurious emissions generated from the transmitter, interface cabling, and test setup. The amplitude of each spurious emission was maximized by raising and lowering the FSM

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-321.

Phone/Fax: (913) 837-3214

Revision 1

Honeywell International Inc. Model: KSN 770

Test #: 121210 Test to: FCC Parts 2, 87.

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 24 of 36

antenna, and rotating the turntable before final data was recorded. The frequency spectrum from 30 MHz to 1,500 MHz was investigated during radiated emissions testing. A Biconilog antenna was used for frequency measurements of 30 to 1000 MHz. A log periodic antenna was used for frequencies of 1000 MHz to 5000 MHz. A double-ridge horn antenna was used for frequencies of 5000 MHz to 12,000 MHz. Emission levels were measured and recorded from the spectrum analyzer in dBµV. Data was taken at the Rogers Labs, Inc. 3 meters open area test site (OATS). The transmitter was then removed and replaced with a substitution antenna, amplification as required, and signal generator. The signal from the generator was then adjusted such that the amplitude received was the same as that previously recorded for each frequency. This step was repeated for both horizontal and vertical polarizations. The power in dBm required to produce the desired signal level was then recorded from the signal generator. The power in dBm was then calculated by reducing the previous readings by the gain in the substitution antenna. Data was taken at the Rogers Labs, Inc. 3 meters open area test site (OATS). A description of the test facility is on file with the FCC and Industry Canada (refer to annex for site registration letters). The testing procedures used conform to the procedures stated in the TIA/EIA-603 document. General spurious data was taken while the EUT was transmitting at 127.000 MHz for each mode of operation whit worst-case data is presented in table 4 below.

All spurious emissions must be attenuated at least 43 +10log (Po) below the fundamental emission power level. The following equations represent the calculated attenuation levels for the equipment.

Limit for 20 Watts =
$$43 + 10 \text{ Log (Po)}$$

= $43 + 10 \text{ Log (20.0)}$
= 56.0 dBc

Requirement 43.0 dB less the limit 56.0 dBc equates to a level of -13 dBm

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Honeywell International Inc. Model: KSN 770

Test #: 121210 Test to: FCC Parts 2, 8

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 25 of 36

Table 4 General Spurious Radiated Emission Results

Frequency	Amplitu Emission		Signal Level to dipole required to Reproduce(dBm)		Emission le carrier	Limit (dBm)	
MHz	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	
47.6	45.8	57.3	-71.0	-59.5	-114.3	-102.8	-13
47.9	44.0	56.0	-72.8	-60.8	-116.1	-104.1	-13
48.3	42.4	54.8	-74.4	-62.0	-117.7	-105.3	-13
60.0	47.1	57.3	-70.4	-60.2	-113.7	-103.5	-13
80.0	51.0	52.0	-66.3	-65.3	-109.6	-108.6	-13
140.0	57.1	50.7	-54.8	-61.2	-98.1	-104.5	-13
160.0	44.0	39.0	-68.4	-73.4	-111.7	-116.7	-13
180.0	55.3	50.5	-58.5	-63.3	-101.8	-106.6	-13
200.0	50.6	51.6	-61.6	-60.6	-104.9	-103.9	-13
220.0	49.1	52.4	-64.7	-61.4	-108.0	-104.7	-13
240.0	48.1	47.9	-64.9	-65.1	-108.2	-108.4	-13
260.0	50.6	43.5	-61.8	-68.9	-105.1	-112.2	-13
300.0	49.8	50.3	-61.3	-60.8	-104.6	-104.1	-13
320.0	35.7	38.4	-74.9	-72.2	-118.2	-115.5	-13

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

The EUT demonstrated compliance with specifications of CFR47 Paragraph 2.1046(a) and applicable Parts of 2 and 87.139, and RSS-141 paragraph 5. There are no deviations to the specifications. There are no deviations or exceptions to the specifications.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Honeywell International Inc. Model: KSN 770 Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 26 of 36

Table 5 Spurious Radiated Emission Results for 118.000 MHz Operation

Frequency	Amplitude of Emission (dBµV)		Signal Level to dipole required to Reproduce(dBm)		Emission level below carrier (dBc)		Limit (dBm)
MHz	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	
236.00	36.9	31.0	-76.13	-82.03	-119.3	-125.2	-13
354.00	30.7	33.0	-79.23	-76.93	-122.4	-120.1	-13
472.00	54.6	44.0	-52.83	-63.43	-96.0	-106.6	-13
590.00	38.4	30.0	-67.13	-75.53	-110.3	-118.7	-13

Table 6 Spurious Radiated Emission Results for 127.000 MHz Operation

Frequency	Amplitude of Emission (dBµV)		Signal Level to dipole required to Reproduce(dBm)		Emission le carrier	Limit (dBm)	
MHz	Horizontal	Vertical	Horizontal Vertical		Horizontal	Vertical	
254.00	43.3	32.9	-69.73	-80.13	-112.9	-123.3	-13
381.00	33.5	32.4	-75.93	-77.03	-119.1	-120.2	-13
508.00	46.9	38.0	-60.03	-68.93	-103.2	-112.1	-13
635.00	32.0	31.3	-73.13	-73.83	-116.3	-117.0	-13

Table 7 Spurious Radiated Emission Results for 136.975 MHz Operation

Frequency	Amplitude of Emission (dBµV)		Signal Level to dipole required to Reproduce(dBm)		Emission level below carrier (dBc)		Limit (dBm)
MHz	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	
273.95	42.6	41.6	-68.93	-69.93	-112.1	-113.1	-13
410.93	40.3	35.4	-68.53	-73.43	-111.7	-116.6	-13
547.90	32.0	42.9	-74.53	-63.63	-117.7	-106.8	-13
684.88	30.2	29.9	-74.43	-74.73	-117.6	-117.9	-13

Phone/Fax: (913) 837-32 Revision 1 Honeywell International Inc. Model: KSN 770

Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 27 of 36

Table 8 Spurious Radiated Emission Results for 136.992 MHz Operation

Frequency	Amplitude of Emission (dBµV)		Signal Level to dipole required to Reproduce(dBm)		Emission level below carrier (dBc)		Limit (dBm)
MHz	Horizontal	Vertical	Horizontal Vertical 1		Horizontal	Vertical	
273.98	43.5	40.3	-68.03	-71.23	-111.2	-114.4	-13
410.98	40.8	32.2	-68.03	-76.63	-111.2	-119.8	-13
547.97	33.7	40.2	-72.83	-66.33	-116.0	-109.5	-13
684.96	30.0	29.8	-74.63	-74.83	-117.8	-118.0	-13


Frequency Stability

Measurements Required

The frequency stability shall be measured with variations of ambient temperature from -30° to +50° centigrade. Measurements shall be made at the extremes of the temperature range and at intervals of not more than 10° centigrade through the range. A period sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. In addition to temperature stability, the frequency stability shall be measured with variation of primary supply voltage as follows:

- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value.
- (2) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

Test Arrangement

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fay: (913) 837-321

Phone/Fax: (913) 837-3214

Revision 1

Honeywell International Inc. Model: KSN 770

Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 28 of 36

The measurement procedure outlined below shall be followed during measurement of frequency variation over temperature.

<u>Step 1:</u> The transmitter shall be installed in an environmental test chamber whose temperature is controllable. Provision shall be made to measure the frequency of the transmitter.

<u>Step 2:</u> With the transmitter inoperative (power switched "OFF"), the temperature of the test chamber shall be adjusted to +25°C. After a temperature stabilization period of one hour at +25°C, the transmitter shall be switched "ON" with standard test voltage applied.

<u>Step 3:</u> The carrier shall be keyed "ON", and the transmitter shall be operated at full radio frequency power output at the duty cycle, for which it is rated, for duration of at least 5 minutes. The radio frequency carrier frequency shall be monitored and measurements shall be recorded.

<u>Step 4:</u> The test procedures outlined in Steps 2 and 3, shall be repeated after stabilizing the transmitter at the environmental temperatures specified, -30°C to +50°C in 10-degree increments.

The frequency stability was measured with variations in the power supply voltage from 85 to 115 percent of the nominal value. A Kepco DC Power Supply model: JQE 36-15 was used during measurement of frequency variation over input power. The dc input voltage was varied from 11.9 Vdc to 16.1 Vdc for 14-volt operation and 23.8 Vdc to 32.2 Vdc for 28-volt operation. The frequency was measured and the variation in parts per million calculated. Data was taken per CFR47 Paragraphs 2.1055 and applicable paragraphs of part 87.133 and RSS-141.

Revision 1

Honeywell International Inc. Model: KSN 770 Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 29 of 36

Table 8 Frequency Stability vs. Temperature Results

Channel Frequency 127.000 MHz	Frequency Stability Vs. Temperature Ambient Frequency (127.00003)								
Temperature °C	-30	-20	-10	0	+10	+20	+30	+40	+50
Change (Hz)	0.0	10.0	10.0	10.0	0.0	0.0	0.0	30.0	40.0
PPM	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.2	0.3
%	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Limit (PPM)	20	20	20	20	20	20	20	20	20

Table 9 Frequency Stability vs. Input Power Supply Voltage Results

Channel Frequency 127.000 MHz	Frequency Stability Vs. Voltage Variation 14.0 volts nominal; Results In Hz change				
Voltage V _{dc}	11.90 14.00 16.10				
Change (Hz)	0.0	0.0	0.0		
Channel Frequency 127.000 MHz	Frequency Stability Vs. Voltage Variation 28.0 volts nominal; Results In Hz change				
Voltage V _{dc}	23.4	28.00	32.20		
Change (Hz)	0.0	0.0 0.0 0.0			

The EUT demonstrated compliance with specifications of CFR47 Paragraph 2.1046(a) and applicable Parts of 87.133(d) and RSS-141 paragraph 5.1. There are no deviations or exceptions to the specifications.

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-321

Phone/Fax: (913) 837-3214 Revision 1 Honeywell International Inc. Model: KSN 770

Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 30 of 36

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Rogers Labs Test Equipment List
- Annex C Rogers Qualifications
- Annex D FCC Test Site Registration Letter
- Annex E Industry Canada Test Site Registration Letter

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Honeywell International Inc.

Model: KSN 770 Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 31 of 36

Annex A Measurement Uncertainty Calculations

Measurement uncertainty calculations were made for the laboratory. Result of measurement uncertainty calculations are recorded below for AC line conducted and radiated emission measurements.

Measurement Uncertainty	U _(E)	$U_{(lab)}$
3 Meter Horizontal 30-200 MHz Measurements	2.08	4.16
3 Meter Vertical 30-200 MHz Measurements	2.16	4.33
3 Meter Vertical Measurements 200-1000 MHz	2.99	5.97
10 Meter Horizontal Measurements 30-200 MHz	2.07	4.15
10 Meter Vertical Measurements 30-200 MHz	2.06	4.13
10 Meter Horizontal Measurements 200-1000 MHz	2.32	4.64
10 Meter Vertical Measurements 200-1000 MHz	2.33	4.66
3 Meter Measurements 1-6 GHz	2.57	5.14
3 Meter Measurements 6-18 GHz	2.58	5.16
AC Line Conducted	1.72	3.43

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Honeywell International Inc. Model: KSN 770

Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 32 of 36

Annex B Rogers Labs Test Equipment List

<u>Equipment</u> <u>Cal</u>	ibration Date
Spectrum Analyzer: Rohde & Schwarz ESU40	5/12
Spectrum Analyzer: HP 8562A, HP Adapters: 11518, 11519, and 11520	5/12
Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 11970W	
Spectrum Analyzer: HP 8591EM	5/12
Antenna: EMCO Biconilog Model: 3143	5/12
Antenna: Sunol Biconilog Model: JB6	10/12
Antenna: EMCO Log Periodic Model: 3147	10/12
Antenna: Antenna Research Biconical Model: BCD 235	10/12
Antenna: EMCO 6509	10/12
LISN: Compliance Design Model: FCC-LISN-2.Mod.cd, 50 µHy/50 ohm/0.1 µ	
R.F. Preamp PA-010	10/12
R.F. Preamp CPPA-102	10/12
R.F. Preamp PA-122	10/12
Cable assembly: (L1) consisting of Belden RG-58, HP11509A, CAT-3	10/12 10/12
Cable assembly: (L2) consisting of Belden RG-58, HP11509A, CAT-3 Cable: (L3) Belden 8268	10/12
Cable: Time Microwave: 4M-750HF290-750	10/12
Cable: Time Microwave: 4M-750HF290-750 Cable: Time Microwave: 10M-750HF290-750	10/12
Frequency Counter: Leader LDC825	2/12
Oscilloscope Scope: Tektronix 2230	2/12
Wattmeter: Bird 43 with 50 Ohm Load 8085	2/12
Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCR 140	2/12
R.F. Generators: HP 606A, HP 8614A, HP 8640B	2/12
R.F. Power Amp 65W Model: 470-A-1010	2/12
R.F. Power Amp 50W M185- 10-501	2/12
R.F. Power Amp A.R. Model: 10W 1010M7	2/12
R.F. Power Amp EIN Model: A301	2/12
LISN: Compliance Eng. Model 240/20	2/12
LISN: Fischer Custom Communications Model: FCC-LISN-50-16-2-08	2/12
Antenna: EMCO Dipole Set 3121C	2/12
Antenna: Compliance Design B-101	2/12
Antenna: Solar 9229-1 & 9230-1	2/12
Audio Oscillator: HP 201CD	2/12
Peavey Power Amp Model: IPS 801	2/12
ELGAR Model: 1751	2/12
ELGAR Model: TG 704A-3D	2/12
ESD Test Set 2010i	2/12
Fast Transient Burst Generator Model: EFT/B-101	2/12
Field Intensity Meter: EFM-018 KEYTEK Ecat Surge Generator	2/12 2/12
Shielded Room 5 M x 3 M x 3.0 M	<i>L</i> / 1 <i>L</i>
SHICIGCU IXUUHI J IVI A J IVI A J.U IVI	

Rogers Labs, Inc.Honeywell International Inc.SN: 1334405 West 259th TerraceModel: KSN 770FCC ID: ASYKSN770Louisburg, KS 66053Test #: 121210IC: 10900A-KSN770Phone/Fax: (913) 837-3214Test to: FCC Parts 2, 87, and RSS-141Date: March 5, 2013Revision 1File: Honeywell KSN770 TstRpt 121210Page 33 of 36

NVLAP Lab Code 200087-0

Annex C Rogers Qualifications

Scot D. Rogers, Engineer

Rogers Labs, Inc.

Mr. Rogers has approximately 17 years' experience in the field of electronics. Work experience includes six years working in the automated controls industry and remaining years working with the design, development and testing of radio communications and electronic equipment.

Positions Held:

Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years

Electrical Engineer: Rogers Labs, Inc. Current

Educational Background:

1) Bachelor of Science Degree in Electrical Engineering from Kansas State University

2) Bachelor of Science Degree in Business Administration Kansas State University

3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Revision 1

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

Page 34 of 36

NVLAP Lab Code 200087-0

Annex D FCC Test Site Registration Letter

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

November 01, 2011

Registration Number: 90910

Rogers Labs, Inc. 4405 West 259th Terrace, Louisburg, KS 66053

Attention:

Scot Rogers,

Re:

Measurement facility located at Louisburg

3 & 10 meter site

Date of Renewal: November 01, 2011

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Industry Analyst

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 1

Honeywell International Inc.

Model: KSN 770 Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210 SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013 Page 35 of 36

Annex E Industry Canada Test Site Registration Letter

Industry Canada Industrie

December 28, 2011

OUR FILE: 46405-3041 Submission No: 152685

Rogers Labs Inc. 4405 West 259th Terrance Louisburg, KS, 66053 USA

Attention: Mr. Scot D. Rogers

Dear Sir/Madame:

The Bureau has received your application for the renewal of 3/10m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (Site# 3041A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please keep for your records the following information;

- The company address code associated to the site(s) located at the above address is: 3041A

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 or later shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 metre OATS or 3 metre chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to **exceed three years**. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL;

http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/h tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at <u>certification.bureau@ic.gc.ca</u> Please reference our file and submission number above for all correspondence.

Yours sincerely,

Dalwinder Gill

For: Wireless Laboratory Manager Certification and Engineering Bureau 3701 Carling Ave., Building 94 P.O. Box 11490, Station "H" Ottawa, Ontario K2H 852 Email: dalwinder.gill@ic.gc.ca Tel. No. (613) 998-8363 Fax. No. (613) 990-4752

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Honeywell International Inc.

Model: KSN 770 Test #: 121210

Test to: FCC Parts 2, 87, and RSS-141 File: Honeywell KSN770 TstRpt 121210

SN: 133

FCC ID: ASYKSN770 IC: 10900A-KSN770 Date: March 5, 2013

Page 36 of 36