

Tejet

中国认可
国际互认
检测
TESTING
CNAS L4963

SAR TEST REPORT

Report No. 2016SAR356

FCC ID: ARA-EFLINKM1002X

Applicant: Telrad Networks Ltd

Product: LTE Multi-mode MiFi

Model: EFLINKM1002X

HW Version: P2

SW Version: MF_N895_AT2.19_V01_20160810

Issue Date: 2016-12-12

Prepared by: 徐伯颖
Xu Boying

Reviewed by: 殷小明
Yin Xiaoming

Approved by: 孙光旭
Sun Guangxu
(Technical Manager)

Remark: This report details the results of the testing carried out on the samples specified in this report, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. The report shall not be reproduced except in full, without written approval of the Company.

Standards

Applicable Limit Regulations	ANSI/IEEE C95.1-2005 Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields. 3 kHz to 300 GHz
	ANSI/IEEE C95.3-2002 Recommended Practice For Measurements and Computations of Radio Frequency Electromagnetic Fields with Respect to Human Exposure to such Fields. 100 kHz-300 GHz
Applicable Standards	IEEE Std 1528™-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
	KDB865664 D01v01r03: SAR Measurement Requirements for 100 MHz to 6 GHz
	KDB447498 D01v05r02: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Polices
	KDB248227 D01v02r01: SAR Measurement Procedures for IEEE 802.11 Wi-Fi Transmitters
	KDB941225 D05v02r03: SAR Test Consideration for LTE Handsets and Data Modems
	KDB941225 D06v02: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities.

Conclusion

Localized Specific Absorption Rate (SAR) of this equipment has been measured in all cases requested by the relevant standards above. Maximum localized SAR is below exposure limits as well.

Change History

Version	Change Contents	Author	Date
V1.0	First edition	Xu Boying	2016-10-21
V2.0	Add LTE BAND 41 QPSK with 100%RB test	Xu Boying	2016-11-30
V3.0	Add LTE BAND 41 Hotspot test	Xu Boying	2016-12-07
V4.0	Add LTE BAND 41 Hotspot mode reported SAR evaluation.	Xu Boying	2016-12-08
V5.0	Add WiFi Hotspot mode reported SAR evaluation.	Xu Boying	2016-12-12

Note: The last version will be invalid automatically while the new version is issued.

CONTENTS:

STANDARDS.....	2
CONCLUSION.....	2
CHANGE HISTORY.....	3
1. STATEMENT OF COMPLIANCE.....	6
2. ADMINISTRATIVE INFORMATION	7
2.1 PROJECT INFORMATION.....	7
2.2 TEST LABORATORY INFORMATION	7
2.3 TEST ENVIRONMENT	7
3. CLIENT INFORMATION.....	8
3.1 APPLICANT INFORMATION	8
4. EQUIPMENT UNDER TEST (EUT) AND ACCESSORY EQUIPMENT (AE).....	9
4.1 INFORMATION OF EUT.....	9
4.2 IDENTIFICATION OF EUT	10
4.3 IDENTIFICATION OF AE.....	10
5. OPERATIONAL CONDITIONS DURING TEST	11
5.1 GENERAL DESCRIPTION OF TEST PROCEDURES.....	11
5.2 LTE TEST CONFIGURATION	11
5.3 Wi-Fi TEST CONFIGURATION.....	13
6. SAR MEASUREMENTS SYSTEM CONFIGURATION.....	16
6.1 SAR MEASUREMENT SET-UP	16
6.2 DASY5 E-FIELD PROBE SYSTEM	17
6.2.1 <i>Ex3DV4 Probe Specification</i>	17
6.2.2 <i>E-field Probe Calibration</i>	18
6.3 OTHER TEST EQUIPMENT	19
6.3.1 <i>Device Holder for Transmitters</i>	19
6.3.2 <i>Phantom</i>	19
6.4 SCANNING PROCEDURE	20
6.5 DATA STORAGE AND EVALUATION.....	21
6.5.1 <i>Data Storage</i>	21
6.5.2 <i>Data Evaluation by SEMCAD</i>	22
6.6 SYSTEM CHECK.....	24
6.7 EQUIVALENT TISSUES	25
7. SUMMARY OF TEST RESULTS	26
7.1 CONDUCTED OUTPUT POWER MEASUREMENT	26
7.1.1 SUMMARY	26
7.1.2 CONDUCTED POWER RESULTS	26

7.2 TEST RESULTS	31
7.2.1. DIELECTRIC PERFORMANCE	31
7.2.2. SYSTEM CHECK RESULTS	32
7.2.3 TEST RESULTS.....	33
7.2.3.1 <i>Summary of Measurement Results (LTE BAND 41)</i>	33
7.2.3.2 <i>Summary of Measurement Results (Wi-Fi)</i>	35
7.2.4 MAXIMUM SAR	37
8. TEST EQUIPMENTS UTILIZED	38
9. MEASUREMENT UNCERTAINTY.....	39
ANNEX A: DETAILED TEST RESULTS.....	41
ANNEX A.1 SYSTEM CHECK RESULTS	41
ANNEX A.2 GRAPH RESULT	45
ANNEX B: CALIBRATION CERTIFICATE.....	49
ANNEX B.1 PROBE CALIBRATION CERTIFICATE.....	49
ANNEX B.2 DAE4 CALIBRATION CERTIFICATE.....	84
ANNEX B.3 D2450V2 CALIBRATION CERTIFICATE	87
ANNEX B.4 D2600V2 CALIBRATION CERTIFICATE	95
ANNEX C: TEST LAYOUT	103

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Telrad Networks Ltd. **LTE Multi-mode MiFi EFLINKM1002X** are as follows.

Highest standalone SAR Summary:

Exposure Position	Frequency Band	Maximum 1g SAR (W/kg)
Body-worn (5mm)	LTE 41	1.007
Hotspot(5mm)	LTE 41	0.836
Body-worn (5mm)	802.11b	0.305
Hotspot(5mm)	802.11b	0.288

Evaluation for Simultaneous SAR

Summation BAND	Exposure Position	Maximum reported 1g SAR (W/kg)	Summation SAR(1g) (W/kg)	SAR -to-peak-location Separation Ratio	Simultaneous Measurement Required?
WWAN +WiFi 2.4G	Body-worn (5mm)	1.007+0.305=1.312	<1.6	/	No

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits(1.6W/kg) specified in FCC 47 CFR part 2(2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

2. Administrative Information

2.1 Project Information

Date of start test 2016-09-21
Date of end test: 2016-12-12

2.2 Test Laboratory Information

Company: Shanghai Tejet Communications Technology Co., Ltd Testing Center
Address: Room 6205-6208, Building 6, No.399 Cailun Rd. Zhangjiang Hi-Tech Park, Shanghai, China
Post Code: 210203
Tel: +86-21-61650880
Fax: +86-21-61650881
Website: www.tejet.cn

2.3 Test Environment

Temperature: 20°C~25 °C
Relative Humidity: 20%~70%

3. Client Information

3.1 Applicant information

Company Name: Telrad Networks Ltd
Address: Industrial Center PO Box 6118 Lod, 711600 Israel
Contact: Klara Milman
Email: klara.milman@telrad.com
Telephone: 972 73 246 7651
Fax: 972 73 246 7651

4. Equipment Under Test (EUT) and Accessory Equipment (AE)

4.1 Information of EUT

Device Type	Portable device	
Product	LTE Multi-mode MiFi	
Model	EFLINKM1002X	
Exposure Category	Uncontrolled environment / general population	
Device operation configuration:		
Operating Mode(s):	LTE BAND 41	
	WLAN2.4G:802.11b/g/n(20MHz)	
Test Modulation	(LTE)QPSK/16QAM	
	LTE BAND 41: 5 ,10,15,20	
Hotspot mode	Support	
Antenna Type:	Internal antenna	
Operating Frequency Range(s):	Band	Tx(MHz)
	LTE BAND 41	2496~2690
	WLAN 2.4Ghz	2412~2462
Power Class	LTE BAND 41: test with maximum output power	

4.2 Identification of EUT

EUT ID	SN or IMEI	HW Version	SW Version	Received Date
TN01	86386702XXXXXX	P2	MF_N895_AT2.19_V01_20160810	2016-09-20

*EUT ID: identify the test sample in the lab internally.

4.3 Identification of AE

AE ID* Description

AE1	Battery
AE2	Charger

AE1

Model	N-1800
Manufacturer	SHENZHEN KAISC BATTERY TECHNOLOGY CO., LTD.
Capacitance	1800mAh
Nominal Voltage	3.7V

AE2

Model	ASUC37a-050100
Manufacturer	AQUIL STAR PRECISION INDUSTRIAL(SHENZHEN)CO.,LTD
Length of DC line	0cm with USB connector

*AE ID: identify the test sample in the lab internally.

5. Operational Conditions during Test

5.1 General description of test procedures

A communication link is set up with a system simulator by air link, and a call is established. The absolute radio frequency channel is allocated to low, middle and high respectively in the case of each band. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with MT8820C, and the EUT is set to maximum output power by MT8820C. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30dB.

The device size is 10 cm x 6 cm, test separation distance was 5mm.

5.2 LTE Test Configuration

SAR tests for LTE are performed with a base station simulator, Anritsu MT8820C.

Closed loop power control was used so the UE transmits with maximum output power during SAR testing. All powers were measured with the MT8820C.

Maximum power reduction (MPR)

It must be clearly identified if Maximum Power Reduction (MPR) is implemented and whether it is an optional or permanent feature, i.e., built-in by design. MPR may be considered during SAR testing only when the maximum output power is permanently limited by the MPR implemented within the device, according to the RB (resource block) configurations specified in 3GPP/LTE standards. Regardless of network requirements, only those RB configurations allowed by 3GPP for the channel bandwidth and modulation combinations may be tested with MPR active.

Configurations with RB allocations less than the RB thresholds required by 3GPP must be tested without MPR. A-MPR (additional MPR) must be disabled during SAR testing.

The maximum average conducted output power measured according to the following configurations, for the required test channels, channel bandwidths and uplink modulations, in each frequency band, are used to support the SAR test reduction and exclusion.

- 100% RB allocation
- 1 RB and also 50% RB allocation, offset to the upper edge, middle and lower edge of the channel bandwidth of each required test channel

Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in

sections 4.2.1, 5.2.2 and 4.2.3 to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is $> \frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

TDD Test

TDD testing is performed using guidance from FCC KDB 941225 D05v02r03 and the SAR test guidance provided in April 2013 TCB works hop notes. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r03. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211.

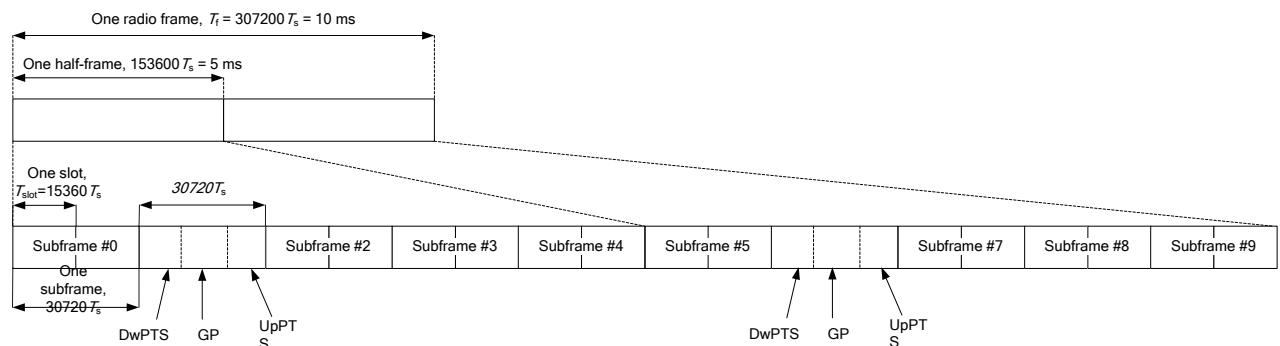


Figure 5.4-1: Frame structure type 2 (for 5 ms switch-point periodicity)

Table 5.4-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS)

Special subframe configuration	Normal cyclic prefix in downlink			Extended cyclic prefix in downlink		
	DwPTS	UpPTS		DwPTS	UpPTS	
		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink
0	$6592 \cdot T_s$	$2192 \cdot T_s$	$2560 \cdot T_s$	$7680 \cdot T_s$	$2192 \cdot T_s$	$2560 \cdot T_s$
1	$19760 \cdot T_s$			$20480 \cdot T_s$		
2	$21952 \cdot T_s$			$23040 \cdot T_s$		
3	$24144 \cdot T_s$			$25600 \cdot T_s$		
4	$26336 \cdot T_s$			$7680 \cdot T_s$		
5	$6592 \cdot T_s$	$4384 \cdot T_s$	$5120 \cdot T_s$	$20480 \cdot T_s$	$4384 \cdot T_s$	$5120 \cdot T_s$
6	$19760 \cdot T_s$			$23040 \cdot T_s$		
7	$21952 \cdot T_s$			$12800 \cdot T_s$		
8	$24144 \cdot T_s$			-		
9	$13168 \cdot T_s$			-		

Table 5.4-2: Uplink-downlink configurations

Uplink-downlink configuration	Downlink-to-Uplink Switch-point periodicity	Subframe number									
		0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	U	U	U	D	S	U	U	U
1	5 ms	D	S	U	U	D	D	S	U	U	D
2	5 ms	D	S	U	D	D	D	S	U	D	D
3	10 ms	D	S	U	U	U	D	D	D	D	D
4	10 ms	D	S	U	U	D	D	D	D	D	D
5	10 ms	D	S	U	D	D	D	D	D	D	D
6	5 ms	D	S	U	U	U	D	S	U	U	D

Duty factor is calculated by:

$$\begin{aligned}
\text{Duty factor} &= \text{uplink frame} * 6 + \text{UpPTS} * 2 / \text{one frame length} \\
&= (30720.T_s * 6 + 5120.T_s * 2) / 307200.T_s \\
&= 0.633
\end{aligned}$$

According to the KDB 447498 D01, SAR should be evaluated at more than 3 frequencies for devices supporting transmit bands wider than 100MHz. Oct.2014 FCC-TCB conference notes (Dec. 2014 rev.) specifies the 5 test channels to use for 3GPP band 41 SAR evaluation.

5.3 Wi-Fi Test Configuration

The Wi-Fi is set to different data rate and channels by the software.

According to KDB648474:

1. The separation between the Wi-Fi antenna and the main antenna is 5cm
2. The maximum conducted output power of Wi-Fi is $15.65 \text{ dBm} = 36.7 \text{ mW} > P_{\text{max}} = 10 \text{ mW}$

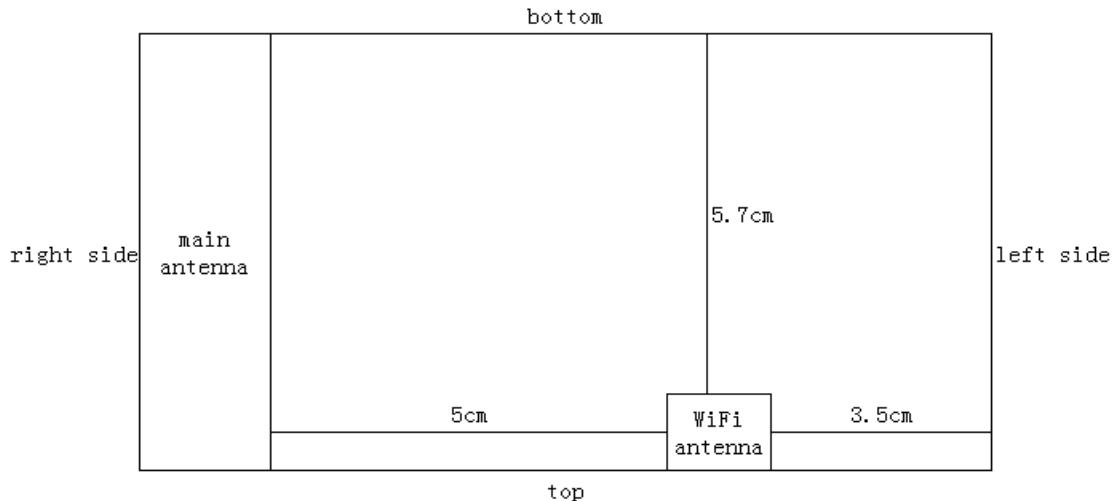
So stand alone SAR is needed.

According to FCC KDB447498v06, Appendix A

Appendix A

SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and $\leq 50 \text{ mm}$

Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table.


MHz	5	10	15	20	25	mm
150	39	77	116	155	194	SAR Test Exclusion Threshold (mW)
300	27	55	82	110	137	
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	
1500	12	24	37	49	61	
1900	11	22	33	44	54	
2450	10	19	29	38	48	
3600	8	16	24	32	40	
5200	7	13	20	26	33	
5400	6	13	19	26	32	
5800	6	12	19	25	31	

For 2450MHz, 5mm test distance, $P_{\text{max}} = 10 \text{ mW}$

According to KDB248227 D01 802.11 Wi-Fi SAR v02r02

SAR is measured using the highest measured maximum output power channel for the initial test configuration (see 5.3.2 and 5.3.3). SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

- a) The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures (see Clause 4).
 - b) For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an “initial test configuration” (see 5.3.2) is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units.
 - 1) When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.
 - 2) SAR is measured for OFDM configurations using the initial test configuration procedures (see 5.3.3). Additional frequency band specific SAR test reduction may be considered for individual frequency bands (see 5.2.2 and 5.3.1).
 - 3) Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.
 - c) The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements (see 3.1) and 802.11b DSSS procedures (see 5.2.1) are used to establish the transmission configurations required for SAR measurement.
 - d) An “initial test position” (see 5.1) is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions.
 - 1) SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure (see 5.2.1) using the exposure condition established by the initial test position.
 - 2) SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration.
 - e) The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure (see 5.2.1) or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures (see 5.3.3).
 - f) The “subsequent test configuration” (see 5.3.4) procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test configuration. SAR test exclusion is determined according to reported SAR in the initial test configuration and maximum output power specified or measured for these other OFDM configurations.

Picture of antennas

SAR is measured for all edges and surfaces of the device with a transmitting antenna located within 25 mm from that surface or edge.

Band	Position for test (yes or n/a)					
	Top	Bottom	Left side	Right side	Front	Back
WWAN	yes	yes	n/a 9cm	yes	yes	yes
WLAN	yes	n/a 5.7cm	n/a 3.5cm	n/a 5cm	yes	yes

Front—towards phantom

Back —towards ground

6. SAR Measurements system configuration

6.1 SAR Measurement set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic _field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

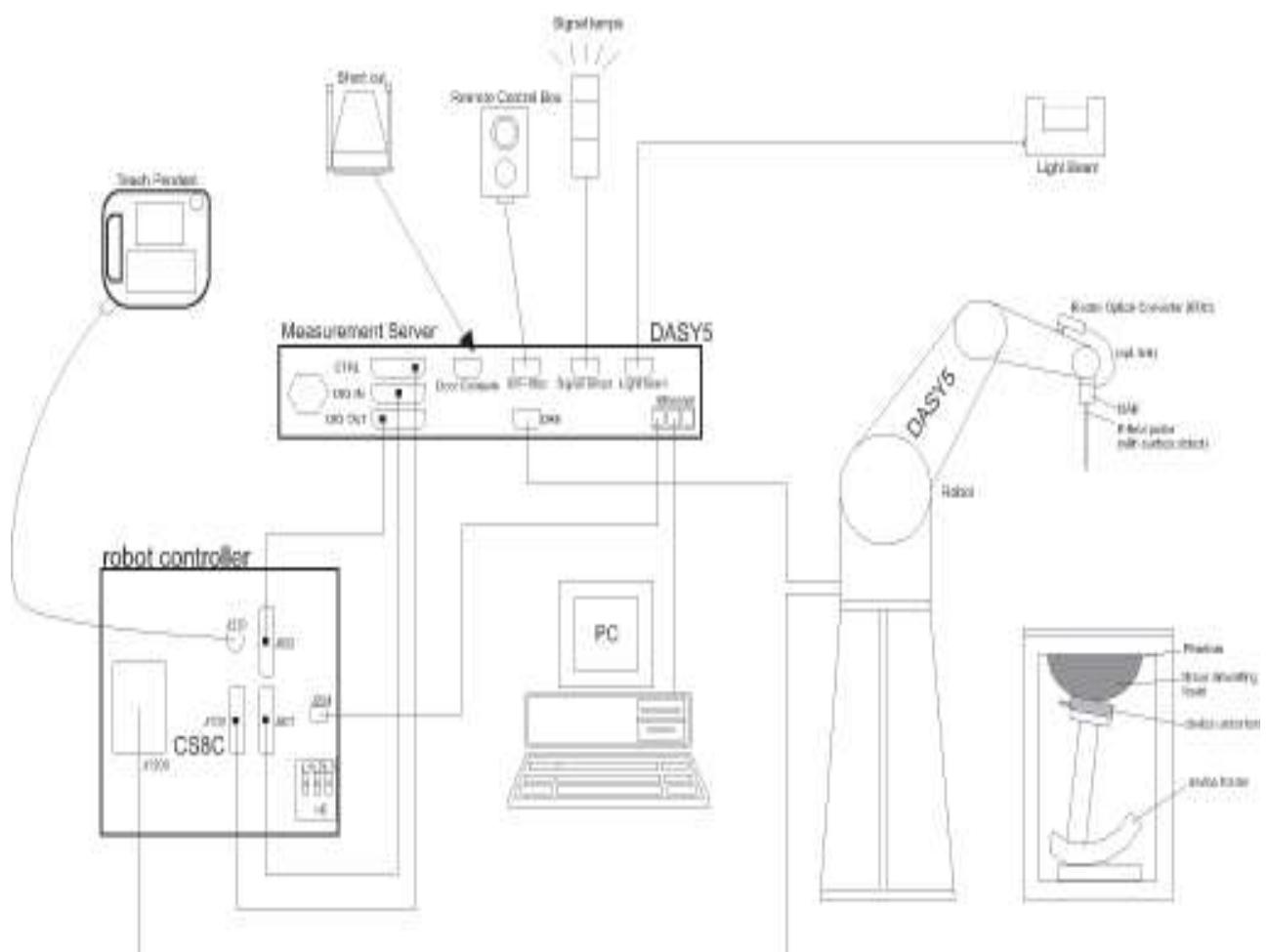


Figure 5-1 SAR Lab Test Measurement Set-up

6.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

6.2.1 Ex3DV4 Probe Specification

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	Basic Broad Band Calibration in air Conversion Factors (CF) for HSL 850 and HSL 1750
	Additional CF for other liquids and frequencies upon request
Frequency	10 MHz to > 6 GHz
	Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)

Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Figure 5-2.Ex3DV4 E-field Probe

Figure 5-3. Ex3DV4 E-field probe

6.2.2 E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy was evaluated and found to be better than $\pm 0.25\text{dB}$. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

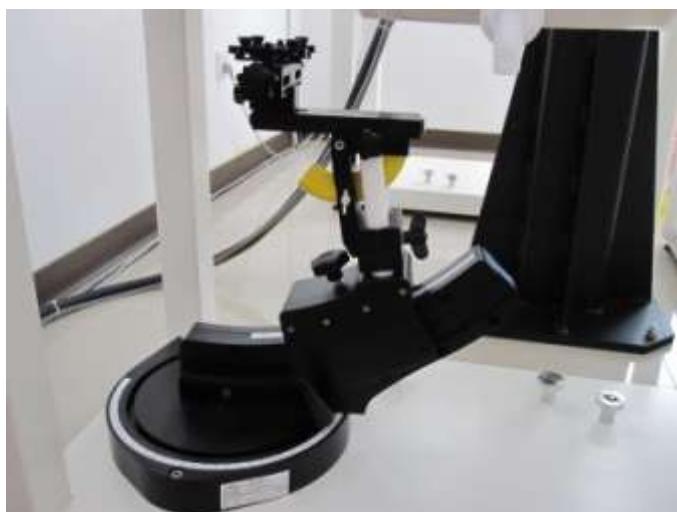
E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),
 C = Heat capacity of tissue (brain or muscle),
 ΔT = Temperature increase due to RF exposure.
Or

$$\text{SAR} = \frac{|E|^2 \sigma}{\rho}$$

Where:


σ = Simulated tissue conductivity,

ρ = Tissue density (kg/m³).

6.3 Other Test Equipment

6.3.1 Device Holder for Transmitters

The DASY5 device holder is designed to cope with the die rent positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

Figure 5-4.Device Holder

6.3.2 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0.1 mm

Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

Available

Special

Figure 5-5.Generic Twin Phantom

6.4 Scanning procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The “reference” and “drift” measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT’s output power and should vary max. $\pm 5\%$.
- The “surface check” measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)

- Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

- Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

- Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space.

They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepards method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

6.5 Data Storage and Evaluation

6.5.1 Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and

modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

6.5.2 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvFi
	- Diode compression point	Dcp _i
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	
	- Density	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

E_{tot} = $(E_x^2 + E_y^2 + E_z^2)^{1/2}$

The primary field data are used to calculate the derived field units.

SAR = $(E_{tot}^2 \cdot \square) / (\cdot 1000)$

with **SAR** = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

\square = conductivity in [mho/m] or [Siemens/m]

\square = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

P_{pwe} = $E_{tot}^2 / 3770$ or **P_{pwe}** = $H_{tot}^2 \cdot 37.7$

with **P_{pwe}** = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m

H_{tot} = total magnetic field strength in A/m

6.6 System check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the 6.2.1 and 6.2.2

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$).

System check is performed regularly on all frequency bands where tests are performed with the DASY 5 system.

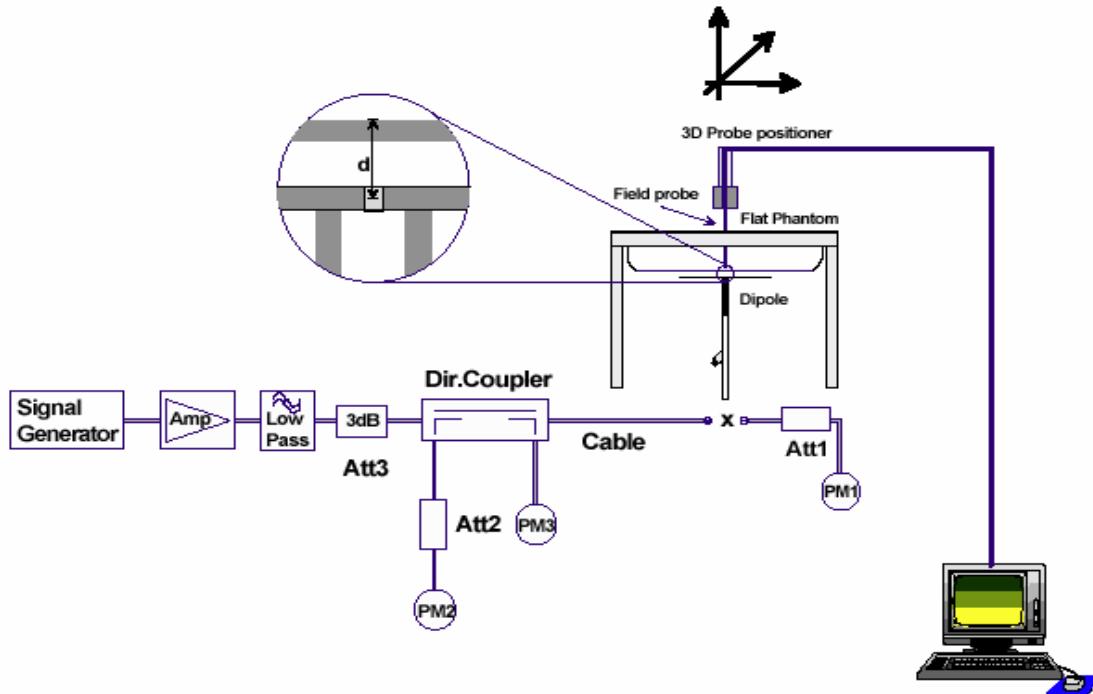


Figure 5-6. System Check Set-up

6.7 Equivalent Tissues

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

MIXTURE%	FREQUENCY(body)2450MHz
Water	70
Glycol monobutyl	30
Salt	0
Dielectric Parameters Target Value	f=2450MHz $\epsilon=52.7$ $\sigma=1.95$
MIXTURE%	FREQUENCY(BODY)2600MHz
Water	69.5
Glycol monobutyl	30.4
Salt	0
Dielectric Parameters Target Value	f=2600MHz $\epsilon=52.5$ $\sigma=2.16$

7. Summary of Test Results

7.1 Conducted Output Power Measurement

7.1.1 Summary

The DUT is tested using CMU200 or MT8820C communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted power.

Conducted output power was measured using an integrated RF connector and attached RF cable.

This result contains conducted output power for the EUT.

7.1.2 Conducted Power Results

LTE Band 41					
Bandwidth	RB	Frequency (MHz)	Actual output power (dBm)		
			QPSK	16QAM	
5MHz	1RB_low	2498.5	21.12	21.03	
		2545.8	20.95	20.86	
		2593	20.74	20.58	
		2640.3	20.49	20.39	
		2687.5	20.37	20.32	
	1RB_mid	2498.5	21.11	21.06	
		2545.8	20.95	20.86	
		2593	20.65	20.53	
		2640.3	20.41	20.35	
		2687.5	20.22	20.15	
	1RB_high	2498.5	21.09	21.06	
		2545.8	20.97	20.93	
		2593	20.63	20.54	
		2640.3	20.32	20.24	
		2687.5	20.10	20.08	
	50%RB_low	2498.5	21.06	21.02	
		2545.8	20.99	20.93	
		2593	20.72	20.64	
		2640.3	20.53	20.47	
		2687.5	20.43	20.42	
	50%RB_mid	2498.5	21.09	21.06	

		2545. 8	20. 96	20. 86
		2593	20. 65	20. 57
		2640. 3	20. 49	20. 42
		2687. 5	20. 36	20. 35
	50%RB_high	2498. 5	21. 03	21. 01
		2545. 8	20. 96	20. 91
		2593	20. 71	20. 63
		2640. 3	20. 48	20. 42
		2687. 5	20. 32	20. 31
	100%RB	2498. 5	21. 14	21. 06
		2545. 8	21. 08	21. 03
		2593	20. 89	20. 81
		2640. 3	20. 57	20. 47
		2687. 5	20. 37	20. 33
10MHz	1RB_low	2501	21. 13	21. 06
		2547	20. 93	20. 89
		2593	20. 73	20. 65
		2639	20. 52	20. 43
		2685	20. 31	20. 28
	1RB_mid	2501	21. 12	21. 09
		2547	20. 91	20. 89
		2593	20. 73	20. 68
		2639	20. 58	20. 51
		2685	20. 48	20. 50
	1RB_high	2501	21. 28	21. 13
		2547	21. 10	21. 02
		2593	20. 77	20. 62
		2639	20. 50	20. 41
		2685	20. 28	20. 24
	50%RB_low	2501	21. 19	21. 12
		2547	21. 11	21. 09
		2593	20. 85	20. 73
		2639	20. 65	20. 59
		2685	20. 52	20. 49
	50%RB_mid	2501	21. 17	21. 15
		2547	21. 15	21. 11
		2593	20. 95	20. 88
		2639	20. 71	20. 63
		2685	20. 48	20. 46
	50%RB_high	2501	21. 18	21. 17
		2547	21. 04	21. 01
		2593	20. 83	20. 72
		2639	20. 58	20. 49

		2685	20. 37	20. 35
100%RB	1RB_low	2501	21. 19	21. 68
		2547	21. 06	21. 04
		2593	20. 79	20. 71
		2639	20. 63	20. 29
		2685	20. 45	20. 42
15MHz	1RB_mid	2503. 5	21. 21	21. 18
		2547	20. 95	20. 92
		2593	20. 93	20. 75
		2639	20. 66	20. 61
		2862. 5	20. 51	20. 45
	1RB_high	2503. 5	21. 16	21. 14
		2547	20. 97	20. 88
		2593	20. 76	20. 69
		2639	20. 52	20. 43
		2862. 5	20. 35	20. 33
20MHz	50%RB_low	2503. 5	21. 17	21. 08
		2547	20. 81	20. 78
		2593	20. 58	20. 49
		2639	20. 29	20. 18
		2862. 5	20. 05	20. 03
	50%RB_mid	2503. 5	21. 21	21. 19
		2547	21. 06	20. 99
		2593	20. 83	20. 76
		2639	20. 61	20. 53
		2862. 5	20. 51	20. 46
	50%RB_high	2503. 5	21. 16	21. 14
		2547	21. 07	21. 01
		2593	20. 88	20. 68
		2639	20. 58	20. 51
		2862. 5	20. 44	20. 39
	100%RB	2503. 5	21. 22	21. 13
		2547	21. 01	20. 94
		2593	20. 77	20. 71
		2639	20. 56	20. 51
		2862. 5	20. 36	20. 31
	1RB_low	2503. 5	21. 15	21. 13
		2547	21. 04	21. 01
		2593	20. 82	20. 71
		2639	20. 62	20. 50
	1RB_low	2862. 5	20. 45	20. 43
		2506	21. 11	21. 02
		2565	20. 56	20. 54

	2593	20. 39	20. 32
	2645	20. 21	20. 17
	2680	20. 13	20. 11
1RB_mid	2506	21. 41	21. 36
	2565	21. 25	21. 18
	2593	20. 82	20. 77
	2645	20. 72	20. 68
	2680	20. 66	20. 61
1RB_high	2506	20. 50	20. 44
	2565	20. 39	20. 29
	2593	20. 28	20. 18
	2645	20. 09	20. 01
	2680	19. 89	19. 85
50%RB_low	2506	21. 25	21. 23
	2565	21. 05	21. 03
	2593	20. 71	20. 65
	2645	20. 63	20. 56
	2680	20. 51	20. 49
50%RB_mid	2506	21. 21	21. 19
	2565	21. 05	21. 03
	2593	20. 81	20. 76
	2645	20. 63	20. 58
	2680	20. 44	20. 38
50%RB_high	2506	21. 23	21. 18
	2565	21. 00	20. 98
	2593	20. 77	20. 69
	2645	20. 54	20. 48
	2680	20. 38	20. 35
100%RB	2506	21. 10	21. 03
	2565	20. 95	20. 93
	2593	20. 80	20. 73
	2645	20. 69	20. 62
	2680	20. 47	20. 43

LTE BAND 41 are tested with QPSK 20MHz 1RB mid and QPSK 20MHz 50%RB low which is the maximum output power of the set.

Maximum Power Reduction (MPR) for Power Class 3

BAND	1.4 MHz (RB)	3 MHz (RB)	5 MHz (RB)	10 MHz (RB)	15 MHz (RB)	20MHz (RB)	MPR (dB)	
							QPSK	16QAM
LTE Band 41	/	/	> 8	> 12	> 16	> 18	≤1	≤2

Wi-Fi Average Conducted Power

Model	Ch.	Freq. (MHz)	Average Power (dBm)
b	1	2412	15.65
	6	2437	15.32
	11	2462	15.35
g	1	2412	12.81
	6	2437	12.05
	11	2462	13.72
n(HT20)	1	2412	10.16
	6	2437	10.87
	11	2462	10.55

The maximum conducted output power of Wi-Fi is 15.65dBm=36.7mW>P(max)=19mW..
So stand alone SAR is required.

SAR of WLAN(2.4G) should be tested on 802.11b 1Mbps and check for 802.11n channel 6.

band	Fre'	Duty cycle	Scaled factor
802.11b 1Mbps.	2412 MHz	98%	1.020
	2437 MHz	98%	1.020
	2462 MHz	98%	1.020

7.2 Test Results

7.2.1. Dielectric Performance

Dielectric Performance of Tissue Simulating Liquid

Frequency	Description	Dielectric Parameters ϵ_r	σ (s/m)	temp °C
2450MHz (body)	Target value	52.7	1.95	/
	5% window	50.06-55.33	1.85 -2.05	
	Measurement value 2016-09-26	52.13	1.93	21.8
2600MHz (body)	Measurement value 2016-12-12	52.34	1.94	21.9
	Target value	52.5	2.16	/
	5% window	49.88-55.13	2.05 -2.27	
2600MHz (body)	Measurement value 2016-09-23	51.94	2.12	21.8
	Measurement value 2016-12-07	51.91	2.13	21.8

7.2.2. System Check Results

System Check for tissue simulation liquid

Frequency	Description	SAR(W/kg)		Targeted SAR1g (W/kg)	Normalized SAR1g (W/kg)	Deviation (%)
		10g	1g			
2450MHz (body)	Recommended result ±10% window	6.04 5.44-6.64	13.1 11.8-14.4	/	/	/
	Measurement value 2016-09-26	5.87	12.9	51.4	51.6	0.39
	Measurement value 2016-12-12	6.06	13.2	51.4	52.4	2.72
2600MHz (body)	Recommended result ±10% window	6.52 5.87-7.17	14.5 13.05-15.95	/	/	/
	Measurement value 2016-09-23	6.39	14.0	57.6	56	-2.78
	Measurement value 2016-12-07	6.51	14.5	57.6	58	0.69

Note: 1. the graph results see ANNEX B.1.

2 .Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

7.2.3 Test Results

7.2.3.1 Summary of Measurement Results (LTE BAND 41)

SAR Values (LTE BAND 41)

Test Case		Measurement Result(W/kg)		Power Drift(dB)	Note
Different Test Position		Channel	1 g Average		
Test position of Body with (Distance 5 mm)					
QPSK_20M_1RB mid	Towards phantom	39750	0.986	0.01	max
		40340	0.912	0.15	
		40620	0.712	0.04	
		41040	0.803	0.09	
		41490	0.789	-0.08	
	Towards Ground	40620	0.362	0.19	
	top	40620	0.203	0.19	
	bottom	40620	0.212	0.03	
	left side	40620	0.036	-0.15	
	right side	39750	0.903	0.03	
		40340	0.818	0.14	
		40620	0.633	0.18	
		41040	0.693	-0.02	
		41490	0.647	0.08	
QPSK_20M_50%RB low	Towards phantom	39750	0.722	0.12	
		40340	0.652	0.03	
		40620	0.623	-0.13	

		41040	0.774	0.18	
		41490	0.602	0.01	
		Towards Ground	40620	0.272	0.13
		top	40620	0.198	-0.15
		bottom	40620	0.171	0.02
		left side	40620	0.055	0.11
		right sid	39750	0.841	0.03
			40340	0.650	-0.17
			40620	0.512	0.11
			41040	0.582	0.08
			41490	0.607	-0.02
QPSK_20M_100%RB	Towards phantom		39750	0.906	-0.11
			40340	0.667	0.04
			40620	0.723	0.06
			41040	0.695	0.08
			41490	0.645	0.12
	Towards Ground	39750	0.374	0.13	
	top	39750	0.321	0.02	
	bottom	39750	0.053	0.05	
	left side	39750	0.010	0.12	
	right side		39750	0.862	0.01
			40340	0.742	0.14
			40620	0.683	0.03
			41040	0.665	-0.16

		41490	0.717	0.09	
Hotspot mode QPSK_20M_1RB mid	Towards phantom	39750	0.819	0.09	
		40340	0.703	0.02	
		40620	0.695	-0.12	
		41040	0.634	0.05	
		41490	0.621	-0.01	
QPSK_20M_1RB mid	Towards phantom	39750	0.932	0.14	repeat

Note: 1. The value with blue color is the maximum SAR Value of test case of head and body in each test band.

2. Upper and lower frequencies were measured at the worst position.
3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.4W/kg), testing at the high and low channels is optional.
4. 16QAM SAR for body was not required since the average output power of the 16QAM was not more than 0.25dB higher than the QPSK level and the maximum SAR for QPSK_20M_1RB was less than 75% SAR limit
5. For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations, and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel.

7.2.3.2 Summary of Measurement Results (Wi-Fi)

SAR Values (802.11b)

Test Case		Measurement Result(W/kg)	Power Drift(dB)	Note
Different Test Position	Channel	1g Average		
Test position of Body (Distance 5 mm)				
Towards phantom	low	0.084	-0.02	
	middle	0.252	-0.14	
	high	0.257	0.09	max

Towards Ground	middle	0.116	-0.13	
top	middle	0.240	0.07	
bottom	middle	0.009	0.03	
left side	middle	0.034	-0.04	
right side	middle	0.017	0.19	
Towards phantom Hotspot mode	low	0.081	-0.09	
	middle	0.238	0.11	
	high	0.245	0.12	
Towards phantom	middle	0.065	0.13	n(HT20)

Note: 1. The value with blue color is the maximum SAR Value of test case of head and body in each test band.

2. Upper and lower frequencies were measured at the worst position.
3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is lower than the SAR limit (< 0.4W/kg), testing at the high and low channels is optional.
4. 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

5. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

7.2.4 Maximum SAR

BAND	Position	CH	measuerment SAR (W/kg)	measuerment power (dBm)	tune-up limit (dBm)	scaled factor	D C factor	reported SAR (W/kg)
LTE 41 body-worn (5mm)	BODY	39750	0.986	21.41	21.5	1.021	/	1.007
		40340	0.912	21.25	21.5	1.059	/	0.966
		40620	0.712	20.82	21.5	1.169	/	0.833
		41040	0.803	20.72	21.5	1.197	/	0.961
		41490	0.789	20.66	21.5	1.213	/	0.957
LTE 41 Hotspot (5mm)	BODY	39750	0.819	21.41	21.5	1.021	/	0.836
		40340	0.703	21.25	21.5	1.059	/	0.745
		40620	0.695	20.82	21.5	1.169	/	0.813
		41040	0.634	20.72	21.5	1.197	/	0.759
		41490	0.621	20.66	21.5	1.213	/	0.754
802. 11b	BODY	1	0.084	15.65	16	1.084	1.020	0.093
		6	0.252	15.32	16	1.169	1.020	0.301
		11	0.257	15.35	16	1.161	1.020	0.305
802. 11b Hotspot	BODY	1	0.081	15.65	16	1.084	1.020	0.089
		6	0.238	15.32	16	1.169	1.020	0.282
		11	0.245	15.35	16	1.161	1.020	0.288

Evaluation for Simultaneous SAR

Summation BAND	Exposure Position	Maximum reported 1g SAR (W/kg)	Summation SAR(1g) (W/kg)	SAR -to-peak-location Separation Ratio	Simultaneous Measurement Required?
WWAN	Body-worn (5mm)	1.007+0.305=1.312	<1.6	/	No

General Judgment: PASS

8. Test Equipments Utilized

No.	Name	Type	S/N	Calibration Date	Valid Period
01	Network analyzer	Agilent E5071C	MY46109425	Oct 28 th , 2016	One year
02	Dielectric Probe Kit	Agilent 85070E	MY44300524	NA	
03	Power meter	Agilent E4418B	MY50000852	Oct 28 th , 2016	One year
04	Power sensor	Agilent E9200B	MY50300011	Oct 28 th , 2016	One year
05	Signal Generator	Agilent E4438C	MY49071248	Oct 28 th , 2016	One year
06	Amplifier	ZHL-42W	QA1020005	NA	
07	BTS	MT8820C	6201107310	May 31 th , 2016	One year
08	E-field Probe	ES3DV3	3241	Nov 05 th , 2015	One year
09	E-field Probe	EX3DV4	3717	Oct 30 th , 2015	One year
10	E-field Probe	EX3DV4	3717	Oct 19 th , 2016	One year
11	DAE	DAE4	1327	Apr 15 th , 2016	One year
12	Validation Kit 2450MHz	D2450V2	869	Jun 21 th , 2016	One year
13	Validation Kit 2600MHz	D2600V2	1059	Apr 14 th , 2016	One year

9. Measurement Uncertainty

No	Source of Uncertainty	Type	Uncertainty value ± %	Probability Distribution	Div.	c_i (1 g)	c_i (10 g)	Standard Unc ± %, (1 g)	Standard Unc ± %, (10 g)	v_i or v_{eff}
1	System repetitivity	A	2.7	N	1	1	1	2.7	2.7	9
<i>Measurement System</i>										
2	Probe Calibration	B	5.9	N	1	1	1	5.9	5.9	∞
3	Isotropy	B	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
4	Boundary Effect	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
5	Linearity	B	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
6	Detection Limits	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
7	Readout Electronics	B	0.3	N	1	1	1	0.3	0.3	∞
8	Response Time	B	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
9	Integration Time	B	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
10	RF ambient conditions – noise	B	0	R	$\sqrt{3}$	1	1	0	0	∞
11	RF ambient conditions – reflections	B	0	R	$\sqrt{3}$	1	1	0	0	∞
12	Probe Positioner Mech. Restrictions	B	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
13	Probe Positioning with respect to Phantom Shell	B	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
14	Post-Processing	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
<i>Test Sample Related</i>										

15	Test Sample Positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device Holder Uncertainty	A	4.1	N	1	1	1	4.1	4.1	5
17	Drift of Output Power	B	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
<i>Phantom and Set-up</i>										
18	Phantom Uncertainty	B	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid Conductivity (target.)	B	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid Conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.7	1.4	43
21	Liquid Permittivity (target.)	B	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid Permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c = \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$						10.54	10.34	
Expanded uncertainty (95 % confidence interval)		k=2						21.08	20.68	

ANNEX A: Detailed Test Results

Annex A.1 System Check Results

System check 2450body

Date/Time: 26/09/2016 11:20:12

Communication System: UID 0, CW; Communication System Band: D2450 (2450.0 MHz);

Frequency: 2450 MHz; Communication System PAR: 0 dB

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.931$ S/m; $\epsilon_r = 52.132$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE1528-2013)

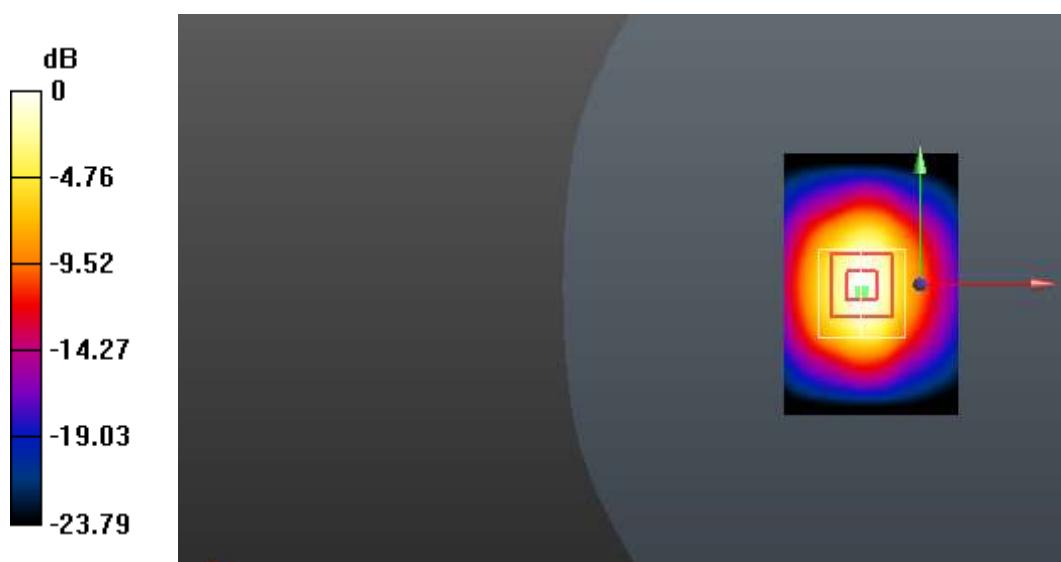
DASY5 Configuration:

- Probe: ES3DV3 - SN3241; ConvF(4.32, 4.32, 4.32); Calibrated: 05/11/2015;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1327; Calibrated: 15/04/2016
- Phantom: SAM 1; Type: SAM; Serial: TP:1702
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450body/d=10mm, Pin=250 mW/Area Scan (41x61x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 17.6 W/kg

2450body/d=10mm, Pin=250 mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 71.463 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 26.2 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.87 W/kg

Maximum value of SAR (measured) = 16.8 W/kg

$$0 \text{ dB} = 17.6 \text{ W/kg} = 12.46 \text{ dBW/kg}$$

System check 2450 body

Date/Time: 12/12/2016 08:24:20

Communication System: UID 0, CW; Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Communication System PAR: 0 dB

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.941$ S/m; $\epsilon_r = 52.342$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE1528-2013)

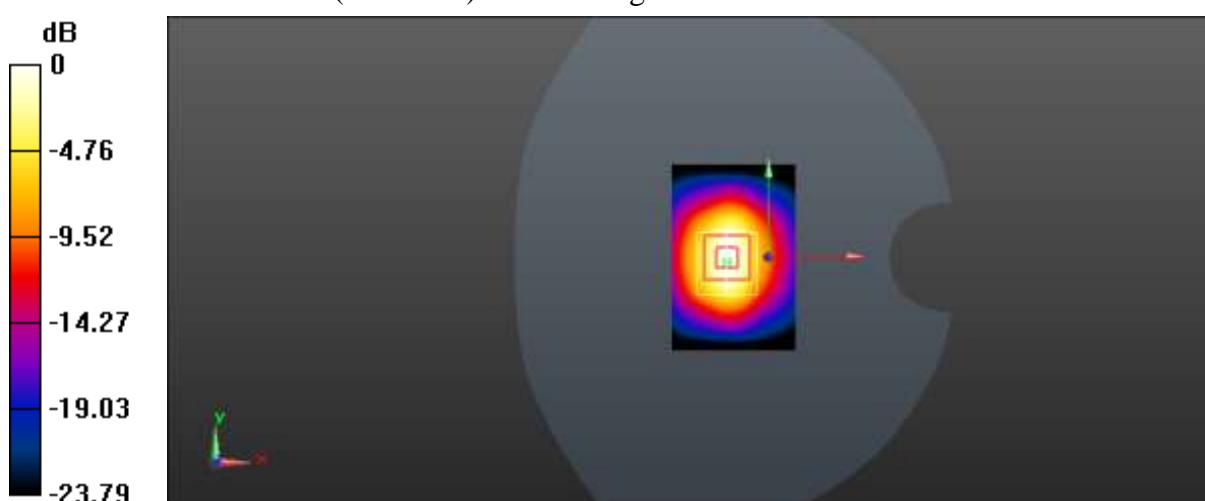
DASY5 Configuration:

- Probe: EX3DV4 - SN3717; ConvF(7.04, 7.04, 7.04); Calibrated: 19/10/2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1327; Calibrated: 15/04/2016
- Phantom: SAM 1; Type: SAM; Serial: TP:1702
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450body/d=10mm, Pin=250 mW/Area Scan (41x61x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 17.1 W/kg

2450body/d=10mm, Pin=250 mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.362 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.06 W/kg

Maximum value of SAR (measured) = 17.0 W/kg

System check 2600body

Date/Time: 23/09/2016 08:15:44

Communication System: UID 0, CW; Communication System Band: D2600 (2600.0 MHz); Frequency: 2600 MHz; Communication System PAR: 0 dB

Medium parameters used: $f = 2600$ MHz; $\sigma = 2.119$ S/m; $\epsilon_r = 51.943$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE1528-2013)

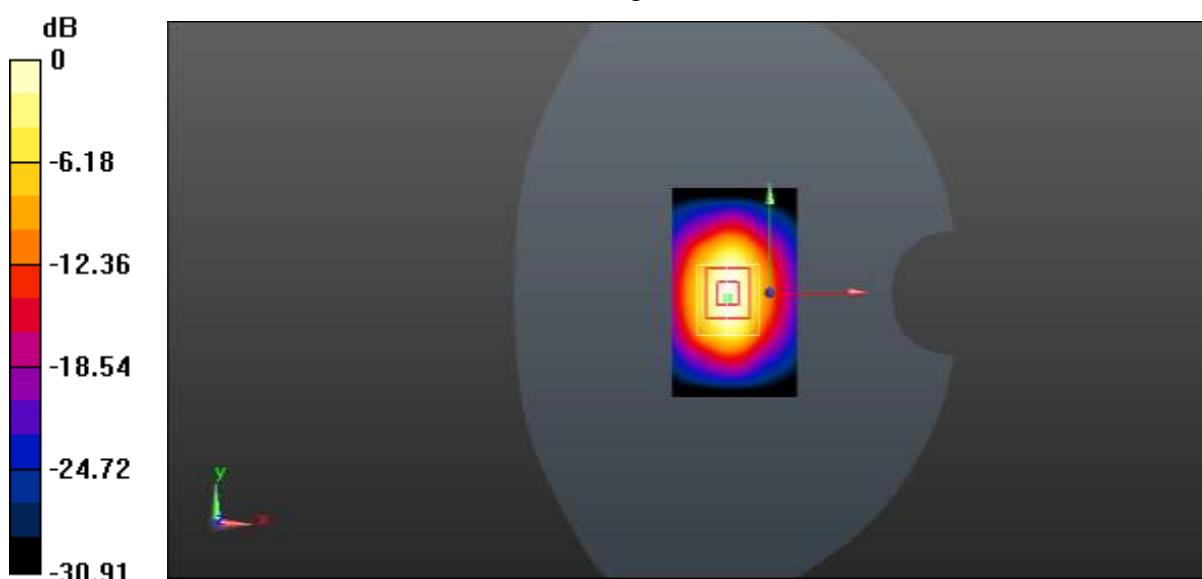
DASY5 Configuration:

- Probe: EX3DV4 - SN3717; ConvF(6.61, 6.61, 6.61); Calibrated: 30/10/2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1327; Calibrated: 15/04/2016
- Phantom: SAM 1; Type: SAM; Serial: TP:1702
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2600body/d=10mm, Pin=250 mW/Area Scan (41x61x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 17.6 W/kg

2600body/d=10mm, Pin=250 mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 71.463 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 26.2 W/kg

SAR(1 g) = 14.0 W/kg; SAR(10 g) = 6.39 W/kg

Maximum value of SAR (measured) = 16.8 W/kg

System check 2600body

Date/Time: 07/12/2016 08:06:17

Communication System: UID 0, CW; Communication System Band: D2600 (2600.0 MHz); Frequency: 2600 MHz; Communication System PAR: 0 dB

Medium parameters used: $f = 2600$ MHz; $\sigma = 2.125$ S/m; $\epsilon_r = 51.91$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE1528-2013)

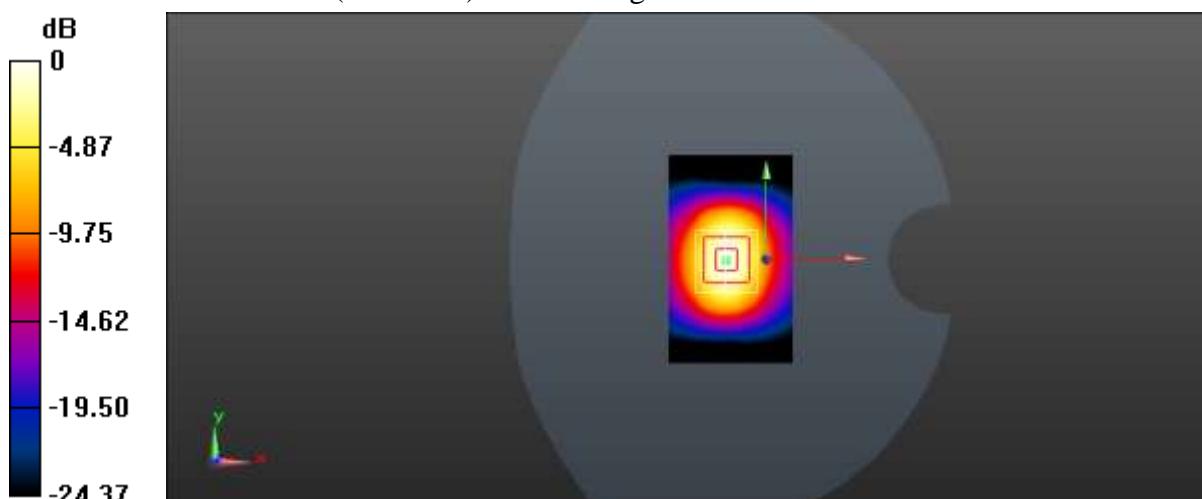
DASY5 Configuration:

- Probe: EX3DV4 - SN3717; ConvF(6.86, 6.86, 6.86); Calibrated: 19/10/2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1327; Calibrated: 15/04/2016
- Phantom: SAM 1; Type: SAM; Serial: TP:1702
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2600body/d=10mm, Pin=250 mW/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 18.8 W/kg

2600body/d=10mm, Pin=250 mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 71.943 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 36.2 W/kg

SAR(1 g) = 14.5 kg; SAR(10 g) = 6.51 W/kg

Maximum value of SAR (measured) = 18.6 W/kg

Annex A.2 Graph Result

LTE 41 towards phantom low QPSK_20M_1RB low

Date/Time: 23/09/2016 10:03:16

Communication System: UID 0, TDD-LTE(QPSK_20M_1RB) (0); Communication System

Band: BAND41; Frequency: 2506 MHz; Communication System PAR: 0 dB

Medium parameters used: $f = 2506$ MHz; $\sigma = 2.086$ S/m; $\epsilon_r = 51.449$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE1528-2013)

DASY5 Configuration:

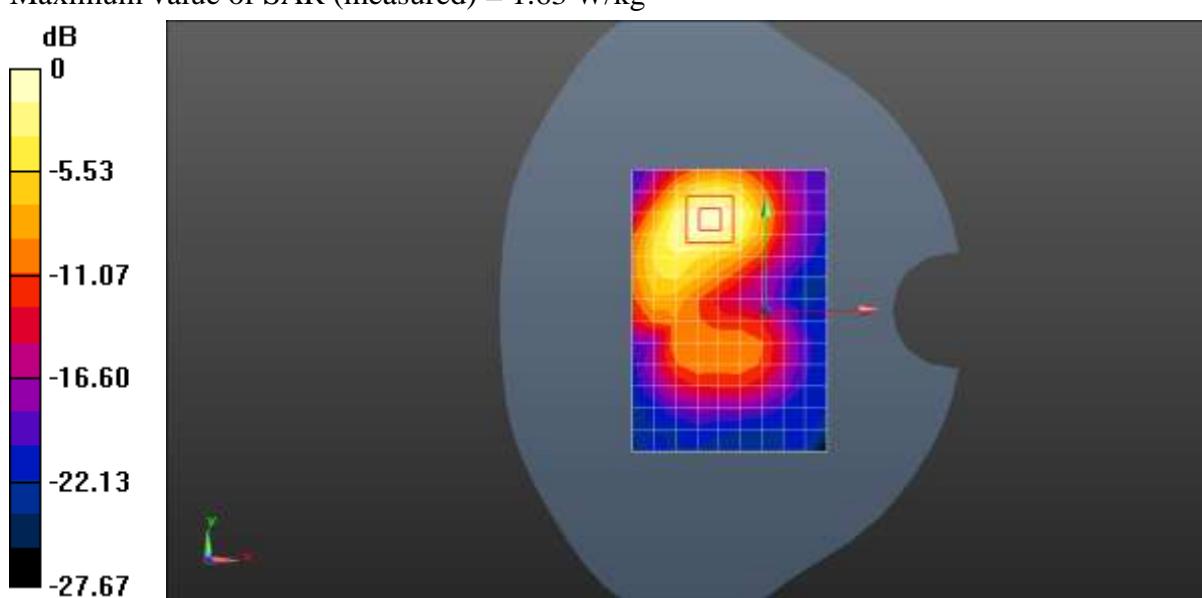
- Probe: EX3DV4 - SN3717; ConvF(6.61, 6.61, 6.61); Calibrated: 30/10/2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1327; Calibrated: 15/04/2016
- Phantom: SAM 1; Type: SAM; Serial: TP:1702
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/towards phantom low QPSK_20M_1RB low 2/Area Scan (10x14x1):

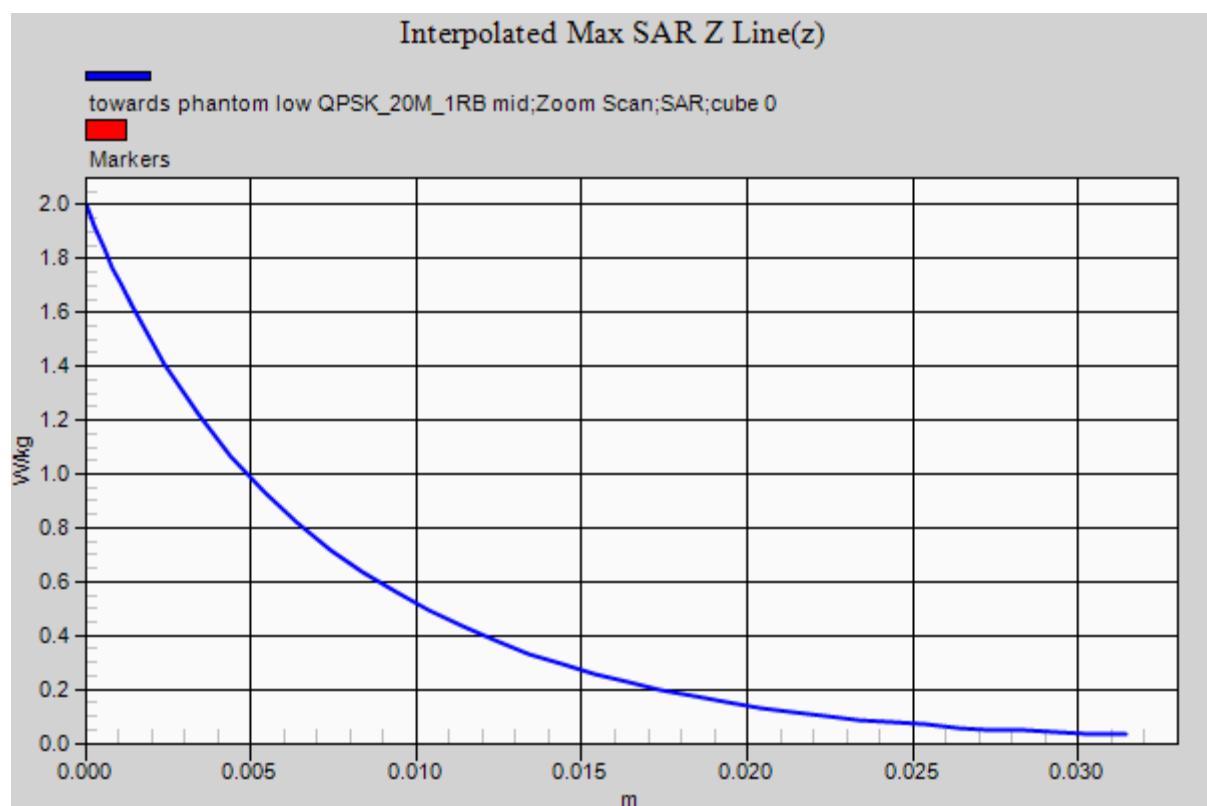
Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.64 W/kg

Configuration/towards phantom low QPSK_20M_1RB low 2/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.177 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 2.00 W/kg

SAR(1 g) = 0.986W/kg; SAR(10 g) = 0.460 W/kg

Maximum value of SAR (measured) = 1.63 W/kg

0 dB = 1.69 W/kg = 2.28 dBW/kg

802.11b Data Rate: 1 Mbps towards phantom high

Date/Time: 26/09/2016 15:59:53

Communication System: UID 0, 802.11b/g/n 2.45GHz (0); Communication System Band: 2.4G; Frequency: 2462 MHz; Communication System PAR: 0 dB

Medium parameters used: $f = 2462$ MHz; $\sigma = 1.934$ S/m; $\epsilon_r = 51.886$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

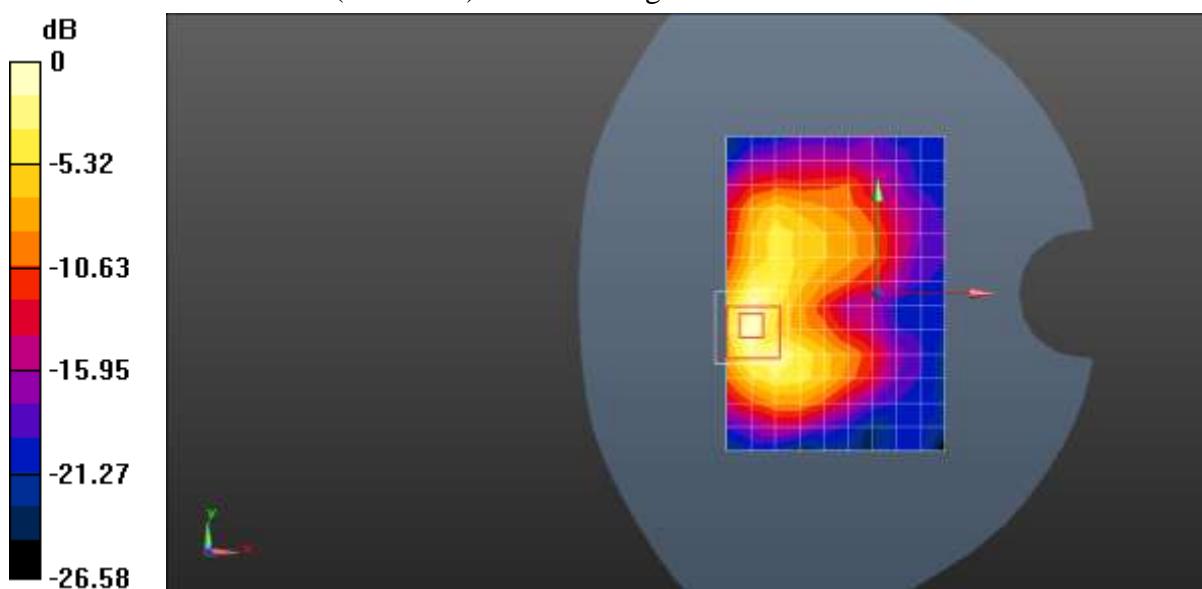
Measurement Standard: DASY5 (IEEE1528-2013)

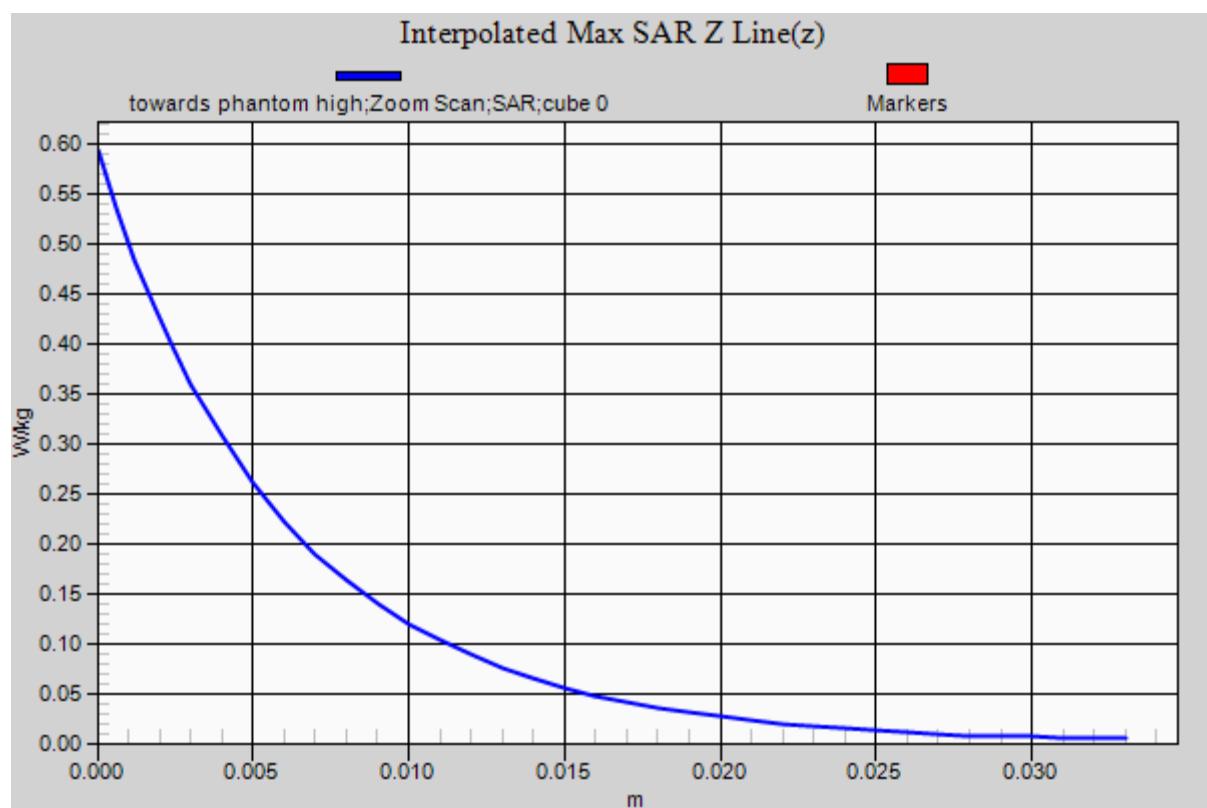
DASY5 Configuration:

- Probe: ES3DV3 - SN3241; ConvF(4.32, 4.32, 4.32); Calibrated: 05/11/2015;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1327; Calibrated: 15/04/2016
- Phantom: SAM 1; Type: SAM; Serial: TP:1702
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/towards phantom high/Area Scan (10x14x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.360 W/kg

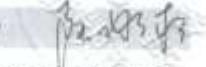

Configuration/towards phantom high/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 3.690 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.594 W/kg

SAR(1 g) = 0.257 W/kg; SAR(10 g) = 0.112 W/kg

Maximum value of SAR (measured) = 0.355 W/kg


ANNEX B: Calibration Certificate

Annex B.1 Probe Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-3218 Fax: +86-10-62304633-2209
E-mail: ctt@chinattl.com <http://www.chinattl.cn>

Client	Tejet	Certificate No: Z15-97164	
CALIBRATION CERTIFICATE			
Object	ES3DV3 - SN:3241		
Calibration Procedure(s)	FD-Z11-2-004-01 Calibration Procedures for Dosimetric E-field Probes		
Calibration date:	November 05, 2015		
This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.			
Calibration Equipment used (M&TE critical for calibration)			
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power sensor NRP-Z91	101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power sensor NRP-Z91	101548	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Reference10dBAttenuator	18N50W-10dB	13-Mar-14(TMC, No.JZ14-1103)	Mar-16
Reference20dBAttenuator	18N50W-20dB	13-Mar-14(TMC, No.JZ14-1104)	Mar-16
Reference Probe EX3DV4	SN 7307	27-Feb-15(SPEAG, No.EX3-7307_Feb15)	Feb-16
DAE4	SN 771	27-Jan-15(SPEAG, No.DAE4-771_Jan15)	Jan-16
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	8201052605	01-Jul-15 (CTTL, No.J15X04255)	Jun-16
Network Analyzer E5071C	MY46110673	03-Feb-15 (CTTL, No.J15X00728)	Feb-16
Calibrated by:	Name	Function	Signature
	Yu.Zongying	SAR Test Engineer	
Reviewed by:	Qi.Dianyuan	SAR Project Leader	
Approved by:	Lu.Bingsong	Deputy Director of the laboratory	
Issued: November 06, 2015			
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com <http://www.chinattl.com>

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta=0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$: Assessed for E-field polarization $\theta=0$ (f \leq 900MHz in TEM-cell; f $>$ 1800MHz: waveguide). $NORM_{x,y,z}$ are only intermediate values, i.e., the uncertainties of $NORM_{x,y,z}$ does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORM_{x,y,z} * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR:** PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- $A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; VR_{x,y,z}; A,B,C$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters:** Assessed in flat phantom using E-field (or Temperature Transfer Standard for f \leq 800MHz) and inside waveguide using analytical field distributions based on power measurements for f $>$ 800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy):** in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset:** The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle:** The angle is assessed using the information gained by determining the $NORM_{x,y,z}$ (no uncertainty required).

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.com](http://www.chinattl.com)

Probe ES3DV3

SN: 3241

Calibrated: November 05, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ctif@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3241

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(μ VI(V/m) ²) ^A	1.17	0.85	1.04	\pm 10.8%
DCP(mV) ^B	105.1	106.8	106.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB/ μ V	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	291.1	\pm 2.3%
		Y	0.0	0.0	1.0		245.6	
		Z	0.0	0.0	1.0		272.6	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com <http://www.chinattl.com>

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3241

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.32	6.32	6.32	0.50	1.20	± 12%
850	41.5	0.92	6.06	6.06	6.06	0.38	1.50	± 12%
900	41.5	0.97	6.22	6.22	6.22	0.39	1.50	± 12%
1750	40.1	1.37	5.17	5.17	5.17	0.38	1.68	± 12%
1900	40.0	1.40	5.03	5.03	5.03	0.67	1.23	± 12%
2000	40.0	1.40	4.94	4.94	4.94	0.36	1.80	± 12%
2450	39.2	1.80	4.59	4.59	4.59	0.56	1.47	± 12%

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

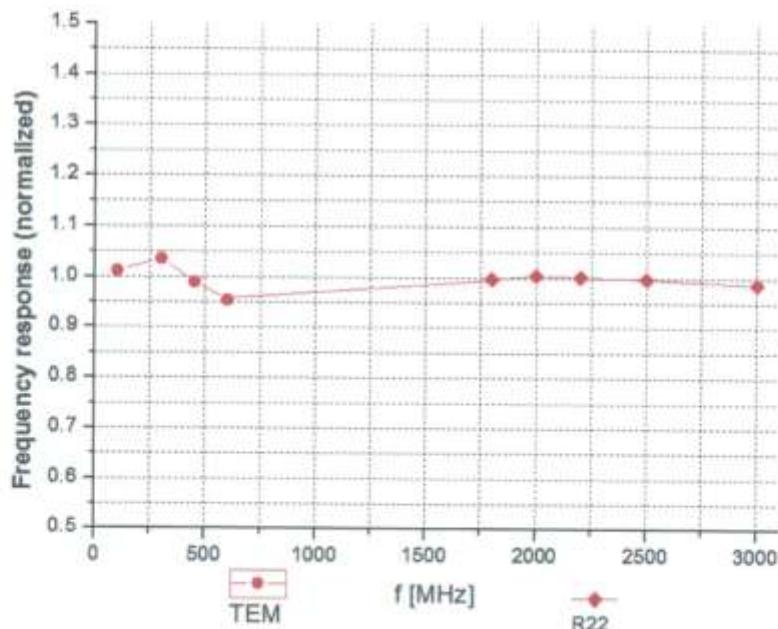
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cmf@chinattl.com [Http://www.chinattl.com](http://www.chinattl.com)

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3241

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^g (mm)	Unct. (k=2)
750	55.5	0.96	6.37	6.37	6.37	0.50	1.25	±12%
850	55.2	0.99	6.22	6.22	6.22	0.39	1.61	±12%
900	55.0	1.05	6.08	6.08	6.08	0.44	1.47	±12%
1750	53.4	1.49	4.86	4.86	4.86	0.44	1.57	±12%
1900	53.3	1.52	4.58	4.58	4.58	0.59	1.36	±12%
2000	53.3	1.52	4.60	4.60	4.60	0.42	1.82	±12%
2450	52.7	1.95	4.32	4.32	4.32	0.53	1.62	±12%

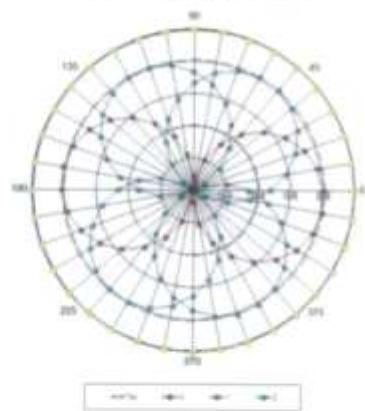
^c Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

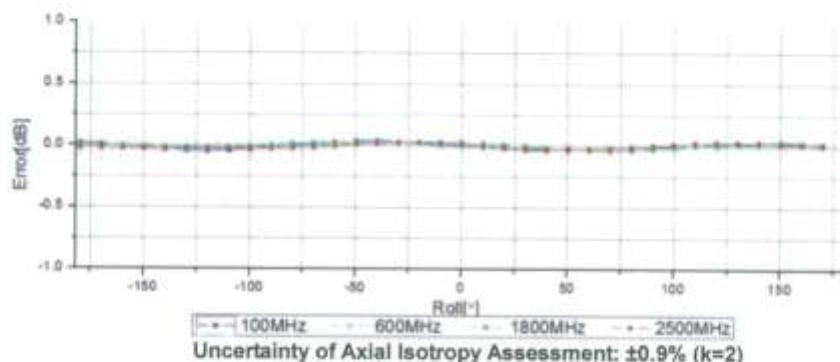
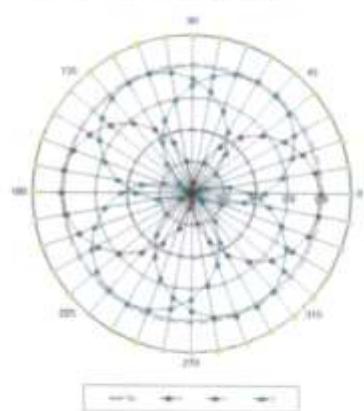

^f At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^g Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 FAX: +86-10-62304633-2209
E-mail: ettl@chinattl.com <http://www.chinattl.com>

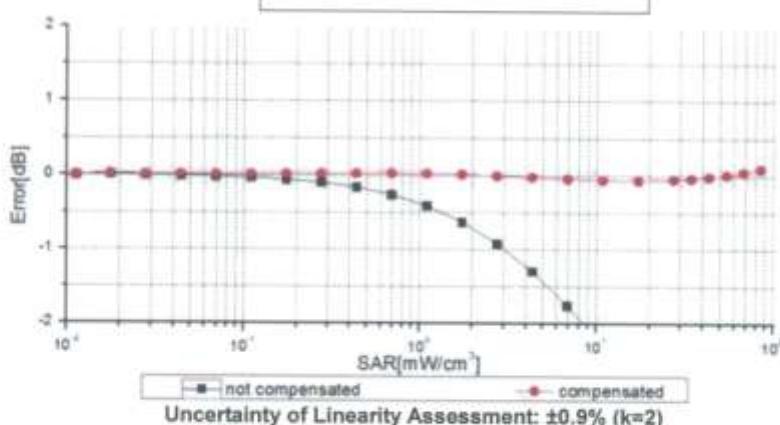
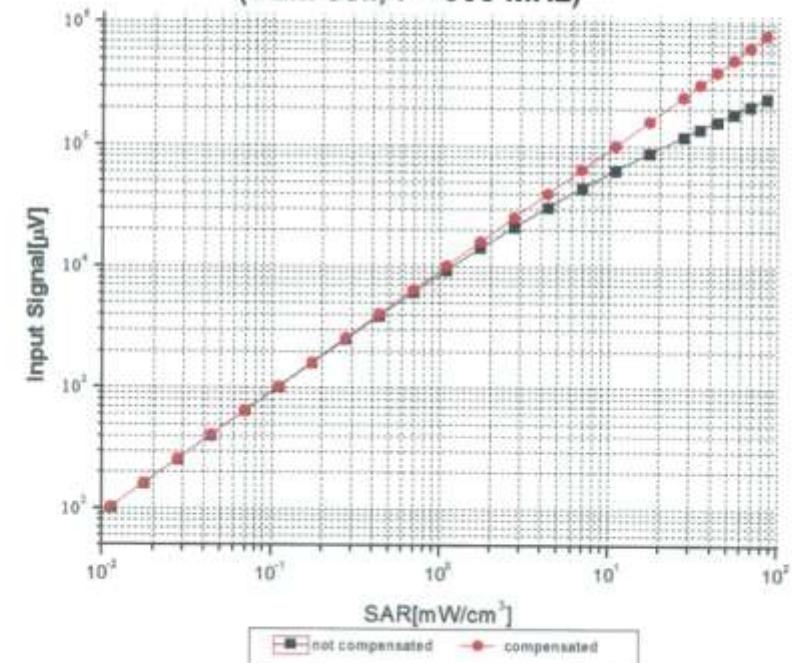
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 7.5\%$ ($k=2$)



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.com](http://www.chinattl.com)

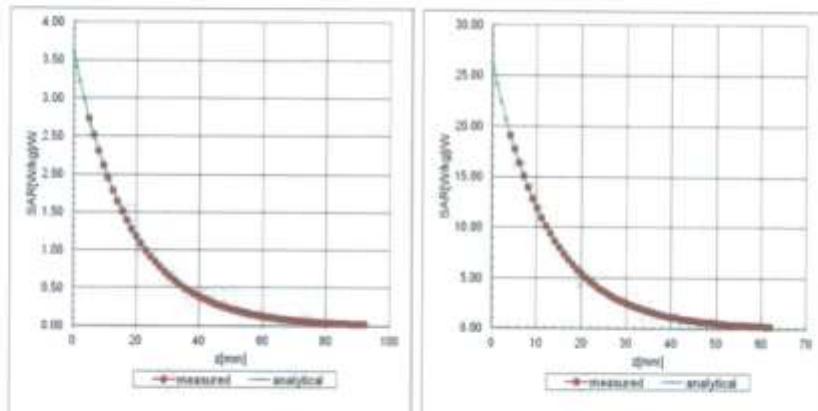
Receiving Pattern (Φ), $\theta=0^\circ$

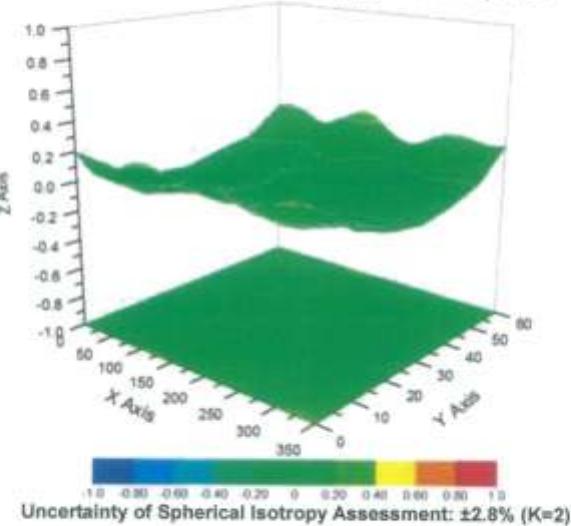
f=600 MHz, TEM



f=1800 MHz, R22

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ctli@chinatll.com <http://www.chinatll.com>

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

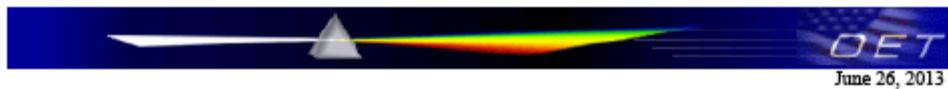

Uncertainty of Linearity Assessment: $\pm 0.9\%$ ($k=2$)


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China.
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ctfl@chinattl.com <http://www.chinattl.com>

Conversion Factor Assessment

$f=900$ MHz, WGLS R9(H_convF) $f=1750$ MHz, WGLS R22(H_convF)

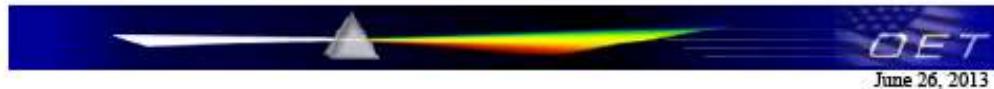
Deviation from Isotropy in Liquid



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China.
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com <http://www.chinattl.com>

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3241

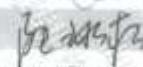
Other Probe Parameters


Sensor Arrangement	Triangular
Connector Angle (°)	150.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

**Acceptable Conditions for SAR Measurements Using Probes and Dipoles
Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to
Support FCC Equipment Certification**

The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by TMC (*Telecommunication Metrology Center of MITT in Beijing, China*), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (*Schmid & Partner Engineering AG, Switzerland*) and TMC, to support FCC (*U.S. Federal Communications Commission*) equipment certification are defined and described in the following.

- 1) The agreement established between SPEAG and TMC is only applicable to calibration services performed by TMC where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. This agreement is subject to renewal at the end of each calendar year between SPEAG and TMC. TMC shall inform the FCC of any changes or early termination to the agreement.
- 2) Only a subset of the calibration services specified in the SPEAG-TMC agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following.
 - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx.
 - i) Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and cannot be used for measurements to support FCC equipment certification.
 - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics are handled according to the requirements of KDB 865664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration for testing specific wireless modes and technologies is determined on a case-by-case basis through KDB inquiries, including SAR system verification requirements."
 - b) Calibration of SAR system validation dipoles, excluding HAC dipoles.
 - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx.
 - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this document).
 - e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by TMC.
 - f) The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 or higher version systems.


- 3) The SPEAG-TMC agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by TMC under this SPEAG-TMC Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. TMC shall, upon request, provide copies of documentation to the FCC to substantiate program implementation.
 - a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the TMC QA protocol shall be performed between SPEAG and TMC at least once every 12 months. The ILCE acceptance criteria defined in the TMC QA protocol shall be satisfied for the TMC, SPEAG and FCC agreements to remain valid.
 - b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by TMC. Written confirmation from SPEAG is required for TMC to issue calibration certificates under the SPEAG-TMC Dual-Logo calibration program. Quarterly reports for all calibrations performed by TMC under the program are also issued by SPEAG.
 - c) The calibration equipment and measurement system used by TMC shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the TMC QA protocol before each actual calibration can commence. TMC shall maintain records of the measurement and calibration system verification results for all calibrations.
 - d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit TMC facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates.
- 4) A copy of this document, to be updated annually, shall be provided to TMC clients that accept calibration services according to the SPEAG-TMC Dual-Logo calibration program, which should be presented to a TCB (*Telecommunication Certification Body*), to facilitate FCC equipment approval.
- 5) TMC shall address any questions raised by its clients or TCBs relating to the SPEAG-TMC Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues.

Change Note: Revised on June 26 to clarify the applicability of PMR and Bundled probe calibrations according to the requirements of KDB 865664.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ctll@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Client	Tejet	Certificate No: Z15-97107	
CALIBRATION CERTIFICATE			
Object	EX3DV4 - SN:3717		
Calibration Procedure(s)	FD-Z11-2-004-01 Calibration Procedures for Dosimetric E-field Probes		
Calibration date:	October 30, 2015		
<p>This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.</p>			
Calibration Equipment used (M&TE critical for calibration)			
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power sensor NRP-Z91	101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power sensor NRP-Z91	101548	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Reference10dBAttenuator	18N50W-10dB	13-Mar-14(TMC, No.JZ14-1103)	Mar-16
Reference20dBAttenuator	18N50W-20dB	13-Mar-14(TMC, No.JZ14-1104)	Mar-16
Reference Probe EX3DV4	SN 7307	27-Feb-15(SPEAG, No.EX3-7307_Feb15)	Feb-16
DAE4	SN 771	27-Jan-15(SPEAG, No.DAE4-771_Jan15)	Jan-16
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	8201052605	01-Jul-15 (CTTL, No.J15X04255)	Jun-16
Network Analyzer E5071C	MY46110673	03-Feb-15 (CTTL, No.J15X00728)	Feb-16
Calibrated by:	Name	Function	Signature
	Yu Zongying	SAR Test Engineer	
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	
Issued: October 31, 2015			
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

Certificate No: Z15-97107

Page 1 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ctif@chinattl.com [Http://www.chinattl.com](http://www.chinattl.com)

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta=0$ is normal to probe axis

Connector Angle: information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}: Assessed for E-field polarization $\theta=0$ (fs900MHz in TEM-cell; $f>1800$ MHz: waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)_{x,y,z} = NORM_{x,y,z}*frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; VR_{x,y,z}; A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for fs800MHz) and inside waveguide using analytical field distributions based on power measurements for $f>800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z}* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from 50MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from Isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORM_x (no uncertainty required).

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Probe EX3DV4

SN: 3717

Calibrated: October 30, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinatl.com [Http://www.chinatl.com](http://www.chinatl.com)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3717

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(μ V/(V/m) ²) ^A	0.51	0.47	0.56	±10.8%
DCP(mV) ^B	100.9	104.6	101.1	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB· μ V	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	188.8	±2.0%
		Y	0.0	0.0	1.0		183.0	
		Z	0.0	0.0	1.0		202.1	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3717

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^a	Relative Permittivity ^b	Conductivity (S/m) ^c	ConvF X	ConvF Y	ConvF Z	Alpha ^d	Depth ^d (mm)	Unct. (k=2)
850	41.5	0.92	8.81	8.81	8.81	0.14	1.40	±12%
900	41.5	0.97	8.86	8.86	8.86	0.12	1.66	±12%
1750	40.1	1.37	7.62	7.62	7.62	0.22	1.07	±12%
1900	40.0	1.40	7.51	7.51	7.51	0.14	1.56	±12%
2300	39.5	1.67	7.27	7.27	7.27	0.42	0.72	±12%
2450	39.2	1.80	7.02	7.02	7.02	0.31	0.96	±12%
2600	39.0	1.96	6.81	6.81	6.81	0.39	0.81	±12%
5200	36.0	4.66	5.39	5.39	5.39	0.50	0.92	±13%
5300	35.9	4.76	5.13	5.13	5.13	0.50	0.90	±13%
5600	35.5	5.07	4.51	4.51	4.51	0.55	0.92	±13%
5800	35.3	5.27	4.55	4.55	4.55	0.55	0.92	±13%

^a Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^b At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^c Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

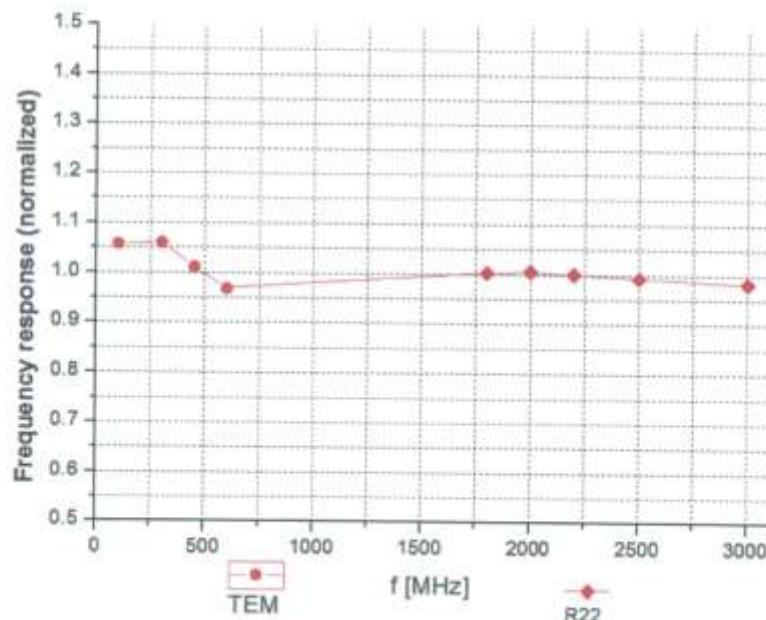
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ctfl@chinattl.com [Http://www.chinattl.com](http://www.chinattl.com)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3717

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^g (mm)	Unct. (k=2)
2300	52.9	1.81	7.00	7.00	7.00	0.38	0.86	± 12%
2450	52.7	1.95	6.88	6.88	6.88	0.30	1.07	± 12%
2600	52.5	2.16	6.61	6.61	6.61	0.36	0.95	± 12%
5200	49.0	5.30	4.51	4.51	4.51	0.55	0.99	± 13%
5300	48.9	5.42	4.24	4.24	4.24	0.57	0.99	± 13%
5600	48.5	5.77	3.77	3.77	3.77	0.59	0.97	± 13%
5800	48.2	6.00	3.93	3.93	3.93	0.58	1.05	± 13%

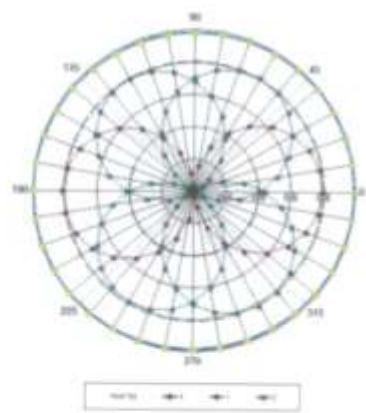
^c Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

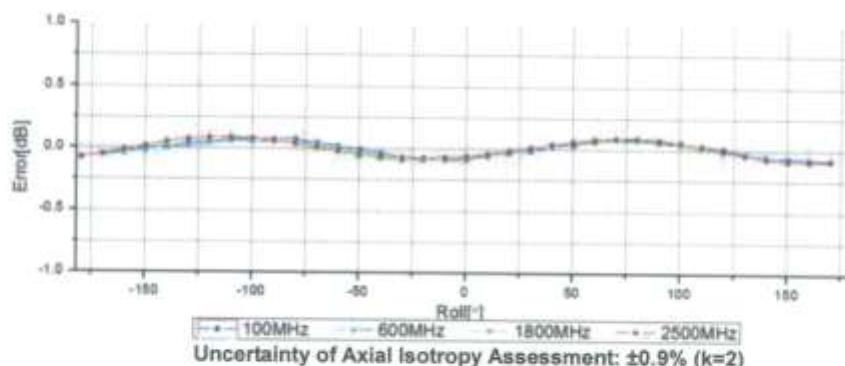
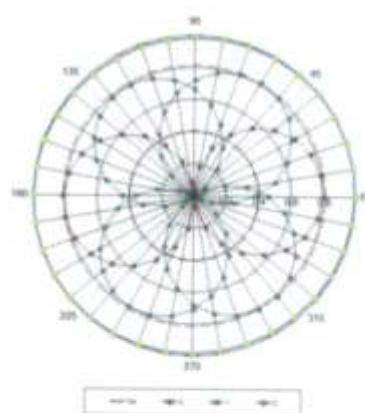

^f At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

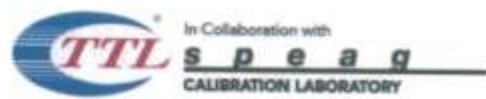
^g Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.com](http://www.chinattl.com)

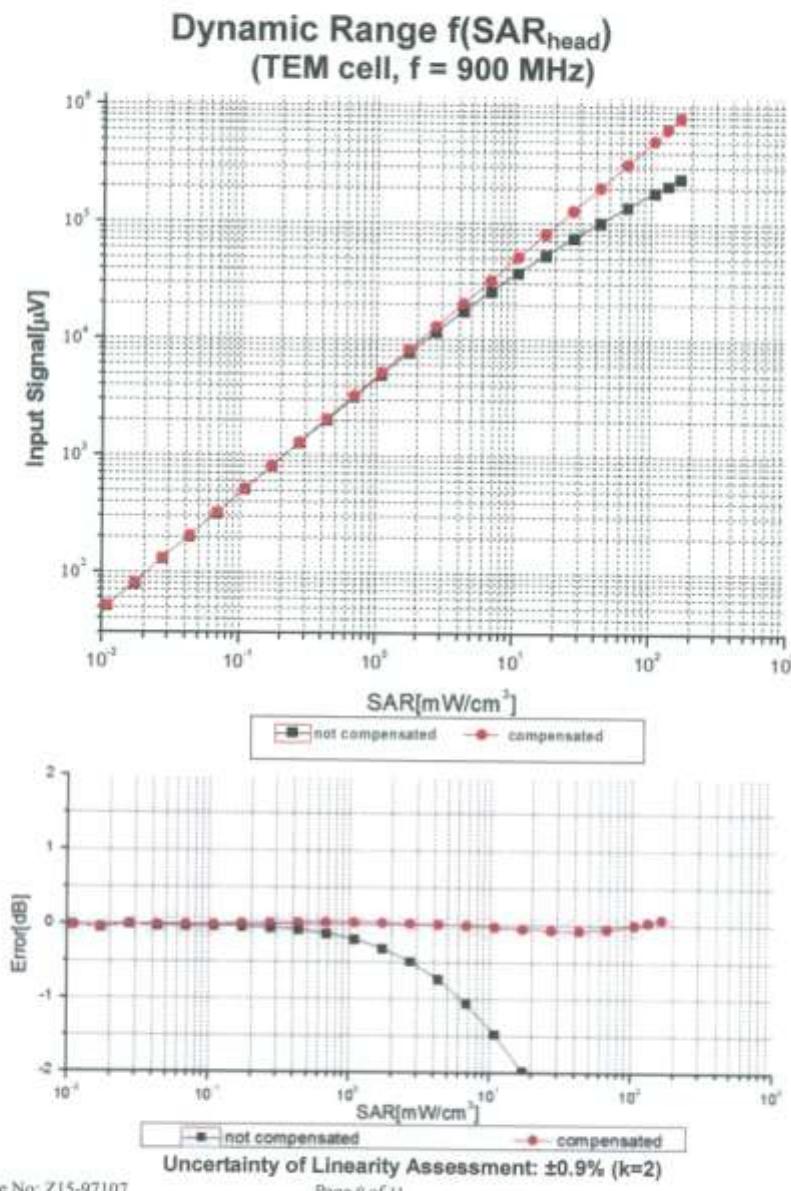
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 7.5\%$ (k=2)

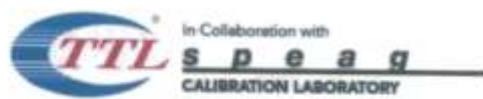


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ttl@chinattl.com [Http://www.chinattl.com](http://www.chinattl.com)


Receiving Pattern (Φ), $\theta=0^\circ$

f=600 MHz, TEM

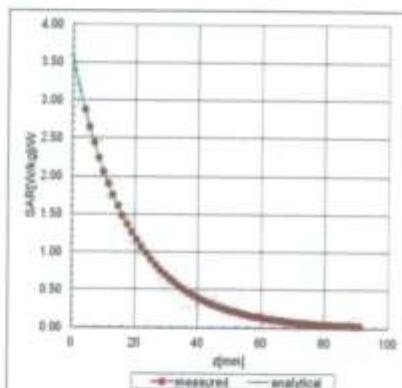


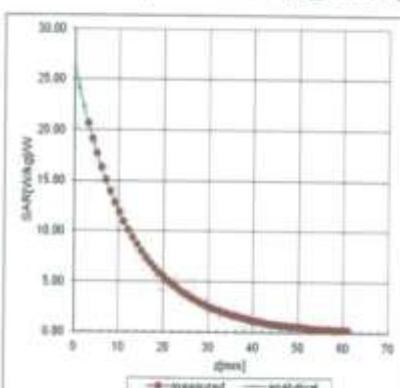
f=1800 MHz, R22



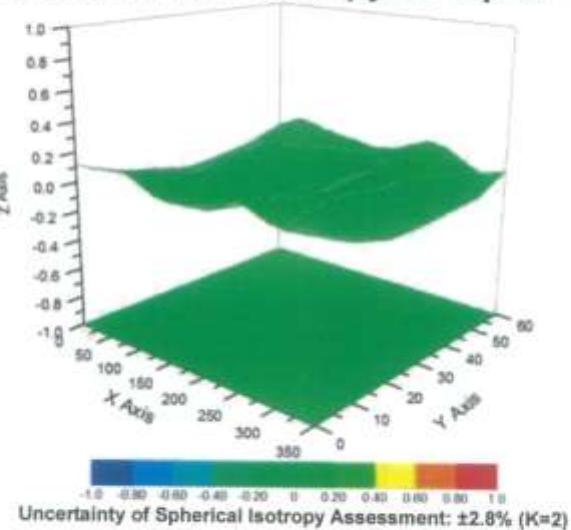
Add: No.51 Xuryuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ctll@chinatll.com [Http://www.chinatll.com](http://www.chinatll.com)

Certificate No: Z15-97107


Page 9 of 11


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ttl@chimatl.com <http://www.chimatl.com>

Conversion Factor Assessment


f=900 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3717**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle ("')	156.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

In Collaboration with
S p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinatll.com <http://www.chinatll.com>

中国认可
国际互认
校准
CALIBRATION
CNAS L0570

Client

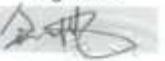
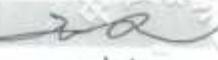
Tejet

Certificate No: Z16-97169

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3717

Calibration Procedure(s) FD-Z11-004-01
Calibration Procedures for Dosimetric E-field Probes



Calibration date: October 19, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101548	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Reference10dBAttenuator	18N50W-10dB	13-Mar-16(CTTL, No.J16X01547)	Mar-18
Reference20dBAttenuator	18N50W-20dB	13-Mar-16(CTTL, No.J16X01548)	Mar-18
Reference Probe EX3DV4	SN 7307	19-Feb-16(SPEAG, No.EX3-7307_Feb16)	Feb-17
DAE4	SN 1331	21-Jan-16(SPEAG, No.DAE4-1331_Jan16)	Jan -17
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	27-Jun-16 (CTTL, No.J16X04776)	Jun-17
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan -17

	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Liu Wei	Deputy Director of SEM Department	

Issued: October 21, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), $\theta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 885664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORM x,y,z : Assessed for E-field polarization $\theta=0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: waveguide). NORM x,y,z are only intermediate values, i.e., the uncertainties of NORM x,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- A x,y,z ; B x,y,z ; C x,y,z ; VR x,y,z ; A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM x,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORM x (no uncertainty required).

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Probe EX3DV4

SN: 3717

Calibrated: October 19, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinatll.com <http://www.chinatll.com>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3717

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(μ V/(V/m) ²) ^A	0.50	0.46	0.55	±10.8%
DCP(mV) ^B	99.6	102.5	100.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB/ μ V	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	203.0	±2.2%
		Y	0.0	0.0	1.0		197.5	
		Z	0.0	0.0	1.0		219.8	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3717

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.27	9.27	9.27	0.30	0.80	±12%
835	41.5	0.90	8.93	8.93	8.93	0.14	1.39	±12%
900	41.5	0.97	8.94	8.94	8.94	0.12	1.60	±12%
1750	40.1	1.37	7.70	7.70	7.70	0.17	1.61	±12%
1900	40.0	1.40	7.65	7.65	7.65	0.20	1.49	±12%
2300	39.5	1.67	7.15	7.15	7.15	0.56	0.70	±12%
2450	39.2	1.80	6.96	6.96	6.96	0.40	0.91	±12%
2600	39.0	1.96	6.70	6.70	6.70	0.52	0.80	±12%
5200	36.0	4.66	5.25	5.25	5.25	0.40	1.25	±13%
5300	35.9	4.76	4.98	4.98	4.98	0.40	1.25	±13%
5500	35.6	4.96	4.80	4.80	4.80	0.40	1.28	±13%
5600	35.5	5.07	4.67	4.67	4.67	0.40	1.45	±13%
5800	35.3	5.27	4.57	4.57	4.57	0.44	1.45	±13%

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

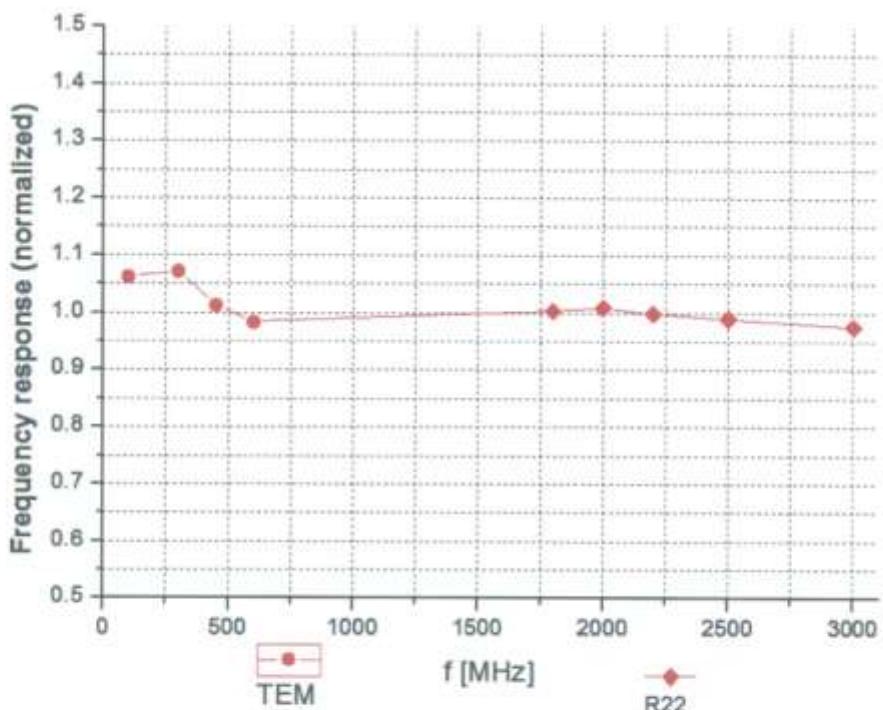
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com <http://www.chinattl.com>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3717

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.25	9.25	9.25	0.50	0.82	±12%
835	55.2	0.97	8.99	8.99	8.99	0.16	1.54	±12%
900	55.0	1.05	8.93	8.93	8.93	0.23	1.12	±12%
1750	53.4	1.49	7.63	7.63	7.63	0.17	1.79	±12%
1900	53.3	1.52	7.44	7.44	7.44	0.20	1.71	±12%
2300	52.9	1.81	7.06	7.06	7.06	0.55	0.79	±12%
2450	52.7	1.95	7.04	7.04	7.04	0.38	1.12	±12%
2600	52.5	2.16	6.86	6.86	6.86	0.37	1.11	±12%
5200	49.0	5.30	4.47	4.47	4.47	0.45	1.50	±13%
5300	48.9	5.42	4.19	4.19	4.19	0.45	1.55	±13%
5500	48.6	5.65	3.90	3.90	3.90	0.50	1.50	±13%
5600	48.5	5.77	3.68	3.68	3.68	0.50	1.55	±13%
5800	48.2	6.00	3.83	3.83	3.83	0.50	1.70	±13%

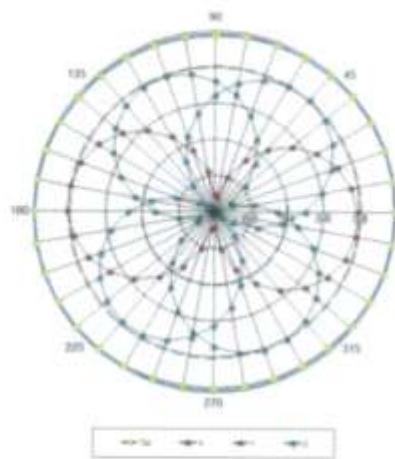
^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

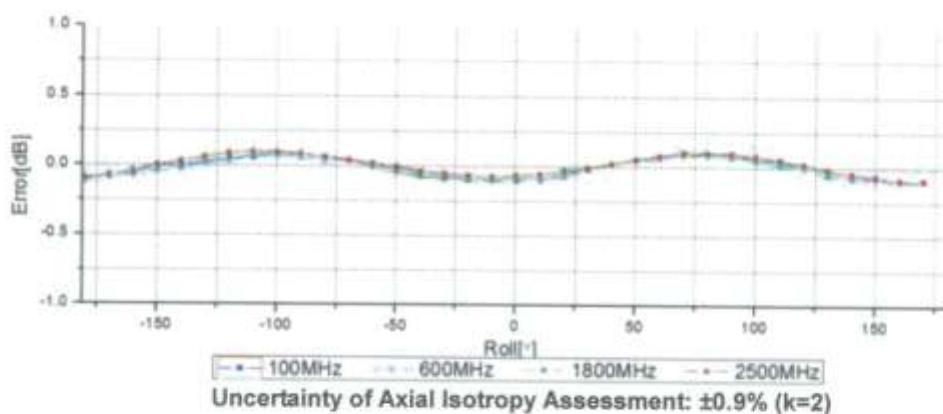
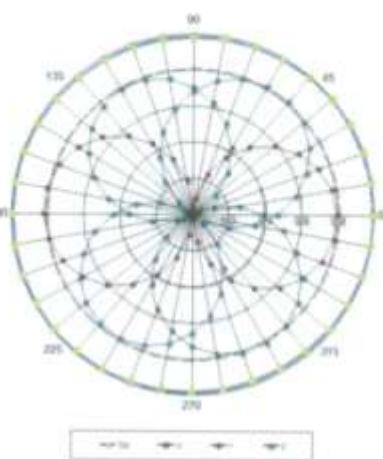

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ctti@chinattl.com <http://www.chinattl.cn>

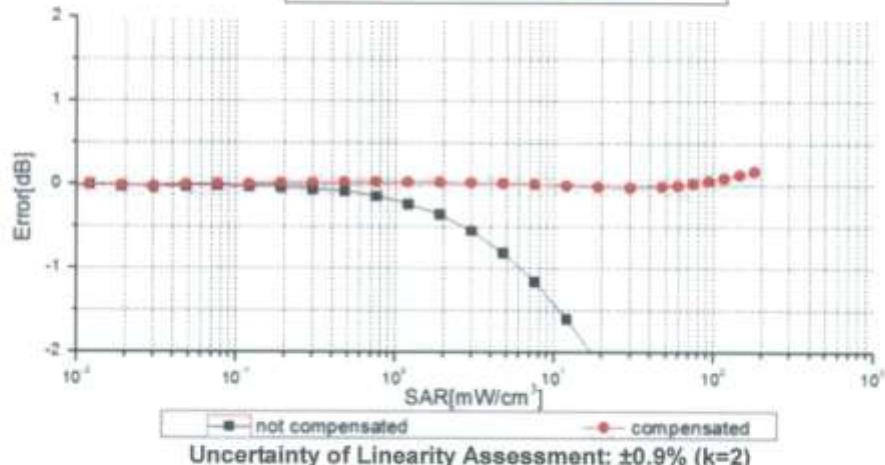
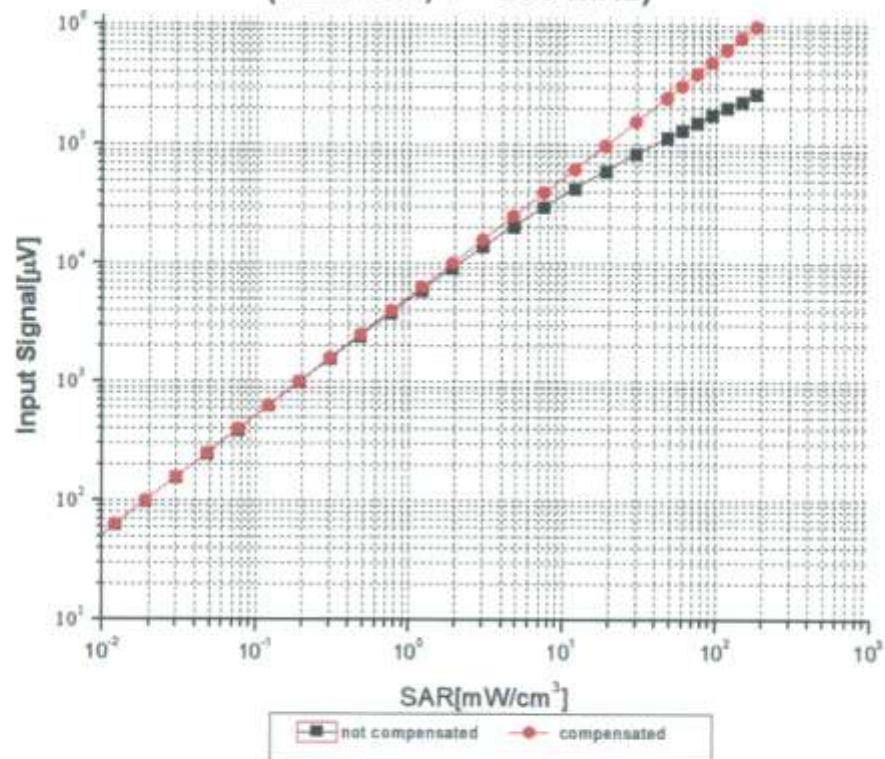
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 7.5\%$ ($k=2$)



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 FAX: +86-10-62304633-2209
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Receiving Pattern (Φ), $\theta=0^\circ$

f=600 MHz, TEM

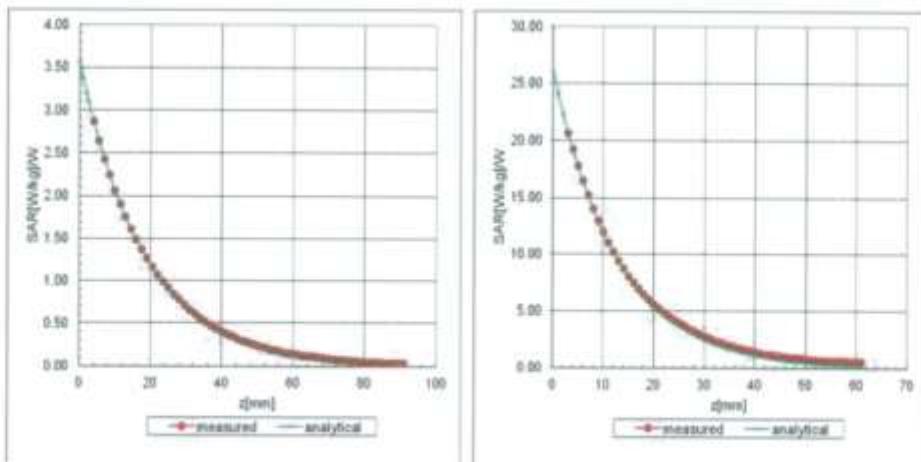


f=1800 MHz, R22

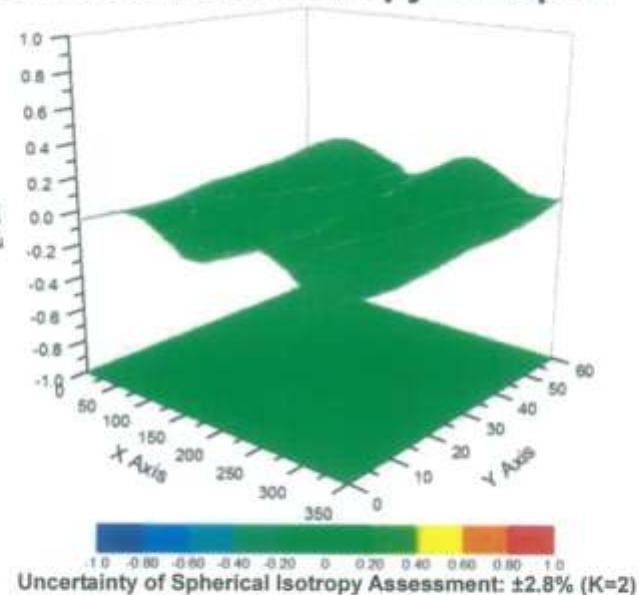
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No: Z16-97169

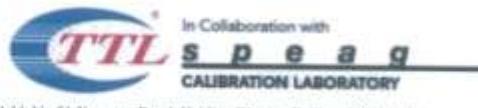

Page 9 of 11


Add: No.51 Xueyuan Roud, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF) f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3717

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (")	158.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Annex B.2 DAE4 Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttli@chinatl.com <http://www.chinatl.com>

Client : Tejet

Certificate No: J16-97048

CALIBRATION CERTIFICATE

Object DAE4 - SN: 1327

Calibration Procedure(s) FD-Z11-2-002-01

Calibration Procedure for the Data Acquisition Electronics
(DAE4)

Calibration date: April 15, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	01-July-14 (CTTL, No:J14X02147)	July-15

Calibrated by: Name: Zhao Jing Function: SAR Test Engineer Signature: Reviewed by: Name: Qi Dianyuan Function: SAR Project Leader Signature: Approved by: Name: Lu Bingsong Function: Deputy Director of the laboratory Signature:

Issued: April 18, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ctll@chinattl.com <http://www.chinattl.cn>

Glossary:

DAE data acquisition electronics
Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cth@chinattl.com <http://www.chinattl.com>

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 5.1 μ V, full range = -100...+300 mV

Low Range: 1LSB = 51nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$404.680 \pm 0.15\%$ (k=2)	$404.737 \pm 0.15\%$ (k=2)	$404.934 \pm 0.15\%$ (k=2)
Low Range	$3.99344 \pm 0.7\%$ (k=2)	$3.99268 \pm 0.7\%$ (k=2)	$3.99828 \pm 0.7\%$ (k=2)

Connector Angle

Connector Angle to be used in DASY system	$188^\circ \pm 1^\circ$
---	-------------------------

Annex B.3 D2450V2 Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client Auden

Certificate No: D2450V2-869_Jun16

CALIBRATION CERTIFICATE

Object D2450V2 - SN:869

Calibration procedure(s) QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: June 21, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104776	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-142A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:	Name	Function	Signature
	Leif Klysner	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: June 27, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSI	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.5 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	$53.1 \Omega + 6.8 j\Omega$
Return Loss	- 22.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.5 \Omega + 7.8 j\Omega$
Return Loss	- 21.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.158 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 18, 2010

DASY5 Validation Report for Head TSL

Date: 21.06.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:869

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.87$ S/m; $\epsilon_r = 38.2$; $\rho = 1000$ kg/m³

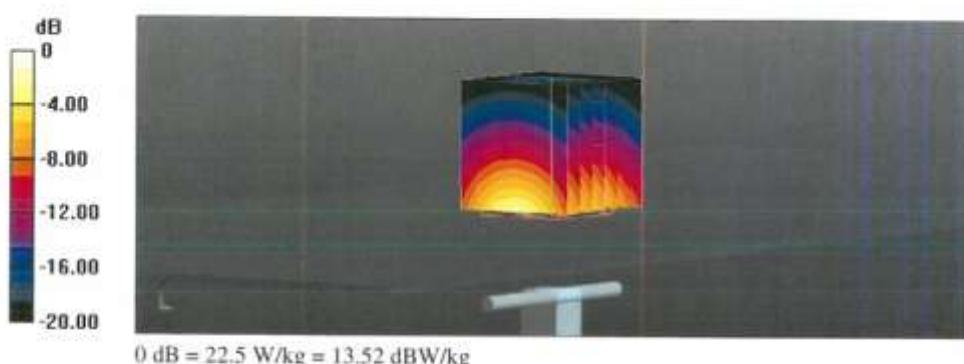
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

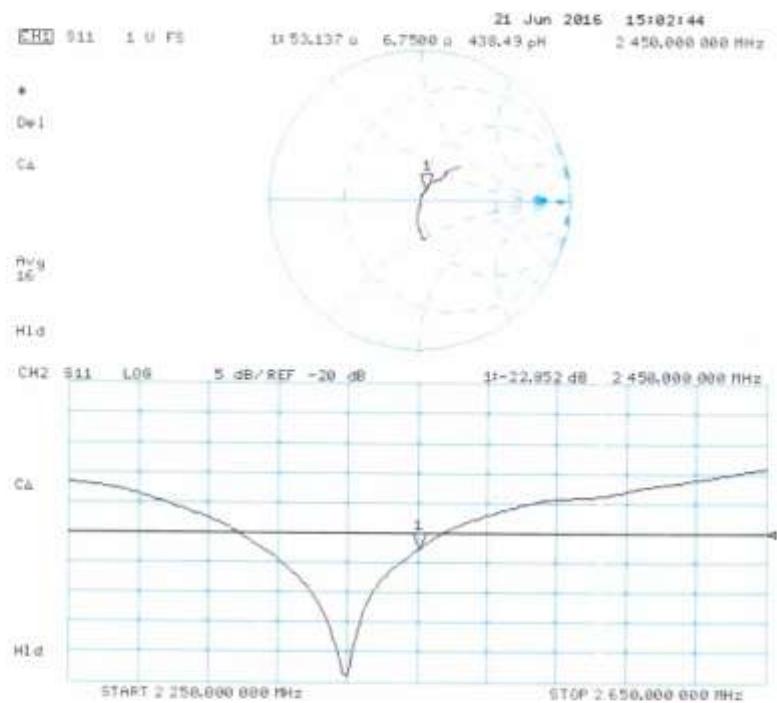
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.72, 7.72, 7.72); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue 2/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.5 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.33 W/kg

Maximum value of SAR (measured) = 22.5 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 21.06.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:869

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³

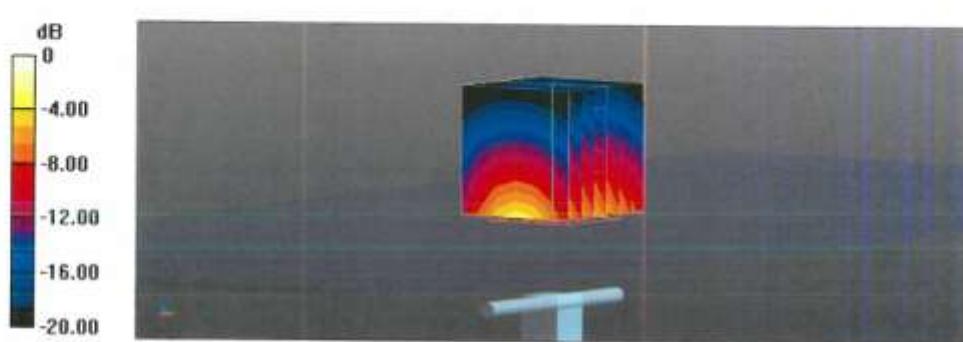
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

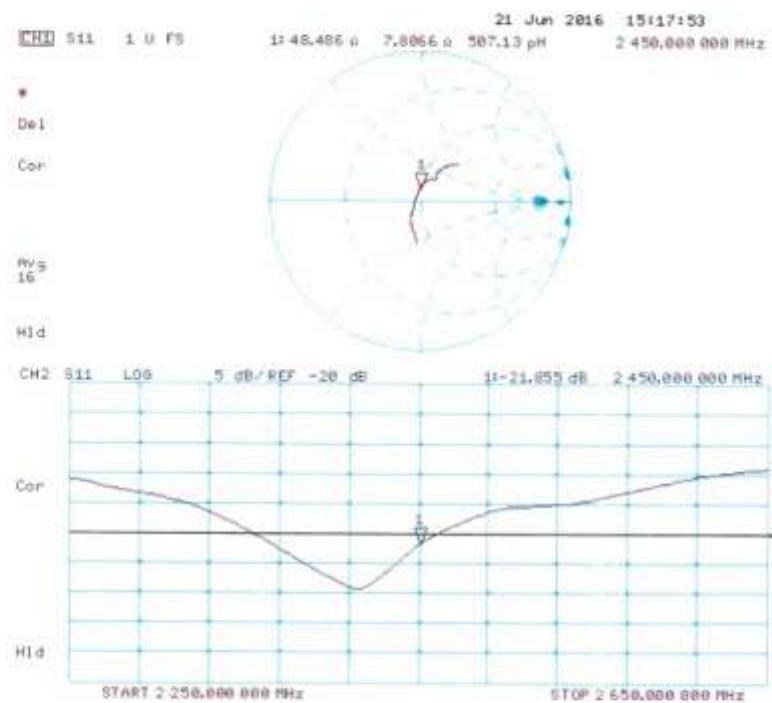
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.7 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.04 W/kg

Maximum value of SAR (measured) = 21.6 W/kg

Impedance Measurement Plot for Body TSL

Annex B.4 D2600V2 Calibration Certificate

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctts@chinatl.com <http://www.chinatl.com>

中国认可
国际互认
校准
CALIBRATION
CNAS L0570

Client

Tejet

Certificate No: Z16-97051

CALIBRATION CERTIFICATE

Object

D2600V2 - SN: 1059

Calibration Procedure(s)

FD-Z11-2-003-01

Calibration Procedures for dipole validation kits

Calibration date:

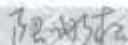
April 14, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power sensor NRP-Z91	101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Reference Probe EX3DV4	SN 3617	26-Aug-15(SPEAG, No.EX3-3617_Aug15)	Aug-16
DAE4	SN 1331	21-Jan-16(SPEAG, No.DAE4-1331_Jan16)	Jan-17
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-16 (CTTL, No.J16X00893)	Jan-17
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan-17


Calibrated by:

Name	Function	Signature
Zhao Jing	SAR Test Engineer	

Reviewed by:

Name	Function	Signature
Qi Dianyuan	SAR Project Leader	

Approved by:

Name	Function	Signature
Lu Bingsong	Deputy Director of the laboratory	

Issued: April 18, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z16-97051

Page 1 of 8

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB885664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctth@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 5 %	1.94 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	—	—

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	56.4 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.28 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.2 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	2.18 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	—	—

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.5 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	57.6 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.52 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	26.0 mW /g ± 20.4 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cnli@chinat1.com Http://www.chinat1.cn

Appendix

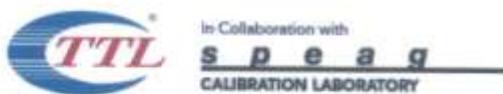
Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8Ω- 5.47jΩ
Return Loss	-25.2dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9Ω- 3.75jΩ
Return Loss	-27.2dB

General Antenna Parameters and Design


Electrical Delay (one direction)	1.256 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctll@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 04.14.2016

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1059

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: $\epsilon' = 2600$ MHz; $\sigma = 1.938$ S/m; $\epsilon_r = 39.38$; $\rho = 1000$ kg/m³

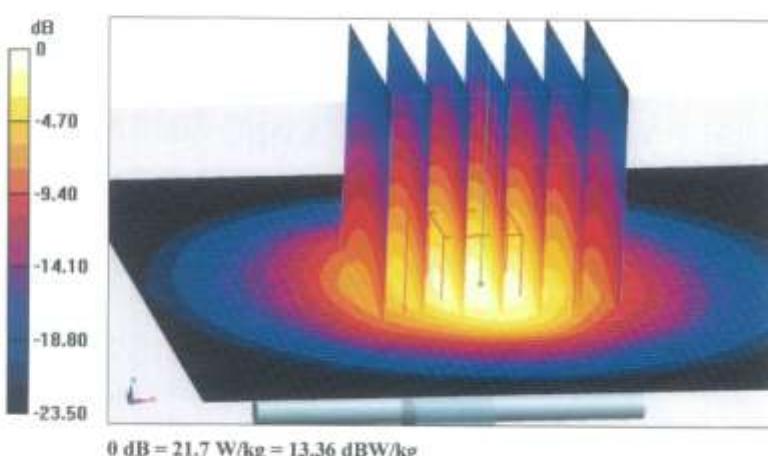
Phantom section: Center Section

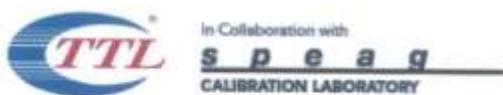
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3617; ConvF(7.21, 7.21, 7.21); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2016-01-21
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

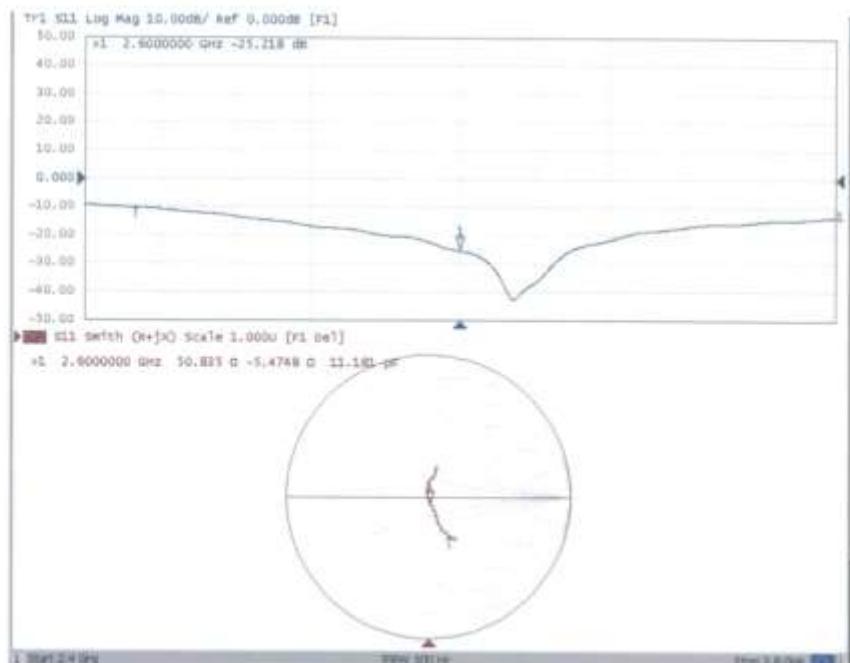
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

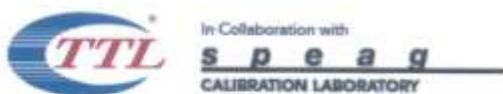

dy=5mm, dz=5mm


Reference Value = 104.7 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 29.9 W/kg

SAR(1 g) = 14 W/kg; SAR(10 g) = 6.28 W/kg


Maximum value of SAR (measured) = 21.7 W/kg



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctli@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 04.14.2016

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1059

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1

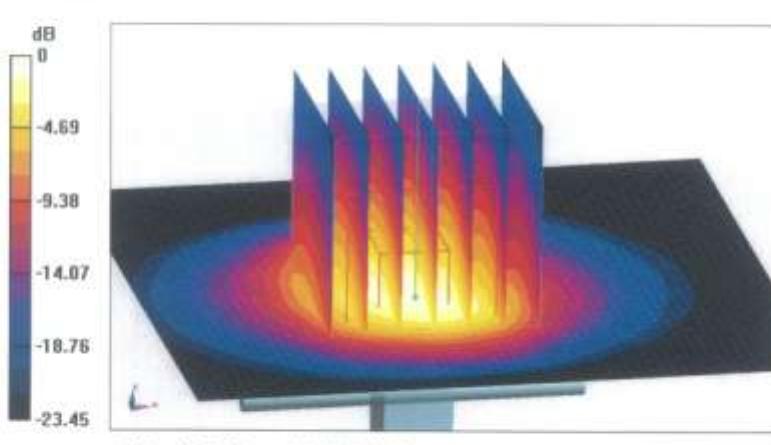
Medium parameters used: $f = 2600$ MHz; $\sigma = 2.184$ S/m; $\epsilon_r = 52.07$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

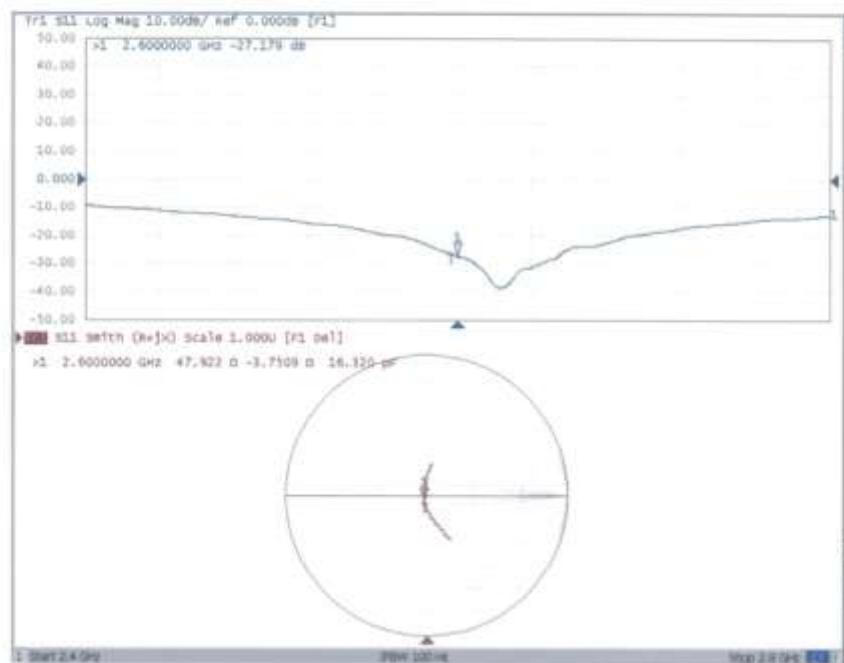
- Probe: EX3DV4 - SN3617; ConvF(7.2, 7.2, 7.2); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2016-01-21
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.85 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 30.7 W/kg

SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.52 W/kg


Maximum value of SAR (measured) = 22.2 W/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-3504
E-mail: ctll@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

ANNEX C: Test Layout

Picture C.1: Specific Absorption Rate Test Layout

Picture C.2: Liquid depth in the flat Phantom (2450 MHz) (15.1cm deep)

Picture C.3: Liquid depth in the flat Phantom (2600 MHz) (15.2cm deep)

-----END OF REPORT-----