

6 Randolph Way Hillsborough, NJ 08844 Tel: (908) 927 9288

Fax: (908) 927 0728

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT

of

900MHZ CORDLESS HEADPHONE MODEL: HA-W1000RF FCC ID: ASIJ7R002

September 5, 2003

This report concerns (check one): Or Equipment type: Superregenerative R	riginal grant <u>x</u> Class II change <u> eceiver</u>
Company agrees to notify the Commi	s, defer until: (date)
Transition Rules Request per 15.37? If no, assumed Part 15, Subpart B for [10-1-90 Edition] provision.	yes nox unintentional radiators - the new 47 CFR
Report prepared for: Report prepared by: Report number:	VICTOR COMPANY OF JAPAN LTD. Advanced Compliance Lab 0048-030718-02-RX

The test result in this report IS supported and covered by the NVLAP accreditation

Table of Contents

Report Cover Page1
Table of Contents
Figures3
1. GENERAL INFORMATION4
1.1 Verification of Compliance4
1.2 Equipment Modifications5
1.3 Product Information6
1.4 Test Methodology6
1.5 Test Facility6
1.6 Test Equipment6
1.7 Statement of the Document Use7
2. PRODUCT LABELING8
3. SYSTEM TEST CONFIGURATION9
3.1 Justification9
3.2 Special Accessories9
3.3 Configuration of Tested System9
4. SYSTEM BLOCK DIAGRAM12
5. CONDUCTED EMISSION DATA13
5.1 Test Methods and Conditions13
5.2 Test Data14
6. RADIATED EMISSION DATA16
6.1 Field Strength Calculation16
6.2 Test Methods and Conditions16
6.3 Test Data16
7. PHOTOS OF TESTED EUT

Figures

Figure 2.1 FCC ID Label	8
Figure 2.2 Location of Label on Back of the EUT	8
Figure 3.1 Radiated Front	10
Figure 3.2 Radiated Rear	10
Figure 3.3 Conducted Front	11
Figure 3.4 Conducted Rear	11
Figure 4.1 System Block Diagram	12
Figure 5.1 Line Conducted	14
Figure 5.2 Neutral Conducted	15
Figure 7.1 Front View	19
Figure 7.2 Rear View	20
Figure 7.3 Left Side Open View	21
Figure 7.4 Right Side Open View	22
Figure 7.5 Right Side PBC Component Side	23
Figure 7.6 Right Side PBC Foil Side	24
Figure 7.7 Right Side Metal Box Open View	25

Date: September 5, 2003

1. GENERAL INFORMATION

1.1 Verification of Compliance

EUT: 900MHZ CORDLESS HEADPHONE

Model: HA-W1000RF

VICTOR COMPANY OF JAPAN LTD. Applicant:

12, 3-CHOME, MORIYA-CHO, KANAGAWA

YOKOHAMA (KANAGAWA), 221-8528, JAPAN

FCC Part 15 CERTIFICATION Test Type:

Result: **PASS**

Tested by: ADVANCED COMPLIANCE LAB

Test Date: September 5, 2003 0048-030718-02-RX Report Number:

The above equipment was tested by Advanced Compliance Laboratory for compliance with the requirement set forth in the FCC rules and regulations Part 15, subpart C. This said equipment in the configuration described in the report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

The estimated uncertainty of the test result is given as following. The method of uncertainty calculation is provided in Advanced Compliance Lab. Doc. No. 0048-01-01.

	Prob. Dist.	Uncertainty(dB)	Uncertainty(dB)	Uncertainty(dB)
		30-1000MHz	1-6.5GHz	Conducted
Combined Std. Uncertainty u_c	norm.	±2.36	±2.99	±1.83

Wei Li Lab Manager

Advanced Compliance Lab

1.2 Equipment Modifications

N/A

1.3 Product Information

System Configuration

ITEM	DESCRIPTION	FCC ID	CABLE
Product	TRANSMITTER	ASIJ7R002	
Housing	PLASTICS		
Power Supply	Rechargeable Ni-MH battery (2.4 V)		
Clock/OSC Freq.	10.7MHz, 418 MHz		
Device Type	SUPERREGENERATIVE RECEIVER		

(1) EUT submitted for grant.

1.4 Test Methodology

Radiated tests were performed according to the procedures in ANSI C63.4-1992 at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The open area test site and conducted measurement facility used to collect the radiated and conducted data are located at Somerset, New Jersey. This site has been accepted by FCC to perform measurements under Part 15 or 18 in a letter dated May 19, 1997 (Refer to: 31040/PRV 1300F2). The NVLAP Lab code for accreditation of FCC EMC Test Method is: 200101-0.

1.6 Test Equipment

Manufacture	Model	Serial No.	Description	Last Cal dd/mm/y	Cal Due
				y	dd/mm/y y
Hewlett-Packard	HP8546A	3625A00341	EMI Receiver	23/10/02	23/10/03
EMCO	3104C	9307-4396	20-300MHz Biconical Antenna	19/09/02	19/09/03
EMCO	3146	9008-2860	200-1000MHz Log-Periodic Antenna	27/09/02	27/09/03
Fischer Custom	LISN-2	900-4-0008	Line Impedance Stabilization Networks	03/07/03	03/07/04
Fischer Custom	LISN-2	900-4-0009	Line Impedance Stabilization Networks	03/07/03	03/07/04
EMCO	6502	2665	10KHz-30MHz Active Loop Antenna	15/02/03	15/02/04

All Test Equipment Used are Calibrated Traceable to NIST Standards.

1.7 Statement for the Document Use

This report shall not be reproduced except in full, without the written approval of the laboratory. And this report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

2. PRODUCT LABELING

FCC ID: ASIJ7R002

This device complies with part 15 of the FCC Rules. Operating is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Figure 2.1 FCC ID Label

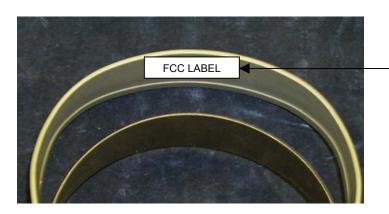


Figure 2.2 Location of the Label

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it). And its antenna was permanently attached to the EUT with maximum length, 12 inches.

A ROHDE&SCHWARZ SMH signal generator was used during the test to radiate an unmodulated CW signal to cohered the receiver at 907 MHz. The level was adjusted to let this occur.

Testing was performed as EUT was operated at frequency 906~908MHz continuously.

3.2 Special Accessories

N/A

3.3 Configuration of Tested System

Figure 3.1 and Figure 3.2 illustrate this system, which is tested standing along.

Figure 3.1 Radiated Front

Figure 3.2 Radiated Rear

Figure 3.3 Conducted Front

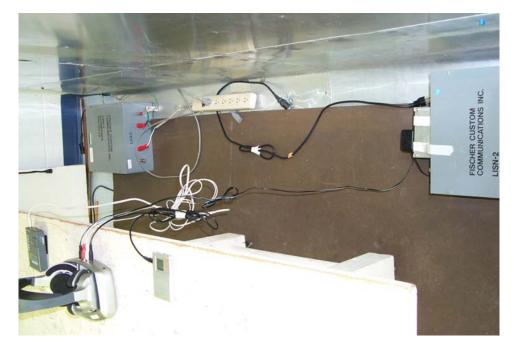


Figure 3.4 Conducted Rear

4. SYSTEM BLOCK DIAGRAM

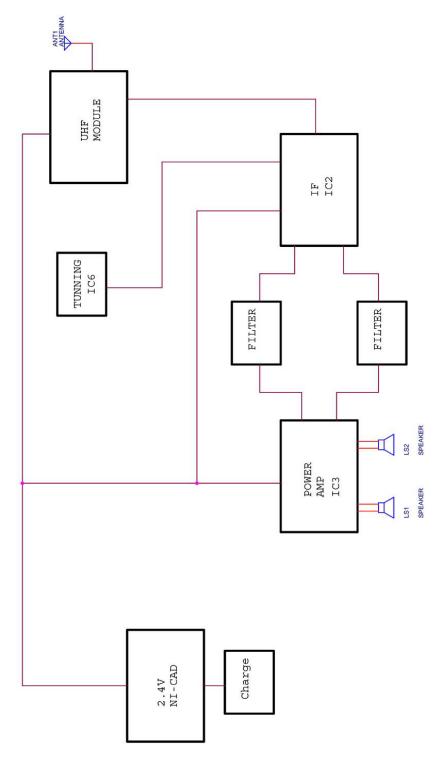


Fig. 4.1 System Block Diagram

5. CONDUCTED EMISSION DATA

5.1 Test Methods and Conditions

The EUT was under normal operational mode during the conducted emission test. EMI Receiver was scanned from 450KHz to 30MHz with maximum hold mode for maximum emission. Recorded data was sent to the plotter to generate output in linear format. At the input of the spectrum analyzer, a HP transient limiter is inserted for protective purpose. This limiter has a 10 dB attenuation in the range of 450KHZ to 30MHZ. That factor was automatically compensated by the receiver, so the readings are the corrected readings. The reference of the plot is the CISPR 22 Class B limit in Figure 5.1 through Figure 5.2.

Conducted Emission Technical Requirements						
	Cla	ss A	Class B			
Frequency Range	Quasi-Peak	Average	Quasi-Peak Average			
	dBuV	dBuV	DBuV	dBuV		
150kHz -0.5MHz	79 (8912uV)	66 (1995uV)	66-56	56-46		
0.5MHz-30MHz	73 (4467uV)	60 (1000uV)				
0.5MHz- 5MHz			56	46		
5MHz-30MHz			60	50		

Emissions that have peak values close to the specification limit (if any) are also measured in the quasi-peak mode to determine compliance.

5.2 Test Data

Figure 5.1 through Figure 5.2 show the neutral and line conducted emissions for the standard operation mode.

Six Highest Data for AC Line Conducted Emissions						
Frequency (MHz) 0.157 0.179 0.219 0.242 0.277 0.336						
Peak Reading (dBuV) 43.5 41.4 41.1 38.4 37.3 37.6						37.6

Test Personnel:

Tester Signature:

Date: September 5, 2003

Typed/Printed Name: Edward Lee

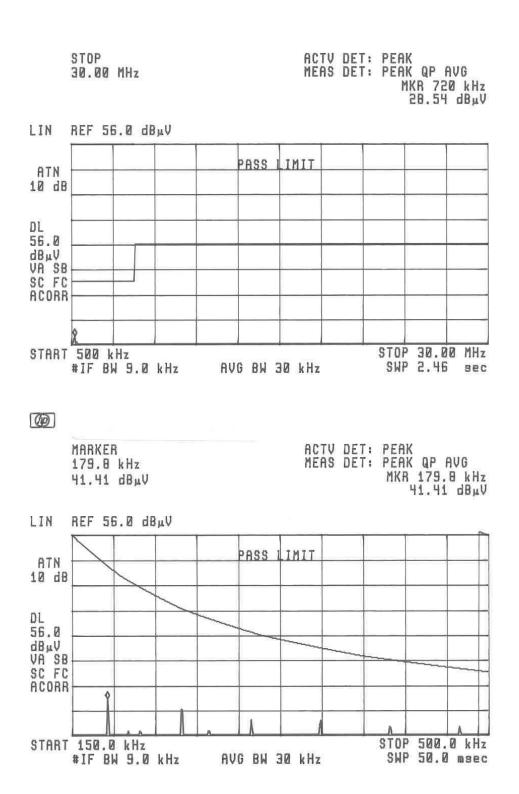
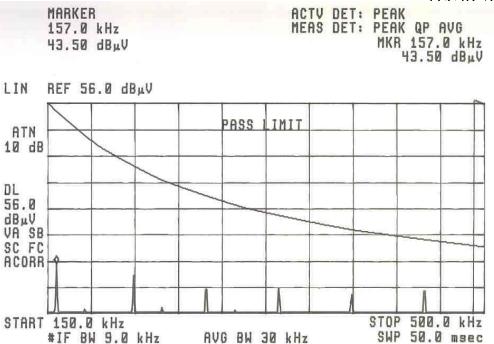



Figure 5.1 Line Conducted

AVG BW 30 kHz

#IF BW 9.0 kHz

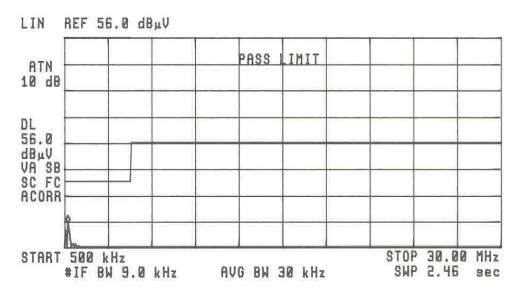


Figure 5.2 Neutral Conducted

6. RADIATED EMISSION DATA

6.1 Field Strength Calculation

The corrected field strength is automatically calculated by EMI Receiver using following:

$$FS = RA + AF + CF + AG$$

where FS: Corrected Field Strength in dBµV/m

RA: Amplitude of EMI Receiver before correction in dBµV

AF: Antenna Factor in dB/m

CF: Cable Attenuation Factor in dB

AG: Built-in Preamplifier Gain in dB (Stored in receiver as part of the calibration data)

6.2 Test Methods and Conditions

The initial step in collecting radiated data is a EMI Receiver scan of the measurement range below 30MHz using peak detector and 9KHz IF bandwidth / 30KHz video bandwidth. For the range 30MHz - 10GHz, IF bandwidth / 30KHz video bandwidth are used. Both bandwidths are 1MHz for above 1GHz measurement.

6.3 Test Data

The following data lists the significant emission frequencies, polarity and position, peak reading of the EMI Receiver, the FCC limit, and the difference between the peak reading and the limit. Explanation of the correction and calculation are given in section 5.1.

Test Personnel:

Tester Signature: L. Luni

Typed/Printed Name: Edward Lee

Date: September 5, 2003

Radiated Test Data

Frequency (MHz)	Polarity [H, V] Position	Height (m)	Azimuth (Degree)	Peak Reading (dBμV/m)	Class B 3m Limit (dBµV/m)	Difference from limit (dB)
418	Н	1.1	240	37.3	46	-8.7
836	Н	1.1	250	38.8	46	-7.2
1254	Н	1.1	250	40.1	54	-13.9
418	V	1.1	180	43.9	46	-2.1
836	V	1.1	180	42.0	46	-4
1254	V	1.1	180	41.0	54	-13

7. PHOTOS OF TESTED EUT

The following photos show the inside details of the EUT.