

Report No.: 31551684.004 Harris RF-7800W.doc

Page 1 of 78

Electromagnetic Compatibility Test Report

Prepared in accordance with

FCC Part 15 and ANSI C63.10: 2013

On

BROADBAND ETHERNET RADIO

RF-7800W

Harris RF Communications 221 Jefferson Ridge Parkway Lynchburg, VA 24501

Prepared by:

TUV Rheinland of North America, Inc.

Report No.: 31551684.004 Harris RF-7800W.doc

Page 2 of 78

	Client:	Harris RF Communications 221 Jefferson Ridge Parkway Lynchburg, VA 24501			William Pertner 434-455-9295 wpertner@harris.com			
Identification	n: 1	BROADBAND ETHERNET	RADIO	Se	rial No.:	A00451		
Test iten	n:	RF-7800W		Do	ate tested:	7/2/2015	5	
Testing location	n:	TUV Rheinland of North Amo 710 Resende Road Building 1 Webster, NY 14580 U.S.A.			Tel: (5	85) 645-012	25	
Test specification		Emissions: FCC Part 15, Subpart FCC Parts 15.107(c), FCC Parts 15.407, 15 FCC Part 15.407, FCC Part 15.209(a)	.107(c), 15.207(c) .407, 15.205, 15.209, 15.215(c) 407, 407, 407, 407,					
Test Resu	ılt	The above product was foun	d to be C	Compli	ant to the	above test s	standard(s)	
tested by: Randal	ll E Mas	sline	revi	ewed b	y: Cecil C	Sittens		
Fail, No	ss, Complian	t, Complies = passed , Does Not Comply = failed	<u>16 D</u>	None		Signature		
	lac	MRA RIA		lustry nada	,	VCCI	BSMI	
US5253	Т	esting Cert.# 3331.08	482	32B-1 A-0203 SL2-IN-E-050F				

Report No.: 31551684.004 Harris RF-7800W.doc Page 3 of 78

Revisions

Date mm/dd/yy	Name	Page Number of Change	Describe Change

Report No.: 31551684.004 Harris RF-7800W.doc

Page 4 of 78

TABLE OF CONTENTS

1 (GENERAL INFORMATION	6
1.1 1.2 1.3	Purpose	6
2 I	LABORATORY INFORMATION	8
2.1 2.2 2.3	2 MEASUREMENT UNCERTAINTY EMISSIONS	g
3 I	PRODUCT INFORMATION	12
3.1 3.2		
4 1	RADIATED EMISSIONS	13
4.1 4.2 Co	2 STORES EMBERGING COLUMN THE START TOO 10.107 MINIMARKED	21
5 A	ANTENNA PORT CONDUCTED EMISSIONS	34
5.1 5.2 5.3 5.4	PEAK POWER SPECTRAL DENSITY	
6 I	EMISSIONS IN RECEIVE MODE	66
6.1	1 RADIATED EMISSIONS	66
7 I	RF EXPOSURE	71
7.1	EXPOSURE REQUIREMENTS – FCC PARTS 2.1091, 15.247(d)	71
APPI	ENDIX A	78
тьсл	T DI AN	76

Manufacturer's statement - attestation

The manufacturer; Harris Corporation, as the responsible party for the equipment tested, hereby affirms:

- a) That they have reviewed and concurs that the test shown in this report are reflective of the operational characteristics of the device for which certification is sought;
- b) That the device in this test report will be representative of production units;
- c) That all changes (in hardware and software/firmware) to the subject device will be reviewed.
- d) That any changes impacting the attributes, functionality or operational characteristics documented in this report will be communicated to the body responsible for approving (certifying) the subject equipment.

William H. Pertner	William H Pecter
Printed name of official	Signature of official
221 Jefferson Ridge Parkway Lynchburg, VA 24501	07/22/2015
Address	Date
434-455-9295	william.pertner@harris.com
Telephone number	Email address of official

Report No.: 31551684.004 Harris RF-7800W.doc

Page 6 of 78

1 General Information

1.1 Scope

This report is intended to document the status of conformance with the requirements of the FCC Part15C based on the results of testing performed on 7/2/2015 on the BROADBAND ETHERNET RADIO, RF-7800W No. RF-7800W, manufactured by Harris RF Communications This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this RF-7800W are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT (Equipment Under Test) in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

TUVRheinland FCCID: AQZ-RF-7800W-G2

Report No.: 31551684.004 Harris RF-7800W.doc

Page 7 of 78

1.	3 Sum	ma	nry of Test Results						
	Harris RF Communications			Tel	434-455-9295	5	Contact	William Pert	ner
Applicant	Lynchburg		idge Parkway 24501	Fax	434-455-685	1	e-mail	wpertner@ha	arris.com
Broadband Radio	Ethernet		OADBAND ETHERNET DIO	RF-78	00W:	RF-7	7800W	I	
Serial Num	ber	A00	0451	Test V	oltage/Freq.	Pow	er over Ethei	met	
Test Date C	ompleted:	7/2	/2015	Test E	ngineer	Ran	dall E Masl	ine	
Sta	ndards		Broadband Ethernet Radio		Severity Leve	l or L	imit	Criteria	Test Result
FCC Part 15 Standard	, Subpart E		Radio Frequency Devices- Subpart C: Intentional Radiators	See cal	led out parts be	elow		See Below	Complies
FCC Part 15	.407		Operation within the band 5725 to 5850 MHz	See cal	led out parts b	elow		Below Limit	Complies
FCC Parts 1 15.209, 15.2		5,	Out-of-Band Spurious and Harmonic Emissions (EUT in Transmit Mode)	Below	Below the applicable limits		Below Limit	Complies	
FCC Parts 1 15.207(c)	5.107(c),		Conducted Emissions on AC Mains	n EUT is operated by POE		Below Limit	Complies		
FCC Part 15	.407		Band Edge Radiated Emission	Per req	uirements of th	e stan	dard	Below Limit	Complies
FCC Part 15	.407		Conducted Output Power	Shall n	ot exceed 1.0 V	Vatts		Below Limit	Complies
FCC Part 15	.407		Occupied Bandwidth	6 dB ≥ 99% B	500 kHz W			Within Limit	Complies
FCC Part 15	.407		Peak Power Spectrial Denesity	≤ 8 dB	m in any 3 kHz	Z		Below Limit	Complies
FCC Part 15	3.31(e)		Voltage Requirements	Output Voltag	at 0.85% and 1 e	.15%	of Nominal	Below Limit	Complies
FCC Parts 15.209(a)			Radiated Emissions while EUT in Receive Mode	Below limit of section 15.209(a) Class B		Below Limit	Complies		
FCC Parts 15.247(i) RF		RF Exposure	SAR or MPE Requirements		Below Limit	Complies (without testing)			
FCC Parts 1	5.203		Antenna Requirements	Professionally Installed Device				Complies	

Precisely Right.

Report No.: 31551684.004 Harris RF-7800W.doc

Page 8 of 78

FCCID: AQZ-RF-7800W-G2

2 Laboratory Information

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America located at, 710 Resende Road, Building 199, Webster, NY 14580 is accredited by the commission for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Registration No 90575). The laboratory scope of accreditation includes: Title 47 CFR Part 15, and 18. The accreditation is updated every 3 years.

2.1.2 ILAC/A2LA

This is a program which is administered under the auspices of A2LA. The laboratory has been assessed and accredited in accordance with ISO Standard 17025:2005 (Certificate Number: 3331.08). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 VCCI

VCCI Accredited test lab. Registration numbers A-0203

2.1.4 Industry Canada

(Registration No.: 482B-1) The 10M SEMI-ANECHOIC CHAMBER has been accepted by Industry Canada to perform testing to 3 and to 10m, based on the test procedures described in ANSI C63.4-2009.

2.1.5 **BSMI**

Registration No.: SL2-IN-E-050R. The BSMI accreditation was obtained by NIST MRA with the BSMI.

2.1.6 Korea

Recognized by Radio Research Agency as an accredited Conformity Assessment Body (CAB) under the terms of Phase I of the APEC TEL.

Report No.: 31551684.004 Harris RF-7800W.doc

Page 9 of 78

2.1.7 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength
$$(dB\mu V/m) = RAW - AMP + CBL + ACF$$

Where: $RAW = Measured level before correction (dB<math>\mu$ V)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu V/m = 10^{\frac{dB\mu V/m}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBµV/m)

$$25 dB\mu V/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dB\mu V/m$$

2.2 Measurement Uncertainty Emissions

Per CISPR 16-4-2	Ulab	Ucispr
Radiated Disturbance @ 10m	1	
30 MHz – 1,000 MHz	4.57 dB	5.2 dB
Radiated Disturbance @ 3m		
1.0 GHz – 6.0 GHz	5.08 dB	5.2 dB
6.0 GHz – 18.0 GHz	5.16 dB	5.5 dB
Conducted Disturbance @ M	ains Terminals	
150 kHz – 30 MHz	2.62 dB	3.6 dB
Disturbance Power		
30 MHz – 300 MHz	3.88 dB	4.5 dB

Report No.: 31551684.004 Harris RF-7800W.doc

Page 10 of 78

Measurement Uncertainty Immunity

	1
The estimated combined standard uncertainty for ESD immunity measurements is $\pm 2.98\%$.	Per EN61000-4-2
The estimated combined standard uncertainty for radiated immunity measurements is $\pm 2.0 dB$.	Per EN61000-4-3
The estimated combined standard uncertainty for EFT fast transient immunity measurements is \pm 5.0%.	Per EN61000-4-6
The estimated combined standard uncertainty for surge immunity measurements is \pm 5.0%.	Per EN61000-4-5
The estimated combined standard uncertainty for conducted immunity measurements is $\pm 2.0 dB$.	Per EN61000-4-6
The estimated combined standard uncertainty for power frequency magnetic field immunity measurements is \pm 2.57%.	Per CISPR16-4-2 Method
The estimated combined standard uncertainty for voltage variation and interruption measurements is \pm 2.48%.	Per CISPR16-4-2 Method
The estimated combined standard uncertainty for radiated emissions measurements is $\pm4.57~dB$	Per CISPR16-4-2 Method
The estimated combined standard uncertainty for radiated emissions measurements from 1 GHz to 6 GHz is \pm 4.57dB	Per CISPR16-4-2 Method
The estimated combined standard uncertainty for radiated emissions measurements from 6 GHz to 18 GHz is $\pm 4.57 \text{dB}$	Per CISPR16-4-2 Method
The estimated combined standard uncertainty for conducted emissions measurements is \pm 2.62dB.	Per CISPR16-4-2 Method
The estimated combined standard uncertainty for harmonic current and flicker measurements is \pm 11.15%.	Per CISPR16-4-2 Method

Expanded measurement uncertainty numbers are shown in the tables above. Compliance criteria are not based on measurement uncertainty.

Report No.: 31551684.004 Harris RF-7800W.doc

Page 11 of 78

2.3 Measurement Equipment Used

Equipment	Manufacturer	Model #	Ref.	Serial #	Last Cal dd/mm/yy	Next Cal dd/mm/yy	Test						
	Radiated Emissions												
Analyzer w RF Filter Section 85460A	HP	8546A		3325A00134	12-Aug-14	12-Aug-15	RE						
Multimeter	Fluke	83	C437	48162892	12-Aug-14	12-Aug-15	RE						
BiLog	Chase	CBL6111	C017	1169	22 Aug 13	22 Aug 15	RE						
Receiver (20Hz-40GHz)	Rohde & Schwarz	ESI(B) 40		100274	15-Aug-14	15-Aug-15	RE						
Horn(1-18 GHz)	ETS	3117		040361	1-16-14	1-16-16	RE						
Horn(18-26.5 GHz)	ETS	3160-09		1275	1-16-14	1-16-16	RE						
Horn(26.5-40 GHz)	ETS	3160-10		1180	1-16-14	1-16-16	RE						
		Conducted	d Emissic	ons									
LISN	Schwarzbeck	8126	C109	189	12-Aug-14	12-Aug-15	CE						
Analyzer w RF Filter Section 85460A	HP	8546A		3325A00134	12-Aug-14	12-Aug-15	CE						
Multimeter	Fluke	87	C445	59890224	12-Aug-14	12-Aug-15	CE						
	General Laboratory Equipment												
Multimeter	Fluke	87	C405	49050672	12-Aug-14	12-Aug-15							
Multimeter	Fluke	8062A	C452	4715199	12-Aug-14	12-Aug-15							
Pressure/Temperature/RH	Extech	SD700	C480	Q668876	12-Aug-14	12-Aug-15							

Report No.: 31551684.004 Harris RF-7800W.doc Page 12 of 78

3 Product Information

3.1 Product Broadband Ethernet Radio

Broadband Ethernet Radio uses the frequency band listed below with the associated bandwidths.

Bandwidth	Low	Middle	High
(MHz)	(MHz)	(MHz)	(MHz)
40	5745	5787.5	5830
20	5735	5787.5	5840
10	5730	5787.5	5845
5	5727.5	5787.5	5847.5

3.2 Equipment Modifications

No modifications were needed to bring product into compliance.

Report No.: 31551684.004 Harris RF-7800W.doc

Page 13 of 78

4 Radiated Emissions

4.1 Spurious Emissions Outside the band - FCC 15.407

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power, based on either RF conducted or radiated measurements. Conducted antenna port measurements are provided below to show that the EUT meets these requirements at the band edges.

4.1.1 Over View of Test

Results	Complies (as tested per this report)					Date	6/30/2015			
Standard	FCC Parts 15.205, 1	FCC Parts 15.205, 15.209, 15.215(c), 15.407								
Product	RF-7800W				Serial#	A004	51			
Test Set-up		ested in a 10m semi-anechoic chamber placed on a 1.0m x 1.5m non-conductive table 0cm above the ground plane on a turn-table, at 3 m								
EUT Powered By	Power over Ethernet	Temp	76 °F	H	umidity	36%	Pressure	1007 mbar		
Perf. Criteria	(Below Limit)		Perf. Verification			Read	Readings Under Limit			
Mod. to EUT	None		Test Pe	rfoi	rmed By	Rand	Randall E Masline			

4.1.2 Test Procedure

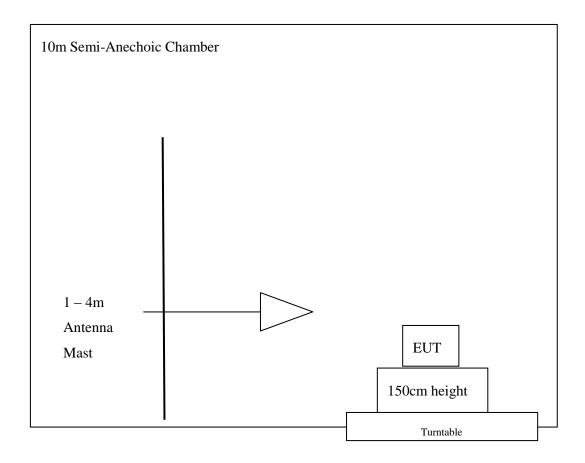
Testing was performed in accordance with 47 CFR Part 15, ANSI C63.10:2009, RSS-GEN Issue 2. These test methods are listed under the laboratory's A2LA Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

4.1.3 Deviations

There were no deviations from the test methodology listed in the test plan for the radiated emission test.

4.1.4 Final Test

All final radiated spurious emissions measurements were below (in compliance) the limits.

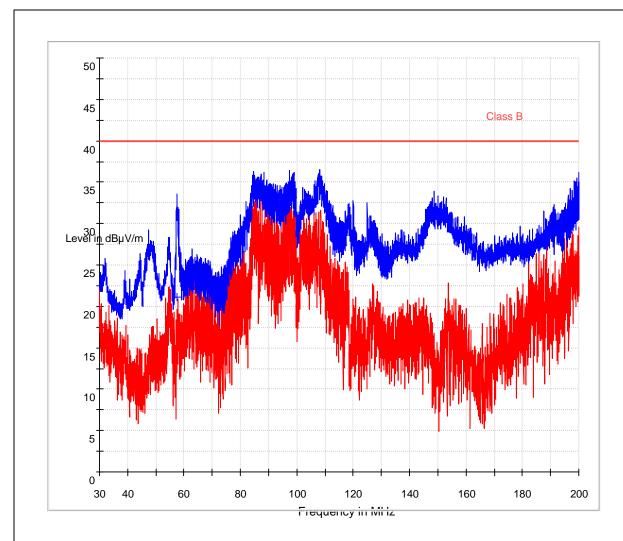

The worst –case emissions are shown below. All other emissions are on file at TUV Rheinland.

Report No.: 31551684.004 Harris RF-7800W.doc

Page 14 of 78

4.1.1 Test setup

4.1.1 Final Test

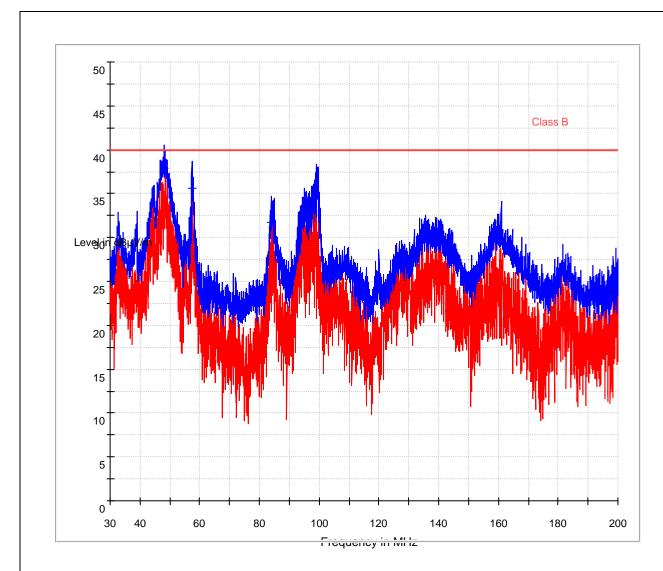


Report No.: 31551684.004 Harris RF-7800W.doc

Page 15 of 78

4.1.1.1 Final Radiated Emissions

57.560000 21.1 100.0 120.000 100.0 H -2.0 -12.1 97.400000 34.3 100.0 120.000 100.0 H -2.0 -7.4	Frequency MHz	QuasiPeak dBµV/ m	Meas. Time ms	Bandwidth kHz	Height cm	Polarization	Azimuth deg	Corr. dB	Comment
97.400000 34.3 100.0 120.000 100.0 H -2.0 -7.4	57.560000	21.1	100.0	120.000	100.0	Н	-2.0	-12.1	
	97.400000	34.3	100.0	120.000	100.0	Н	-2.0	-7.4	

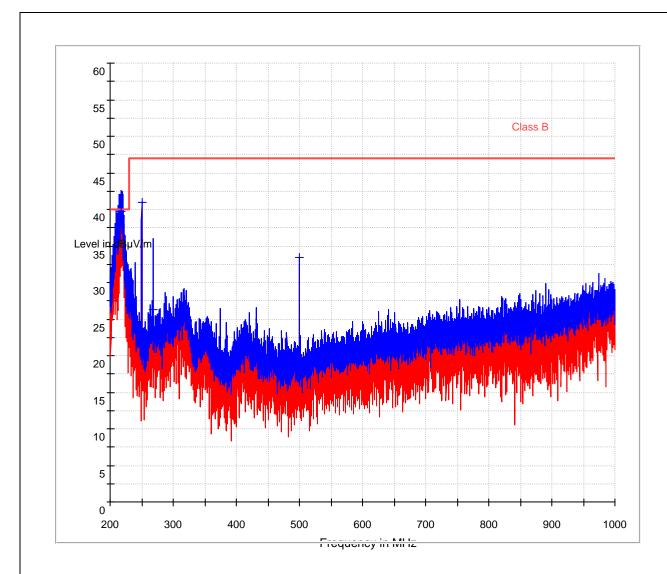

Report No.: 31551684.004 Harris RF-7800W.doc

Page 16 of 78

NOTES:

Radiated Emissions

Frequency MHz	QuasiPeak dBµV/ m	Meas. Time ms	Bandwidth kHz	Height cm	Polarization	Azimuth deg	Corr. dB	Comment
48.120000	37.9	100.0	120.000	100.0	V	43.0	-8.5	
57.520000	35.6	100.0	120.000	100.0	V	43.0	-12.1	
84.080000	31.8	100.0	120.000	100.0	V	43.0	-9.8	



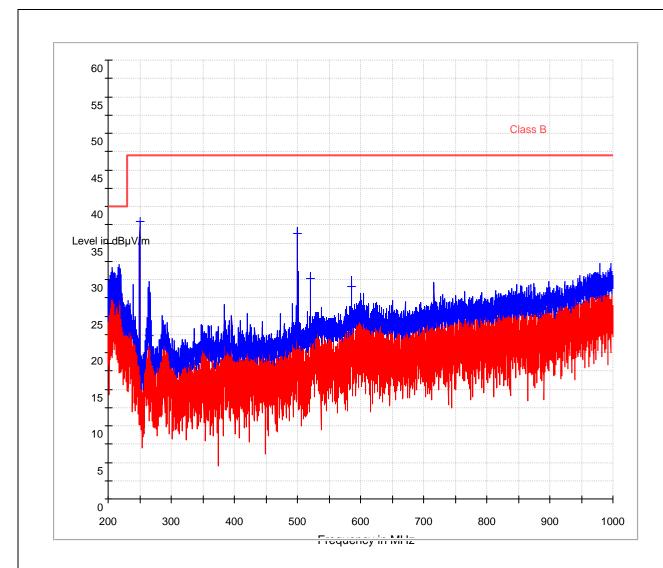
Report No.: 31551684.004 Harris RF-7800W.doc

Page 17 of 78

NOTES:

Radiated Emissions Prescan Horizontal

Frequency MHz	QuasiPeak dBµV/ m	Meas. Time ms	Bandwidth kHz	Height cm	Polarization	Azimuth deg	Corr. dB	Comment
217.920000	39.8	100.0	120.000	100.0	Н	43.0	-4.9	
250.000000	41.0	100.0	120.000	100.0	Н	43.0	-2.0	
268.240000	26.3	100.0	120.000	100.0	Н	43.0	-1.3	
500.000000	33.4	100.0	120.000	100.0	Н	43.0	5.0	


Report No.: 31551684.004 Harris RF-7800W.doc

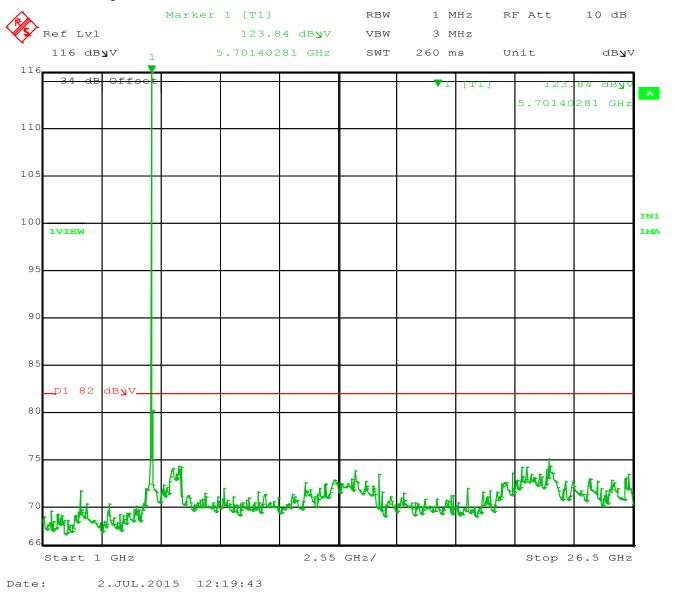
Page 18 of 78

NOTES:

Radiated Emissions Prescan

Vertical

Frequency MHz	QuasiPeak dBµV/ m	Meas. Time ms	Bandwidth kHz	Height cm	Polarization	Azimuth deg	Corr. dB	Comment
250.000000	38.0	100.0	120.000	100.0	V	43.0	-2.0	
264.480000	22.3	100.0	120.000	100.0	V	43.0	-1.4	
500.000000	36.4	100.0	120.000	100.0	V	43.0	5.0	
521.120000	30.1	100.0	120.000	100.0	V	43.0	5.9	
586.320000	29.1	100.0	120.000	100.0	V	43.0	7.8	



Report No.: 31551684.004 Harris RF-7800W.doc

Page 19 of 78

4.1.2 Emissions Outside the Frequency Band

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power, based on either RF conducted or radiated measurements. Conducted antenna port measurements are provided below to show that the EUT meets these requirements at the band edges.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government.

TUV Rheinland of North America, Inc., Building 199, 710 Resende Road, Webster NY 14580. Tel: 585-645-0125

Report No.:	3155168	31551684.004 Harris RF-7800W.doc							
	Marker 1 [T1]		RBW	1 M	IHz	RF Att	0 dB		
Ref Lvl	81.8	30 dB y V	VBW	3 M	IHz				
131 dB y V	39.891783	357 GHz	SWT	205 m	ıs	Unit	dB y 7		
1 34 dB Offset		1		▼1	[T1]	81	.80 dB y V		
				• ±	[[+ +]		8357 GHz		
0						39.0917	0337 GHZ		
0									
0									
1VIEW									
0									
							1		
_D1 82 dB y V						to determine			
styley vie justilities, i	in the second second	the report	Marie A Victoria	bluer the	det white	AND TOP OF THE SECOND	Endert !		
	The state of the s								
0									
0									
0									
1					l	1			

NOTE: Marker 1 is noise floor emissions at 1MHz/3MHz Bandwidths

2.JUL.2015 12:22:06

Date:

Report No.: 31551684.004 Harris RF-7800W.doc

Page 21 of 78

4.2 Band Edge

4.2.1 Test Over View

Results	Complies (as tested per this report)						Date 7/2/2015			
Standard	FCC Part 15.407	FCC Part 15.407								
Product	RF-7800W Serial#				A004	A00451				
Test Set-up	Radiated Measurem	Radiated Measurements using 30 dBi Gain Antenna								
EUT Powered By	Power over Ethernet	Temp	76° F	H	umidity	46%	Pressure	1002 mbar		
Perf. Criteria	(Below Limit)		Perf. Verif			Read	Readings Under Limit			
Mod. to EUT	None		Test Performed By			Ranc	Randall E Masline			

4.2.2 Test Procedure

Intentional radiators operating under the alternative provisions to the general emission limits must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

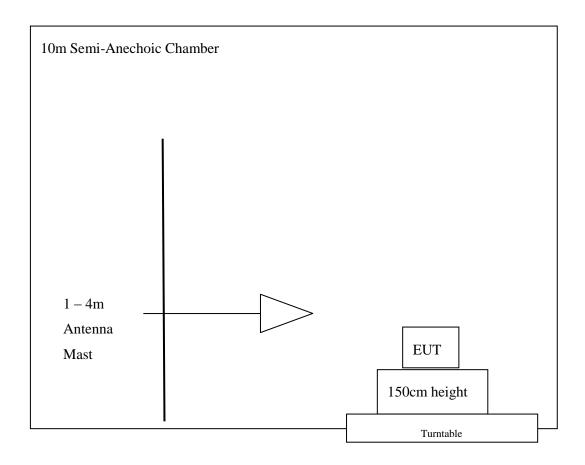
4.2.3 Deviations

There were no deviations from the test methodology listed in the test plan for the Radiated Immunity test.

4.2.4 Final Test

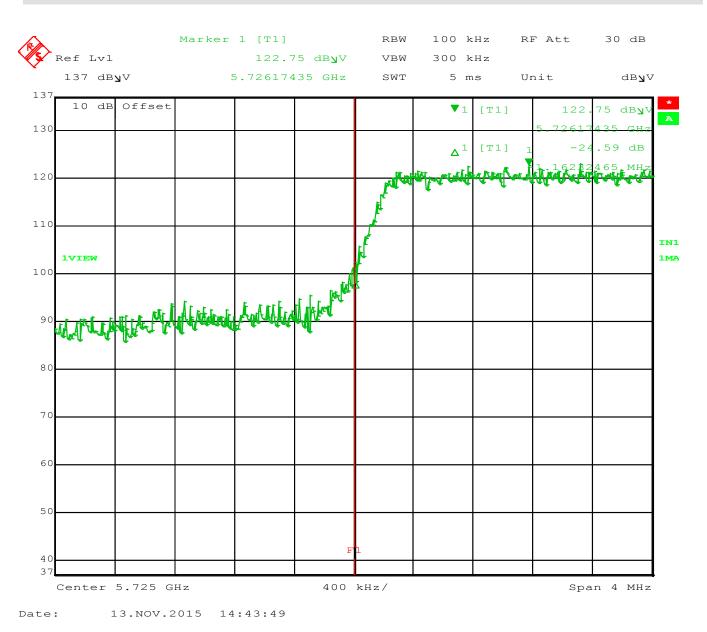
The EUT met the performance criteria requirement as specified in the standards.

Measurements were taken radiated using the highest gain 30 dBi Antenna.


NOTE: Radiated Band edge measurements were taken with 30 dBi gain antenna and calculations were performed to ensure that the lower band edge at 5725 MHz met the 72.8 dBuV limit at the band edge and also at 10 MHz away at 68.2 dBuV. Scans are on file at TUV Webster NY

Report No.: 31551684.004 Harris RF-7800W.doc

Page 22 of 78


4.2.5 Test setup

Report No.: 31551684.004 Harris RF-7800W.doc

Page 23 of 78

Notes: Measured using the Peak detector. Band Edge is at 5725 MHz (F1) 5727.5 MHz at 5 MHz BW

31551684.004 Harris RF-7800W.doc **Report No.:** Page 24 of 78 Delta 1 [T1] RBW 100 kHz 30 dB -34.20 dB Ref Lvl VBW 300 kHz 137 dB**y**V -9.84969940 MHz SWT 7.5 ms Unit dB**y**V Offset 10 dВ **V**1 dB**y** [T1] 119 09 130 [T1] .20 dB 940 MH2 9.84969 120 IN1 1VIEW 1MA Hariff V far for the of the said the republic with a fact of the little block and 90 70 60 5.0

Notes: Measured using the Peak detector. Band Edge is at 5725 MHz (F1) 5735 MHz using 10 MHz BW

3 MHz/

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government.

Date:

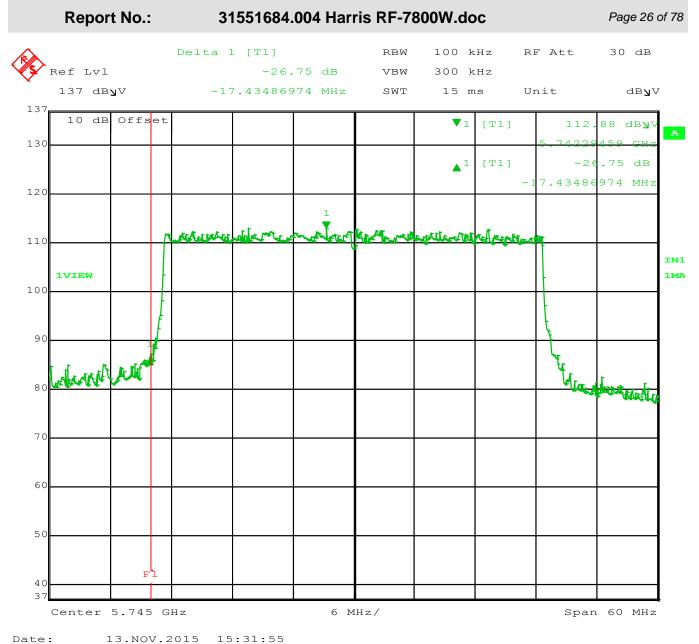
Center 5.735 GHz

13.NOV.2015 15:24:17

Span 30 MHz

31551684.004 Harris RF-7800W.doc **Report No.:** Page 25 of 78 Delta 1 [T1] RBW 100 kHz RF Att 30 dB -25.23 dB VBW 300 kHz Ref Lvl 137 dB**y**V -12.86573146 MHz 7.5 ms dB**y**V Unit 10 dВ Offset 47 dBy [T1] 115 130 dВ 2.86573 146 MH2 120 110 IN1 1VIEW 1_{MA} 100 90 Whitehall 60 5 (4 (Center 5.735 GHz 3 MHz/ Span 30 MHz

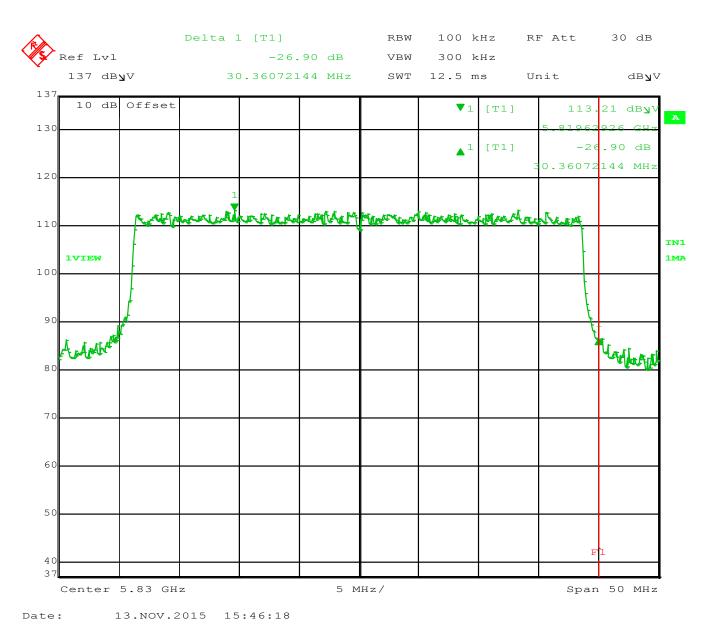
Notes: Measured using the Peak detector. Band Edge is at 5725 MHz (F1) 5735 MHz using 20 MHz BW


15:27:20

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government.

Date:

13.NOV.2015



Notes: Measured using the Peak detector. Band Edge is at 5725 MHz (F1) 5745 MHz using 40 MHz BW

Report No.: 31551684.004 Harris RF-7800W.doc

Page 27 of 78

Notes: Measured using the Peak detector. Band Edge is at 5850 MHz (F1) 5830 MHz using 40 MHz BW

31551684.004 Harris RF-7800W.doc **Report No.:** Page 28 of 78 Delta 1 [T1] RBW 100 kHz RF Att 30 dB Ref Lvl -25.39 dB VBW 300 kHz 137 dB**y**V 7.21442886 MHz SWT 12.5 ms Unit dB**y**V 10 dВ Offset [T1] 115 dB_N 130 [T1] 7.21442886 MHz 120 110 IN1 1MA 100 The office but well to sent the transfer by the sent of the sent o A WAR AREA PARTY 70 50 Center 5.848166333 GHz 5 MHz/ Span 50 MHz

Notes: Measured using the Peak detector. Band Edge is at 5850 MHz (F1) 5840 MHz using 20 MHz BW

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government.

Date:

13.NOV.2015

15:44:43

31551684.004 Harris RF-7800W.doc

Report No.:

FCCID: AQZ-RF-7800W-G2

Page 29 of 78

Delta 1 [T1] RBW 100 kHz RF Att 30 dB VBW 300 kHz Ref Lvl -22.37 dB 4.88476954 MHz SWT 7.5 ms 137 dByV Unit dB**y**V 10 Offset [T1] 116 99 dBy 130 [T1] 4.88476954 MHz 120 included the state 110 IN1 1VIEW 1 MA 100 palled and opening a second of the second of politically better the property of the second of the secon 60 5.0 4 (Center 5.848166333 GHz 3 MHz/ Span 30 MHz

Notes: Measured using the Peak detector. Band Edge is at 5850 MHz (F1) 5845 MHz using 10 MHz BW

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government.

13.NOV.2015

15:40:50

31551684.004 Harris RF-7800W.doc

Report No.:

FCCID: AQZ-RF-7800W-G2

Page 30 of 78

Delta 1 [T1] RBW 100 kHz RF Att 30 dB -21.30 dB VBW 300 kHz Ref Lvl 137 dB**y**V 2.43486974 MHz SWT 5 ms Unit dByV Offset 10 dВ [T1] 123 27 dBv 130 [T1] .30 2.43486974 MHz 120 110 IN1 1VIEW 1 MA A felicination of the first of Trick William bein William 100 60 50 Center 5.848166333 GHz 1.5 MHz/ Span 15 MHz

Notes: Measured using the Peak detector. Band Edge is at 5850 MHz (F1) 5847.5 MHz using 5 MHz BW

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government.

Date:

13.NOV.2015

15:37:48

Report No.: 31551684.004 Harris RF-7800W.doc

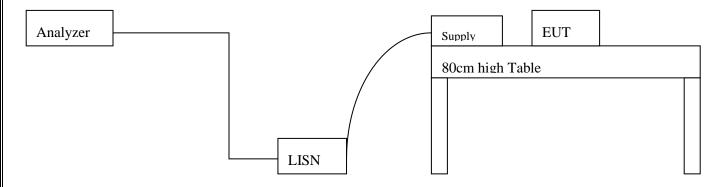
Page 31 of 78

Conducted Emissions on AC Mains

This test measures the electromagnet levels of spurious signals generated by the EUT on the AC power line that may affect the performance of other near by electronic equipment.

4.2.6 Over View of Test

Results	Complies (as tested per this report)						7/2/2015		
Standard	FCC Parts 15.107(c), 15.207(c)								
Product	RF-7800W Seria				rial#	A00451			
Test Set-up	Tested in shielded room. EUT placed on table, see test plans for details								
EUT Powered By	4.5VDC battery	Temp	23° C	Hun	nidity	25%	Pressure	1011 mbar	
Frequency Range	150 kHz – 30 MHz								
Perf. Criteria	(Below Limit)	Perf.	Perf. Verification			Readings Under Limit for L1 & Neutral			
Mod. to EUT	None	Test 1	Test Performed By			Randall E Masline			

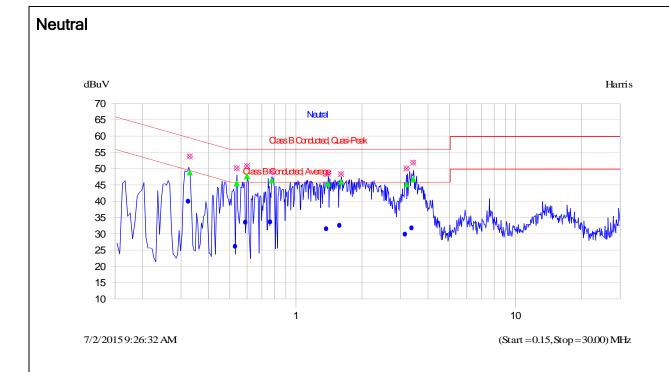

4.2.7 Test Procedure

This device is powered by POE (Power over Ethernet), therefore per FCC Part 15.207(c) this test is required. The EUT is powered via Ethernet using a 120VAC/60Hz power adapter

4.2.8 Final Test

Since the EUT is a powered via POE (Power over Ethernet). Product Complies.

4.2.9 Test setup



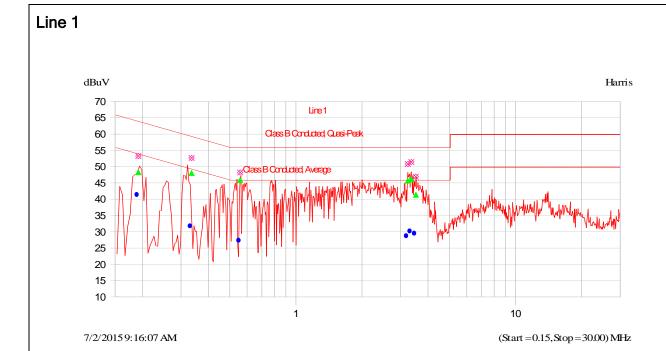
Report No.: 31551684.004 Harris RF-7800W.doc

Page 32 of 78

NOTES:

Conducted Emissions @ 120V/60Hz Neutral

Frequency	Peak	QP	Delta QP-QP Limit	Avg	Delta Avg-Avg Limit	Transducer Correction	Cable Correction
MHz	dBuV	dBuV	dB	dBuV	dB	dB	dB
0.326	53.9	48.9	-10.6	39.9	-9.7	0.0	10.3
0.533	50.3	45.6	-10.4	26.0	-20.0	0.0	10.3
0.593	50.9	47.7	-8.3	33.4	-12.6	0.0	10.3
0.769	49.2	46.5	-9.5	33.5	-12.5	0.0	10.3
1.387	48.6	45.5	-10.5	31.4	-14.6	0.0	10.4
1.592	48.4	46.1	-9.9	32.5	-13.5	0.1	10.4
3.166	50.2	45.3	-10.7	29.7	-16.3	0.1	10.6
3.393	52.0	46.9	-9.1	31.7	-14.3	0.1	10.6



Report No.: 31551684.004 Harris RF-7800W.doc

Page 33 of 78

NOTES:

Conducted Emissions @ 120V/60Hz

	Frequency	Peak	QP	Delta QP-QP Limit	Avg	Delta Avg-Avg Limit	Transducer Correction	Cable Correction
	MHz	dBuV	dBuV	dB	dBuV	dB	dB	dB
	0.190	53.4	48.4	-15.6	41.3	-12.7	0.0	10.2
	0.332	52.8	48.2	-11.2	31.7	-17.7	0.0	10.3
	0.552	48.3	46.0	-10.0	27.3	-18.7	0.0	10.3
	3.204	50.9	45.8	-10.2	28.7	-17.3	0.1	10.6
	3.325	51.6	46.3	-9.7	30.1	-15.9	0.1	10.6
	3.488	47.0	41.5	-14.5	29.4	-16.6	0.1	10.6
١								

Report No.: 31551684.004 Harris RF-7800W.doc

Page 34 of 78

5 Antenna Port Conducted Emissions

For conducted tests, the emissions were measured at the antenna port.

Testing was performed in accordance with 47 CFR Part 15, ANSI C63.10:2009, RSP-100 Issue 9. These test methods are listed under the laboratory's A2LA Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

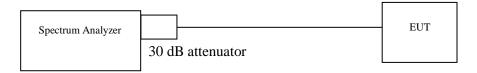
5.1 Conducted Output Power, FCC 15.407

5.1.1 For systems using digital modulation 5725–5850 in the MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

5.1.2 Test Over View

Results	Complies (as tested per this report)						,	6/27/2015		
Standard	FCC Part 15.407	FCC Part 15.407								
Product	RF-7800W Serial#				A004	A00451				
Test Set-up	Direct Measurement	Direct Measurement from antenna port								
EUT Powered By	Power over Ethernet	Temp	22° C	H	umidity	32%	Pres	sure	1010mbar	
Perf. Criteria	(Below Limit)	(Below Limit) Po			Perf. Verification		Readings Under Limit			
Mod. to EUT	None		Test Performed By			Randall E Masline				

5.1.3 Test Procedure


The peak output power was measured at the low, mid and high band frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The cable loss and the attenuator was measured and added in the reference level offset in the spectrum analyzer. The spectrum analyzer's resolution bandwidth was greater than the 20dB bandwidth of the modulated carrier and the video bandwidth was equal to the resolution bandwidth.

Report No.: 31551684.004 Harris RF-7800W.doc

Page 35 of 78

Test Setup:

5.1.4 Deviations

There were no deviations from the test methodology listed in the test plan for the Power output test.

5.1.5 Final Test

The EUT met the performance criteria requirement as specified in the test plan of this report and in the standards.

5.1.6 Antenna gain and power specifications from 15.407 (3)

This system uses fixed point to point antennas with higher gain antennas over 6 dBi and is professionally installed.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Report No.: 31551684.004 Harris RF-7800W.doc

Page 36 of 78

5.1.7 Average Power Output

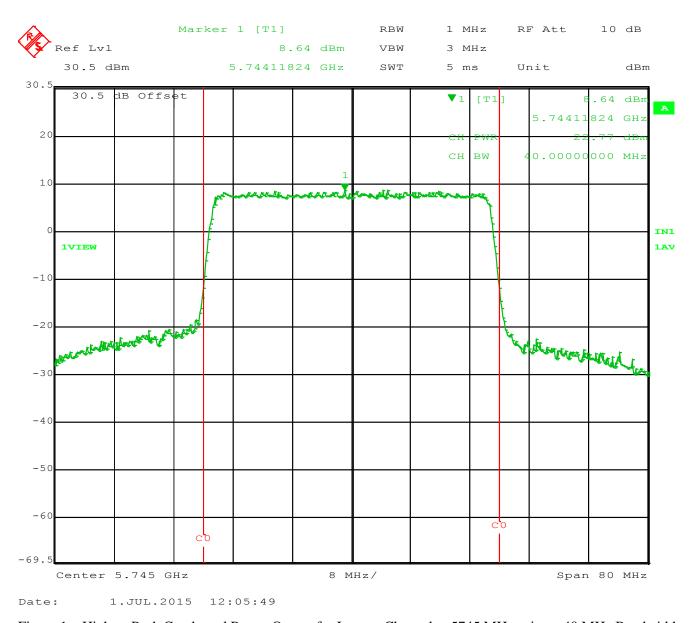


Figure 1 – Highest Peak Conducted Power Output for Lowest Channel at 5745 MHz using a 40 MHz Bandwidth.

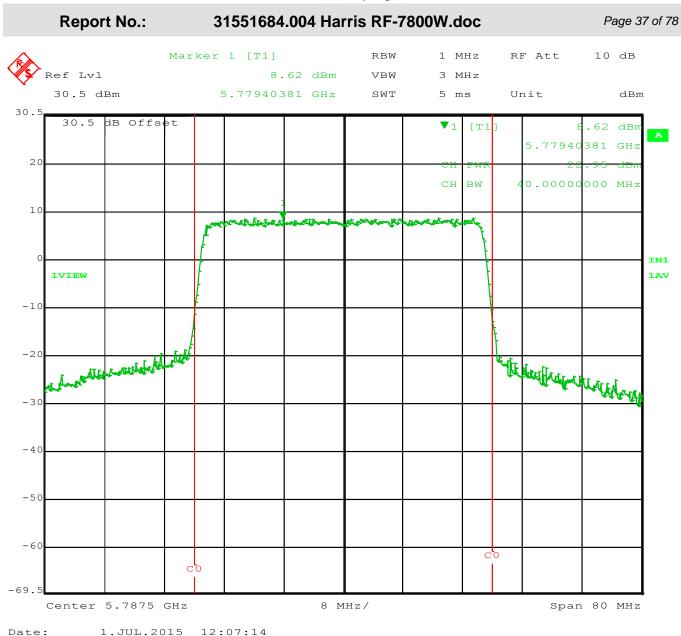


Figure 2 – Highest Peak Conducted Power Output for Mid Channel at 5787.5 MHz using a 40 MHz Bandwidth.

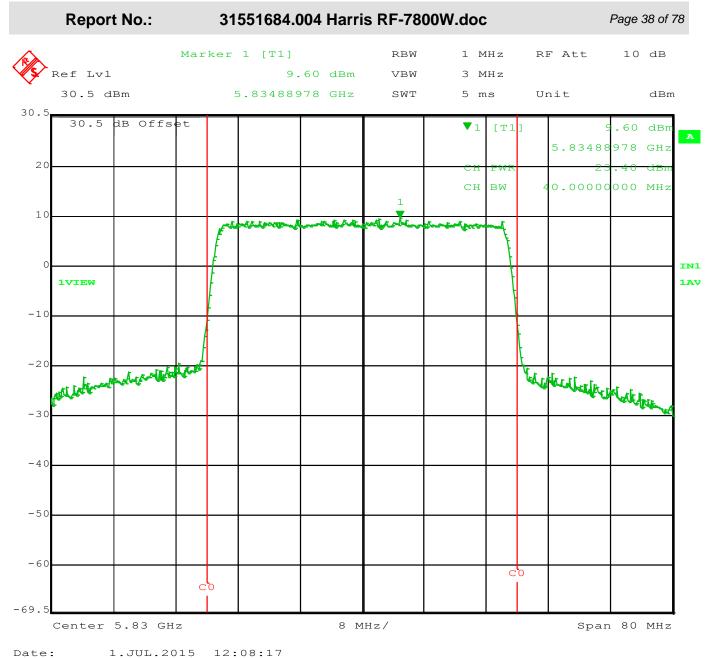


Figure 3 – Highest Peak Conducted Power Output for Highest Channel at 5830 MHz using a 40 MHz Bandwidth.

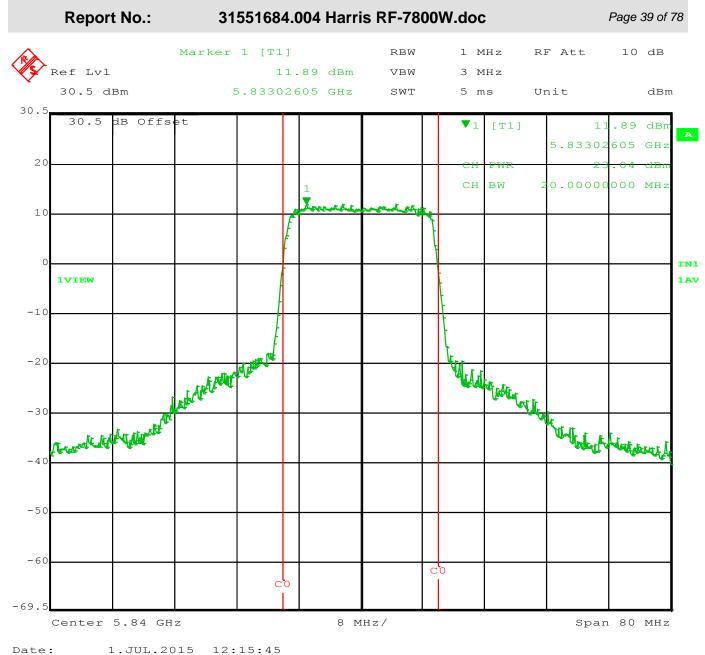


Figure 4 – Highest Peak Conducted Power Output for Highest Channel at 5840 MHz using a 20 MHz Bandwidth.

Report No.: 31551684.004 Harris RF-7800W.doc

Page 40 of 78

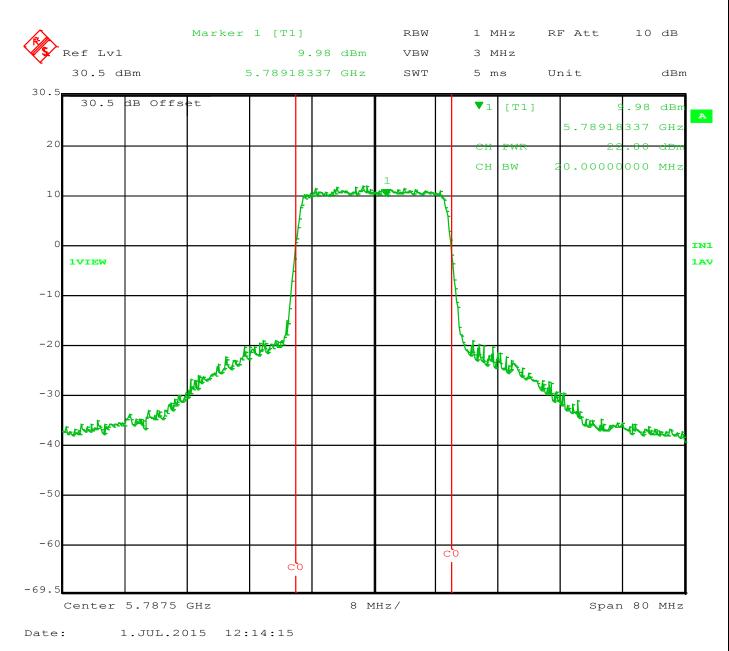


Figure 5 – Highest Peak Conducted Power Output for Mid Channel at 5787.5 MHz using a 20 MHz Bandwidth.

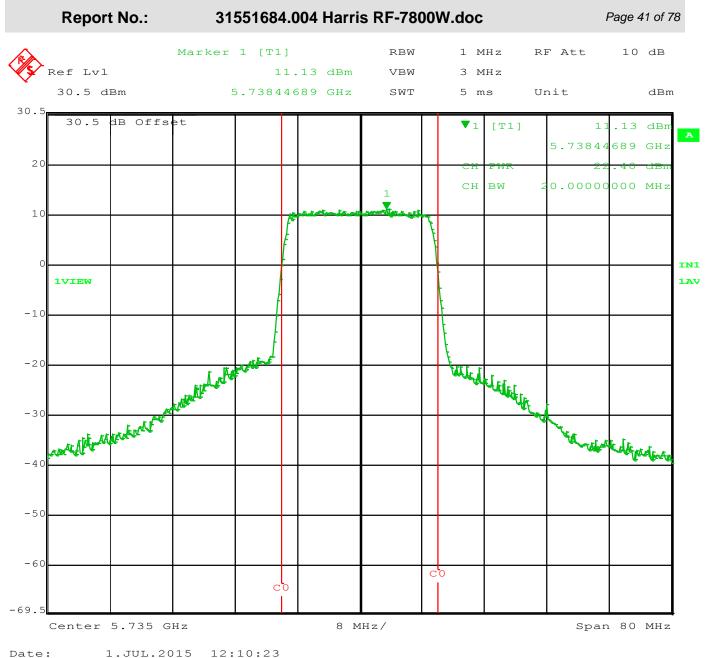


Figure 6 – Highest Peak Conducted Power Output for Lowest Channel at 5735 MHz using a 20 MHz Bandwidth.

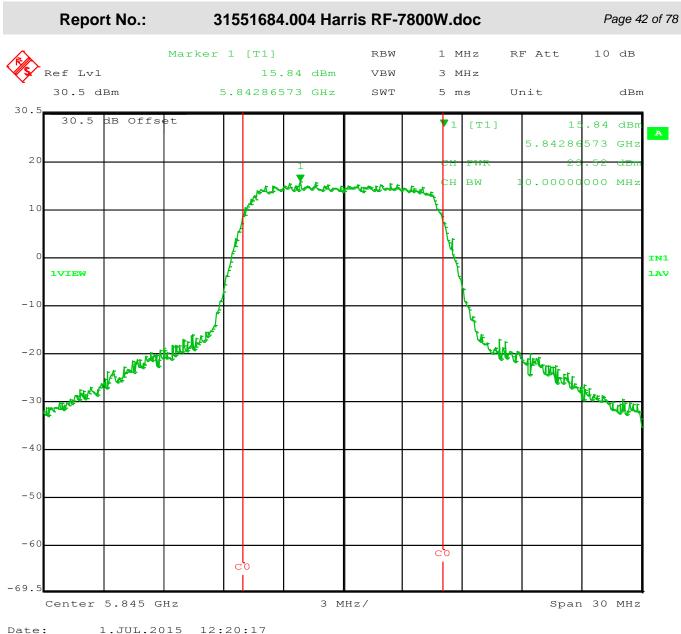


Figure 7 – Highest Peak Conducted Power Output for Highest Channel at 5845 MHz using a 10 MHz Bandwidth.

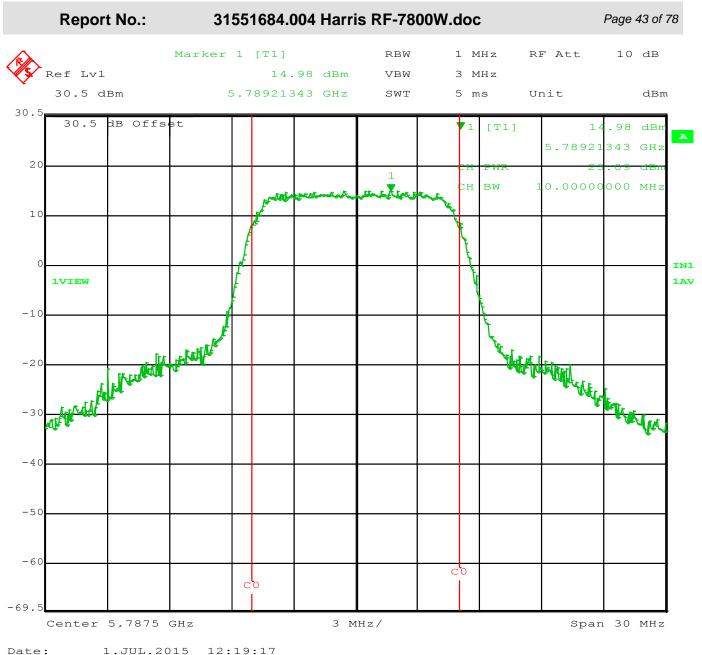


Figure 8 – Highest Peak Conducted Power Output for Highest Channel at 5787.5 MHz using a 10 MHz Bandwidth.

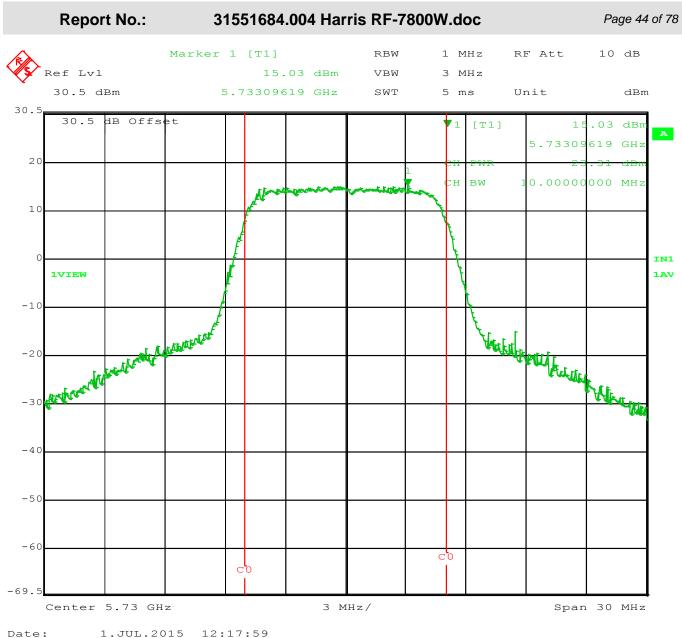


Figure 9 – Highest Peak Conducted Power Output for Lowest Channel at 5730 MHz using a 10 MHz Bandwidth.

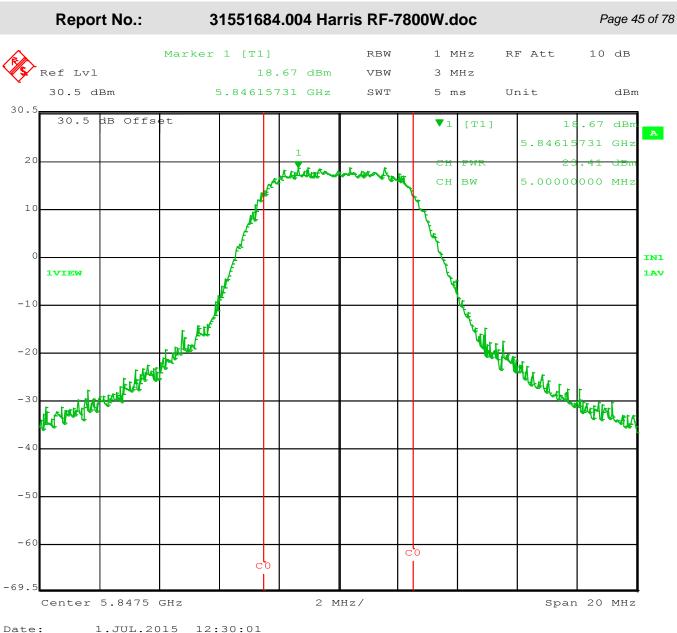


Figure 10 – Highest Peak Conducted Power Output for Highest Channel at 5847.5 MHz using a 5 MHz Bandwidth.

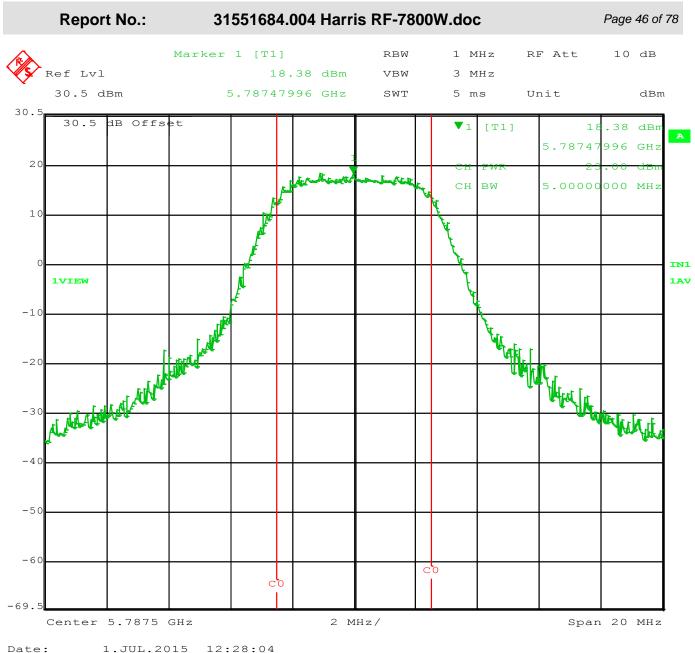


Figure 11 – Highest Peak Conducted Power Output for Highest Channel at 5787.5 MHz using a 5 MHz Bandwidth.

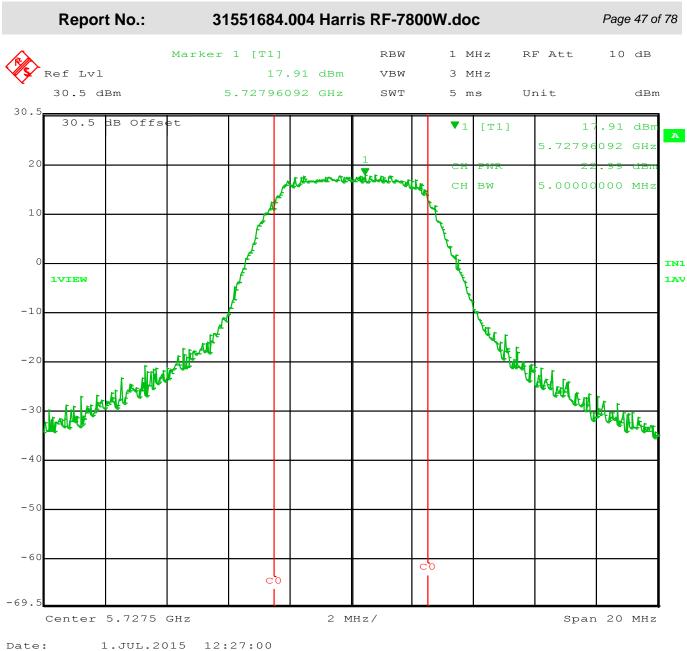


Figure 12 – Highest Peak Conducted Power Output for Lowest Channel at 5727.5 MHz using a 5 MHz Bandwidth.

Results

As tested, the EUT was found to be compliant to the requirements of the test standard.

Report No.: 31551684.004 Harris RF-7800W.doc

Page 48 of 78

5.2 Peak Power Spectral Density

5.2.1 Test Over View

Results	Complies (as tested	d per this	report)			Date		6/27/2	015
Standard	FCC Part 15.247(e)	CC Part 15.247(e) and RSS 210 A8.2(b)							
Product	RF-7800W Serial#				A004	A00451			
Test Set-up	Direct Measurement	Direct Measurement from antenna port							
EUT Powered By	Power over Ethernet	Temp	22° C	H	umidity	32%	Pres	sure	1010mbar
Perf. Criteria	Below Limit (10dB	m)	Perf. Verification			≤8 dBm in any 3 kHz			
Mod. to EUT	None		Test Pe	rfo	rmed By	Ranc	Randall E Masline		

5.2.2 Test Procedure

Using the methods of ANSI C63.10:2009, section 6.11.2.3 were used.

5.2.3 Deviations

There were no deviations from the test methodology listed in the test plan for the Peak Power Spectral Density test.

5.2.4 Final Test

The EUT met the performance criteria requirement as specified in the test plan of this report and in the standards.

Test Setup:

Report No.: 31551684.004 Harris RF-7800W.doc

Page 49 of 78

5.2.5 Final Data

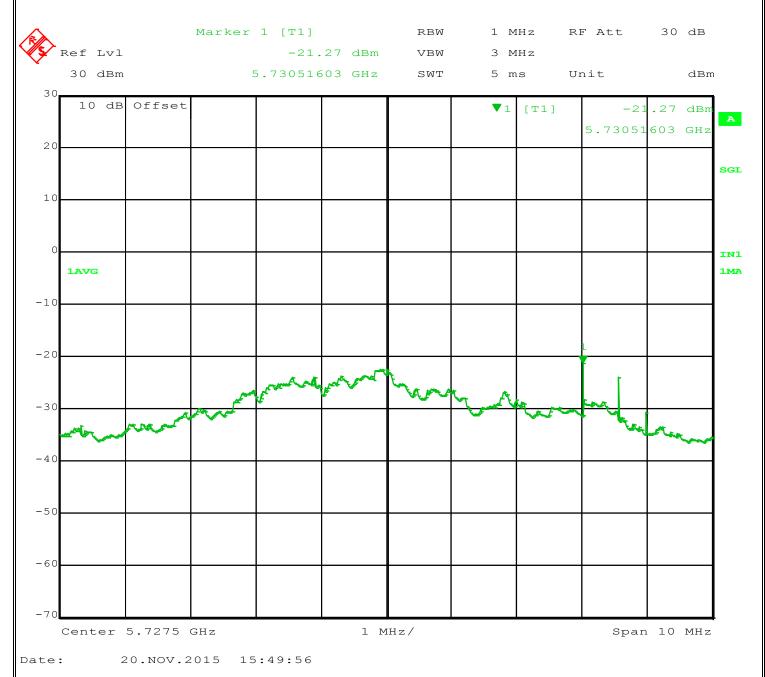


Figure 13: 5727.5 MHz at 5MHz BW

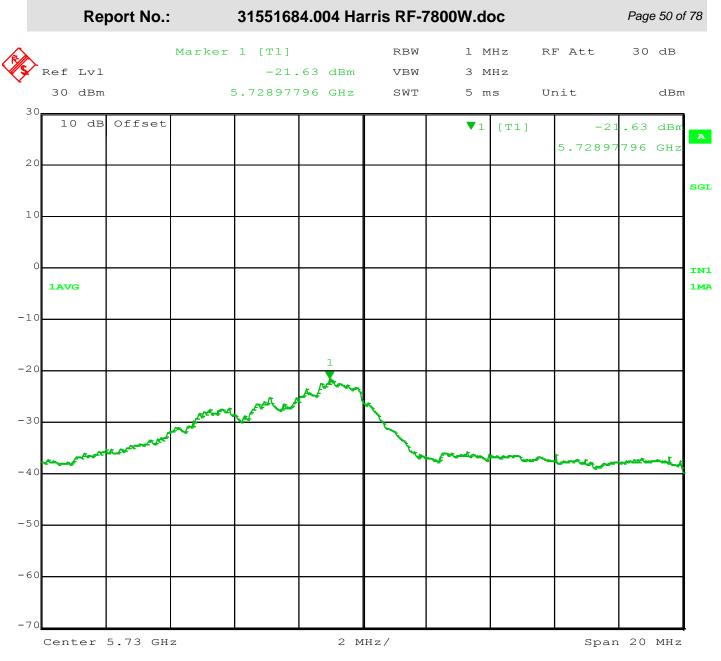


Figure 14: 5730 MHz at 10 MHz BW

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government.

Date:

20.NOV.2015

15:51:00

		cisely Hight	:		
Report No.:	31551684.004 Ha	arris RF-7	7800W.doc		Page 51 of
Mark	er 1 [T1]	RBW	1 MHz	RF Att	30 dB
Ref Lvl	-26.39 dBm	VBW	3 MHz		
30 dBm	5.73904810 GHz	SWT	5 ms	Unit	dBm
10 dB Offset			▼ 1 [T1]	-2	6.39 dBm
				5.7390	4810 GHz
20					
. 0					
0				+	
1AVG					
. 0					
20					
				<u> </u>	
30					
	part and	- War	Marting and	توالو	and buy
10 mm	and warmer		war were	The world	are a
50					
50					
Center 5.73 GHz		MHz/			n 30 MHz

Figure 15: 5735 MHz at 20 MHz BW

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government.

Date:

20.NOV.2015 15:52:37

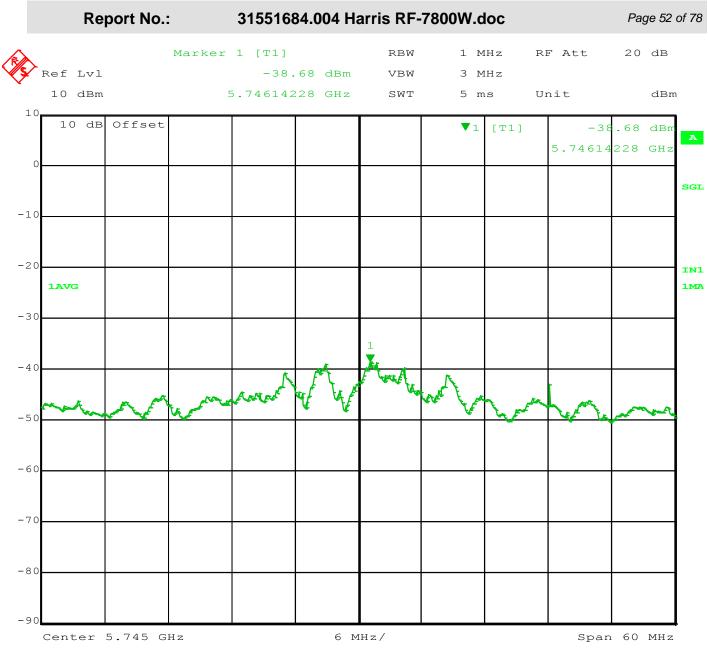


Figure 16: 5745 MHz at 40 MHz BW

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government.

Date:

20.NOV.2015

15:54:03

Report No.: 31551684.004 Harris RF-7800W.doc

Page 53 of 78

5.3 Occupied Bandwidth

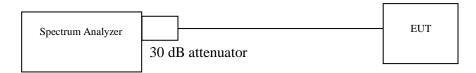
Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.3.1 Test Over View

Results	Complies (as tested	d per this	report)			Date	. 7	7/1/20	15
Standard	FCC Part 15.247(a)	CC Part 15.247(a)(2)							
Product	RF-7800W Serial#				A004	A00451			
Test Set-up	Direct Measurement	Direct Measurement from antenna port							
EUT Powered By	Power over Ethernet	Temp	22° F	Н	umidity	32%	Press	ure	1010 mbar
Perf. Criteria	(Below Limit)		Perf. Verification			Read	Readings Under Limit		
Mod. to EUT	None		Test Pe	rfo	rmed By	Ranc	Randall E Masline		

5.3.2 Test Procedure

Minimum allowed 6dB Bandwidth = 500 kHz


5.3.3 Deviations

There were no deviations from the test methodology listed in the test plan for the Occupied Bandwidth test.

5.3.4 Final Test

The EUT met the performance criteria requirement as specified in the standards.

Test Setup:

Report No.: 31551684.004 Harris RF-7800W.doc

Page 54 of 78

5.3.5 Final Data

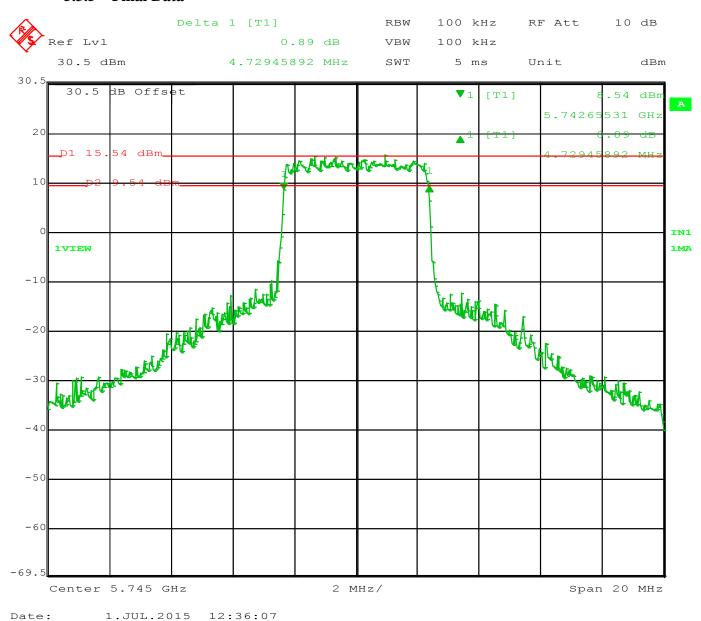


Figure 17: 6dB Occupied Bandwidth 5 MHZ Channel at 5745 MHz

6dB Band width is 4.723 MHz which is > 500 kHz

Report No.: 31551684.004 Harris RF-7800W.doc

Page 55 of 78

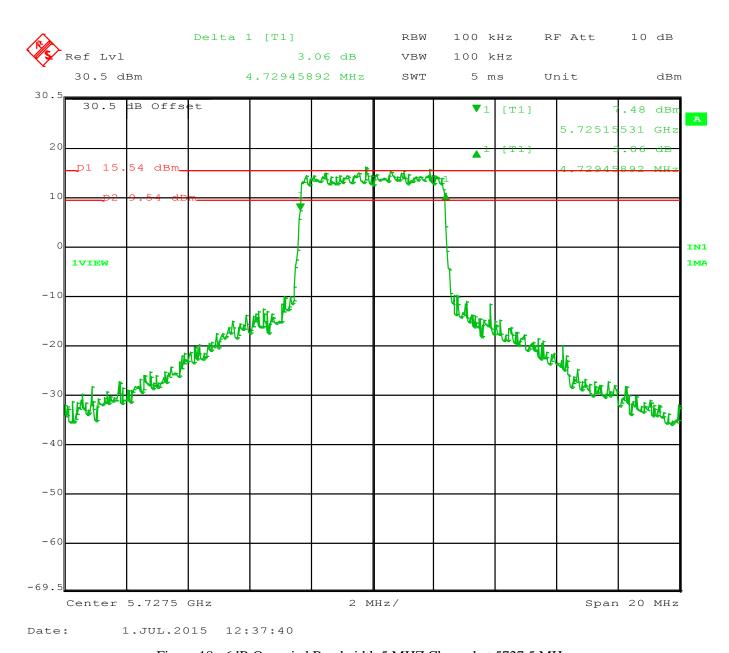


Figure 18: 6dB Occupied Bandwidth 5 MHZ Channel at 5727.5 MHz

6dB Band width is 4.723 MHz which is > 500 kHz

Report No.: 31551684.004 Harris RF-7800W.doc

Page 56 of 78

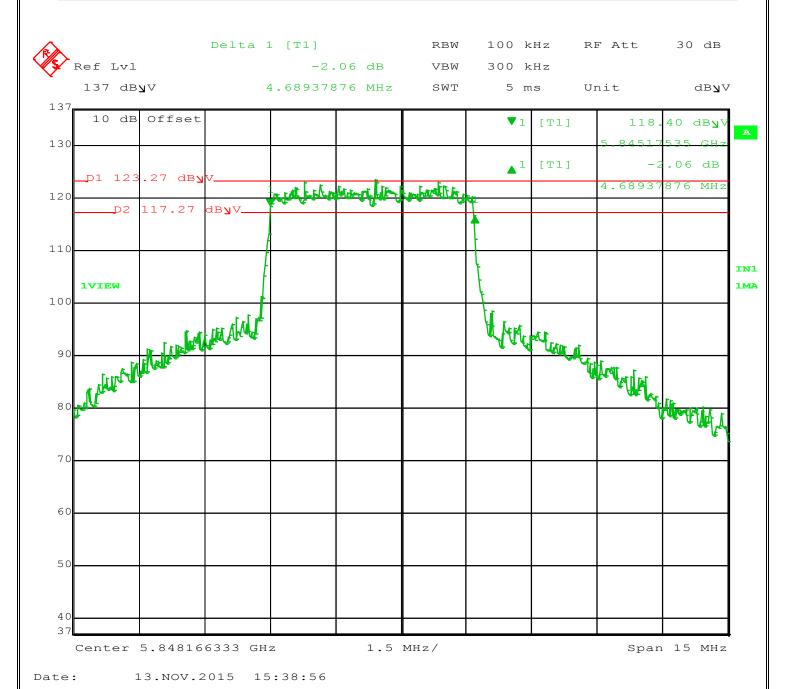


Figure 19: 6dB Occupied Bandwidth 5 MHZ Channel at 5847 MHz 6dB Band width is 4.689 MHz which is > 500 kHz

Report No.: 31551684.004 Harris RF-7800W.doc

Page 57 of 78



Figure 20: 6dB Occupied Bandwidth 10 MHZ Channel at 5725 MHz 6dB Band width is 9.458 MHz which is > 500 kHz

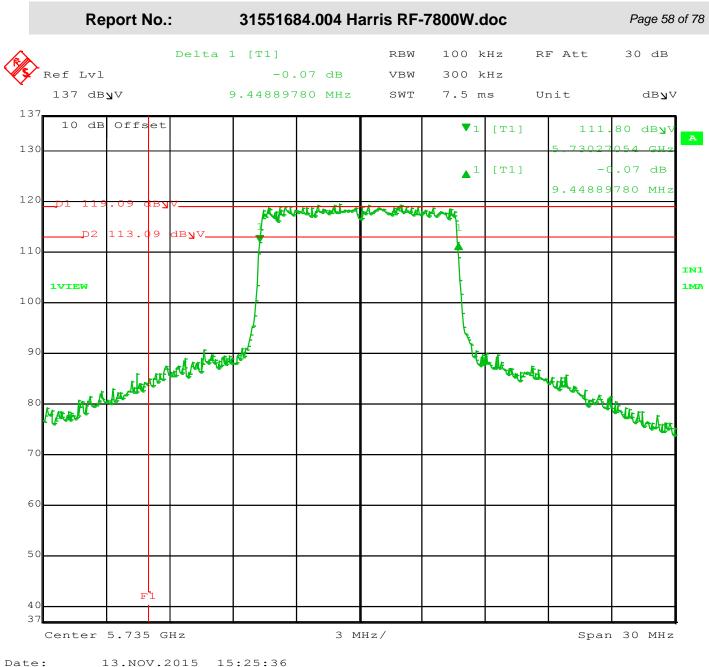


Figure 21: 6dB Occupied Bandwidth 10 MHZ Channel at 5735 MHz 6dB Band width is 9.448 MHz which is > 500 kHz

Report No.: 31551684.004 Harris RF-7800W.doc

Page 59 of 78

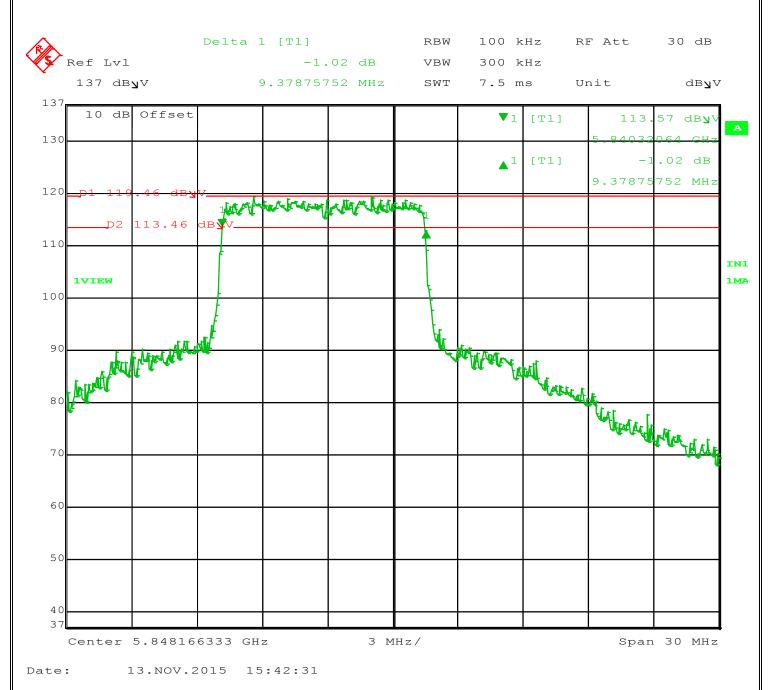


Figure 22: 6dB Occupied Bandwidth 10 MHZ Channel at 5845 MHz 6dB Band width is 9.378 MHz which is > 500 kHz

Report No.: 31551684.004 Harris RF-7800W.doc

Page 60 of 78

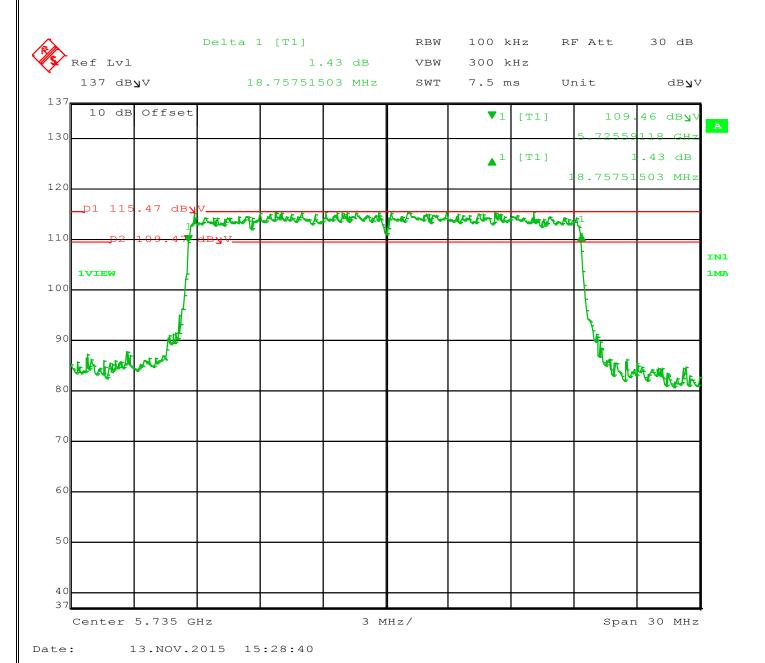


Figure 23: 6dB Occupied Bandwidth 20 MHZ Channel at 5735 MHz 6dB Band width is 18.757 MHz which is > 500 kHz

Report No.: 31551684.004 Harris RF-7800W.doc

Page 61 of 78

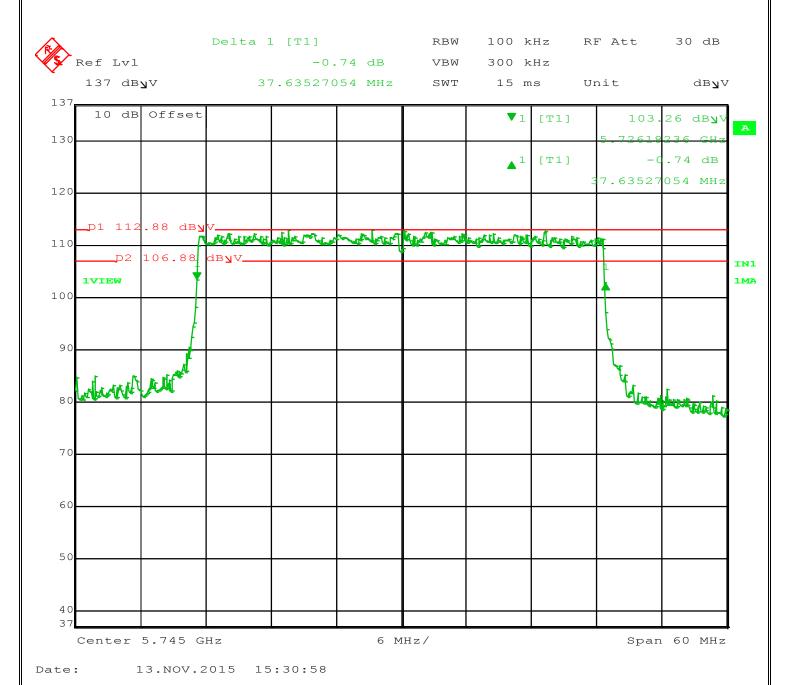


Figure 24: 6dB Occupied Bandwidth 20 MHZ Channel at 5745 MHz 6dB Band width is 37.635 MHz which is > 500 kHz

Report No.: 31551684.004 Harris RF-7800W.doc

Page 62 of 78

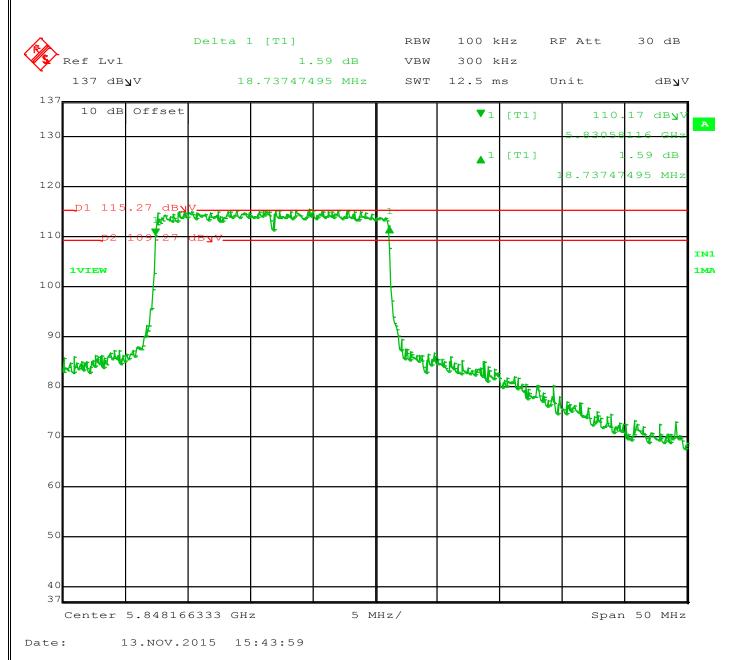


Figure 25: 6dB Occupied Bandwidth 20 MHZ Channel at 5840 MHz 6dB Band width is 18.737 MHz which is > 500 kHz

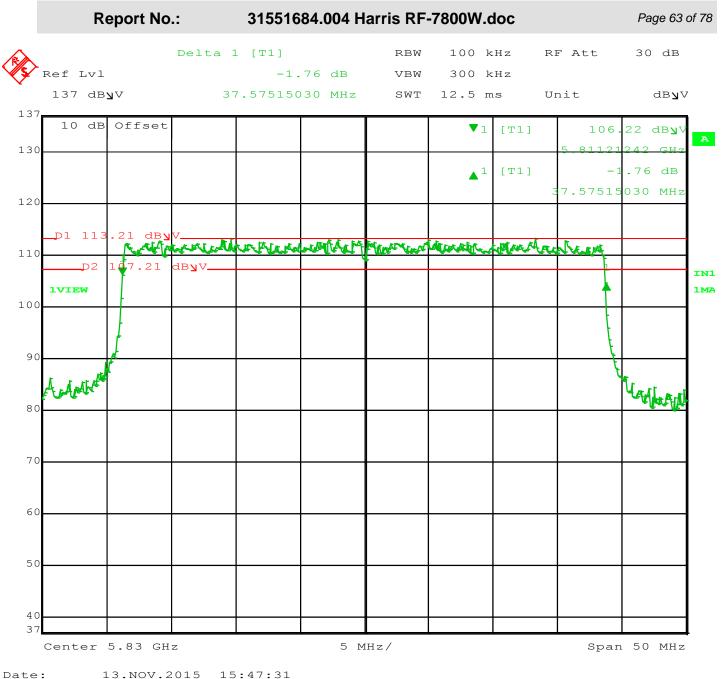


Figure 26: 6dB Occupied Bandwidth 40 MHZ Channel at 5840 MHz 6dB Band width is 37.575 MHz which is > 500 kHz

31551684.004 Harris RF-7800W.doc **Report No.:**

Page 64 of 78

5.4 Voltage Requirements FCC Part 15.31(e)

FCC Part 15.31 states that for intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

5.4.1 Over View of Test

Results	Complies (as tested per this report)			Date	7/2/2015		
Standard	FCC Part 15.31(e)						
Product	RF-7800W			rial#	A00451		
Test Set-up	Tested in shielded roo	Tested in shielded room. EUT placed on table, see test plans for details					
Mod. to EUT	None	Test Performed	Ву	Randall	E Masli	ne	

5.4.2 Test Procedure

A variac will be placed in front of the POE (Power over Ethernet) box in order to vary the input AC. The power source test was performed using the $\pm 15\%$ of rated voltage

Manufacturer Rated voltage: VAC, the test will be performed at $\pm 15\%$ of rated voltage.

Nominal Rated Voltage (V_{Nom}) : VAC 120 115% Max Voltage (V_{max}): VAC 138 85% Minimum Voltage (V_{min}): 102 VAC

5.4.3 Final Test

As tested, the EUT was found to be compliant to the requirements of the test standard.

The output power and frequency did not change or waiver by varying the input voltage to the POE black box.

Report No.: 31551684.004 Harris RF-7800W.doc Page 65 of 78

einland FCCID: AQZ-RF-7800W-G2

Report No.: 31551684.004 Harris RF-7800W.doc Page 66 of 78

6 Emissions in Receive Mode.

6.1 Radiated Emissions

This test measures the electromagnetic levels of spurious signals generated by the EUT that radiated from the EUT and may affect the performance of other nearby electronic equipment.

6.1.1 Over View of Test

Results	Complies (as tested	l per this	report)			Date		7/2/20)15
Standard	FCC Parts 15.209(a)	CC Parts 15.209(a)							
Product RF- 7800W	RF-7800W Serial#				A004	A00451			
Configuration	See test plan for deta	ee test plan for details							
Test Set-up	Tested at a 10m O.A.T.S. placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane on a turn-table. See test plans for details								
EUT Powered By	Power over Ethernet	Temp	23° C	Hui	midity	32%	Pres	sure	1010mbar
Frequency Range	30 MHz to 40 GHz	@ 3m							
Perf. Criteria	(Below Limit) Perf. Verifi			erific	cation	Read	lings U	nder L	imit
Mod. to EUT	None		Test Pe	erforn	ned By	Ranc	Randall E Masline		

6.1.2 Test Procedure

Radiated and FCC emissions tests were performed using the procedures of ANSI C63.4:2003 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

The frequency range from 30 MHz to 13 GHz was investigated for radiated emissions.

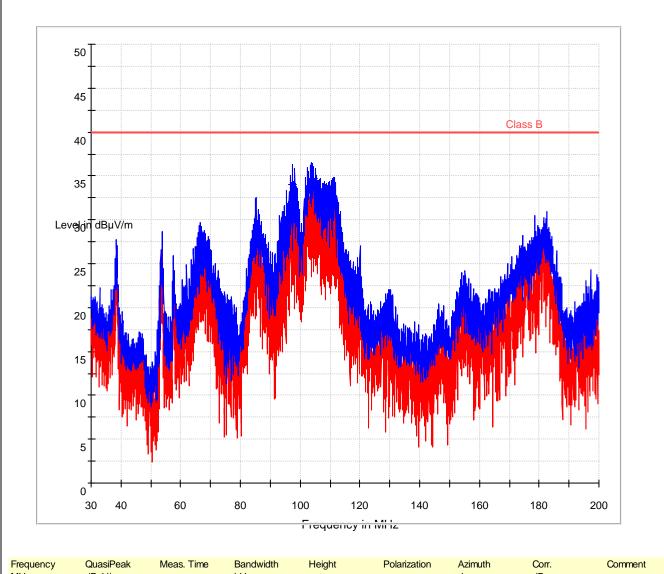
Radiated emission testing was performed at a distance of 3 meters in 10m O.A.T.S.

6.1.3 Deviations

There were no deviations from the test methodology listed in the test plan for the radiated emission test.

6.1.4 Final Test

All final radiated emissions measurements were below (in compliance) the limits.

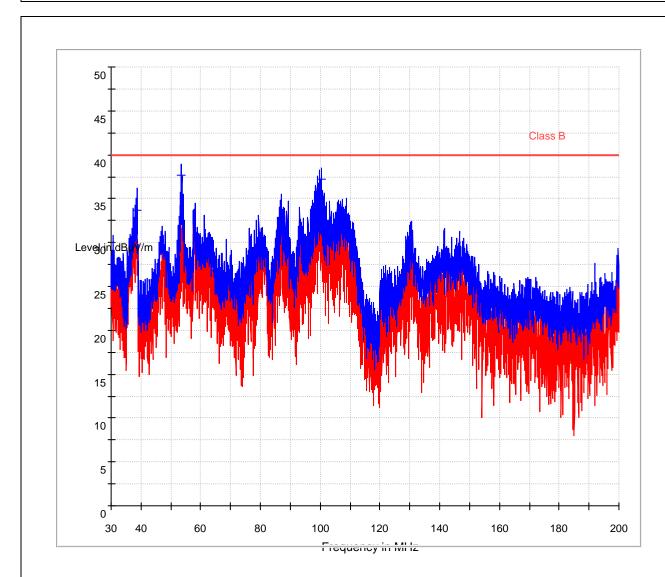


Report No.: 31551684.004 Harris RF-7800W.doc

Page 67 of 78

6.1.5 Final Graphs and Tabulated Data

Frequency MHz	QuasiPeak dBµV/ m	Meas. Time ms	Bandwidth kHz	Height cm	Polarization	Azimuth deg	Corr. dB	Comment
97.440000	34.0	100.0	120.000	100.0	Н	28.0	-7.4	
104.560000	34.7	100.0	120.000	100.0	Н	28.0	-6.3	



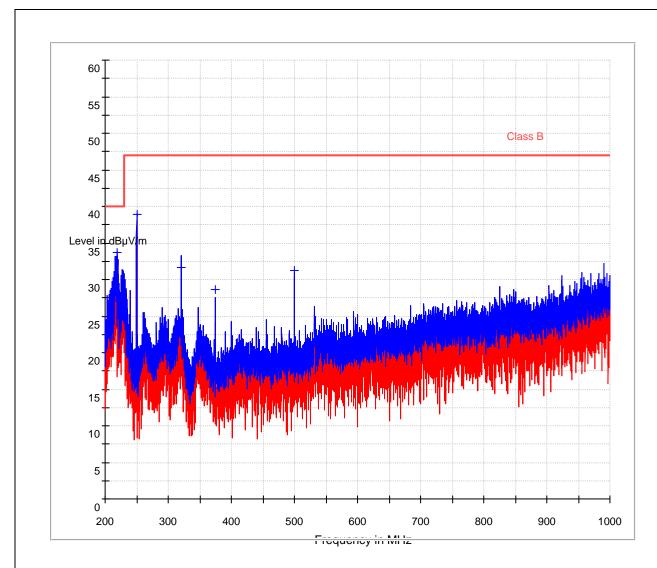
Report No.: 31551684.004 Harris RF-7800W.doc

Page 68 of 78

NOTES:

Radiated Emissions Vertical

Frequency MHz	QuasiPeak dBµV/ m	Meas. Time ms	Bandwidth kHz	Height cm	Polarization	Azimuth deg	Corr. dB	Comment
38.640000	33.6	100.0	120.000	100.0	V	28.0	-3.7	
53.480000	37.6	100.0	120.000	100.0	V	28.0	-10.8	
100.520000	37.2	100.0	120.000	100.0	V	28.0	-6.9	



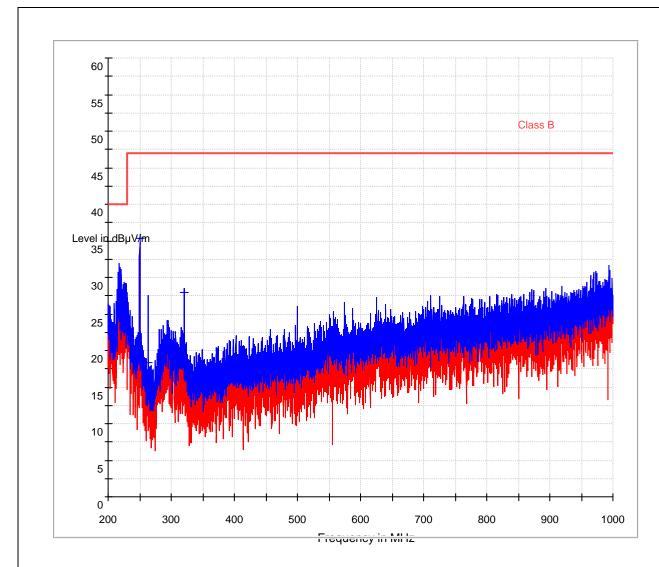
Report No.: 31551684.004 Harris RF-7800W.doc

Page 69 of 78

NOTES:

Radiated Emissions Horizontal

Frequency MHz	QuasiPeak dBµV/ m	Meas. Time ms	Bandwidth kHz	Height cm	Polarization	Azimuth deg	Corr. dB	Comment
218.400000	33.7	100.0	120.000	100.0	Н	28.0	-4.9	
250.000000	38.9	100.0	120.000	100.0	Н	28.0	-2.0	
320.000000	31.6	100.0	120.000	100.0	Н	28.0	0.4	
375.040000	28.6	100.0	120.000	100.0	Н	28.0	2.2	
500.000000	31.3	100.0	120.000	100.0	Н	28.0	5.0	


Report No.: 31551684.004 Harris RF-7800W.doc

Page 70 of 78

NOTES:

Radiated Emissions

Vertical

Frequency MHz	QuasiPeak dBµV/ m	Meas. Time ms	Bandwidth kHz	Height cm	Polarization	Azimuth deg	Corr. dB	Comment
250.000000	35.4	100.0	120.000	100.0	V	28.0	-2.0	
264.000000	18.3	100.0	120.000	100.0	V	28.0	-1.4	
320.000000	27.9	100.0	120.000	100.0	V	28.0	0.4	

Report No.: 31551684.004 Harris RF-7800W.doc

Page 71 of 78

7 RF Exposure

7.1 Exposure Requirements – FCC Parts 2.1091, 15.247(d)

FCC Part 15.247(d) states that SAR evaluation in not required if "Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. *See* §1.1307(b)(1) of CFR 47."

7.1.1 RF Exposure Limit

According to FCC 1.1310 table 1: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
	(A) Limits for O	occupational/Controlled Expo	osure	
0.3-3.0	614	1.63	*100	6
3.0-30	1842/1	4.89/f	*900/f ²	6
30-300	61.4	0.163	1.0	6
300-1,500			f/300	6
1,500-100,000			5	6
	(B) Limits for Gene	ral Population/Uncontrolled	Exposure	
0.3-1.34	614	1.63	*100	30
1.34-30	824/1	2.19/1	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

f = frequency in MHz * = Plane-wave equivalent power density

F = Frequency in MHz

Report No.: 31551684.004 Harris RF-7800W.doc

Page 72 of 78

7.1.1.1 Antenna Gain

The maximum Gain measured in Semi-Anechoic Chamber is 8 dBi or 7.08 (numeric).

13.5 dBi or 25.12 (numeric)

21 dBi or 125.89 (numeric)

26 dBi or 398.11 (numeric)

30 dBi or 1000 (numeric)

7.1.1.2 Output Power into Antenna & RF Exposure value at distance >20cm: Mobile

Calculations for this report are based on highest power measurement and all the various antenna gains. Limit for MPE (from FCC part 1.1310 table 1) is 5 mW/cm² for professionally installed devices.

The highest output power was 18.67 dBm at 5847.5 MHz using a 5 MHz Bandwidth, that frequency and power will be used for all antenna calculations

Report No.: 31551684.004 Harris RF-7800W.doc

Page 73 of 78

8 dBi Antenna Gain at 5847.5 MHz

Corrected (including cal factors)

Measurment:

The Gain of the antenna:

18.67 8.00

3.00

100.00

dBi Direct measurement at

Type of Measurment:

Impedance:

Measureing Distance:

Time weighted Duty Cycle:

Conducted 50.00

m %

dBm

Antenna Port

The Power Out would be: 0.073620710 Watts

or: 73.62071 mW or: 73620.71 μ W or: 18.67 dBm

Frequency range from 10 MHz to 40

GHz:

Frequency: 5847.5 MHz

Power output with DC and antenna Gain (EiRP):

Power (dBm):	26.67
Power (mW):	464.515
Power (W):	0.464515

R = distance in	20	cm
-----------------	----	----

FCC:

Controlled Exposures - Limit =	5	mW/cm ²
Uncontrolled Exposures - Limit =	1	mW/cm ²
Pd =	0.0924124	mW/cm ²
Controlled Margin to Limit =	4.9076	mW/cm ²
Uncontrolled Margin to Limit =	0.9076	mW/cm ²

Report No.: 31551684.004 Harris RF-7800W.doc

Page 74 of 78

13.5 dBi Gain Antenna at 5847.5 MHz

Corrected (including cal factors)

Measurment:

The Gain of the antenna:

14.00 Conducted

18.67

Type of Measurment:

Impedance: 50.00 Measureing Distance:

Time weighted Duty Cycle:

Direct measurement at Antenna Port

Ω

dBm

dBi

3.00 m 100.00 %

The Power Out would be: 0.073620710 Watts

> 73.62071 mW or: 73620.71 μW or: or: 18.67 dBm

Frequency range from 10 MHz to 40

GHz:

Frequency: 5847.5 MHz

Power output with DC and antenna

Gain (EiRP):

Power (dBm):	32.67
Power (mW):	1849.269
Power (W):	1.849269

R = distance in	20	cm
R = distance in	20	cm

FCC:

Controlled Exposures - Limit =	5	mW/cm ²
Uncontrolled Exposures - Limit =	1	mW/cm ²
Pd =	0.3679003	mW/cm ²
Controlled Margin to Limit =	4.6321	mW/cm ²
Uncontrolled Margin to Limit =	0.6321	mW/cm ²

Report No.: 31551684.004 Harris RF-7800W.doc

Page 75 of 78

While using the following antenna a minimum separation distance must be at least 30 cm

21 dBi Gain antenna at 5847.5 MHz

Enter the following highlighted

variables:

Corrected (including cal factors)

Measurment:

The Gain of the antenna:

18.67 21.00 dBm dBi Direct measurement at

Antenna Port

Type of Measurment:

Conducted Impedance:

50.00

Ω m

Measureing Distance: Time weighted Duty Cycle:

3.00 100.00 %

The Power Out would be:

Watts 0.073620710

> 73.62071 73620.71

mW μW

or: or:

or:

18.67 dBm

Frequency range from 10 MHz to 40

GHz:

Frequency:

5847.5

MHz

Power output with DC and antenna

Gain (EiRP):

Power (dBm):	39.67
Power (mW):	9268.298
Power (W):	9.268298

R = distance in 30 cm

FCC:

Controlled Exposures - Limit =	5	mW/cm ²
Uncontrolled Exposures - Limit =	1	mW/cm ²
Pd =	0.8194975	mW/cm ²
Controlled Margin to Limit =	4.1805	mW/cm ²
Uncontrolled Margin to Limit =	0.1805	mW/cm ²

Report No.: 31551684.004 Harris RF-7800W.doc

Page 76 of 78

While using the following antenna a minimum separation distance must be at least 60 cm

26 dBi Gain Antenna at 5847.5 MHz

Corrected (including cal factors)

Measurment:

The Gain of the antenna:

18.67

dBm

26.00

dBi

Direct measurement at

Type of Measurment: Conducted Impedance:

50.00

Ω

m %

Antenna Port

Measureing Distance: Time weighted Duty Cycle:

The Power Out would be:

3.00 100.00

0.073620710 Watts

mW or: 73.62071 73620.71 μW or:

or: 18.67 dBm

Frequency range from 10 MHz to 40

GHz:

5847.5 MHz Frequency:

Power output with DC and antenna

Gain (EiRP):

Power (dBm):	44.67
Power (mW):	29308.932
Power (W):	29.308932

R = distance	in 60	cm

FCC:

Controlled Exposures - Limit =	5	mW/cm ²
Uncontrolled Exposures - Limit =	1	mW/cm ²
Pd =	0.6478696	mW/cm ²
Controlled Margin to Limit =	4.3521	mW/cm ²
Uncontrolled Margin to Limit =	0.3521	mW/cm ²

Report No.: 31551684.004 Harris RF-7800W.doc

Page 77 of 78

While using the following antenna a minimum separation distance must be at least 80 cm

30 dBi Gain Antenna at 5847.5 MHz

Corrected (including cal factors)

Measurment:

The Gain of the antenna:

18.67 30.00

dBi Direct measurement at

dBm

Type of Measurment: Impedance:

Conducted 50.00 Antenna Port

Measureing Distance:

Distance: 3.00 uty Cycle: 100.00

Ω m %

Watts

Time weighted Duty Cycle:

The Power Out would be: 0.073620710

or: 73.62071 mW or: 73620.71 μ W or: 18.67 dBm

Frequency range from 10 MHz to 40

GHz:

Frequency: 5847.5 MHz

Power output with DC and antenna

Gain (EiRP):

Power (dBm):	48.67
Power (mW):	73620.710
Power (W):	73.620710

R = distance in	80	cm

FCC:

Controlled Exposures - Limit =	5	mW/cm ²
Uncontrolled Exposures - Limit =	1	mW/cm ²
Pd =	0.9153984	mW/cm ²
Controlled Margin to Limit =	4.0846	mW/cm ²
Uncontrolled Margin to Limit =	0.0846	mW/cm ²

Report No.: 31551684.004 Harris RF-7800W.doc

Page 78 of 78

Appendix A

Test Plan

This test report is intended to follow this test plan outlined here in unless other wise stated in this here report. The following test plan will give details on product information, standards to be used, test set ups and refer to TUV test procedures. The test procedures will give the steps to be taken when performing the stated test. The product information below came via client, product manual, product itself and or the internet.

Test Plan Summary

Table 1: EMC Test Plan Summary FCC& IC

Test	Test Method ANSI C63.10	Test Parameters (from Standard)
Spurious Emission in Received Mode	CFR47 15.109	Class B
Spurious Emission in Transmitted Mode	CFR47 15.209	Class B
Restricted Bands of Operation	CFR47 15.205	Class B
AC Power Conducted Emission	CFR47 15.207	Class B
Occupied Bandwidth	CFR47 15.247 (a2)	500kHz minimum
Maximum Transmitted Power	CFR47 15.247 (b3)	30dBm w/ 6dBi antenna
Peak Power Spectral Density	CFR47 15.247 (e)	8dBm/ 3kHz.
Band edge Measurement	CFR47 15.247 (d)	20dBr
RF Exposure	CFR47 15.247 (i), 2.1091	General Population