

2.13 WLAN 5000MHz EXTREMITY SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA-C / v6.08.11	INPUT POWER DRIFT:	0 dB
DATE / TIME:	15/01/2014-15:55:57	DUT BATTERY MODEL/NO:	N/A
AMBIENT TEMPERATURE:	22.80°C	LIQUID SIMULANT:	5000 Body
DEVICE UNDER TEST:	SHT22	RELATIVE PERMITTIVITY:	47.99
RELATIVE HUMIDITY:	42.10%	CONDUCTIVITY:	5.488
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.80°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	81.400mm
DUT POSITION:	0mm-Front Face	MAX SAR Y-AXIS LOCATION:	-37.800mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	11.184
TEST FREQUENCY:	5600.0MHz	SAR 1g:	N/A
TYPE OF MODULATION:	OFDM (WLAN)	SAR 10g:	0.232 W/kg
MODN. DUTY CYCLE:	100%	SAR START:	1.726 W/kg
INPUT POWER LEVEL:	13.5dBm	SAR END:	1.706 W/kg
PROBE BATTERY LAST CHANGED:	15/01/2014	SAR DRIFT DURING SCAN:	-1.100 %

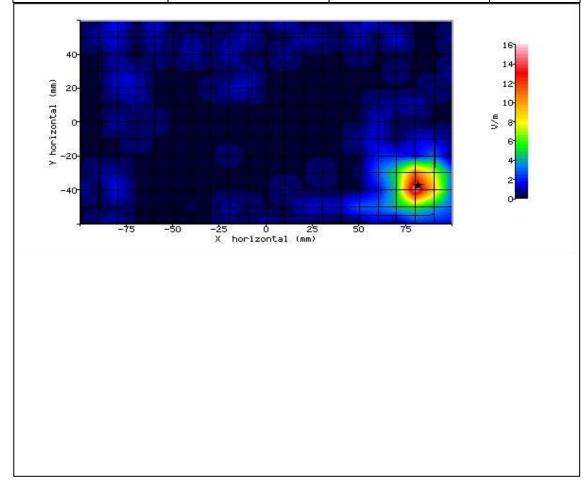


Figure 38: SAR Body Testing Results for the SHT22 Tablet at 5600.0MHz. (NUA)

SYSTEM / SOFTWARE:	SARA-C / v6.08.11	INPUT POWER DRIFT:	0 dB
DATE / TIME:	15/01/2014-16:28:47	DUT BATTERY MODEL/NO:	N/A
AMBIENT TEMPERATURE:	22.80°C	LIQUID SIMULANT:	5000 Body
DEVICE UNDER TEST:	SHT22	RELATIVE PERMITTIVITY:	47.99
RELATIVE HUMIDITY:	42.10%	CONDUCTIVITY:	5.488
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.80°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	79.100mm
DUT POSITION:	0mm-Rear Face	MAX SAR Y-AXIS LOCATION:	38.500mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	8.242
TEST FREQUENCY:	5600.0MHz	SAR 1g:	N/A
TYPE OF MODULATION:	OFDM (WLAN)	SAR 10g:	0.112 W/kg
MODN. DUTY CYCLE:	100%	SAR START:	0.715 W/kg
INPUT POWER LEVEL:	13.5dBm	SAR END:	0.709 W/kg
PROBE BATTERY LAST CHANGED:	15/01/2014	SAR DRIFT DURING SCAN:	-0.900 %

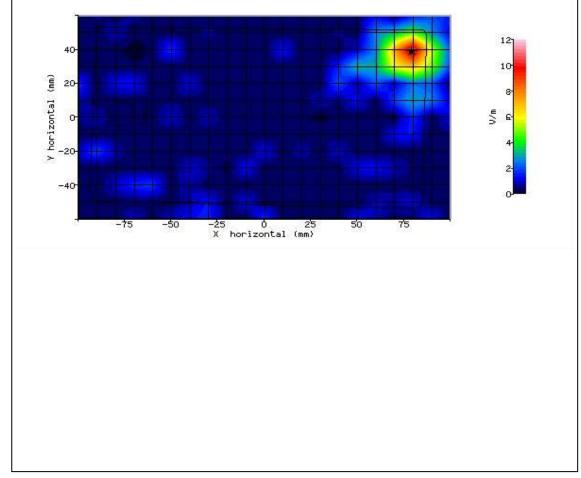


Figure 39: SAR Body Testing Results for the SHT22 Tablet at 5600.0MHz. (NUA)

SYSTEM / SOFTWARE:	SARA-C / v6.08.11	INPUT POWER DRIFT:	0 dB
DATE / TIME:	16/01/2014-06:36:41	DUT BATTERY MODEL/NO:	N/A
AMBIENT TEMPERATURE:	23.10°C	LIQUID SIMULANT:	5000 Body
DEVICE UNDER TEST:	SHT22	RELATIVE PERMITTIVITY:	47.99
RELATIVE HUMIDITY:	30.90%	CONDUCTIVITY:	5.488
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	23.00°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	85.300mm
DUT POSITION:	0mm-RightEdge	MAX SAR Y-AXIS LOCATION:	-1.800mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	6.589
TEST FREQUENCY:	5600.0MHz	SAR 1g:	N/A
TYPE OF MODULATION:	OFDM (WLAN)	SAR 10g:	0.092 W/kg
MODN. DUTY CYCLE:	100%	SAR START:	0.328 W/kg
INPUT POWER LEVEL:	13.5dBm	SAR END:	0.326 W/kg
PROBE BATTERY LAST CHANGED:	16/01/2014	SAR DRIFT DURING SCAN:	-0.600 %

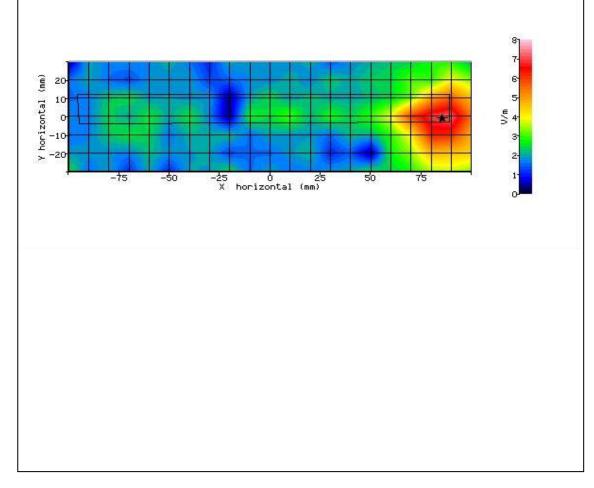


Figure 40: SAR Body Testing Results for the SHT22 Tablet at 5600.0MHz. (NUA)

SYSTEM / SOFTWARE:	SARA-C / v6.08.11	INPUT POWER DRIFT:	0 dB
DATE / TIME:	16/01/2014-07:06:25	DUT BATTERY MODEL/NO:	N/A
AMBIENT TEMPERATURE:	23.10°C	LIQUID SIMULANT:	5000 Body
DEVICE UNDER TEST:	SHT22	RELATIVE PERMITTIVITY:	47.99
RELATIVE HUMIDITY:	30.90%	CONDUCTIVITY:	5.488
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	23.00°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-39.900mm
DUT POSITION:	0mm-Bottom Edge	MAX SAR Y-AXIS LOCATION:	-4.800mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	12.906
TEST FREQUENCY:	5600.0MHz	SAR 1g:	N/A
TYPE OF MODULATION:	OFDM (WLAN)	SAR 10g:	0.316 W/kg
MODN. DUTY CYCLE:	100%	SAR START:	2.543 W/kg
INPUT POWER LEVEL:	13.5dBm	SAR END:	2.542 W/kg
PROBE BATTERY LAST CHANGED:	16/01/2014	SAR DRIFT DURING SCAN:	0.000 %

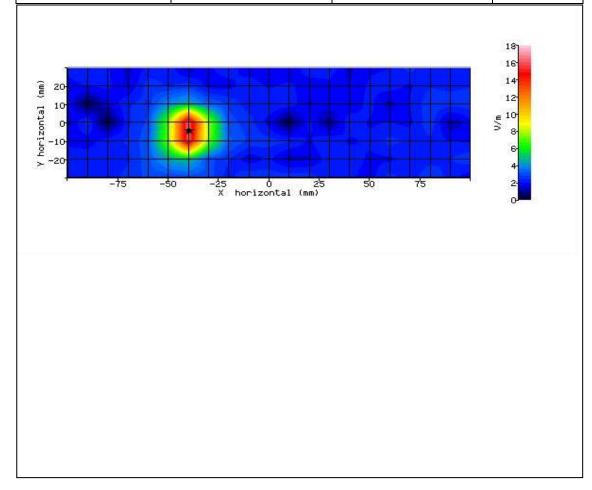


Figure 41: SAR Body Testing Results for the SHT22 Tablet at 5600.0MHz. (NUA)

SECTION 3

TEST EQUIPMENT USED

3.1 TEST EQUIPMENT USED

The following test equipment was used at TÜV SÜD Product Service:

Instrument Description	Manufacturer	Model Type	TE Number	Cal Period (months)	Calibration Due Date
Signal Generator	Hewlett Packard	ESG4000A	38	12	23-May-2014
Radiocommunications Tester	Rohde & Schwarz	CMU 200	39	12	06-Dec-2014
10MHz - 2.5GHz, 3W, Amplifier	Vectawave Technology	VTL5400	51	-	TU
Directional Coupler	Krytar	1850	58	-	TU
Power Sensor	Rohde & Schwarz	NRV-Z1	60	12	14-Jun-2014
Thermometer	Digitron	T208	64	12	16-Jan-2014
Amplifier (5GHz)	IndexSar Ltd	5GHz	157	-	TU
Power Sensor	Rohde & Schwarz	NRV-Z1	178	12	23-May-2014
Communications Tester	Rohde & Schwarz	CMU 200	442	12	08-Nov-2014
Directional Coupler	Hewlett Packard	11692D	452	-	TU
Attenuator (20dB, 10W)	Weinschel	37-20-34	482	12	17-Oct-2014
Attenuator (20dB, 20W)	Narda	766F-20	483	12	13-Jun-2014
Spectrum Analyser	Agilent Technologies	E4407B	1154	12	13-Aug-2014
Bi-directional Coupler	IndexSar Ltd	7401 (VDC0830- 20)	2414	-	TU
Validation Amplifier (10MHz - 2.5GHz)	IndexSar Ltd	VBM2500-3	2415	-	TU
Hygromer	Rotronic	I-1000	2784	12	03-Apr-2014
Antenna (Omnidirectional)	Katherin Scala Division	OG-890/1990/DC	2905	-	TU
Antenna (Omnidirectional)	Katherin Scala Division	OG-890/1990/DC	2906	-	TU
Power Meter	Rohde & Schwarz	NRVD	2979	12	25-May-2014
Radio Communications Test Set	Rohde & Schwarz	CMU 200	3035	12	25-Oct-2014
Dual Channel Power Meter	Rohde & Schwarz	NRVD	3259	12	14-Jun-2014
Signal Generator: 10MHz to 20GHz	Rohde & Schwarz	SMR20	3475	12	01-Feb-2014
Power Sensor	Rohde & Schwarz	NRV-Z1	3563	12	23-May-2014
Meter & T/C	R.S Components	Meter 615-8206 & Type K T/C	3612	12	08-Jul-2014
Part of SARAC System	IndexSar Ltd	Robot Controller	4076	-	TU
Part of SARAC System	IndexSar Ltd	White Benchtop	4080	-	TU
Part of SARAC System	IndexSar Ltd	Wooden Bench	4081	-	TU
Fast Probe Amplifier (3 Channels)	IndexSar Ltd	IXA-020 (5GHz)	4094	-	TU
Wideband Radio Communication Tester	Rohde & Schwarz	CMW 500	4144	12	17-Jul-2014
Flat Phantom	IndexSar Ltd	IXB-2HF 800- 6000MHz	4255	-	TU
Spacer used to raise body phantom	IndexSar Ltd	Body Phantom Spacer	4259	-	TU
hold handsets against SAM Phantom	IndexSar Ltd	Handset Holder	4263	-	TU

Instrument Description	Manufacturer	Model Type	TE Number	Cal Period (months)	Calibration Due Date
hold handsets against SAM Phantom	IndexSar Ltd	Handset Holder	4264	-	TU
Part of SARAC System	IndexSar Ltd	Wooden Bench	4266	-	TU
Part of SARAC System	IndexSar Ltd	Robot Controller	4267	-	TU
Part of SARAC System	IndexSar Ltd	Cartesian Leg Extension	4268	-	TU
Cartesian 4-axis Robot	IndexSar Ltd	SARAC	4269	-	TU
Part of SARAC System	IndexSar Ltd	White Benchtop	4270	=	TU
Digital thermo Hygrometer	Radio Spares	1260	4300	12	22-Mar-2014
SAR 5GHz Di-pole	Speag	D2450GHzV2	3875	-	TU
SAR 5GHz Di-pole	Speag	D5GHzV2	4309	-	TU
Immersible SAR Probe	IndexSar Ltd	IXP-021	4311	24	25-Oct-2014
Immersible SAR Probe	IndexSar Ltd	IPX-020	4317	24	24-Apr-2015
Immersible SAR Probe	IndexSar Ltd	IXP-050	4313	24	07-Mar-2015
Immersible SAR Probe	IndexSar Ltd	IXP-025	4310	24	07-Apr-2014
2450MHz Head Fluid	IndexSar Ltd	Batch 11	N/A	1	31-Jan-2014
2450MHz Head Fluid	IndexSar Ltd	Batch 7	N/A	1	31-Jan-2014
5000MHz Head Fluid	IndexSar Ltd	Batch 4	N/A	1	31-Jan-2014
5000MHz Head Fluid	IndexSar Ltd	Batch 3	N/A	1	31-Jan-2014

TU - Traceability Unscheduled

3.2 TEST SOFTWARE

The following software was used to control the TÜV SÜD Product Service SARAC System.

Instrument	Version Number	Date
SARA-C system	v.6.08.11	06 June 2013
IFA-10 Probe amplifier	Version 2	-

3.3 DIELECTRIC PROPERTIES OF SIMULANT LIQUIDS

The fluid properties of the simulant fluids used during routine SAR evaluation meet the dielectric properties required KDB 865665.

IEEE 1528 Recipes

Frequency (MHz)	300	45	50	835		900		1450		18	00		19	00	1950	2000	21	00	2	450	3000
Recipe#	1	1	3	1	1	2	3	1	1	2	2	3	1	2	4	1	1	2	2	3	2
								Ing	redient	s (% by	weight)						•	•	•		
1, 2-Pro- panediol						64.81															
Bactericide	0.19	0.19	0.50	0.10	0.10		0.50													0.50	
Diacetin			48.90				49.20													49.45	
DGBE								45.41	47.00	13.84	44.92		44.94	13.84	45.00	50.00	50.00	7.99	7.99		7.99
HEC	0.98	0.96		1.00	1.00																
NaCl	5.95	3.95	1.70	1.45	1.48	0.79	1.10	0.67	0.36	0.35	0.18	0.64	0.18	0.35				0.16	0.16		0.16
Sucrose	55.32	56.32		57.00	56.50																
Triton X-100										30.45				30.45				19.97	19.97		19.97
Water	37.56	38.56	48.90	40.45	40.92	34.40	49.20	53.80	52.64	55.36	54.90	49.43	54.90	55.36	55.00	50.00	50.00	71.88	71.88	49.75	71.88
								Measu	red die	lectric p	aramet	ers									
ε̈́r	46.00	43.40	44.30	41.60	41.20	41.80	42.70	40.9	39.3	41.00	40.40	39.20	39.90	41.00	40.10	37.00	36.80	41.10	40.30	39.20	37.90
σ (S/m)	0.86	0.85	0.90	0.90	0.98	0.97	0.99	1.21	1.39	1.38	1.40	1.40	1.42	1.38	1.41	1.40	1.51	1.55	1.88	1.82	2.46
Temp (°C)	22	22	20	22	22	22	20	22	22	21	22	20	21	21	20	22	22	20	20	20	20
							Ta	arget die	electric	parame	ters (Ta	able 2)									
ε̈́r	45.30	43	.50	41.5		41.50		40.50				40	.00				39.	80	39	9.20	38.50
σ (S/m)	0.87	0.	87	0.9		0.97		1.20				1.	40				1.4	19	1	.80	2.40

NOTE – Multiple columns for any single frequency are optional recipe #, reference: 1 (Kanda et al. [B185]), 2 (Vigneras [B143]), 3 (Peyman and Gabriel [B119]), 4 (Fukunaga et al [B50])

The dielectric properties of the tissue simulant liquids used for the SAR testing at TÜV SÜD Product Service are as follows:-

Fluid Type and Frequency	Relative Permittivity εR (ε') Target	Relative Permittivity εR (ε') Measured	Conductivity σ Target	Conductivity σ Measured
2450 MHz Head	39.2	39.30	1.80	1.789
2450MHz Body	52.7	51.26	1.95	1.972
5200MHz Head	36.0	34.92	4.66	4.539
5200MHz Body	49.0	48.95	5.30	5.048
5500MHz Head	35.6	34.09	4.96	4.872
5500MHz Body	48.6	47.99	5.65	5.488

3.4 TEST CONDITIONS

3.4.1 Test Laboratory Conditions

Ambient temperature: Within +15°C to +35°C.

The actual temperature during the testing ranged from 23.4°C to 23.5°C. The actual humidity during the testing ranged from 32.5% to 23.4% RH.

3.4.2 Test Fluid Temperature Range

Frequency	Body / Head Fluid	Min Temperature °C	Max Temperature °C
2450MHz	Head	23.2	23.2
2450MHz	Body	23.1	23.1
5200MHz	Head	22.7	22.7
5200MHz	Body	22.8	22.9
5500MHz	Head	22.8	22.8
5500MHz	Body	23.0	23.0

3.4.3 SAR Drift

The SAR Drift was within acceptable limits during scans. The maximum SAR Drift, drift due to the handset electronics, was recorded as 5.3% (0.950 dB) for head and 9.1% (1.916 dB) for body. The measurement uncertainty budget for this assessment includes the maximum SAR Drift figures for Head and/or Body as applicable.

3.5 MEASUREMENT UNCERTAINTY

Head SAR Measurements.

Source of Uncertainty	Description	Tolerance / Uncertainty ± %	Probability distribution	Div	c _i (1g)	Standard Uncertainty ± % (1g)	v _i or v _{eff}
Measurement System							
Probe calibration	7.2.1	8.73	N	1	1	8.73	∞
Isotropy	7.2.1.2	3.18	R	1.73	1	1.84	∞
Probe angle >30deg	additional	12.00	R	1.73	1	6.93	∞
Boundary effect	7.2.1.5	0.49	R	1.73	1	0.28	8
Linearity	7.2.1.3	1.00	R	1.73	1	0.58	8
Detection limits	7.2.1.4	0.00	R	1.73	1	0.00	8
Readout electronics	7.2.1.6	0.30	N	1	1	0.30	∞
Response time	7.2.1.7	0.00	R	1.73	1	0.00	∞
Integration time (equiv.)	7.2.1.8	1.38	R	1.73	1	0.80	∞
RF ambient conditions	7.2.3.6	3.00	R	1.73	1	1.73	8
Probe positioner mech. restrictions	7.2.2.1	5.35	R	1.73	1	3.09	8
Probe positioning with respect to phantom shell	7.2.2.3	5.00	R	1.73	1	2.89	8
Post-processing	7.2.4	7.00	R	1.73	1	4.04	8
Test sample related							
Test sample positioning	7.2.2.4	1.50	R	1.73	1	0.87	8
Device holder uncertainty	7.2.2.4.2	1.73	R	1.73	1	1.00	8
Drift of output power	7.2.3.4	5.3	R	1.73	1	3.06	8
Phantom and set-up							
Phantom uncertainty (shape and thickness tolerances)	7.2.2.2	2.01	R	1.73	1	1.16	8
Liquid conductivity (target)	7.2.3.3	5.00	R	1.73	0.64	1.85	8
Liquid conductivity (meas.)	7.2.3.3	5.00	N	1	0.64	3.20	8
Liquid permittivity (target)	7.2.3.4	5.00	R	1.73	0.6	1.73	8
Liquid permittivity (meas.)	7.2.3.4	3.00	N	1	0.6	1.80	8
Combined standard uncertainty			RSS			10.67	
Expanded uncertainty (95% confidence interval	al)		K=2			21.34	

Body SAR Measurements.

Source of Uncertainty	Description	Tolerance / Uncertainty ± %	Probability distribution	Div	c _i (1g)	Standard Uncertainty ± % (1g)	V _i or V _{eff}
Measurement System							
Probe calibration	7.2.1	8.73	N	1	1	8.73	8
Isotropy	7.2.1.2	3.18	R	1.73	1	1.84	8
Boundary effect	7.2.1.5	0.49	R	1.73	1	0.28	8
Linearity	7.2.1.3	1.00	R	1.73	1	0.58	∞
Detection limits	7.2.1.4	0.00	R	1.73	1	0.00	∞
Readout electronics	7.2.1.6	0.30	N	1	1	0.30	∞
Response time	7.2.1.7	0.00	R	1.73	1	0.00	∞
Integration time (equiv.)	7.2.1.8	1.38	R	1.73	1	0.80	8
RF ambient conditions	7.2.3.6	3.00	R	1.73	1	1.73	∞
Probe positioner mech. restrictions	7.2.2.1	0.60	R	1.73	1	0.35	8
Probe positioning with respect to phantom shell	7.2.2.3	2.00	R	1.73	1	1.15	8
Post-processing	7.2.4	7.00	R	1.73	1	4.04	8
Test sample related							
Test sample positioning	7.2.2.4	1.50	R	1.73	1	0.87	8
Device holder uncertainty	7.2.2.4.2	1.73	R	1.73	1	1.00	8
Drift of output power	7.2.3.4	9.1	R	1.73	1	5.25	8
Phantom and set-up							
Phantom uncertainty (shape and thickness tolerances)	7.2.2.2	2.01	R	1.73	1	1.16	8
Liquid conductivity (target)	7.2.3.3	5.00	R	1.73	0.64	1.85	8
Liquid conductivity (meas.)	7.2.3.3	5.00	N	1	0.64	3.20	8
Liquid permittivity (target)	7.2.3.4	5.00	R	1.73	0.6	1.73	8
Liquid permittivity (meas.)	7.2.3.4	3.00	N	1	0.6	1.80	8
Combined standard uncertainty			RSS			11.28	
Expanded uncertainty (95% confidence interval			K=2			23.47	

SECTION 4

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

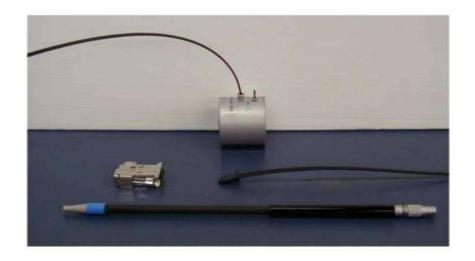
Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service

© 2014 TÜV SÜD Product Service

ANNEX A

PROBE CALIBRATION REPORT


IMMERSIBLE SAR PROBE

CALIBRATION REPORT

Part Number: IXP - 050

S/N 0204

April 2013

Indexsar Limited Oakfield House Cudworth Lane Newdigate Surrey RH5 5BG

Tel: +44 (0) 1306 632 870 Fax: +44 (0) 1306 631 834 e-mail: <u>enquiries@indexsar.com</u>

Reproduction of this report is authorized by Indexsar Ltd provided the report is reproduced in its entirety

Page 1 of 23

Indexsar Limited Oakfield House Cudworth Lane Newdigate Surrey RH5 5BG

Tel: +44 (0) 1306 632 870 Fax: +44 (0) 1306 631 834 e-mail: <u>enquiries@indexsar.com</u>

Calibration Certificate 1304/0204 Date of Issue: 23rd April 2013 Immersible SAR Probe

Туре:	IXP-050	
Manufacturer:	IndexSAR, UK	
Serial Number:	0204	
Place of Calibration:	IndexSAR, UK	
Date of Receipt of Probe:	N/A	
Calibration Dates:	14 th January – 7 th Marc	ch 2013
Customer: IndexSAR Ltd hereby decla calibrated for conformity to 2, and FCC OET65 standard document. Where applicab	TUV Sud res that the IXP-050 Probe name the current versions of IEEE 15 is using the methods described le, the standards used in the ca	528, IEC 62209-1, IEC 62209 In this calibration
Customer: IndexSAR Ltd hereby decla calibrated for conformity to 2, and FCC OET65 standard	res that the IXP-050 Probe name the current versions of IEEE 15 s using the methods described le, the standards used in the ca	528, IEC 62209-1, IEC 62209 In this calibration

Page 2 of 23

INTRODUCTION

Straight probes can work on either SARA-C (to measure SAR values in flat phantoms containing Body tissue simulant fluid) or on SARA2 (where they can measure either in a flat phantom with Body fluid, or in a SAM phantom containing Head fluid).

This Report presents measured calibration data for a particular Indexsar SAR probe (S/N 0204) for use on SARA-C only. The calibration factors do not apply to, and will not give correct readings on, the IndexSAR SARA2 system.

Indexsar probes are characterised using procedures that, where applicable, follow the recommendations of IEC 62209-1 [Ref 1], IEEE 1528 [Ref 2], IEC 62209-2 [Ref 3] and FCC OET65 [Ref 4] standards. The procedures incorporate techniques for probe linearisation, isotropy assessment and determination of liquid factors (conversion factors). Calibrations are determined by comparing probe readings with analytical computations in canonical test geometries (waveguides) using normalised power inputs.

Each step of the calibration procedure and the equipment used is described in the sections below.

CALIBRATION PROCEDURE

1. Objectives

The calibration process comprises the following stages

- Determination of the channel sensitivity factors which optimise the probe's overall axial isotropy in 900MHz brain fluid
- Measure the incidental spherical isotropy using these derived channel sensitivity factors.
- 3) Since isotropy and channel sensitivity factors are frequency independent, these channel sensitivity factors can be applied to model the exponential decay of SAR in a waveguide fluid cell at each frequency of interest, and hence derive the liquid conversion factors at that frequency.

Probe output

The probe channel output signals are linearised in the manner set out in Refs [1] - [4]. The following equation is utilized for each channel:

$$U_{lin} = U_{ob} + U_{ob}^{2} / DCP$$
 (1)

where U_{lin} is the linearised signal, U_{olp} is the raw output signal in mV and DCP is the diode compression potential, also in mV.

Page 3 of 23

DCP is determined from fitting equation (1) to measurements of U_{lin} versus source feed power over the full dynamic range of the probe. The DCP is a characteristic of the Schottky diodes used as the sensors. For the IXP-020 probes with CW signals the DCP values are typically 100mV.

For this value of DCP, the typical linearity response of IXP-050 probes to CW and to GSM modulation is shown in Figure 7, along with departures of this same dataset from linearity.

In turn, measurements of E-field are determined using the following equation:

Here, "Air Factor" represents each channel's sensitivity, while "Liq Factor" represents the enhancement in signal level when the probe is immersed in tissue-simulant liquids at each frequency of interest.

3. Selecting channel sensitivity factors to optimise isotropic response

Within SARA-C, an L-probe's predominant mode of operation is with the tip pointing directly towards the source of radiation. Consequently, optimising the probe's response to boresight signals ("axial isotropy") is far more important than optimising its spherical isotropy (where the direction, as well as the polarisation angle, of the incoming radiation must be taken into account).

The setup for measuring the probe's axial isotropy is shown in Error!

Reference source not found. Since isotropy is frequency-independent, measurements are normally made at a frequency of 900MHz as lower frequencies are more tolerant of positional inaccuracies.

A 900MHz waveguide containing head-fluid simulant is selected. Like all waveguides used during probe calibration, this particular waveguide contains two distinct sections: an air-filled launcher section, and a liquid cell section, separated by a dielectric matching window designed to minimise reflections at the air-liquid interface.

The waveguide stands in an upright position and the liquid cell section is filled with 900MHz brain fluid to within 10 mm of the open end. The depth of liquid ensures there is negligible radiation from the waveguide open top and that the probe calibration is not influenced by reflections from nearby objects.

During the measurement, a TE_{in} mode is launched into the waveguide by means of an N-type-to-waveguide adapter. The probe is then lowered vertically into the liquid until the tip is exactly 10mm above the centre of the dielectric window. This particular separation ensures that the probe is operating in a part of the waveguide where boundary corrections are not necessary.

Care must also be taken that the probe tip is centred while rotating.

Page 4 of 23

The exact power applied to the input of the waveguide during this stage of the probe calibration is immaterial since only relative values are of interest while the probe rotates. However, the power must be sufficiently above the noise floor and free from drift.

The dedicated Indexsar calibration software rotates the probe in 10 degree steps about its axis, and at each position, an Indexsar 'Fast' amplifier samples the probe channels 500 times per second for 0.4 s. The raw $U_{\text{o/p}}$ data from each sample are packed into 10 bytes and transmitted back to the PC controller via an optical cable. U_{linx} , U_{liny} and U_{linz} are derived from the raw $U_{\text{o/p}}$ values and written to an Excel template.

Once data have been collected from a full probe rotation, the Air Factors are adjusted using a special Excel Solver routine to equalise the output from each channel and hence minimise the axial isotropy. This automated approach to optimisation removes the effect of human bias.

Figure 2 represents the output from each diode sensor as a function of probe rotation angle.

4. Measurement of Spherical Isotropy

As mentioned earlier, in SARA-C a straight probe is always positioned so as to be end-on to the incoming signal source. The probe's axial isotropy response is therefore far more important than its spherical isotropy, which is included here for completeness only.

The setup for assessing the probe's spherical isotropy is shown in Figure 1.

A box phantom containing 900MHz head fluid is irradiated by a tuned dipole, mounted to the side of the phantom on the SARA2 robot's seventh axis. During calibration, the spherical response is generated by rotating the probe about its axis in 15 degree steps and changing the dipole polarisation in 10 degree steps.

The relative channel sensitivities are fixed by the earlier measurement of, and optimisation for, axial isotropy. The effect on spherical isotropy is shown in Figure 3.

5. Determination of Conversion ("Liquid") Factors at each frequency of interest

A lookup table of conversion factors for a probe allows a SAR value to be derived at the measured frequencies, and for either brain or body fluid-simulant.

The method by which the conversion factors are assessed is based on the comparison between measured and analytical rates of decay of SAR with height above a dielectric window. This way, not only can the conversion factors for that frequency/fluid combination be determined, but an allowance can also be made for the scale and range of boundary layer effects.

The theoretical relationship between the SAR at the cross-sectional centre of the lossy waveguide as a function of the longitudinal distance (z) from the

Page 5 of 23

dielectric separator is given by Equation 4:

$$SAR(z) = \frac{4(P_f - P_b)}{\rho ab\delta} e^{-2\pi/\delta}$$
(4)

Here, the density ρ is conventionally assumed to be 1000 kg/m³, ab is the cross-sectional area of the waveguide, and P_f and P_b are the forward and reflected power inside the lossless section of the waveguide, respectively. The penetration depth δ (which is the reciprocal of the waveguide-mode attenuation coefficient) is a property of the lossy liquid and is given by Equation (5).

$$\delta = \left[\text{Re} \left\{ \sqrt{(\pi/\alpha)^2 + j\omega \mu_o (\sigma + j\omega \varepsilon_o \varepsilon_o)} \right\} \right]^{-1}$$
(5)

where σ is the conductivity of the tissue-simulant liquid in S/m, ε_r is its relative permittivity, and ω is the radial frequency (rad/s). Values for σ and ε_r are obtained prior to each waveguide test using an Indexsar DiLine measurement kit, which uses the TEM method as recommended in [2]. σ and ε_r are both temperature- and fluid-dependent, so are best measured using a sample of the tissue-simulant fluid immediately prior to the actual calibration.

Wherever possible, all DiLine and calibration measurements should be made in the open laboratory at 22 ± 2.0 °C; if this is not possible, the values of σ and ε , should reflect the actual temperature. Values employed for calibration are listed in the tables below.

By ensuring the liquid height in the waveguide is at least three penetration depths, reflections at the upper surface of the liquid are negligible. The power absorbed in the liquid is therefore determined solely from the waveguide forward and reflected power.

Different waveguides are used for 700MHz, 835/900MHz, 1450MHz, 1800/1900MHz, 2100/2450/2600MHz and 5200/5800MHz measurements. Table A.1 of [1] can be used for designing calibration waveguides with a return loss greater than 20 dB at the most important frequencies used for personal wireless communications, and better than 15dB for frequencies greater than 5GHz. Values for the penetration depth for these specific fixtures and tissue-simulating mixtures are also listed in Table A.1.

According to [1], this calibration technique provides excellent accuracy, with standard uncertainty of less than 3.6% depending on the frequency and medium. The calibration itself is reduced to power measurements traceable to a standard calibration procedure. The practical limitation to the frequency band of 800 to 5800 MHz because of the waveguide size is not severe in the context of compliance testing.

During calibration, the probe is lowered carefully until it is just touching the cross-sectional centre of the dielectric window. 200 samples are then taken and written to an Excel template file before moving the probe vertically

Page 6 of 23

upwards. This cycle is repeated 150 times. The vertical separation between readings is determined from practical considerations of the expected SAR decay rate, and range from 0.2mm steps at low frequency, through 0.1mm at 2450MHz, down to 0.05mm at 5GHz.

Once the data collection is complete, a Solver routine is run which optimises the measured-theoretical fit by varying the conversion factor, and the boundary correction size and range.

For calibrations at 450MHz, where waveguide calibrations become unfeasible, a full 3D SAR scan over a tuned dipole is performed, and the conversion factor adjusted to make the measured 1g and 10g volume-averaged SAR values agree with published targets.

CALIBRATION FACTORS MEASURED FOR PROBE S/N 0204

The probe was calibrated at 450, 835, 900, 1800, 2100, 2450 and 2600MHz in liquid samples representing brain and body liquid at these frequencies.

The calibration was for CW signals only, and the axis of the probe was parallel to the direction of propagation of the incident field i.e. end-on to the incident radiation. The axial isotropy of the probe was measured by rotating the probe about its axis in 10 degree steps through 360 degrees in this orientation.

The reference point for the calibration is in the centre of the probe's crosssection at a distance of 2.7 mm from the probe tip in the direction of the probe amplifier. A value of 2.7 mm should be used for the tip to sensor offset distance in the software. The distance of 2.7mm for assembled probes has been confirmed by taking X-ray images of the probe tips (see Figure 8).

It is important that the diode compression point and air factors used in the software are the same as those quoted in the results tables, as these are used to convert the diode output voltages to a SAR value.

CALIBRATION EQUIPMENT

The table on page 20 indicates the calibration status of all test equipment used during probe calibration.

Page 7 of 23

MEASUREMENT UNCERTAINTIES

A complete measurement uncertainty analysis for the SARA-C measurement system has been published in Reference [6]. Table 17 from that document is re-created below, and lists the uncertainty factors associated just with the calibration of probes.

Source of uncertainty	Uncertainty value ± %	Probability distribution	Divisor	C _i	Standard uncertainty ui ± %	V _i Of
Forward power	3.92	N	1.00	1	3.92	***
Reflected power	4.09	N	1.00	1	4.09	90
Liquid conductivity	1.308	N	1.00	1	1.31	mb
Liquid permittivity	1.271	N	1.00	1	1.27	***
Field homgeneity	3.0	R	1.73	1	1.73	**
Probe positioning	0.22	R	1.73	1	0.13	-
Field probe linearity	0.2	R	1.73	1	0.12	***
Combined standard uncertainty		RSS			6.20	

At the 95% confidence level, therefore, the expanded uncertainty is $\pm 12.4\%$

SUMMARY OF CAL FACTORS FOR PROBE IXP-020 S/N 0204

		Channel Sen mise Axial Is		
	X	Υ	Z	
Air Factors	91.78	66.90	81.32	$(V/m)^2/mV$
DCPs	100	100	100	mV

Measured Isotropy	(+/-) dB
Axial Isotropy	0.02
Spherical Isotropy	0.66

Additional Information		
Sensor offset (mm)	2.7	
Elbow - Tip dimension (mm) 0.0		

		Head Fluid			Body Fluid		
requency" (MHz)	SAR Conv Factor	Boundary Correction f(0)	Boundary Correction d(mm)	SAR Conv Factor	Boundary Correction f(0)	Boundary Correction d(mm)	Notes
450	0.317	0	.1	0.317	0	1	3
700	-			1.0	+	E.	**
835	0.310	1.69	1.08	0.327	0.59	1.91	1,2
900	0.313	0.80	1.52	0.327	1.17	1.31	1,2
1450	-	-	0.0		-		
1800	0.357	0.77	1.68	0.381	0.64	2.07	1.2
1900	0.366	0.71	1.83	0.388	0.64	2.12	1,2
2100	0.397	0.70	1,96	0.413	0.78	1.86	1.2
2450	0.397	1.09	1.44	0.440	1.09	1.51	1,2
2600	0.394	1.26	1.35	0.449	1.17	1.46	1.2

The vand frequency of SARA-C probe calibrations are ±100MHz (F<300MHz) and ±200MHz (F>300MHz).

Page 10 of 23

PROBE SPECIFICATIONS

Indexsar probe 0204, along with its calibration, is compared with BSEN 62209-1 and IEEE standards recommendations (Refs [1] and [2]) in the Tables below. A listing of relevant specifications is contained in the tables below:

Dimensions	S/N 0204	BSEN [1]	IEEE [2]
Overall length (mm)	350	77.00	100,00
Tip length (mm)	10		
Body diameter (mm)	12		
Tip diameter (mm)	5.2	8	8
Distance from probe tip to dipole centers (mm)	2.7		

Typical Dynamic range	S/N 0204	BSEN [1]	IEEE [2]
Minimum (W/kg)	0.01	<0.02	0.01
Maximum (W/kg) N.B. only measured to > 100 W/kg on representative probes	>100	>100	100

Isotropy (measured at 900MHz)	S/N 0204	BSEN [1]	IEEE [2]
Axial rotation with probe normal to source (+/- dB)	0.02	0.5	0.25
Spherical isotropy covering all orientations to source (+/- dB)	0.66	N/A	N/A

NB Isotropy is frequency independent

Construction	Each probe contains three orthogonal dipole sensors arranged on a triangular prism core, protected against static charges by built-in shielding, and covered at the tip by PEEK cylindrical enclosure material. No adhesives are used in the immersed section. Outer case materials are PEEK and heat-shrink sleeving.
Chemical resistance	Tested to be resistant to TWEEN20 and sugar/salt-based simulant liquids but probes should be removed, cleaned and dried when not in use.
	NOT recommended for use with glycol or soluble oil-based liquids.

Page 11 of 23

REFERENCES

References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.

For a specific reference, subsequent revisions do not apply.

For a non-specific reference, the latest version applies.

[1] IEC 62209-1.

Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices — Human models, instrumentation, and procedures — Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

[2] IEEE 1528

Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

[3] IEC 62209-2

Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices – Human models, Instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)

[4] FCC OET65

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields

- [5] Indexsar Report IXS-0300, October 2007.Measurement uncertainties for the SARA2 system assessed against the recommendations of BS EN 62209-1:2006
- [6] SARA-C SAR Testing System: Measurement Uncertainty, v1.0.3. October 2011.

Page 12 of 23

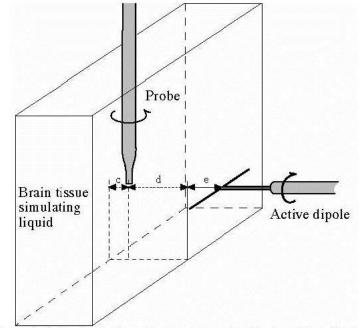


Figure 1. Spherical isotropy jig showing probe, dipole and box filled with simulated brain liquid (see Ref [2], Section A.5.2.1)

Page 13 of 23

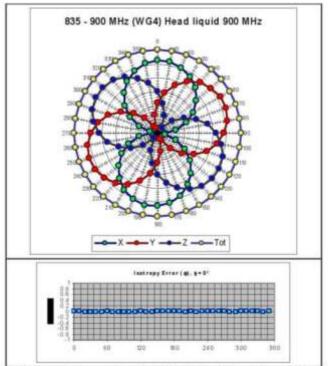


Figure 2. The axial isotropy of probe S/N 0204 obtained by rotating the probe in a liquid-filled waveguide at 900 MHz. (NB Axial Isotropy is frequency independent)

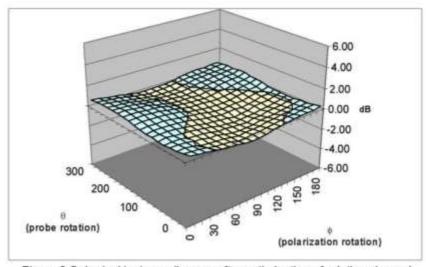


Figure 3 Spherical isotropy diagram after optimisation of relative channel sensitivities for axial isotropy

Page 14 of 23

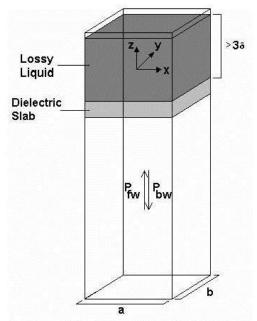


Figure 4. Geometry used for waveguide calibration (after Ref [2]. Section A.3.2.2)

Page 15 of 23

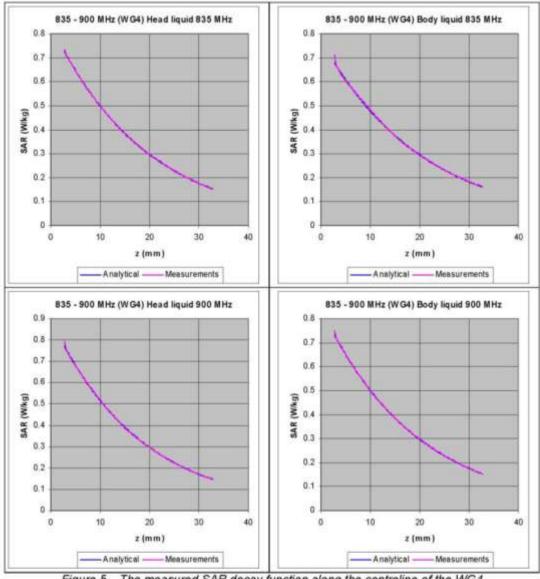
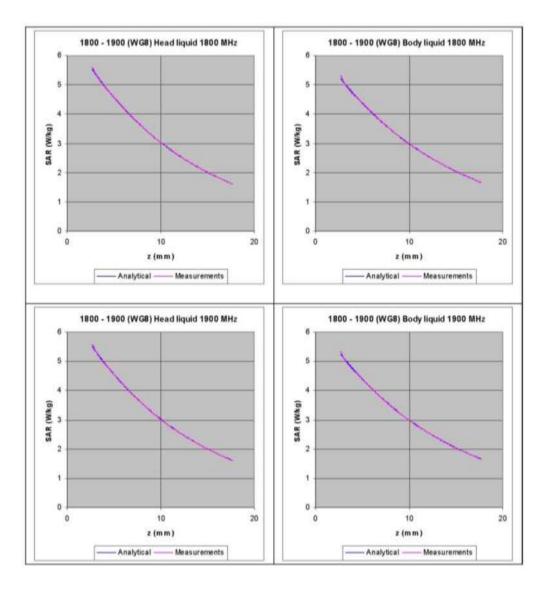
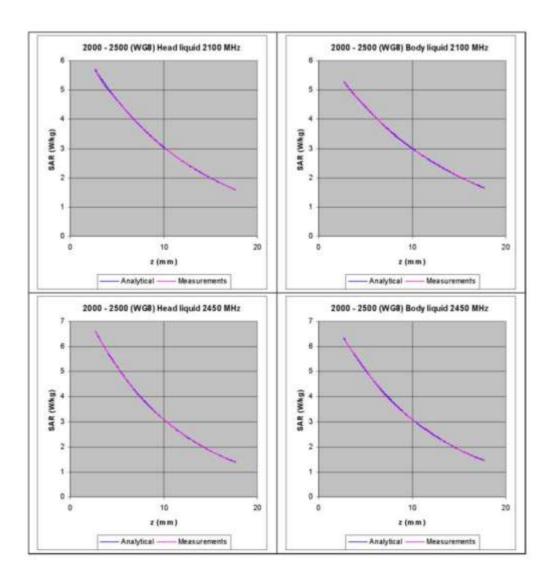



Figure 5. The measured SAR decay function along the centreline of the WG4 waveguide with conversion factors adjusted to fit to the theoretical function for the particular dimension, frequency, power and liquid properties employed.


Page 16 of 23

Page 17 of 23

Page 18 of 23

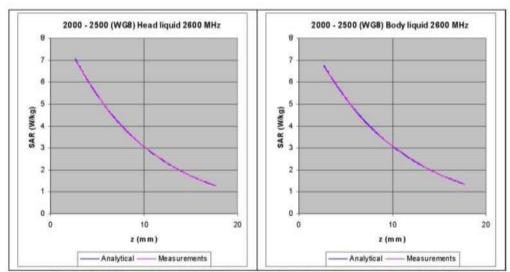
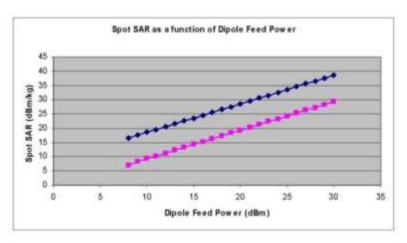



Figure 6. The measured SAR decay function along the centreline of the R22 waveguide with conversion factors adjusted to fit to the theoretical function for the particular dimension, frequency, power and liquid properties employed.

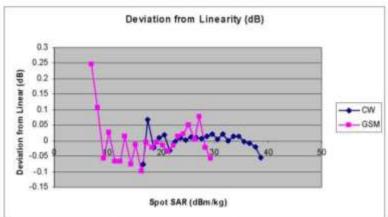


Figure 7: The typical linearity response of IXP-050 probes to both CW (blue) and GSM (pink) modulation in close proximity to a source dipole. The top diagram shows the SAR reading as a function of dipole feed power, with GSM modulation being approx a factor of 8 (ie 9dB) lower than CW. The lower diagram shows the departure from linearity of the same two datasets.

Page 20 of 23



Figure 8: X-ray positive image of 5mm probes

Page 21 of 23

Table indicating the dielectric parameters of the liquids used for calibrations at each frequency

(MHz)	Туре	Relative Permittivity	Conductivity (S/m)	Relative Permittivity	Conductivity (Sim)	Relative Permittivity	Conductivity	Relative Permittivity	Conductivity
450		44.33	0.835	43.5	0.87	1.9	-4.0	Pass	Pass
836		42.25	0.900	41.5	0.90	1.8	0.0	Pass	Pass
900		41.45	0.962	41.5	0.97	-0.1	-0.8	Pess	Pess
1800		39.92	1.396	40.0	1,40	-0.2	-0.4	Pass	Pass.
1900	Head	39.67	1.400	40.0	1.40	-0.8	0.0	Pass	Pass
2100		40.96	1,500	39.8	1.49	2.9	0.7	Pase	Pass
2450		39.81	1.821	39.2	1.80	1.6	1.2	Pass	Pass
2600		39.30	1.971	39.0	1.96	0.8	0.6	Pass	Pass
450		57.53	0.902	56.7	0.94	1,5	-3.7	Pasa	Pass
835		55.14	0.958	55.2	0.97	-0.1	-1.2	Pase	Pose
900		54.53	1.023	- 55	1.05	-0.9	-2.6	Pass	Pass
1800	Body	53.07	1.521	53.3	1.52	-0.4	0.1	Pass	Pass
1900		52.85	1.532	53.3	1.52	-0.8	0.9	Pass	Pass
2100		53.92	1.568	53.2	1.62	1.4	-3.2	Pess	Pass
2450	1 1	52.90	1.957	52.7	1.95	0.4	0.4	Pass	Pass
2900		52,47	2,132	52.5	2.16	-0.1	-1.3	Pose	Pass

Page 22 of 23

IMMERSIBLE SAR PROBE

CALIBRATION REPORT

Part Number: IXP-020

S/N L0006

April 2013

Indexsar Limited Oakfield House Cudworth Lane Newdigate Surrey RH5 5BG

Tel: +44 (0) 1306 632 870 Fax: +44 (0) 1306 631 834 e-mail: <u>enquiries@indexsar.com</u>

Reproduction of this report is authorized by Indexsar Ltd provided the report is reproduced in its entirety

Indexsar Limited Oakfield House Cudworth Lane Newdigate

Surrey RH5 5BG Tel: +44 (0) 1306 632 870 Fax: +44 (0) 1306 631 834 e-mail: enquiries@indexsar.com

Calibration Certificate 1304/L0006 Date of Issue: 24 April 2013 Immersible SAR Probe

Type:	IXP-020
Manufacturer:	IndexSAR, UK
Serial Number:	L0006
Place of Calibration:	IndexSAR, UK
Date of Receipt of Probe:	N/A
Calibration Dates:	15 March – 23 April 2013
calibrated for conformity to 2, and FCC OET65 standard	Is using the methods described in this calibration le, the standards used in the calibration process are
IndexSAR Ltd hereby decla calibrated for conformity to 2, and FCC OET65 standard document. Where applicab	res that the IXP-050 Probe named above has been the current versions of IEEE 1528, IEC 62209-1, IEC 62209 is using the methods described in this calibration le, the standards used in the calibration process are

Page 2 of 21

INTRODUCTION

L-shaped probes are designed solely for use on the SARA-C SAR-measuring system. They are not designed to work on SARA2.

This Report presents measured calibration data for a particular Indexsar SAR probe (S/N L0006) only and describes the procedures used for characterisation and calibration.

Indexsar probes are characterised using procedures that, where applicable, follow the recommendations of IEC 62209-1 [Ref 1], IEEE 1528 [Ref 2], IEC 62209-2 [Ref 3] and FCC OET65 [Ref 4] standards. The procedures incorporate techniques for probe linearisation, isotropy assessment and determination of liquid factors (conversion factors). Calibrations are determined by comparing probe readings with analytical computations in canonical test geometries (waveguides) using normalised power inputs.

Each step of the calibration procedure and the equipment used is described in the sections below.

CALIBRATION PROCEDURE

1. Objectives

The calibration process comprises the following stages:-

- Determination of the relative channel sensitivity factors which optimise the probe's overall axial isotropy in 900MHz brain fluid.
- Measure the incidental spherical isotropy using these derived channel sensitivity factors.
- Since isotropy and channel sensitivity factors are frequency independent, these channel sensitivity factors can be applied to model the exponential decay of SAR in a waveguide fluid cell at each frequency of interest, and hence derive the liquid conversion factors at that frequency.

2. Probe output

The probe channel output signals are linearised in the manner set out in Refs [1] - [4]. The following equation is utilized for each channel:

$$U_{lin} = U_{ob} + U_{ob}^{2} / DCP$$
 (1)

where U_{lin} is the linearised signal, $U_{o/p}$ is the raw output signal in mV and DCP is the diode compression potential, also in mV.

DCP is determined from fitting equation (1) to measurements of U_{lin} versus source feed power over the full dynamic range of the probe. The DCP is a

Page 3 of 21

characteristic of the Schottky diodes used as the sensors. For the IXP-020 probes with CW signals the DCP values are typically 100mV.

For this value of DCP, the typical linearity response of IXP-050 probes to CW and to GSM modulation is shown in Figure 7, along with departures of this same dataset from linearity.

In turn, measurements of E-field are determined using the following equation:

$$E_{liq}^{2}$$
 (V/m) = U_{linx} * Air Factor_x* Liq Factor_x
+ U_{liny} * Air Factor_y* Liq Factor_y
+ U_{linz} * Air Factor_z* Liq Factor_z (3)

Here, "Air Factor" represents each channel's sensitivity, while "Liq Factor" represents the enhancement in signal level when the probe is immersed in tissue-simulant liquids at each frequency of interest.

Selecting channel sensitivity factors to optimise isotropic response

Within SARA-C, an L-probe's predominant mode of operation is with the tip pointing directly towards the source of radiation. Consequently, optimising the probe's response to boresight signals ("axial isotropy") is far more important than optimising its spherical isotropy (where the direction, as well as the polarisation angle, of the incoming radiation must be taken into account).

The setup for measuring the probe's axial isotropy is shown in Figure 1, and this allows spherical isotropy to be measured at the same time. Moreover, since isotropy is frequency-independent, measurements are normally made at a frequency of 900MHz as lower frequencies are more tolerant of positional inaccuracies.

A box phantom containing 900MHz head fluid is irradiated by a tuned dipole, mounted at the side of the phantom on the SARA2 robot's seventh axis. Note: although the probe is used on SARA-C, it is actually calibrated on SARA2. The dipole is connected to a signal generator and amplifier via a directional coupler and power meter. The absolute power level is not important as long as it is stable, with stability being monitored using the coupler and power meter.

During calibration, the spherical isotropy response is measured by changing the orientation of the probe sensors with respect to the dipole, while keeping the long shaft of the probe vertical and the probe sensors at precisely the same position in space. Correctly aligning the probe sensors in this way is essential to an accurate measurement of isotropy.

Initially, the short shaft of the probe is positioned parallel to the phantom wall with its sensors at the same vertical height as the centre of the source dipole and the line joining sensors to dipole perpendicular to the phantom wall (see Figure 1). In this position, the probe is said to be at a position angle of -90 degrees. During the scan, the probe is rotated from -90 to +90 degrees in 10 degree steps, and at each position angle, the dipole polarisation changes

Page 4 of 21

Here, the density ρ is conventionally assumed to be 1000 kg/m³, ab is the cross-sectional area of the waveguide, and P_f and P_b are the forward and reflected power inside the lossless section of the waveguide, respectively. The penetration depth δ (which is the reciprocal of the waveguide-mode attenuation coefficient) is a property of the lossy liquid and is given by Equation (5).

$$\delta = \left[\operatorname{Re} \left\{ \sqrt{(\pi / a)^2 + j \omega \mu_{\nu} (\sigma + j \omega \varepsilon_{\nu} \varepsilon_{\nu})} \right\} \right]^{-1}$$
(5)

where σ is the conductivity of the tissue-simulant liquid in S/m, ε , is its relative permittivity, and ω is the radial frequency (rad/s). Values for σ and ε , are obtained prior to each waveguide test using an Indexsar DiLine measurement kit, which uses the TEM method as recommended in [2]. σ and ε , are both temperature- and fluid-dependent, so are best measured using a sample of the tissue-simulant fluid immediately prior to the actual calibration.

Wherever possible, all DiLine and calibration measurements should be made in the open laboratory at $22 \pm 2.0^{\circ}$ C; if this is not possible, the values of σ and ε_r should reflect the actual temperature. Values employed for calibration are listed in the tables below.

Dedicated waveguides have been designed to accommodate the geometry of an L-shaped probe as it traces out the decay profile. Traditional straight probes measure the decay rate of a vertical-travelling signal above a horizontal dielectric window; for the L-shaped probes, the geometry has had to be changed, and the waveguide now lies horizontally and instead of being open at the end, is capped with a metal plate (see Figure 2). A slot is cut in the top ("b") face through which tissue simulant fluid can be poured, and through which the probe can enter the guide and be offered up to the now vertical waveguide window.

During calibration, the probe tip is moved carefully towards the dielectric window until the flat face of the tip is just touching the exact centre of the face. 200 samples are then taken and written to an Excel template file before moving the probe into the liquid away from the waveguide window. This cycle is repeated 150 times at each separation. The spatial separation between readings is determined from practical considerations of the expected SAR decay rate, and range from 0.2mm steps at low frequency, through 0.1mm at 2450MHz, down to 0.05mm at 5GHz.

Once the data collection is complete, a Solver routine is run which optimises the measured-theoretical fit by varying the conversion factor, and the boundary correction size and range.

By ensuring the waveguide cap is at least three penetration depths, reflections are negligible. The power absorbed in the liquid is therefore determined solely from the waveguide forward and reflected power.

Page 6 of 21

Different waveguides are used for 700MHz, 835/900MHz, 1450MHz, 1800/1900MHz, 2100/2450/2600MHz and 5200/5800MHz measurements. Table A.1 of [1] can be used for designing calibration waveguides with a return loss greater than 20 dB at the most important frequencies used for personal wireless communications, and better than 15dB for frequencies greater than 5GHz. Values for the penetration depth for these specific fixtures and tissue-simulating mixtures are also listed in Table A.1.

According to [1], this calibration technique provides excellent accuracy, with standard uncertainty of less than 3.6% depending on the frequency and medium. The calibration itself is reduced to power measurements traceable to a standard calibration procedure. The practical limitation to the frequency band of 800 to 5800 MHz because of the waveguide size is not severe in the context of compliance testing.

For calibrations at 450MHz, where waveguide calibrations become unfeasible, a full 3D SAR scan over a tuned dipole is performed, and the conversion factor adjusted to make the measured 1g and 10g volume-averaged SAR values agree with published targets.

CALIBRATION FACTORS MEASURED FOR PROBE S/N L0006

The probe was calibrated at 450, 835, 900, 1800, 1900, 2100, 2450 and 2600 MHz in liquid samples representing brain liquid at these frequencies.

The calibration was for CW signals only, and the horizontal axis of the probe was parallel to the direction of propagation of the incident field i.e. end-on to the incident radiation.

The reference point for the calibration is in the centre of the probe's crosssection at a distance of 2.7 mm from the probe tip in the direction of the probe amplifier. A value of 2.7 mm should be used for the tip to sensor offset distance in the software. The distance of 2.7mm for assembled probes has been confirmed by taking X-ray images of the probe tips (see Figure 9).

It is important that the diode compression point and air factors used in the software are the same as those quoted in the results tables, as these are used to convert the diode output voltages to a SAR value.

CALIBRATION EQUIPMENT

The Table on page 21 indicates the calibration status of all test equipment used during probe calibration.

Page 7 of 21

MEASUREMENT UNCERTAINTIES

A complete measurement uncertainty analysis for the SARA-C measurement system has been published in Reference [3]. Table 17 from that document is re-created below, and lists the uncertainty factors associated just with the calibration of probes.

Source of uncertainty	Uncertainty value ± %	Probability distribution	Divisor	C _i	Standard uncertainty ui ± %	V _i or V _{eff}
Forward power	3.92	N	1.00	1	3.92	+40
Reflected power	4.09	N	1.00	- 1	4.09	- 44
Liquid conductivity	1.308	N	1.00	- 1	1:31	+0
Liquid permittivity	1.271	N	1.00	- 1	1.27	
Field homgeneity	3.0	R	1.73	- 1	1.73	
Probe positioning	0.22	R	1.73	1	0.13	- 44
Field probe linearity	0.2	R	1.73	- 1	0.12	- 102
Combined standard uncertainty		RSS			6.20	

At the 95% confidence level, therefore, the expanded uncertainty is 12.4%

SUMMARY OF CAL FACTORS FOR PROBE IXP-020 S/N L0006

		Channel Sen imise Axial Is		
ARTON AND	X	Υ	Ż	1,000,000,000,000
Air Factors	72.81	90.02	77.16	(V/m) ² /mV
CW DCPs	100	100	100	mV

Measured Isotropy at 900MHz	Probe orientation range relative to dipole	(+/-) dB	
Axial Isotropy	0°(end-on to dipole)	0.01	
	±20°	0.17	
Cubasian Lastrania	±30°	0.28	
Spherical Isotropy	±60°	0.58	
	±90°	0.63	

Frequency* (MHz)	SAR Conv Factor	Boundary Correction f(0)	Boundary Correction d(mm)	Notes			
450	0.298	0.0	1.0	3			
835	0.304	0.8	1.5	1,2			
900	0.305	1.0	1.4	1,2			
1800	0.373	0.9	1.5	1,2			
1900	0.382	0.5	2.3	1,2			
2100	0.396	0.6	2.0	1,2			
2450	0.423	0.9	1.5	1,2			
2600	0.427	1.1	1.4	1,2			
Notes	200		_				
1)	Calibrations	done at 22°C +	-/-2°C				
2)	Waveguide o	alibration	(Accessed 22)				
3)	By validation						

Physical Information
Sensor offset (mm) 2.7
Elbow – Tip dimension (mm) 84.55

PROBE SPECIFICATIONS

Indexsar probe L0006, along with its calibration, is compared with BSEN 62209-1 and IEEE standards recommendations (Refs [1] and [2]) in the Tables below. A listing of relevant specifications is contained in the tables below:

Dimensions	S/N L0006	BSEN [1]	IEEE [2]
Vertical shaft (mm)	510		
Horizontal shaft (mm)	90	-	
Tip length (mm)	10		
Body diameter (mm)	12		
Tip diameter (mm)	5.2	8	8
Distance from probe tip to dipole centers (mm)	2.7		

Dynamic range	S/N L0006	BSEN [1]	IEEE [2]
Minimum (W/kg)	0.01	<0.02	0.01
Maximum (W/kg) N.B. only measured to > 100 W/kg on representative probes	>100	>100	100

Isotropy (me	easured at 900MHz)	S/N L0006	BSEN [1]	IEEE [2]	
Axial	Probe at 0°		0.5	0.25	
	Probe at ±20°	0.17			
Cabacical	Probe at ±30°	0.28	N/A	NUA	
Spherical	Probe at ±60°	0.58	N/A	N/A	
	Probe at ±90°	0.63			

Construction	Each probe contains three orthogonal dipole sensors arranged on a triangular prism core, protected against static charges by built-in shielding, and covered at the tip by PEEK cylindrical enclosure material. Outer case materials are PEEK and heat-shrink sleeving.
Chemical resistance	Tested to be resistant to TWEEN and sugar/salt-based simulant liquids but probes should be removed, cleaned and dried when not in use. NOT recommended for use with glycol
	or soluble oil-based liquids.

REFERENCES

References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.

For a specific reference, subsequent revisions do not apply.

For a non-specific reference, the latest version applies.

[1] IEC 62209-1.

Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices — Human models, instrumentation, and procedures — Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

[2] IEEE 1528

Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

[3] IEC 62209-2

Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices – Human models, Instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)

[4] FCC OET65

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields

- Indexsar Report IXS-0300, October 2007.
 Measurement uncertainties for the SARA2 system assessed against the recommendations of BS EN 62209-1:2006
- [6] SARA-C SAR Testing System: Measurement Uncertainty, v1.0.3. October 2011.

Page 11 of 21

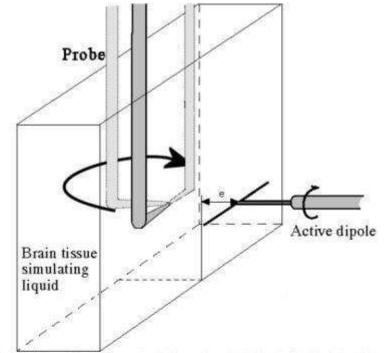


Figure 1 Isotropy jig showing probe, dipole and box filled with simulated brain liquid (see Ref [2], Section A.5.2.1)

Figure 2 Schematic showing the innovative design of slot in the waveguide termination

Page 12 of 21

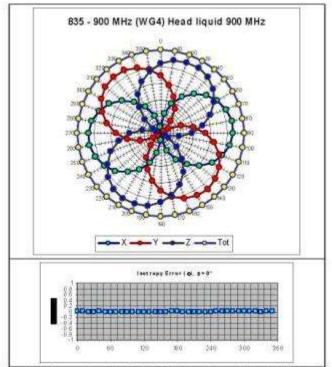


Figure 3 The axial isotropy of probe S/N L0006 obtained by rotating a 900MHz dipole with probe tip aligned with dipole boresight (NB Axial Isotropy is frequency independent)

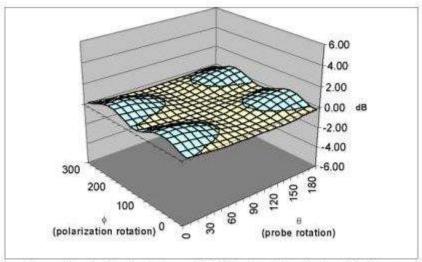


Figure 4 Residual Surface Isotropy at 900 MHz after optimisation for axial isotropy

Page 13 of 21

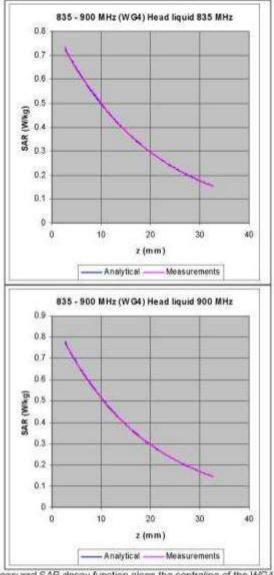
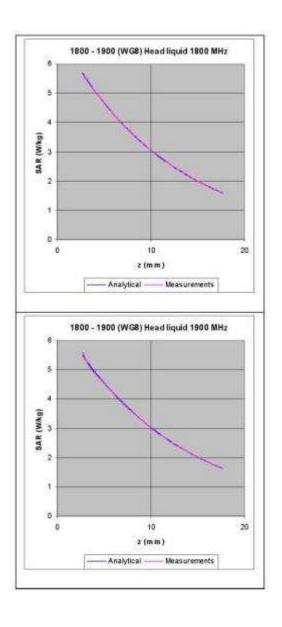
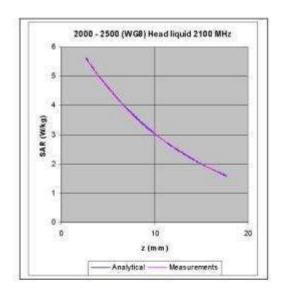



Figure 5 The measured SAR decay function along the centreline of the WG4 waveguide with conversion factors adjusted to fit to the theoretical function for the particular dimension, frequency, power and liquid properties employed.


Page 14 of 21

Page 15 of 21

Page 16 of 21

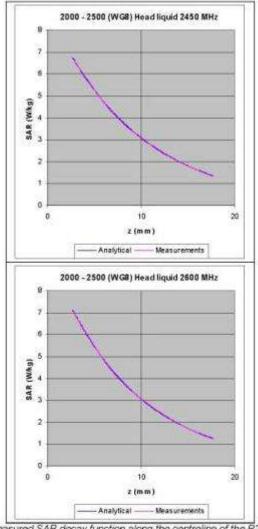
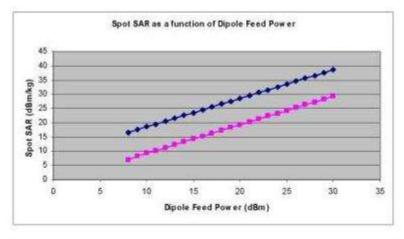



Figure 6: The measured SAR decay function along the centreline of the R22 waveguide with conversion factors adjusted to fit to the theoretical function for the particular dimension, frequency, power and liquid properties employed.

Page 17 of 21

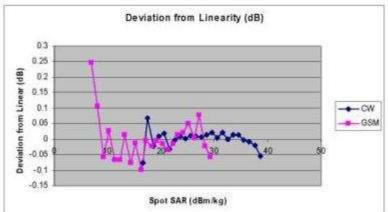


Figure 7: The typical linearity response of 5mm probes to both CW (blue) and GSM (pink) modulation in close proximity to a source dipole. The top diagram shows the SAR reading as a function of dipole feed power, with GSM modulation being approx a factor of of 8 (ie 9dB) lower than CW. The lower diagram shows the departure from linearity of the same two datasets.

Page 18 of 21

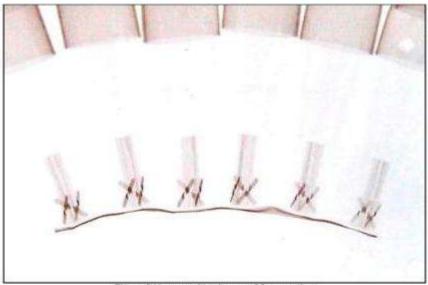


Figure 8 X-ray positive image of 5mm probes

Table indicating the dielectric parameters of the liquids used for calibrations at each frequency

Frequency (MHz)	Fluid Type	Measured		Ta	Target		% Deviation		dict
		Relative Permittivity	Conductivity (S/m)	Relative Permittivity	Conductivity (Sim)	Relative Permittivity	Conductivity	Relative Permittivity	Conductivity
450		44.142	0.845	43.5	0.87	1.5	-2.9	Pass	Pass
935		42.114	0.901	41.5	0.90	1.5	0.1	Pass	Pass
500		41.13	0.961	41.5	0.97	-0.9	-0.9	Pass	Pass
1800	100	39.719	1.428	40.0	1.40	-0.7	2.0	Pam	Pass
1900	Head	39.744	1.396	40.0	1.40	-0.6	-0.3	Pass	Pass
2100		40.541	1,463	39.8	1.49	1.9	-1.8	Pons	Pass
2450		39.265	1,815	39.2	1.60	0.2	0.8	Pass	Pass
2600		38.715	1.975	39.0	1.56	-0.7	0.8	Pass	Pass
				•		•			

NATIONAL PHYSICAL LABORATORY

Teddington Middlesex UK TW11 0LW Telephone +44 20 8977 3222

Certificate of Calibration

SAR PROBE

IndexSAR Model: IXP-025 Serial number: G0006

This contificate provides tracoutability of measurement to recognised national standards, and to the units of measurement revised at the National Physical Laboratory or other recognised national standards laboratories. This certificate may not be reproduced other than in full, unless permission for the publication of an approved extract has been obtained in writing from the Managing Director. It does not of itself impute to the subject of calibration any attributes beyond those shown by the data contained horein.

FOR:

Indexsar Ltd. Oakfield House Cudworth Lane Newdigate Surrey RH5 5BG

DESCRIPTION:

An IndexSAR isotropic electric field probe for determining specific absorption rates (SAR) in dielectric liquids. The probe has three orthogonal sensors, and the output voltage of the sensors is converted to an optical signal by a meter unit containing an analogue to digital (AD) converter. Probe readings are obtained using software via the RS232 port. The probe was calibrated with IndexSAR amplifier model IXA-010 S/N 036 belonging to NPL.

IDENTIFICATION: The probe is marked with the manufacturer's serial number G0006

MEASUREMENTS COMPLETED ON: 28 November 2011

The reported uncertainty is based on a coverage factor k = 2, providing a level of confidence of approximately 95%

Reference: 2011110089-1

Page 1 of 6

Date of Issue: 6 December 2011 Checked by : Bal

Name: Mr B G Loader

Signed : B leader (Authorised Signatory) on behalf of NPLML

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

MEASUREMENT PROCEDURE

For frequencies at or above 835 MHz, the calibration method is based on establishing a calculable specific absorption rate (SAR) using a matched waveguide cell [1]. The cell has a feed-section and a liquid-filled section separated by a matching window that is designed to minimise reflections at the interface. A TE_{01} mode is launched into the waveguide by means of a N-type-to-waveguide adapter. The power delivered to the liquid is calculated from the forward power and reflection coefficient measured at the input to the cell. At the centre of the cross-section of the waveguide cell, the volume specific absorption rate (SAR^{ν}) in the liquid as a function of distance from the window is given by

$$SAR^{V} = \frac{4(P_{w})}{ab\delta}e^{-2Z/\delta}$$
(1)

where

a = the larger cross-sectional dimension of the waveguide.

b = the smaller cross-sectional dimension of the waveguide.

 δ = the skin depth for the liquid in the waveguide.

Z = the distance of the probe's sensors from the liquid to matching window boundary.

 P_w = the power delivered to the liquid.

For frequencies below 835 MHz, the SAR in the liquid is established by measuring the rate of temperature rise in the liquid at the calibration point. In this case the SAR in the liquid is related to the temperature rise by

$$SAR = c \frac{dT}{dt}$$
 (2)

where c is the specific heat of the liquid.

Liquids having the properties specified by SAR measurement standards [2, 3, 4] were used for the calibration. The value of δ for the liquid was obtained by measuring the electric field (E) at a number of distances from the matching window. The calibration was for continuous wave (CW) signals, and the axis of the probe was parallel to the direction of propagation of the incident field i.e. end-on to the incident radiation. The probe was rotated about its axis in 15-degree steps, and the ratio of the calibration factors for the three probe sensors X, Y, & Z were optimized to give the best axial isotropy.

Reference: 2011110089-1 Page 2 of 6

Date of Issue : 6 December 2011

Checked by : Blel

NATIONAL PHYSICAL LABORATORY

Continuation Shee

The probe was calibrated with the linearisation and air-correction factors enabled. Comparing the measured values of E^2 in the liquid to those calculated for the waveguide cell allows the ratio, ConvF, of sensitivity for $(E^2_{LIQUID}) / (E^2_{AIR})$ to be determined, as required by the probe software.

ENVIRONMENT

Measurements were made in a temperature-controlled laboratory at 22 ± 1 °C. The temperature of the liquid used was measured at the beginning and end of each measurement.

UNCERTAINTIES

The estimated uncertainty in calibration for SAR (W kg⁻¹) is \pm 10 %. The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%.

This uncertainty is valid when the probe is used in a liquid with the same dielectric properties as those used for the calibration. No estimate is made for the long-term stability of the device calibrated or of the fluids used in the calibration.

When using the probe for SAR testing, additional uncertainties should be added to account for the spherical isotropy of the probe, proximity effects, linearity, and response to pulsed fields. There will be additional uncertainty if the probe is used in liquids having significantly different electrical properties to those used for the calibration. The electrical properties of the liquids will be related to temperature.

RESULTS

Tables 1 and 2 give the results for calibration in liquid.

These calibration factors are only correct when the values for sensitivity in free-space, diode compression and sensor offset from the tip of the probe, as set in the probe software, are the same as those given in Table 1 and 2.

Table 3 contains the values of the boundary correction factors f(0) and d.

Reference: 2011110089-1 Page 3 of 6

Date of Issue : 6 December 2011

Checked by : BC/

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

REFERENCES:

[1] Pokovic, KT, T.Schmid and N.Kuster, "Robust set-up for Precise Calibration of E-field probes in Tissue Simulating Liquids at Mobile Phone Frequencies", Proceedings ICECOM 1997, pp 120 – 124, Dubrovnik, Croatia Oct 12-17, 1997.

[2] British Standard BS EN 503361:2001. "Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz)".

[3] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

[4] Federal Communications Commission, FCC OET Bulletin 65, Supplement C, June 2001, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", David L. Means, Kwok W. Chan.

Reference : 2011110089-1 Page 4 of 6

Date of Issue: 6 December 2011

Checked by : BCL

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

Table 1 Sensitivity in Head Simulating Liquids. SAR probe: IXP-025 S/N G0006

			Parant Salata				
		Probe se	ttings for ca	alibration			
Sensitivity i	10 85			ion ⁽²⁾	Sensor offset from tip o probe ⁽²⁾		
(V/m)	= 4181.03 2/(V*200)	550	$P_X = 20 (V^*)$	O-124	1.39 mm		
(V/m) ² Lín Z =	= 4634.25 2/(V*200) = 3860.61		$P_{Y} = 20 \text{ (V*)}$ $P_{Z} = 20 \text{ (V*)}$				
(y/m)	2/(V*200)	Sensitivity in	Head Simu	lating Liqu	iid.		
Calibration frequency				bration Facto	A:		
(MHz)	£' (3)	σ ⁽³⁾ (Sm ⁻¹)	$ConvF_X$	$ConvF_{\gamma}$	ConvFz	(dB)	
5200	35.16	4.89	0.343	0.335	0.162	±0.09	
5800	33.78	5.57	0.405	0.413	0.200	±0.07	

Reference : 2011110089-1 Page 5 of 6

Date of Issue : 6 December 2011

Checked by : Blel

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

Table 2 Sensitivity in Body Simulating Liquids, SAR probe: IXP-025

S/N G0006

			2/N G0000			
		Probe se	ttings for ca	alibration		
Sensitivity in free-space ⁽¹⁾ Diod		Diode Compression ⁽²⁾		Sensor offset from tip o		
	= 4181.03 2/(V*200)	DC	OCP x = 20 (V*200)		,	
Lin Y = 4634.25 (V/m) ² /(V*200)		DC	DCP _Y = 20 (V*200)		1.39 mm	
	Lin Z = 3860.61 DC $(V/m)^2/(V*200)$		P z= 20 (V*2	200)		
		Sensitivity in	Body Simu	lating Liqu	aid.	
Calibration frequency	Liquid	Phantom ⁽³⁾		bration Factor		Axial Isotropy
(MHz)	ε' (3)	σ ⁽³⁾ (Sm ⁻¹)	$ConvF_X$	ConvFy	ConvF _Z	(dB)
5200	50.52	5.38	0.439	0.436	0.214	±0.04
5800	48.91	6.24	0.473	0.494	0.235	±0.06

Notes.

Table 3 Boundary Correction Factors SAR probe: IXP-025

S/N G0006

Frequency	Head Simulating Liquid		Body Simulating Liqui	
(MHz)	f(0)	d	f(0)	d
5200	0.247	1.332	0.281	1.630
5800	0.627	0.992	0.235	2.036

Reference : 2011110089-1 Page 6 of 6

Date of Issue: 6 December 2011

Checked by : Bld .

⁽³⁾ Measured at 900 MHz

⁽²⁾ The manufacturer supplied these figures,

 $^{^{(3)}}$ Measured at a temperature of 22 \pm 1 $^{0}\mathrm{C}.$


IMMERSIBLE SAR PROBE

CALIBRATION REPORT

Part Number: IXP-020

S/N L0011

October 2011

Indexsar Limited Oakfield House Cudworth Lane Newdigate Surrey RH5 5BG

Tel: +44 (0) 1306 632 870 Fax: +44 (0) 1306 631 834 e-mail: enquiries@indexsar.com

Reproduction of this report is authorized by Indexsar Ltd provided the report is reproduced in its entirety

Indexsar Limited Oakfield House Cudworth Lane Newdigate Surrey RH5 5BG

Surrey RH5 5BG
Tel: +44 (0) 1306 632 870
Fax: +44 (0) 1306 631 834
e-mail: enquiries@indexsar.com

Calibration Certificate 1110/L0011 Date of Issue: 11th October 2011 Immersible SAR Probe

Туре:	IXP-020	
Manufacturer:	IndexSAR, UK	
Serial Number:	L0011	
Place of Calibration:	IndexSAR, UK	
Date of Receipt of Probe:	N/A	
Calibration Dates:	7 th April — 18 th May 20	11
calibrated for conformity to the	TUV es that the IXP-020 Probe name the IEEE 1528 and BSEN 62209 dibration document. Where ap)-1 standards using the
IndexSAR Ltd hereby declare calibrated for conformity to the methods described in this ca	es that the IXP-020 Probe name he IEEE 1528 and BSEN 62209	-1 standards using the plicable, the standards

INTRODUCTION

This Report presents measured calibration data for a particular Indexsar SAR probe (S/N L0011) only and describes the procedures used for characterisation and calibration.

Indexsar probes are characterised using procedures that, where applicable, follow the recommendations of BSEN 622009-1 [Ref 1] & IEEE [Ref 2] standards. The procedures incorporate techniques for probe linearisation, isotropy assessment and determination of liquid factors (conversion factors). Calibrations are determined by comparing probe readings with analytical computations in canonical test geometries (waveguides) using normalised power inputs.

Each step of the calibration procedure and the equipment used is described in the sections below.

CALIBRATION PROCEDURE

1. Objectives

The calibration process comprises two stages:-

- Determination of the channel sensitivity factors which optimise the probe's overall spherical isotropy in 900MHz brain fluid
- At each frequency of interest, application of these channel sensitivity factors to model the exponential decay of SAR in a waveguide fluid cell, and hence derive the liquid conversion factors at that frequency

Probe output

The probe channel output signals are linearised in the manner set out in Refs [1] and [2]. The following equation is utilized for each channel:

$$U_{in} = U_{ob} + U_{ob}^2 / DCP \qquad (1)$$

where U_{lin} is the linearised signal, $U_{o/p}$ is the raw output signal in mV and DCP is the diode compression potential, also in mV.

DCP is determined from fitting equation (1) to measurements of U_{in} versus source feed power over the full dynamic range of the probe. The DCP is a characteristic of the Schottky diodes used as the sensors. For the IXP-020 probes with CW signals the DCP values are typically 100mV.

In turn, measurements of E-field are determined using the following equation:

$$E_{\text{liq}}^{2} \text{ (V/m)} = U_{\text{liny}} * \text{Air Factor}_{x} * \text{Liq Factor}_{y}$$

$$+ U_{\text{liny}} * \text{Air Factor}_{y} * \text{Liq Factor}_{z}$$

$$+ U_{\text{linz}} * \text{Air Factor}_{z} * \text{Liq Factor}_{z}$$
(3)

Here, "Air Factor" represents each channel's sensitivity, while "Liq Factor" represents the enhancement in signal level when the probe is immersed in tissue-simulant liquids at each frequency of interest.

Selecting channel sensitivity factors to optimise isotropic response

After manufacture, the first stage of the calibration process is to balance the three channels' Air Factor values, thereby optimising the probe's overall response to incoming signals of any polarisation position angle ("spherical isotropy"). The setup for measuring the probe's spherical isotropy is shown in Figure 1.

A box phantom containing 900MHz head fluid is irradiated by a verticallypolarised, tuned dipole, mounted at the side of the phantom on the robot's
seventh axis. The dipole is connected to a signal generator and amplifier via
a directional coupler and power meter. The absolute power level is not
important as long as it is stable, with stability being monitored using the
coupler and power meter.

During calibration, the spherical response is generated by changing the orientation of the probe sensors with respect to the dipole, keeping the long shaft of the probe vertical and the probe sensors at the same position in space.

Initially, the short shaft of the probe is positioned parallel to the phantom wall with its sensors at the same vertical height as the centre of the source dipole and the line joining sensors to dipole perpendicular to the phantom wall (see Figure 1). In this position, the probe is said to be at a position angle of -90 degrees. During the scan, the probe is rotated from -90 to +90 degrees in 10 degree steps, and at each position angle, the dipole polarisation changes from 0 to 360 degrees in 20 degree steps. The short shaft of the probe thereby starts moving increasingly end-on to the dipole, and after perpendicularity, it carries on until facing in the opposite direction from its starting position, all the time with the centroid of the sensors occupying the same position in space.

At each position, an Indexsar 'Fast' amplifier samples the probe channels 500 times per second for 0.4 s. The raw U_{olp} data from each sample are packed into 10 bytes and transmitted back to the PC controller via an optical cable. U_{linx} , U_{liny} and U_{linz} are derived from the raw U_{olp} values and written to an Excel template.

Once a full set of data has been collected, the Air Factors are adjusted using a special Excel Solver routine to equalise the output from each channel and hence minimise the spherical isotropy. This automated approach to optimisation removes the effect of human bias.

Determination of Conversion ("Liquid") Factors at each frequency of interest

A lookup table of conversion factors for a probe allows a SAR value to be derived at the measured frequencies, and for either brain or body fluid-simulant.

The method by which the conversion factors are assessed is based on the comparison between measured and analytical rates of decay of SAR with perpendicular distance from a dielectric window. This way, not only can the conversion factors for that frequency/fluid combination be determined, but an allowance can also be made for the scale and range of boundary layer effects.

The theoretical relationship between the SAR at the cross-sectional centre of the lossy waveguide as a function of the longitudinal distance (z) from the dielectric separator is given by Equation 4:

$$SAR(z) = \frac{4(P_f - P_b)}{\rho ab\delta} e^{-2z/\delta}$$
(4)

Here, the density ρ is conventionally assumed to be 1000 kg/m³, ab is the cross-sectional area of the waveguide, and P_f and P_b are the forward and reflected power inside the lossless section of the waveguide, respectively. The penetration depth δ (which is the reciprocal of the waveguide-mode attenuation coefficient) is a property of the lossy liquid and is given by Equation (5).

$$\delta = \left[\operatorname{Re} \left\{ \sqrt{(\pi/a)^2 + j\omega \mu_o (\sigma + j\omega \varepsilon_o \varepsilon_r)} \right\} \right]^4$$
(5)

where σ is the conductivity of the tissue-simulant liquid in S/m, ε , is its relative permittivity, and ω is the radial frequency (rad/s). Values for σ and ε , are obtained prior to each waveguide test using an Indexsar DiLine measurement kit, which uses the TEM method as recommended in [2]. σ and ε , are both temperature- and fluid-dependent, so are best measured using a sample of the tissue-simulant fluid immediately prior to the actual calibration.

Wherever possible, all DiLine and calibration measurements should be made in the open laboratory at $22 \pm 2.0^{\circ}\text{C}$; if this is not possible, the values of σ and ε , should reflect the actual temperature. Values employed for calibration are listed in the tables below.

Dedicated waveguides have been designed to accommodate the geometry of an L-shaped probe as it traces out the decay profile. Traditional straight probes measure the decay rate of a vertical-travelling signal above a horizontal dielectric window; for the L-shaped probes, the geometry has had to be changed, and the waveguide now lies horizontally and instead of being open at the end, is capped with a metal plate (see Figure 4). A slot is cut in

the top ("b") face through which tissue simulant fluid can be poured, and through which the probe can enter the guide and be offered up to the now vertical waveguide window.

During calibration, the probe is moved carefully until the flat face of the tip is just touching the cross-sectional centre of the dielectric window. 200 samples are then taken and written to an Excel template file before moving the probe into the liquid away from the waveguide window. This cycle is repeated 150 times. The spatial separation between readings is determined from practical considerations of the expected SAR decay rate, and range from 0.2mm steps at low frequency, through 0.1mm at 2450MHz, down to 0.05mm at 5GHz.

Once the data collection is complete, a Solver routine is run which optimises the measured-theoretical fit by varying the conversion factor, and the boundary correction size and range.

By ensuring the waveguide cap is at least three penetration depths, reflections are negligible. The power absorbed in the liquid is therefore determined solely from the waveguide forward and reflected power.

Different waveguides are used for 835/900MHz, 1800/1900MHz, 2100/2450/2600MHz and 5200/5800MHz measurements. Table A.1 of [1] can be used for designing calibration waveguides with a return loss greater than 20 dB at the most important frequencies used for personal wireless communications, and better than 15dB for frequencies greater than 5GHz. Values for the penetration depth for these specific fixtures and tissue-simulating mixtures are also listed in Table A.1.

For 450 MHz calibrations, a slightly different technique must be used — the equatorial response of the probe-under-test is compared with the equivalent response of a probe whose 450MHz characteristics have already been determined by NPL. The conversion factor of the probe-under-test can then be deduced.

According to [1], this calibration technique provides excellent accuracy, with standard uncertainty of less than 3.6% depending on the frequency and medium. The calibration itself is reduced to power measurements traceable to a standard calibration procedure. The practical limitation to the frequency band of 800 to 5800 MHz because of the waveguide size is not severe in the context of compliance testing.

CALIBRATION FACTORS MEASURED FOR PROBE S/N L0011

The probe was calibrated at 835, 900, 1800, 1900, 2100 and 2450 MHz in liquid samples representing brain liquid at these frequencies.

The calibration was for CW signals only, and the horizontal axis of the probe was parallel to the direction of propagation of the incident field i.e. end-on to the incident radiation.

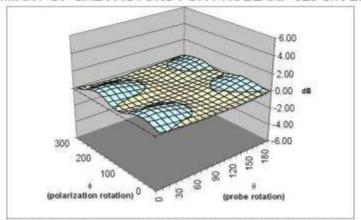
The reference point for the calibration is in the centre of the probe's crosssection at a distance of 2.7 mm from the probe tip in the direction of the probe amplifier. A value of 2.7 mm should be used for the tip to sensor offset distance in the software. The distance of 2.7mm for assembled probes has been confirmed by taking X-ray images of the probe tips (see Figure 9).

It is important that the diode compression point and air factors used in the software are the same as those quoted in the results tables, as these are used to convert the diode output voltages to a SAR value.

CALIBRATION EQUIPMENT

The Table on page 16 indicates the calibration status of all test equipment used during probe calibration.

MEASUREMENT UNCERTAINTIES


A complete measurement uncertainty analysis for the SARA2 measurement system has been published in Reference [3]. Table 10 from that document is re-created below, and lists the uncertainty factors associated just with the calibration of probes.

Source of uncertainty	Uncert ainty value ± %	Proba bility distrib ution	Divi sor	cı	Standard uncertainty ui ± %	V _i or V _{eff}
Incident or forward power	5.743	N	1.00	1	5.743	00
Refelected power	5.773	N	1.00	1	5.773	90
Liquid conductivity	1.120	N	1.00	1	1.120	90
Liquid permittivity	1.085	N	1.00	1	1.085	00
Field homgeneity	0.002	R	1.73	1	0.001	90
Probe positioning: +/-0.05mm	0.55	R	1.73	1	0.318	
Influence on Probe pos. 11%/mm						
Field probe linearity	4.7	R	1.73	1	2.714	00
Combined standard uncertainty		RSS			8.729	

At the 95% confidence level, therefore, the expanded uncertainty is 17.1%

SUMMARY OF CAL FACTORS FOR PROBE IXP-020 S/N L0011

Surface Isotropy diagram of IXP-020 Probe S/N L0011 at 900MHz (axial isotropy +/-0.03dB, spherical isotropy +/-0.58dB, other subsets listed below)

Measured Isotropy at 900MHz	Probe orientation range relative to dipole	(+/-) dB
Spherical Isotropy	±90°	0.58
	±60°	0.54
	±30°	0.32
	±20°	0.22
Axial Isotropy	0°	0.03

	Cha	nnel Sensitiv	ities	
	X	Υ	Z	
Air Factors	69.36	84.92	85.72	(V/m) ² /mV
CW DCPs	100	100	100	mV

Freq (MHz)	SAR Conv Factor	Boundary Correction f(0)	Boundary Correction d(mm)	Notes	
835	0.265	1.9	1.1	1,2	
900	0.273	2.0	1.0	1,2	
1800	0.327	1.3	1.3	1,2	
1900	0.331	0.9	1.5	1,2	
2100	0.350	1.0	1.5	1,2	
2450	0.359	0.8	1.6	1,2	
Notes		-		- 50	
1)	Calibrations done at 22°C +/-2°C				
2)	Waveguide calibration				

Probe tip radius	0 mm
X Ch. Angle to red dot	0°

PROBE SPECIFICATIONS

Indexsar probe L0011, along with its calibration, is compared with BSEN 62209-1 and IEEE standards recommendations (Refs [1] and [2]) in the Tables below. A listing of relevant specifications is contained in the tables below.

Dimensions	S/N L0011	BSEN [1]	IEEE [2]
Vertical shaft (mm)	510		
Horizontal shaft (mm)	90		
Tip length (mm)	10		
Body diameter (mm)	12		
Tip diameter (mm)	5.2	8	8
Distance from probe tip to dipole centers (mm)	2.7		

Dynamic range	S/N L0011	BSEN [1]	IEEE [2]
Minimum (W/kg)	0.01	< 0.02	0.01
Maximum (W/kg) N.B. only measured to > 100 W/kg on representative probes	>100	>100	100

Isotropy (me	easured at 900MHz)	S/N L0011	BSEN [1]	IEEE [2]
	Probe at ±90°	0.58	- 405-	= 337
Spherical	Probe at ±60°	0.54	1.0	0.50
	Probe at ±30°	0.32		
	Probe at ±20°	0.22		
Axial	Probe at 0°	0.03	0.5	0.25

Construction	Each probe contains three orthogonal dipole sensors arranged on a triangular prism core, protected against static charges by built-in shielding, and covered at the tip by PEEK cylindrical enclosure material. Outer case materials are PEEK and heat-shrink sleeving.
Chemical resistance	Tested to be resistant to TWEEN and sugar/salt-based simulant liquids but probes should be removed, cleaned and dried when not in use.
	NOT recommended for use with glycol or soluble oil-based liquids.

REFERENCES

- [1] BSEN 62209-1:2006. Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices — Human models, instrumentation, and procedures — Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- [2] IEEE 1528, 2003 Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- [3] Indexsar Report IXS-0300, October 2007. Measurement uncertainties for the SARA2 system assessed against the recommendations of BS EN 62209-1:2006

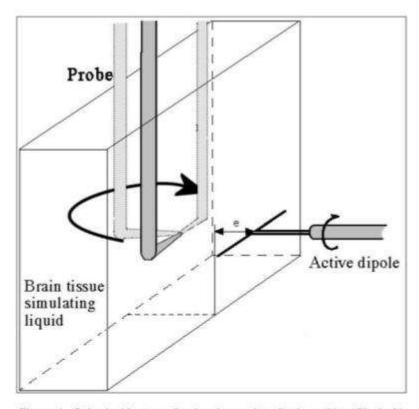


Figure 1. Spherical isotropy jig showing probe, dipole and box filled with simulated brain liquid (see Ref [2], Section A.5.2.1)

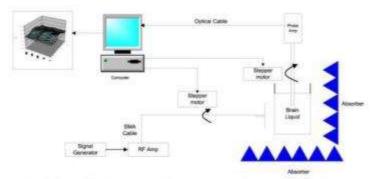


Figure 2. Schematic diagram of the test geometry used for isotropy determination

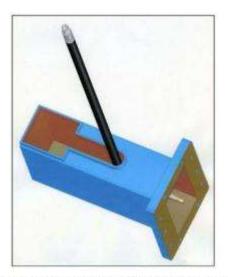


Figure 4. Schematic showing the innovative design of slot in the waveguide termination

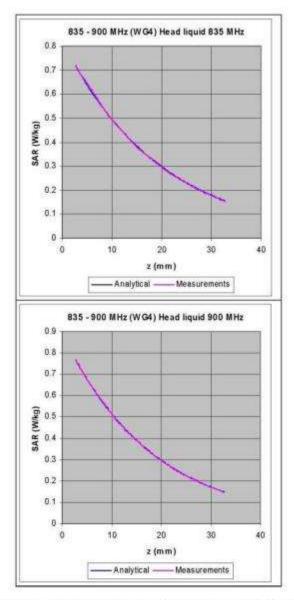
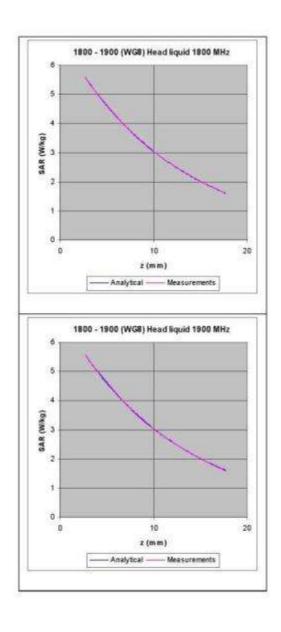



Figure 6. The measured SAR decay function along the centreline of the WG4 waveguide with conversion factors adjusted to fit to the theoretical function for the particular dimension, frequency, power and liquid properties employed.

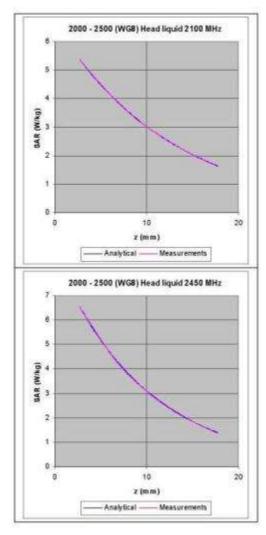


Figure 7. The measured SAR decay function along the centreline of the R22 waveguide with conversion factors adjusted to fit to the theoretical function for the particular dimension, frequency, power and liquid properties employed.

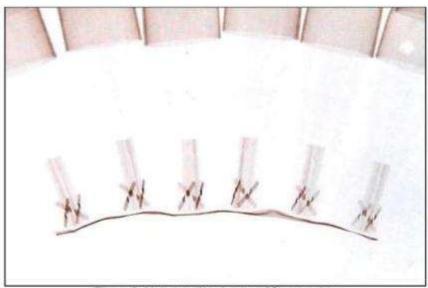


Figure 9: X-ray positive image of 5mm probes

Table indicating the dielectric parameters of the liquids used for

calibrations at each frequency
Liquid used Relative permittivity Conductivity (S/m) (measured) (measured) 835 MHz BRAIN 42.80 0.91 900 MHz BRAIN 40.47 0.95 1800 MHz BRAIN 40.01 1.42 1900 MHz BRAIN 40.08 1.42 2100 MHz BRAIN 41.98 1.38 2450 MHz BRAIN 40.68 1.77

Table of test equipment calibration status

Instrument description	Supplier / Manufacturer	Model	Serial No.	Last calibration date	Calibration due date
Power sensor	Rohde & Schwarz	NRP-Z23	100169	14/09/2010	14/9/2012
Dielectric property measurement	Indexsar	DiLine (sensor lengths: 160mm, 80mm and 60mm)	N/A	(absolute) — checked against NPL values using reference liquids	N/A
Vector network analyser	Anritsu	MS6423B	003102	17/01/2011	17/01/2012
SMA autocalibration module	Anritsu	36581KKF/1	001902	17/01/2011	17/01/2012


IMMERSIBLE SAR PROBE

CALIBRATION REPORT

Part Number: IXP-021

S/N LG0018

October 2012

Indexsar Limited Oakfield House Cudworth Lane Newdigate Surrey RH5 5BG

Tel: +44 (0) 1306 632 870 Fax: +44 (0) 1306 631 834 e-mail: enquiries@indexsar.com

Reproduction of this report is authorized by Indexsar Ltd provided the report is reproduced in its entirety

Indexsar Limited Oakfield House Cudworth Lane Newdigate Surrey RH5 5BG Tel: +44 (0) 1306 632 870

Tel: +44 (0) 1306 632 870 Fax: +44 (0) 1306 631 834 e-mail: <u>enquiries@indexsar.com</u>

Calibration Certificate 1210/LG0018 Date of Issue: 24th October 2012 Immersible SAR Probe

Туре:	IXP-021	
Manufacturer:	IndexSAR, UK	
Serial Number:	LG0018	
Place of Calibration:	IndexSAR, UK	
Date of Receipt of Probe:	N/A	
calibrated for conformity to the methods described in this cal	TUV Sud s that the IXP-021 Probe named te IEEE 1528 and BSEN 62209-1 ibration document. Where app is are traceable to the UK's Nati	standards using the licable, the standards
IndexSAR Ltd hereby declare calibrated for conformity to the methods described in this cal	s that the IXP-021 Probe named te IEEE 1528 and BSEN 62209-1 ibration document. Where app	standards using the licable, the standards

INTRODUCTION

This Report presents measured calibration data for a particular Indexsar SAR probe (S/N LG0018) only and describes the procedures used for characterisation and calibration.

Indexsar probes are characterised using procedures that, where applicable, follow the recommendations of BSEN 622009-1 [Ref 1] & IEEE [Ref 2] standards. The procedures incorporate techniques for probe linearisation, isotropy assessment and determination of liquid factors (conversion factors). Calibrations are determined by comparing probe readings with analytical computations in canonical test geometries (waveguides) using normalised power inputs.

Each step of the calibration procedure and the equipment used is described in the sections below.

CALIBRATION PROCEDURE

1. Objectives

The calibration process comprises two stages:-

- Determination of the channel sensitivity factors which optimise the probe's overall rotational isotropy in brain fluid
- At each frequency of interest, application of these channel sensitivity factors to model the exponential decay of SAR in a waveguide fluid cell, and hence derive the liquid conversion factors at that frequency

2. Probe output

The probe channel output signals are linearised in the manner set out in Refs [1] and [2]. The following equation is utilized for each channel:

$$U_{lin} = U_{olb} + U_{olb}^{2} / DCP$$
 (1)

where U_{lin} is the linearised signal, U_{o/p} is the raw output signal in mV and DCP is the diode compression potential, also in mV.

DCP is determined from fitting equation (1) to measurements of U_{lin} versus source feed power over the full dynamic range of the probe. The DCP is a characteristic of the Schottky diodes used as the sensors. For the IXP-021 probes with CW signals the DCP values are typically 100mV.

In turn, measurements of E-field are determined using the following equation:

$$E_{ilq}^{2} (V/m) = U_{linx} * Air Factor_{x} * Liq Factor_{x} + U_{liny} * Air Factor_{y} * Liq Factor_{y} + U_{linz} * Air Factor_{z} * Liq Factor_{z}$$
 (3)

Here, "Air Factor" represents each channel's sensitivity, while "Liq Factor" represents the enhancement in signal level when the probe is immersed in tissue-simulant liquids at each frequency of interest.

3. Selecting channel sensitivity factors to optimise isotropic response

After manufacture, the first stage of the calibration process is to balance the three channels' Air Factor values, thereby optimising the probe's overall response to incoming signals of any polarisation position angle ("rotational isotropy"). The setup for measuring the probe's rotational isotropy for frequencies below 3GHz is shown in Figure 1, while above 3GHz, the probe is clamped with the short shaft hanging down vertically in the mouth of a waveguide mounted on a turntable, Figure 2.

A box phantom containing head fluid is irradiated by a vertically-polarised, tuned dipole, mounted at the side of the phantom on the robot's seventh axis. The dipole is connected to a signal generator and amplifier via a directional coupler and power meter. The absolute power level is not important as long as it is stable, with stability being monitored using the coupler and power meter.

During calibration, the spherical response is generated by changing the orientation of the probe sensors with respect to the dipole, keeping the long shaft of the probe vertical and the probe sensors at the same position in space.

Initially, the short shaft of the probe is positioned parallel to the phantom wall with its sensors at the same vertical height as the centre of the source dipole and the line joining sensors to dipole perpendicular to the phantom wall (see Figure 1). In this position, the probe is said to be at a position angle of -90 degrees. During the scan, the probe is rotated from -90 to +90 degrees in 10 degree steps, and at each position angle, the dipole polarisation changes from 0 to 360 degrees in 20 degree steps. The short shaft of the probe thereby starts moving increasingly end-on to the dipole, and after perpendicularity, it carries on until facing in the opposite direction from its starting position, all the time with the centroid of the sensors occupying the same position in space. When the short shaft is exactly end-on to the dipole, rotating the dipole generates the rotational isotropy figure.

At each position, an Indexsar 'Fast' amplifier samples the probe channels 500 times per second for 0.4 s. The raw $U_{\omega p}$ data from each sample are packed into 10 bytes and transmitted back to the PC controller via an optical cable. U_{linx} , U_{liny} and U_{linz} are derived from the raw $U_{\omega p}$ values and written to an Excel template.

Once a full set of data has been collected, the Air Factors are adjusted using a special Excel Solver routine to equalise the output from each channel and hence minimise the rotational isotropy. This automated approach to optimisation removes the effect of human bias.

The process is repeated for each frequency of interest.

Determination of Conversion ("Liquid") Factors at each frequency of interest

A lookup table of conversion factors for a probe allows a SAR value to be derived at the measured frequencies, and for either brain or body fluidsimulant.

The method by which the conversion factors are assessed is based on the comparison between measured and analytical rates of decay of SAR with perpendicular distance from a dielectric window. This way, not only can the conversion factors for that frequency/fluid combination be determined, but an allowance can also be made for the scale and range of boundary layer effects.

The theoretical relationship between the SAR at the cross-sectional centre of the lossy waveguide as a function of the longitudinal distance (z) from the dielectric separator is given by Equation 4:

$$SAR(z) = \frac{4(P_f - P_b)}{\rho ab\delta} e^{-iz/\delta}$$
(4)

Here, the density ρ is conventionally assumed to be 1000 kg/m³, ab is the cross-sectional area of the waveguide, and P_t and P_b are the forward and reflected power inside the lossless section of the waveguide, respectively. The penetration depth δ (which is the reciprocal of the waveguide-mode attenuation coefficient) is a property of the lossy liquid and is given by Equation (5).

$$\delta = \left[\text{Re} \left\{ \sqrt{(\pi/a)^2 + j\omega \mu_o (\sigma + j\omega \varepsilon_o \varepsilon_r)} \right\} \right]^{-1}$$
(5)

where σ is the conductivity of the tissue-simulant liquid in S/m, ε_r is its relative permittivity, and ω is the radial frequency (rad/s). Values for σ and ε_r are obtained prior to each waveguide test using an Indexsar DiLine measurement kit, which uses the TEM method as recommended in [2]. σ and ε_r are both temperature- and fluid-dependent, so are best measured using a sample of the tissue-simulant fluid immediately prior to the actual calibration.

Wherever possible, all DiLine and calibration measurements should be made in the open laboratory at $22 \pm 2.0^{\circ}$ C; if this is not possible, the values of σ and ε , should reflect the actual temperature. Values employed for calibration are listed in the tables below.

Dedicated waveguides have been designed to accommodate the geometry of an L-shaped probe as it traces out the decay profile. Traditional straight probes measure the decay rate of a vertical-travelling signal above a horizontal dielectric window; for the L-shaped probes below 3GHz, the geometry has had to be changed, and the waveguide now lies horizontally

and instead of being open at the end, is capped with a metal plate (see Figure 4). A slot is cut in the top ("b") face through which tissue simulant fluid can be poured, and through which the probe can enter the guide and be offered up to the now vertical waveguide window. Above 3GHz, where the short shaft is longer than the height of the fluid-filled waveguide cell, the probe is oriented as shown in Figure 2.

During calibration, the probe is moved carefully until the flat face of the tip is just touching the cross-sectional centre of the dielectric window. 200 samples are then taken and written to an Excel template file before moving the probe into the liquid away from the waveguide window. This cycle is repeated 150 times. The spatial separation between readings is determined from practical considerations of the expected SAR decay rate, and range from 0.2mm steps at low frequency, through 0.1mm at 2450MHz, down to 0.05mm at 5GHz.

Once the data collection is complete, a Solver routine is run which optimises the measured-theoretical fit by varying the conversion factor, and the boundary correction size and range.

By ensuring the waveguide cap is at least three penetration depths, reflections are negligible. The power absorbed in the liquid is therefore determined solely from the waveguide forward and reflected power.

Different waveguides are used for 835/900MHz, 1800/1900MHz, 2100/2450/2600MHz and 5200/5800MHz measurements. Table A.1 of [1] can be used for designing calibration waveguides with a return loss greater than 20 dB at the most important frequencies used for personal wireless communications, and better than 15dB for frequencies greater than 5GHz. Values for the penetration depth for these specific fixtures and tissue-simulating mixtures are also listed in Table A.1.

For 450 MHz calibrations, a slightly different technique must be used — the equatorial response of the probe-under-test is compared with the equivalent response of a probe whose 450MHz characteristics have already been determined by NPL. The conversion factor of the probe-under-test can then be deduced.

According to [1], this calibration technique provides excellent accuracy, with standard uncertainty of less than 3.6% depending on the frequency and medium. The calibration itself is reduced to power measurements traceable to a standard calibration procedure. The practical limitation to the frequency band of 800 to 5800 MHz because of the waveguide size is not severe in the context of compliance testing.

CALIBRATION FACTORS MEASURED FOR PROBE S/N LG0018

The probe was calibrated at 5200 and 5800 MHz in liquid samples representing brain and muscle tissue at these frequencies.

The calibration was for CW signals only, and the horizontal axis of the probe was parallel to the direction of propagation of the incident field i.e. end-on to the incident radiation.

The reference point for the calibration is in the centre of the probe's cross-section at a distance of 2.7 mm from the probe tip in the direction of the probe amplifier. A value of 2.7 mm should be used for the tip to sensor offset distance in the software. The distance of 2.7mm for assembled probes has been confirmed by taking X-ray images of the probe tips (see Figure 9).

It is important that the diode compression point and air factors used in the software are the same as those quoted in the results tables, as these are used to convert the diode output voltages to a SAR value.

CALIBRATION EQUIPMENT

The Table on page 16 indicates the calibration status of all test equipment used during probe calibration.

MEASUREMENT UNCERTAINTIES

A complete measurement uncertainty analysis for the SARA-C measurement system has been published in Reference [3]. Table 17 from that document is re-created below, and lists the uncertainty factors associated just with the calibration of probes.

Source of uncertainty	Uncertainty value ± %	Probability distribution	Divisor	Ġ.	Standard uncertainty ui ± %	V _i of V _{eff}
Forward power	3.92	N N	1.00	- 1	3.92	
Reflected power	4.09	N	1.00	- 1	4.09	-
Liquid conductivity	1.308	N.	1.00	-1	1.31	
Liquid permittivity	1.271	N N	1.00	- 1	1.27	-
Field homgeneity	3.0	R	1.73		1.73	- 10
Probe positioning	0.22	R	1.73	- 1	0.13	
Field probe linearity	0.2	R	1.73	- 1	0.12	
Combined standard uncertainty		RSS			6.20	

At the 95% confidence level, therefore, the expanded uncertainty is ±12.4%

SUMMARY OF CAL FACTORS FOR PROBE IXP-021 S/N LG0018

SAR Calibration Factors / Boundary Corrections*								
Freq (MHz)	Tissue Type	Air Factor X ((V/m)²/mV)	Air Factor Y ((V/m) ² /mV)	Air Factor Z ((V/m) ² /mV)	Rotational Isotropy (± dB)	SAR Conv Factor	Boundary Correction f(0)	Boundary Correction d(mm)
5200		285.66	352.95	321.39	0.07	0.784	0.675	0.891
5500	Head	287.11	350.55	322.34		0.851	0.635	1.084
5800	e Weyerson	288.55	348.15	323.30	0.04	0.919	0.594	1.277
5200		287.52	347.12	325.35	0.02	1.029	0.541	1.790
5500	Body	286.25	347.27	326.48	100	1.039	0,515	1.705
5800	- Houseld J. S.	284.98	347.41	327.61	0.02	1.049	0.489	1,619

* Data for 5500MHz are interpolated from measured data at 5200 and 5800MHz

PROBE SPECIFICATIONS

Indexsar probe LG0018, along with its calibration, is compared with BSEN 62209-1 and IEEE standards recommendations (Refs [1] and [2]) in the Tables below. A listing of relevant specifications is contained in the tables below:

Dimensions	S/N LG0018	BSEN [1]	IEEE [2]
Vertical shaft (mm)	510		
Horizontal shaft (mm)	90		
Tip length (mm)	10		
Body diameter (mm)	12		7
Tip diameter (mm)	5.2	8	8
Distance from probe tip to dipole centers (mm)	2.7		

Dynamic range	S/N LG0018	BSEN [1]	IEEE [2]
Minimum (W/kg)	0.01	<0.02	0.01
Maximum (W/kg) N.B. only measured to > 100 W/kg on representative probes	>100	>100	100

Rotational Isotropy	S/N LG0018	BSEN [1]	IEEE [2]
5200 Head	0.07		
5800 Head	0.04	0.5	0.06
5200 Body	0.02	0.5	0.25
5800 Body	0.02	1	

Construction	Each probe contains three orthogonal dipole sensors arranged on a triangular prism core, protected against static charges by built-in shielding, and covered at the tip by PEEK cylindrical enclosure material. Outer case materials are PEEK and heat-shrink sleeving.
Chemical resistance	Tested to be resistant to TWEEN and sugar/salt-based simulant liquids but probes should be removed, cleaned and dried when not in use.
	NOT recommended for use with glycol or soluble oil-based liquids.

REFERENCES

- [1] BSEN 62209-1:2006. Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices — Human models, instrumentation, and procedures — Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- [2] IEEE 1528, 2003 Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- [3] SARA-C SAR Testing System: Measurement Uncertainty, v1.0.3, 13-October 2011.

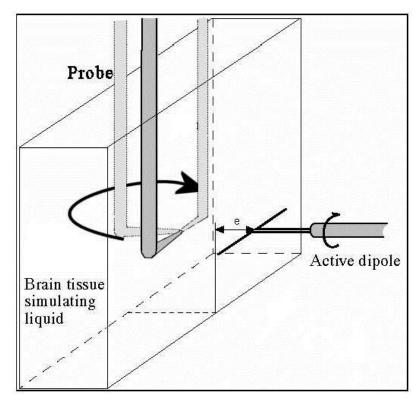


Figure 1. Spherical isotropy jig showing probe, dipole and box filled with simulated brain liquid (see Ref [2], Section A.5.2.1)

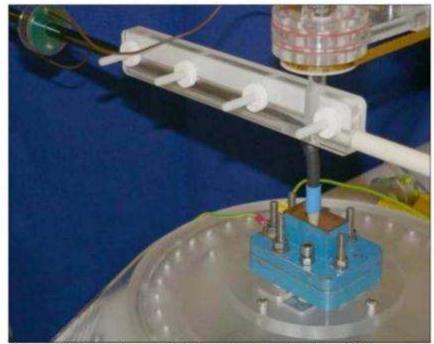


Figure 2 Test geometry used for isotropy determination above 3GHz

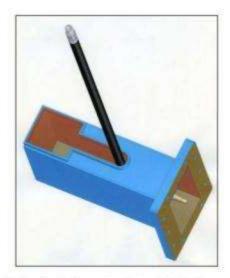


Figure 4. Schematic showing the innovative design of slot in the waveguide termination

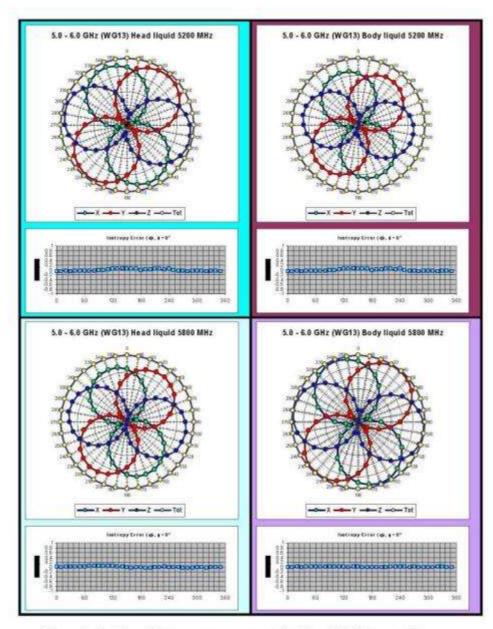


Figure 6. Rotational isotropy measurements inside a WG13 waveguide.

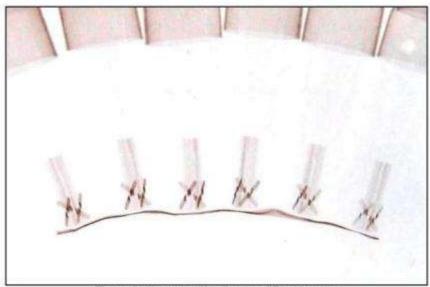


Figure 9: X-ray positive image of 5mm probes

Table indicating the dielectric parameters of the liquids used for calibrations at each frequency

Liquid used	Relative permittivity (measured)	Conductivity (S/m) (measured)
5200 MHz HEAD	36.24	4.53
5800 MHz HEAD	35.17	4.99
5200 MHz BODY	50.89	4.93
5800 MHz BODY	48.67	6.02

Table of test equipment calibration status as at time of probe calibration

Instrument description	Supplier / Manufacturer	Model	Serial No.	Calibration due date
Power sensor	Rohde & Schwarz	NRP-Z23	100063	08/09/2014
Dielectric property measurement	Indexsar	DiLine (sensor lengths: 160mm, 80mm and 60mm)	N/A	N/A
Vector network analyser	Anritsu	MS6423B	003102	16/01/2013
SMA autocalibration module	Anritsu	36581KKF/1	001902	16/01/2013

ANNEX B

DIPOLE CALIBRATION REPORTS

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

TÜV Product Service Ltd

Certificate No: D2450V2-715 Mar11

CALIBRATION	CERTIFICATI		and the state of
Object	D2450V2 - SN: 7	715	2011 A 12 PAGES
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	edure for dipole validation kits	
Calibration date:	March 22, 2011		
The measurements and the unce	ertainties with confidence p	ional standards, which realize the physical un probability are given on the following pages are my facility: environment temperature (22 ± 3)°	nd are part of the certificate.
		ry racsery, environment temperature (22 ± 3)	C and numidity < /0%.
Calibration Equipment used (M&	TE critical for calibration)		
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4		Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jurn-10 (No. DAE4-601_Jun10)	Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (209) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10)	Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10)	Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292763 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 08-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01158) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292763 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01158) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292763 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37380585 S4206 Name	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01158) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11

Certificate No: D2450V2-715_Mar11

Page 1 of 9

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Katibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Company of the compan

Certificate No: D2450V2-715 Mar11

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.72 mho/m ± 6 %
Head TSL temperature during test	(21.3 ± 0.2) °C	-	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.9 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.09 mW / g
SAR normalized	normalized to 1W	24.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW /g ± 16.5 % (k=2)

Certificate No: D2450V2-715_Mar11

Page 3 of 9

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	1.92 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		100 to 10

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR normalized	normalized to 1W	51.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.95 mW / g
SAR normalized	normalized to 1W	23.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.8 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-715_Mar11

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.4 Ω - 0.4 μΩ	
Return Loss	- 29.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2 Ω + 1.4 jΩ	
Return Loss	- 35.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.156 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 05, 2002	

Certificate No: D2450V2-715_Mar11 Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 22.03.2011 13:23:3

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:715

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.72 \text{ mho/m}$; $\varepsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

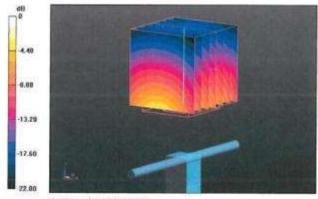
Electronics: DAE4 Sn601; Calibrated: 10.06,2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.6.2 Build (424)

Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

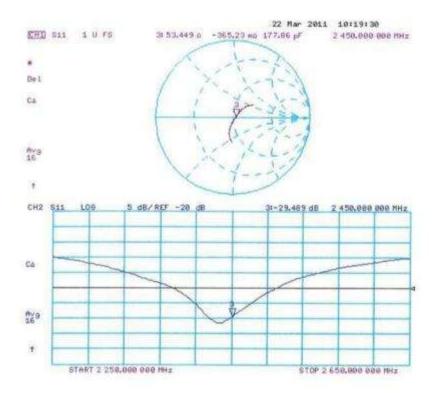

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.1 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 26.631 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 6.09 mW/g

Maximum value of SAR (measured) = 16.606 mW/g


0 dB = 16.610 mW/g

Certificate No: D2450V2-715_Mar11

Page 6 of 9

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 21.03.2011 13:50:01

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:715

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.92 \text{ mho/m}$; $\varepsilon_c = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010

· Sensor-Surface: 3mm (Mechanical Surface Detection)

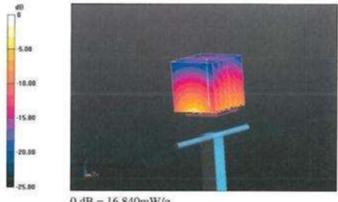
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY52, V52.6.2 Build (424)

Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

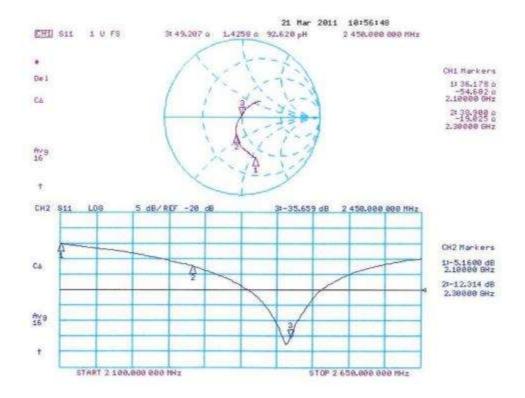

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.265 V/m; Power Drift = 0.0074 dB

Peak SAR (extrapolated) = 26.996 W/kg

SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.95 mW/g

Maximum value of SAR (measured) = 16.835 mW/g


0 dB = 16.840 mW/g

Certificate No: D2450V2-715_Mar11

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-715_Mar11

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client TÜV Product Service Ltd

Accreditation No.: SCS 108

Certificate No: D5GHzV2-1100_Mar11

CALIBRATION CERTIFICATE D5GHzV2 - SN: 1100 Object QA CAL-22.v1 Calibration procedure(s) Calibration procedure for dipole validation kits between 3-6 GHz March 14, 2011 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) Primary Standards ID-W Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 08-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: 5086 (20g) 30-Mar-10 (No. 217-01158) Mar-11 Type-N mismatch combination SN: 5047.2 / 06327 30-Mar-10 (No. 217-01162) Mar-11 Reference Probe EX3DV4 SN: 3503 04-Mar-11 (No. EX3-3503, Mar11) Mar-12 DAE4 SN: 601 10-Jun-10 (No. DAE4-601_Jun10) Jun-11 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Function Calibrated by: Laboratory Technician Dimce lliev Katja Pokovic Technical Manager Approved by: Issued: March 16, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1100_Mar11

Page 1 of 14

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1100_Mar11

Page 2 of 14

Measurement Conditions

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 10 mm	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	4.51 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.31 mW / g
SAR normalized	normalized to 1W	83.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	83.2 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.36 mW / g
SAR normalized	normalized to 1W	23.6 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.6 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1100_Mar11

Page 3 of 14

Head TSL parameters at 5500 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.9 ± 6 %	4.80 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	****	****

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.98 mW / g
SAR normalized	normalized to 1W	89.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	89.8 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.54 mW / g
SAR normalized	normalized to 1W	25.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.4 mW / g ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.10 mha/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	****	****

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.39 mW / g
SAR normalized	normalized to 1W	83.9 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	83.9 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 mW / g
SAR normalized	normalized to 1W	23.7 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.7 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1100_Mar11

Page 4 of 14

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mha/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.4 ± 6 %	5.48 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C	****	

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.70 mW / g
SAR normalized	normalized to 1W	77.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	76.8 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 mW / g
SAR normalized	normalized to 1W	21.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.4 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mha/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.8 ± 6 %	5.85 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C	2777	

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	condition	
SAR measured	100 mW input power	8.22 mW / g
SAR normalized	normalized to 1W	82.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	82.0 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.27 mW/g
SAR normalized	normalized to 1W	22.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.7 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1100_Mar11

Page 5 of 14

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	6.22 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.61 mW / g
SAR normalized	normalized to 1W	76.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	75.8 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.10 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.9 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1100_Mar11

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	52.5 Ω - 7.5 Ω
Return Loss	-22.3 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	48.9 Ω - 1.7 μΩ
Return Loss	-33.8 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.7 Ω + 4.3 Ω
Return Loss	-26.9 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	53.0 Ω - 6.6 μΩ
Return Loss	-23.1 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	49.4 Ω - 1.4 jΩ
Return Loss	-36.4 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	$52.2 \Omega + 3.8 J\Omega$
Return Loss	-27.3 dB

Certificate No: D5GHzV2-1100_Mar11

General Antenna Parameters and Design

Electrical Delay (one direction)	1.207 ns
----------------------------------	----------

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 24, 2010

Certificate No: D5GHzV2-1100_Mar11

Page 8 of 14

DASY5 Validation Report for Head TSL

Date/Time: 11.03.2011 14:54:17

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1100

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz; Duty

Cycle: 1:1

Medium: HSL 5000

Medium parameters used: f = 5200 MHz; $\sigma = 4.51$ mho/m; $\epsilon_r = 36.4$; $\rho = 1000$ kg/m³. Medium parameters used: f = 5500 MHz; $\sigma = 4.8$ mho/m; $\epsilon_r = 35.9$; $\rho = 1000$ kg/m³. Medium parameters used: f = 5800 MHz; $\sigma = 5.1$ mho/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 04.03.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06,2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.6.2 Build (424)
- Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Pin=100mW, f=5200 MHz/Zoom Scan (4x4x1.4mm), dist=1.4mm (8x8x7)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.701 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 31,049 W/kg

SAR(1 g) = 8.31 mW/g; SAR(10 g) = 2.36 mW/g

Maximum value of SAR (measured) = 18.802 mW/g

Pin=100mW, f=5500 MHz/Zoom Scan (4x4x1.4mm), dist=1.4mm (8x8x7)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.450 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 35.828 W/kg

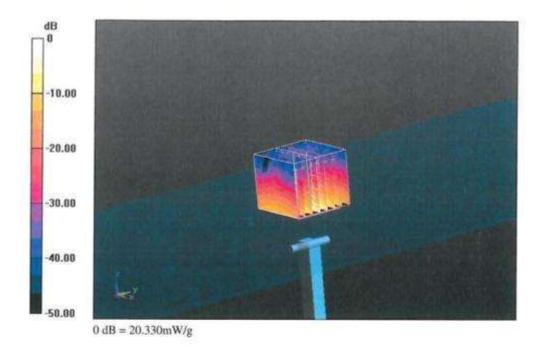
SAR(1 g) = 8.98 mW/g; SAR(10 g) = 2.54 mW/g

Maximum value of SAR (measured) = 21.257 mW/g

Pin=100mW, f=5800 MHz/Zoom Scan (4x4x1.4mm), dist=1.4mm (8x8x7)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

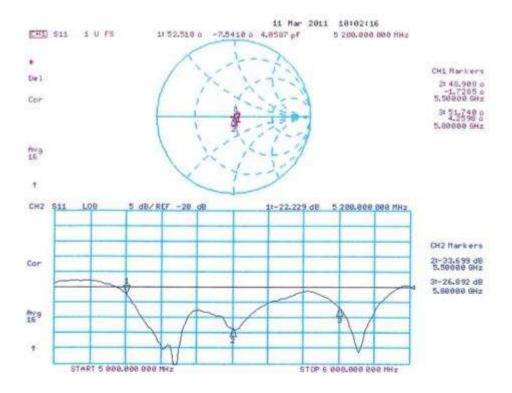
Reference Value = 57.226 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 35.431 W/kg

SAR(1 g) = 8.39 mW/g; SAR(10 g) = 2.37 mW/g

Maximum value of SAR (measured) = 20.329 mW/g

Certificate No: D5GHzV2-1100 Mar11 Page 9 of 14



intificate No: D5GHzV2-1100_Mar11

Page 10 of 14

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1100_Mar11

Page 11 of 14

DASY5 Validation Report for Body TSL

Date/Time: 14.03.2011 15:25:41

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1100

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz; Duty

Cycle; 1:1

Medium: MSL 5000 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.54$ mho/m; $\epsilon_r = 48.3$; $\rho = 1000$ kg/m³. Medium parameters used: f = 5500 MHz; $\sigma = 5.92$ mho/m; $\epsilon_r = 47.7$; $\rho = 1000$ kg/m³.

Medium parameters used: f = 5800 MHz; $\sigma = 6.3 \text{ mho/m}$; $\varepsilon_r = 47$; $\rho = 1000 \text{ kg/m}$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.43, 4.43, 4.43), ConvF(4.38, 4.38, 4.38); Calibrated: 04.03.2011

· Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY52, V52.6.2 Build (424)

Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Pin=100mW, f=5200 MHz/Zoom Scan (4x4x1.4mm), dist=1.4mm (8x8x7)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.462 V/m; Power Drift = -0.0014 dB

Peak SAR (extrapolated) = 30.321 W/kg

SAR(1 g) = 7.7 mW/g; SAR(10 g) = 2.14 mW/g

Maximum value of SAR (measured) = 17.819 mW/g

Pin=100mW, f=5500 MHz/Zoom Scan (4x4x1.4mm), dist=1.4mm (8x8x7)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.851 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 35.000 W/kg

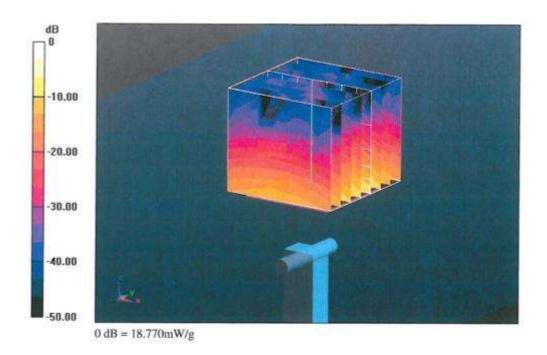
SAR(1 g) = 8.22 mW/g; SAR(10 g) = 2.27 mW/g

Maximum value of SAR (measured) = 19.554 mW/g

Pin=100mW, f=5800 MHz/Zoom Scan (4x4x1.4mm), dist=1.4mm (8x8x7)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

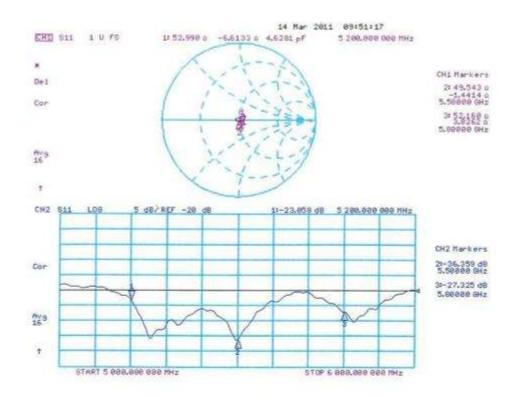
Reference Value = 55.021 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 35.337 W/kg

SAR(1 g) = 7.61 mW/g; SAR(10 g) = 2.1 mW/g

Maximum value of SAR (measured) = 18.772 mW/g

Certificate No: D5GHzV2-1100_Mar11 Page 12 of 14



tificate No: D5GHzV2-1100_Mar11

Page 13 of 14

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1100_Mar11

Page 14 of 14

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

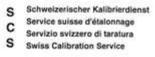
Client TÜV Product Service Ltd

Certificate No: D835V2-447_Mar11

Accreditation No.: SCS 108

Object	D835V2 - SN: 447		
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits	
Calibration date:	March 23, 2011		
The measurements and the unc	ertainties with confidence p	robability are given on the following pages ar	nd are part of the certificate.
All calibrations have been conducations been conducation.		ry facility: environment temperature (22 \pm 3)*	C and humidity < 70%.
Calibration Equipment used (M8		ry facility: environment temperature (22 ± 3)* Cal Date (Certificate No.)	C and humidity < 70%. Scheduled Calibration
	TE critical for calibration)		
Calibration Equipment used (Ma Primary Standards Power meter EPM 442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10)	Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11
Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES30V3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10)	Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibration Equipment used (Ma Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01158) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibration Equipment used (Ma Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01158) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Scheduled Calibration Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: D835V2-447_Mar11


Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-447_Mar11

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	
The transport of the second se	The state of the s	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(21.8 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.40 mW / g
SAR normalized	normalized to 1W	9.60 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.65 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.57 mW / g
SAR normalized	normalized to 1W	6.28 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.31 mW/g ± 16.5 % (k=2)

Certificate No: D835V2-447_Mar11

Page 3 of 9

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature during test	(21.7 ± 0.2) °C	****	****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.55 mW / g
SAR normalized	normalized to 1W	10.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	10.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.67 mW / g
SAR normalized	normalized to 1W	6.68 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.59 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-447_Mar11

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 Ω - 4.6 jΩ	
Return Loss	- 26.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 6.6 μΩ	
Return Loss	- 22.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.388 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Design Modification by End User

The dipole has been modified with Teflon Rings (TR) placed within identified markings close to the end of each dipole arm. Calibration has been performed with TR attached to the dipole.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 24, 2001

Certificate No: D835V2-447_Mar11

Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 18.03.2011 11:13:54

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:447

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30,04,2010

· Sensor-Surface: 3mm (Mechanical Surface Detection)

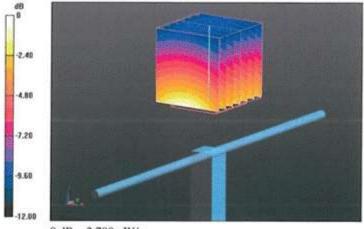
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.6.2 Build (424)

Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

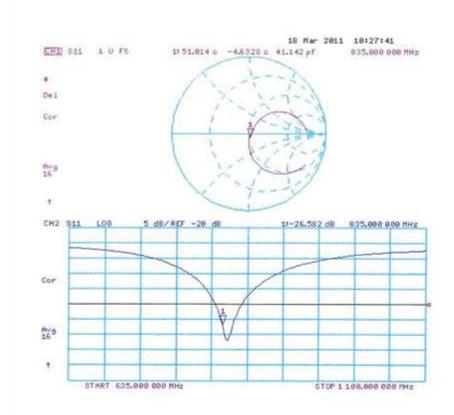

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.439 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3,591 W/kg

SAR(1 g) = 2.4 mW/g; SAR(10 g) = 1.57 mW/g

Maximum value of SAR (measured) = 2.782 mW/g


0 dB = 2.780 mW/g

Certificate No: D835V2-447_Mar11

Page 6 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-447_Mar11

Page 7 of 9

DASY5 Validation Report for Body TSL

Date/Time: 23.03.2011 10:08:24

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:447

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_e = 54.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.86, 5.86, 5.86); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

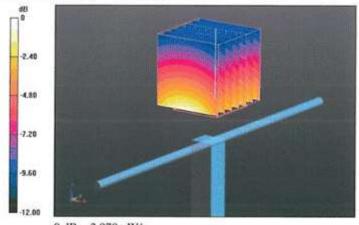
· Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.6.2 Build (424)

Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

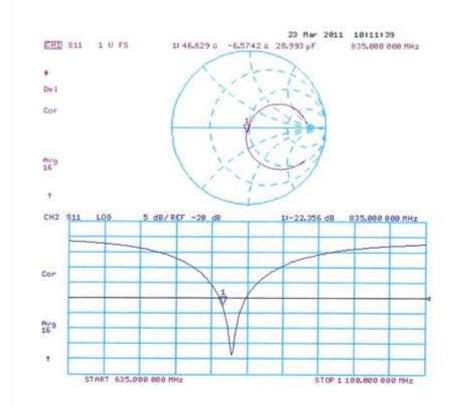

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.520 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.786 W/kg

SAR(1 g) = 2.55 mW/g; SAR(10 g) = 1.67 mW/g

Maximum value of SAR (measured) = 2.974 mW/g


0 dB = 2.970 mW/g

Certificate No: D835V2-447_Mar11

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-447_Mar11

Page 9 of 9