

Choose certainty.
Add value.

Report On

FCC Testing of the Sharp SHL22 Dual-band CDMA (BC0, BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (FDDI, FDDV) & Tri-band LTE (B1, B11, B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS In accordance with FCC CFR 47 Part 15C (Bluetooth Low Energy)

COMMERCIAL-IN-CONFIDENCE FCC ID: APYHRO00192

Document 75920802 Report 16 Issue 2

July 2013

Product Service

TÜV SÜD Product Service, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: www.tuv-sud.co.uk

COMMERCIAL-IN-CONFIDENCE

REPORT ON FCC Testing of the

Sharp SHL22 Dual-band CDMA (BC0, BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (FDDI, FDDV) & Tri-band LTE (B1, B11, B18) multi mode cellular phone with

Bluetooth, WLAN, NFC (FeliCa) and GPS

In accordance with FCC CFR 47 Part 15C (Bluetooth Low Energy)

Document 75920802 Report 16 Issue 2

July 2013

PREPARED FOR Sharp Communication Compliance Ltd

Azure House Bagshot Road Bracknell Berkshire RG12 7QY

PREPARED BY

Nones .

Natalie Bennett

Senior Administrator (Technical)

APPROVED BY

David Wilson

Authorised Signatory

DATED 07 July 2013

This report has been up-issued to Issue 2 to include additional test results.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47 Part 15C. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineer(s);

Lawler M Russel

UKAS TESTING

Document 75920802 Report 16 Issue 2

CONTENTS

Section		Page No
1	REPORT SUMMARY	3
1.1	Introduction	4
1.2	Brief Summary of Results	
1.3	Application Form	7
1.4	Product Information	
1.5	Test Conditions	
1.6	Deviations from the Standard	
1.7	Modification Record	12
2	TEST DETAILS	13
2.1	AC Line Conducted Emissions	14
2.2	Maximum Peak Conducted Output Power	
2.3	EIRP Peak Power	22
2.4	Power Spectral Density	
2.5	Spurious and Band Edge Emissions	
2.6	6dB Bandwidth	144
3	TEST EQUIPMENT USED	180
3.1	Test Equipment Used	181
3.2	Measurement Uncertainty	
4	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	184
4.1	Accreditation, Disclaimers and Copyright	185

SECTION 1

REPORT SUMMARY

FCC Testing of the
Sharp SHL22 Dual-band CDMA (BC0, BC6) & Quad-band GSM
(GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (FDDI, FDDV) & Tri-band LTE
(B1, B11, B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS
In accordance with FCC CFR 47 Part 15C (Bluetooth Low Energy)

1.1 INTRODUCTION

The information contained in this report is intended to show verification of the FCC Testing of the Sharp SHL22 Dual-band CDMA (BC0, BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (FDDI, FDDV) & Tri-band LTE (B1, B11, B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS to the requirements of FCC CFR 47 Part 15C.

Objective To perform FCC Testing to determine the Equipment Under

Test's (EUT's) compliance with the Test Specification, for

the series of tests carried out.

Manufacturer Sharp Corporation

Model Number(s) SHL22

Serial Number(s) IMEI 004401114764687

IMEI 004401114765106

Number of Samples Tested 2

Test Specification/Issue/Date FCC CFR 47 Part 15C (2012)

Incoming Release Application Form Date 14 May 2013

Disposal Held Pending Disposal

Reference Number Not Applicable
Date Not Applicable

Order Number 9676

Date 30 April 2013 Start of Test 21 May 2013

Finish of Test 07 July 2013

Name of Engineer(s) G Lawler

M Russell

Related Document(s) ANSI C63.10: 2009

1.2 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with FCC CFR 47 Part 15C (WLAN) is shown below.

Section	Spec Clause	Test Description	Result	Comments/Base Standard		
802.11(b)						
2.2	15.247 (b)(3)	Maximum Peak Conducted Output Power	Pass			
2.3	15.247 (b)(4)	EIRP Peak Power	Pass			
2.4	15.247 (e)	Power Spectral Density	Pass			
2.5	15.247 (d)	Spurious and Band Edge Emissions	Pass			
2.6	15.247 (2)	6dB Bandwidth	Pass			
802.11(g)						
2.2	15.247 (b)(3)	Maximum Peak Conducted Output Power	Pass			
2.3	15.247 (b)(4)	EIRP Peak Power	Pass			
2.4	15.247 (e)	Power Spectral Density	Pass			
2.5	15.247 (d)	Spurious and Band Edge Emissions	Pass			
2.6	15.247 (2)	6dB Bandwidth	Pass			
802.11(n)						
2.1	15.207	AC Line Conducted Emissions	Pass			
2.2	15.247 (b)(3)	Maximum Peak Conducted Output Power	Pass			
2.3	15.247 (b)(4)	EIRP Peak Power	Pass			
2.4	15.247 (e)	Power Spectral Density	Pass			
2.5	15.247 (d)	Spurious and Band Edge Emissions	Pass			
2.6	15.247 (2)	6dB Bandwidth	Pass			

Section	Spec Clause	Test Description	Result	Comments/Base Standard			
GFSK	GFSK						
2.2	15.247 (b)(3)	Maximum Peak Conducted Output Power	Pass				
2.3	15.247 (b)(4)	EIRP Peak Power	Pass				
2.4	15.247 (e)	Power Spectral Density	Pass				
2.5	15.247 (d)	Spurious and Band Edge Emissions	Pass				
2.6	15.247 (2)	6dB Bandwidth	Pass				

1.3 APPLICATION FORM

EQUIPMENT DESCRIPTION								
Model Name/Number	SHL22							
Part Number								
FCC ID (if applicable)	APYHRO(00192						
Industry Canada ID (if applicable)								
Technical Description (Please provide a brief description of the intended use of the equipment)		Dual-Band CDMA(BC0, BC6) and Quad-Band GSM(GSM850/900MHz DCS1800MHz, PCS1900MHz) and Dual-band UMTS (FDDI, FDDV) and Tri-Band LTE(B1, B11, B18) Multi Mode Cellular Phone with Bluetooth, WLAN, NFC/ FeliCa and GPS receiver enabled						
EXTREME TEM	PERATURE	RANGE over which the equipment is to be type tested						
☐ -20°C to +55°C								
☑ Other (2)								
☐ Not applicable (no extreme tempe	☐ Not applicable (no extreme temperature testing required)							
Extreme temperature range for the host	(s):	10C to 55C						

- (2) The equipment shall be tested over the following temperature ranges :
 - a) 0°C to +35°C for equipment for indoor use only, or intended for used in areas where the temperature is controlled within this range.
 - b) Over the extremes of the temperature range(s) of the declared host equipment(s) in case of plugin radio devices.

	TYPE OF ANTENNA										
\boxtimes	Integral										
Tem	porary R	F connector provided:		\boxtimes	Yes		No				
	Antenna	connector									
	Number	of antenna assembly(ies) sub	mitted								
Gair	of the an	tenna intended for normal use	:								
2	dBi	for assembly identified as	Bluetooth/WLAN								
	dBi	for assembly identified as									
	dBi	for assembly identified as									
	dBi	for assembly identified as									
	dBi	for assembly identified as									

TRANSMITTER TECHNICAL CHARACTERISTICS							
	TRANSMITTER OPERATING FREQUENCY RANGE(S)						
FCC and/or Industry Canada EU							
Bluetooth	2402 to 2480 MHz	2402 to 2480 MHz					
WLAN	2412 to 2462 MHz	2412 to 2472 MHz					
	FCC and/or Industry Canada (only)						
	Highest Internally Generated Frequency 1728.0 MHz						

SPREAD SPECTRUM PARAMETERS										
⊠ Bluetooth		Version: 4.0								
FHSS: Channel ⊠ 79	Other	EDR Yes [□ No							
Medium Access Protocol (Customer Declaration)										
"We have implemented Bluetooth protocol which satisfies the medium access protocol requirement of EN 300 328".										
	WLA	N								
IEEE 802.11(b) − DSSS 🛛										
IEEE 802.11(g) − OFDM 🛛										
IEEE 802.11(n) − OFDM 🛛										
Supported Spatial Streams		2.4 GHz	5GHz							
	Transmitter (Tx)	1	1							
	Receiver (Rx)	1	1							
				-						
GI (Guard Interval) ⊠ 800 ns	☐ 400 ns									
Band Width 🗵 20 MHz	z 🔲 40 MHz									
	Medium Access Protoco	I (Customer Declarat	on)							
"We have implemented IEEE 802.11 (I	o/g/n) protocol which satisf	ies the medium acces	s protocol requirement of E	N 300 328".						
	Other Tech	nology								
☐ Direct Sequence ☐ Free	quency Hopping	Combined	Other							
DSSS	Chip Sequence Leng	gth	bit							
	Spectrum Width		MHz							
FHSS	Total Number of Hop	os								
	Dwell Time		ms							
	Bandwidth Per Hop		MHz							
Maximum Separation of Hops MHz for ETSI EN 300 328										
Other										
	Medium Access Protocol (Customer Declaration)									
"We have implemented a pr	rotocol which satisfies the	medium access protoc	ol requirement of EN 300 3	328".						

TRANSMITTER POWER CHARACTERSITICS							
ВІ	uetooth						
Maximum Rated Transmitter Output							
Effective radiated power (for equipment with antenna connected	or)			W			
Effective radiated power (for equipment with integral antenna)		2	2.5m	W			
Minimum Rated Transmitter Output							
Effective radiated power (for equipment with antenna connected	or)			W			
Effective radiated power (for equipment with integral antenna)		0.	.25m	W			
Is transmitter intended for :							
Continuous duty				\boxtimes	Yes		No
Intermittent duty					Yes		No
If intermittent state DUTY CYCLE							
Transmitter ON seconds	Transm	itter OFF		minutes	3		
Is continuous operation possible for testing purposes?				\boxtimes	Yes		No
Is transmitter output power variable:				\boxtimes	Yes		No
State during the test:							
Transmitter duty cycle Tx on	Seconds	Tx Off			Second	S	
Duty cycle (Tx on /(Tx on +Tx off))	%						
☐ Continuously variable	☐ St	tepped					
dB per step							
1	WLAN						
Maximum Rated Transmitter Output							
Effective radiated power (for equipment with antenna connected	or)			W			
Effective radiated power (for equipment with integral antenna)			0.1	W			
Minimum Rated Transmitter Output							
Effective radiated power (for equipment with antenna connector	or)			W			
Effective radiated power (for equipment with integral antenna)				W			
Is transmitter intended for :							
Continuous duty				\boxtimes	Yes		No
Intermittent duty					Yes		No
If intermittent state DUTY CYCLE							
Transmitter ON seconds	Transm	itter OFF		minutes	6		
Is continuous operation possible for testing purposes?				\boxtimes	Yes		No
Is transmitter output power variable:				\boxtimes	Yes		No
State during the test:							
Transmitter duty cycle Tx on	Seconds	Tx Off			Second	s	
Duty cycle (Tx on /(Tx on +Tx off))	%						
☐ Continuously variable	☐ St	epped					
dB per step							

		TRANSMITT	ER POWE	R SOURCE (3	3)					
\boxtimes	Common power source for tr	ansmitter and receiver								
	AC mains	Str	ate voltage							
AC s	supply frequency	(Hz)	VAC		Max Current		Hz			
	Single phase			Three phas	ie .					
And	/ Or									
	External DC supply									
Nom	ninal voltage		Ma	x Current		Α				
Extre	eme upper voltage		Ext	reme lower vo	oltage					
Batte	ery									
	Nickel Cadmium									
	Lead acid (Vehicle regulated	1)								
	Alkaline									
\boxtimes	Lithium									
	Other Details:									
4.0	Volts nominal.									
End	point voltage as quoted by equ	uipment manufacturer		3.8	V					
	(3) If a transmitter and receiver use the same power source, this should be declared. In such cases only the box for the transmitter power source should be filled in.									
	AUTOMATIC EQUIPMENT SWITCH OFF									
	e equipment is designed to au ery minimum and minimum cal				level which is highe	er or lower in val	ue than the			
\boxtimes	Applies	3.4	4	V cut-off vo	oltage					
П	Does not apply									

Product Service

	RECEIVER POWER SOURCE (4)								
	AC mains		State vol	tage					
AC s	supply frequency	(Hz)	VAC	;	Ma	x Current	Hz	<u>z</u>	
	Single phase				Three phase				
And	/ Or								
	External DC supply								
Nom	inal voltage			Max	Current		Α		
Extre	eme upper voltage			Extr	eme lower voltage				
Batte	ery								
	Nickel Cadmium								
	Lead acid (Vehicle regula	ted)							
	Alkaline								
	Lithium								
	Other Details:								
	Volts nominal.								
End	point voltage as quoted by	equipment manuf	acturer			V			
	f a transmitter and re he box for the transm					be declared.	In such cases	s only	
		AUTO	MATIC EQUIP	MEN	SWITCH OFF				
	equipment is designed to ery minimum and minimum					which is higher or	lower in value that	an the	
	Applies				V cut-off volta	age			
	Does not apply								
	eby declare that I amed and complete.	entitled to sig	n on behalf	of th	e applicant and	d that the info	ormation suppl	lied is	
Signa	ature:	1	Name:	Hach	niro Hidaka				
Posit	ion held: Ass. Mar	nager	Date:	14 th	May, 2013				

1.4 PRODUCT INFORMATION

1.4.1 Technical Description

The Equipment Under Test (EUT) was a Sharp SHL22 Dual-band CDMA (BC0, BC6) & Quadband GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (FDDI, FDDV) & Triband LTE (B1, B11, B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS. A full technical description can be found in the manufacturer's documentation.

1.5 TEST CONDITIONS

For all tests the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated in a shielded enclosure.

The EUT was powered from a 4.0 V DC supply.

FCC Accreditation 90987 Octagon House, Fareham Test Laboratory

1.6 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standard or test plan were made during testing.

1.7 MODIFICATION RECORD

Modification 0 - No modifications were made to the test sample during testing.

SECTION 2

TEST DETAILS

FCC Testing of the
Sharp SHL22 Dual-band CDMA (BC0, BC6) & Quad-band GSM
(GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (FDDI, FDDV) & Tri-band LTE
(B1, B11, B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS
In accordance with FCC CFR 47 Part 15C (Bluetooth Low Energy)

2.1 AC LINE CONDUCTED EMISSIONS

2.1.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.207

2.1.2 Equipment Under Test and Modification State

SHL22 S/N: IMEI 004401114764687 - Modification State 0

2.1.3 Date of Test

10 June 2013

2.1.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.1.5 Test Procedure

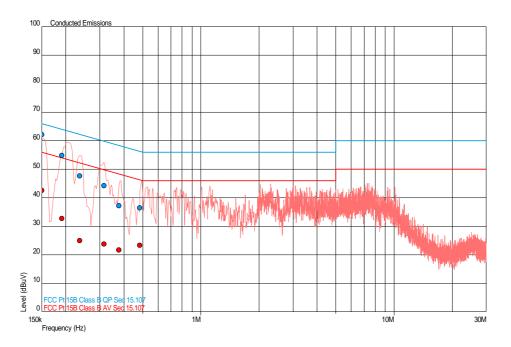
The EUT is set up on a test table 800mm above a horizontal ground plane. A vertical ground plane is also required and is placed 400mm from the EUT. Where a EUT is floor standing it will be stood on but insulated from the ground plane by up to 12mm.

The EUT is powered through a Line Impedance Stabilisation Network (LISN) which is bonded to the ground plane. The EUT is located so that the distance between the EUT and the LISN is no less than 800mm. Where possible the cable between the mains input of the EUT and the LISN is 1m. Where this is not possible the cable is non inductively bundled with the bundle not exceeding 400mm in length.

A preliminary profile of the Conducted Emissions is obtained over the frequency range 150kHz to 30MHz. Any points of interest are noted for formal measurements.

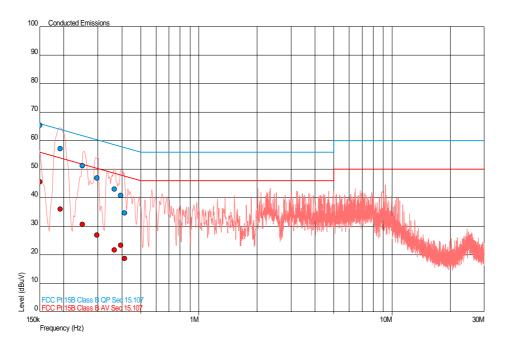
During formal measurements, the measuring receiver is tuned to the emission of interest where Quasi – Peak and Average measurements are performed in a 9kHz Video and Resolution Bandwidth.

2.1.6 Environmental Conditions


Ambient Temperature 20.9°C Relative Humidity 35.0%

2.1.7 Test Results

802.11(n)


Live Line

Frequency (MHz)	QP Level (dBµV)	QP Limit (dBµV)	QP Margin (dBµV)	AV Level (dBµV)	AV Limit (dBµV)	AV Margin (dBμV)
0.150	62.2	66.0	-3.8	42.6	56.0	-13.4
0.191	54.9	64.0	-9.1	32.7	54.0	-21.3
0.236	47.8	62.2	-14.5	25.0	52.2	-27.2
0.315	44.2	59.8	-15.7	23.8	49.8	-26.0
0.377	37.2	58.4	-21.2	21.7	48.4	-26.6
0.484	36.6	56.3	-19.7	23.4	46.3	-22.9

Neutral Line

Frequency (MHz)	QP Level (dBµV)	QP Limit (dBµV)	QP Margin (dBµV)	AV Level (dBµV)	AV Limit (dBμV)	AV Margin (dΒμV)
0.150	65.5	66.0	-0.5	45.6	56.0	-10.4
0.192	57.2	64.0	-6.8	36.1	54.0	-17.9
0.249	51.2	61.8	-10.6	30.7	51.8	-21.0
0.297	46.9	60.3	-13.4	27.0	50.3	-23.3
0.365	43.1	58.6	-15.5	21.7	48.6	-26.9
0.394	40.9	58.0	-17.1	23.4	48.0	-24.6
0.412	34.7	57.6	-23.0	18.8	47.6	-28.8

2.2 MAXIMUM PEAK CONDUCTED OUTPUT POWER

2.2.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (b)(3)

2.2.2 Equipment Under Test and Modification State

SHL22 S/N: IMEI 004401114765106 - Modification State 0

2.2.3 Date of Test

22 May 2013 and 05 July 2013

2.2.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.2.5 Test Procedure

The EUT was transmitted at maximum power via a cable to the Power Meter. The Power Meter settings were adjusted to measure the signal and a reference level offset was entered to account for the measurement path loss. The peak levels were recorded.

2.2.6 Environmental Conditions

Ambient Temperature 23.7 - 25.2°C Relative Humidity 37.9 - 49.4%

2.2.7 Test Results

802.11(b)

4.0 V DC Supply

	Maximum Peak Cond			ducted Output Power		
Modulation Data Rate (Mbps)	dBm			mW		
(1, 1)	2412 MHz	2437 MHz	2462 MHz	2412 MHz	2437 MHz	2462 MHz
1	15.68	16.77	16.73	36.97	47.54	47.08
2	15.72	16.95	16.69	37.29	49.58	46.70
5.5	15.79	16.89	16.71	37.90	48.84	46.86
11	15.84	17.02	15.39	38.33	50.33	34.56

Limit Clause

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725-5850MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

802.11(g)

4.0 V DC Supply

	Maximum Peak Conducted Output Power					
Modulation Data Rate (Mbps)	dBm		mW			
(),	2412 MHz	2437 MHz	2462 MHz	2412 MHz	2437 MHz	2462 MHz
6	22.32	22.81	23.91	170.78	191.13	246.30
9	22.15	22.79	23.38	163.97	190.01	217.70
12	21.97	23.12	23.89	157.56	157.56	205.25
18	22.12	23.10	23.23	162.82	203.99	210.49
24	21.72	22.75	22.69	148.57	188.23	185.97
36	21.50	22.70	22.77	141.13	186.03	189.36
48	23.04	23.64	24.05	201.29	231.41	254.30
54	21.41	22.15	22.61	138.49	163.95	182.46

Limit Clause

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725-5850MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

802.11(n)

4.0 V DC Supply

	Maximum Peak Conducted Output Power					
Modulation Data Rate (Mbps)	dBm			mW		
(1, 1,	2412 MHz	2437 MHz	2462 MHz	2412 MHz	2437 MHz	2462 MHz
6.5	22.41	23.22	24.10	174.08	209.69	256.99
13	23.31	24.55	25.06	214.45	285.27	321.39
19.5	23.44	24.16	24.90	220.71	260.91	308.87
26	22.79	23.72	24.08	190.03	235.41	255.94
39	22.81	23.76	23.82	190.93	237.87	241.21
52	22.63	24.00	23.99	183.05	251.00	250.32
58.5	22.87	23.84	24.05	193.70	241.97	253.88
65	22.40	23.22	23.89	173.89	210.02	244.87

Limit Clause

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725-5850MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

GFSK

4.0 V DC Supply

	Maximum Peak Conducted Output Power				ower	
Modulation Data Rate (Mbps)		dBm			mW	
, , ,	2402 MHz	2440 MHz	2480 MHz	2402 MHz	2440 MHz	2480 MHz
1	-1.24	-0.79	0.55	0.75	0.83	1.13

Limit Clause

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725-5850MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

2.3 EIRP PEAK POWER

2.3.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (b)(4)

2.3.2 Equipment Under Test and Modification State

SHL22 S/N: IMEI 004401114764687 - Modification State 0

2.3.3 Date of Test

2 June 2013, 17 June 2013, 18 June 2013 and 07 July 2013

2.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.3.5 Test Procedure

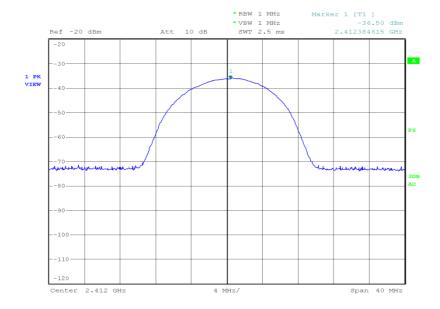
The EUT was transmitted at maximum power via a cable to the Spectrum Analyser. The Analyser settings were adjusted to display the resultant trace on screen and a resolution bandwidth and video bandwidth of 1 MHz were used to perform the measurement. The level on the spectrum analyser was maximised by rotating the EUT 360° and a height search of the measuring antenna. A substitution was then performed using a substitution antenna and signal generator.

This level was maximised by adjusting the height of the measuring antenna once more. The level from the signal generator was then adjusted to achieve the same raw result as with the EUT. This level was then corrected to account for cable loss and antenna factor. If applicable, a peak power analyser was also used to obtain a correction factor for wideband signals such as WLAN.

A calculation was then performed to obtain the final figure.

2.3.6 Environmental Conditions

Ambient Temperature 18.9 - 23.3°C Relative Humidity 35.1 - 45.4%

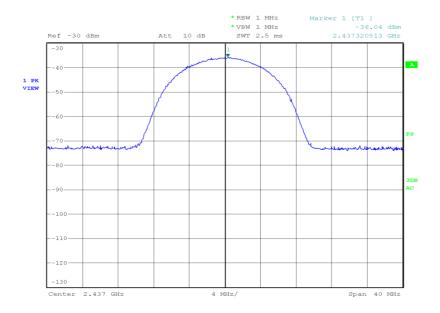

2.3.7 Test Results

802.11(b)

4.0 V DC Supply

2412 MHz

	EIRP (dBm)	EIRP (mW)
ŀ	13.87	24.38



Date: 2.JUN.2013 14:08:46

2437 MHz

EIRP (dBm)	EIRP (mW)
13.87	24.38



Date: 2.JUN.2013 13:47:54

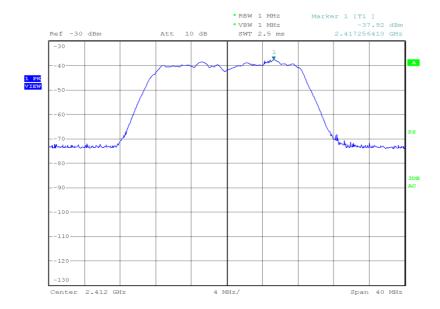
2462 MHz

EIRP (dBm)	EIRP (mW)
14.10	25.70

Date: 2.JUN.2013 14:03:03

<u>Limit</u>

EIRP (dBm)	EIRP (mW)
36.0	4000

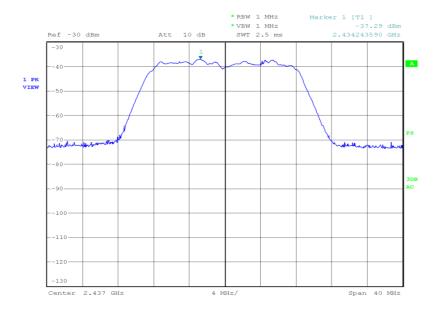


802.11(g)

4.0 V DC Supply

2412 MHz

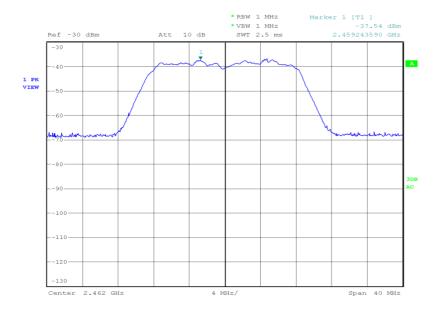
EIRP (dBm)	EIRP (mW)
19.13	81.85



Date: 2.JUN.2013 12:30:59

2437 MHz

EIRP (dBm)	EIRP (mW)
19.20	83.18



Date: 2.JUN.2013 11:26:36

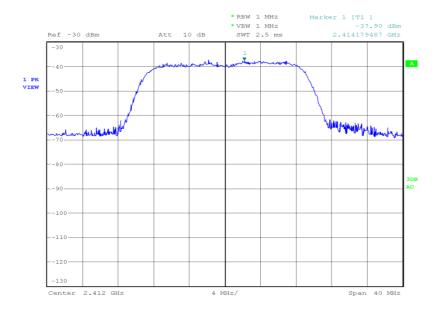
2462 MHz

EIRP (dBm)	EIRP (mW)
18.78	75.51

Date: 2.JUN.2013 11:42:42

<u>Limit</u>

EIRP (dBm)	EIRP (mW)
36.0	4000

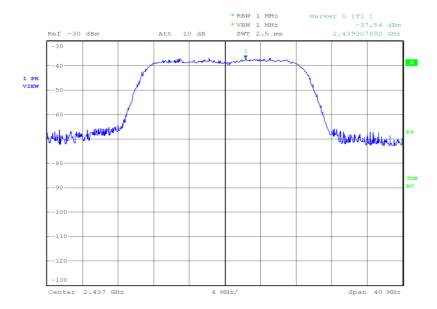


802.11(n)

4.0 V DC Supply

2412 MHz

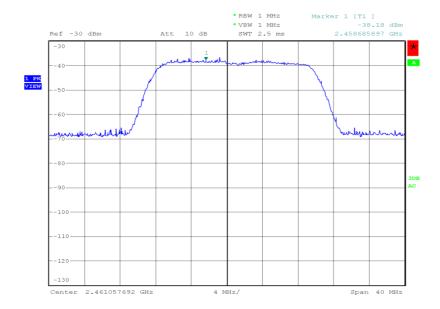
EIRP (dBm)	EIRP (mW)
18.33	68.08



Date: 2.JUN.2013 10:48:39

2437 MHz

EIRP (dBm)	EIRP (mW)
18.11	64.71



Date: 2.JUN.2013 10:01:55

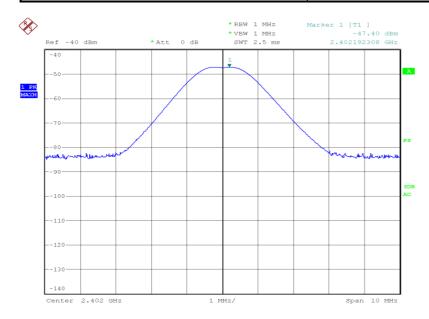
2462 MHz

EIRP (dBm)	EIRP (mW)
17.30	53.70

Date: 2.JUN.2013 10:27:12

<u>Limit</u>

EIRP (dBm)	EIRP (mW)
36.0	4000

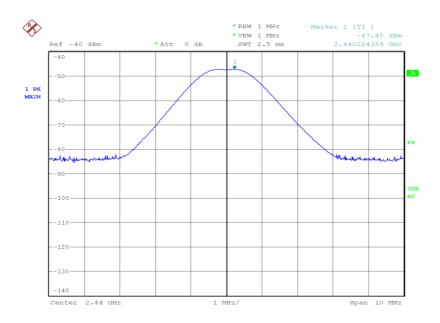


GFSK

4.0 V DC Supply

2402 MHz

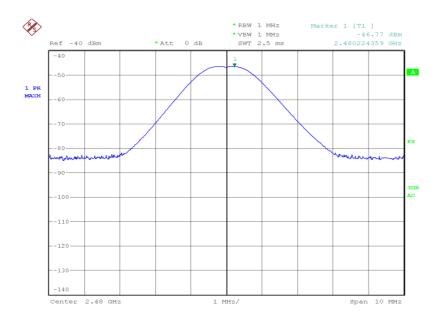
EIRP (dBm)	EIRP (mW)
-6.27	0.24



Date: 6.JUL.2013 15:39:42

2440 MHz

EIRP (dBm)	EIRP (mW)
-6.12	0.24



Date: 6.JUL.2013 16:03:36

2480 MHz

EIRP (dBm)	EIRP (mW)
-5.66	0.27

Date: 6.JUL.2013 16:20:31

<u>Limit</u>

EIRP (dBm)	EIRP (mW)
36.0	4000

2.4 POWER SPECTRAL DENSITY

2.4.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (e)

2.4.2 Equipment Under Test and Modification State

SHL22 S/N: IMEI 004401114765106 - Modification State 0

2.4.3 Date of Test

21 May 2013, 22 May 2013 and 05 July 2013

2.4.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

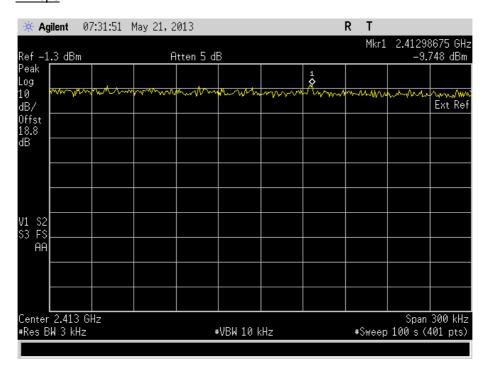
2.4.5 Test Procedure

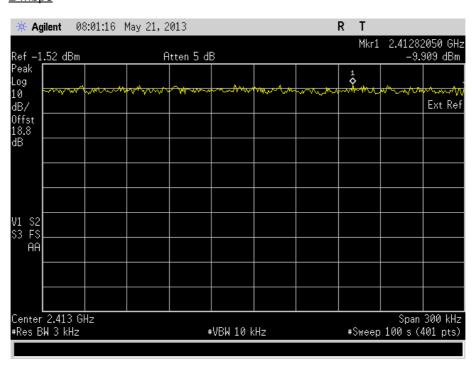
The EUT was connected to a spectrum analyser via a 10 dB attenuator. The path loss was measured between the EUT and the spectrum analyser and entered as a reference level offset. The trace was set to max hold and using a peak detector the maximum response was established. With the spectrum analyser RBW at 3 kHz and VBW at 10 kHz, the power spectral density in a 3 kHz bandwidth was measured.

2.4.6 Environmental Conditions

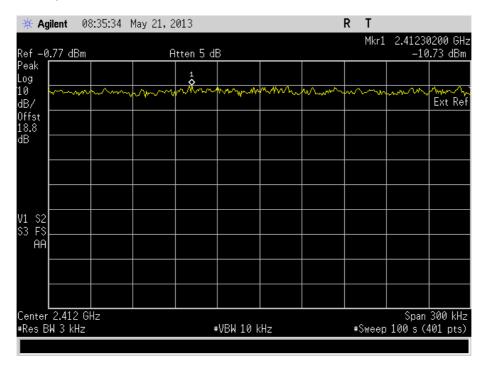
Ambient Temperature 23.4 - 25.2°C Relative Humidity 37.9 - 47.4%

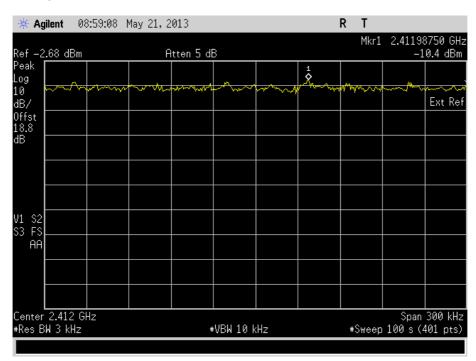
2.4.7 Test Results

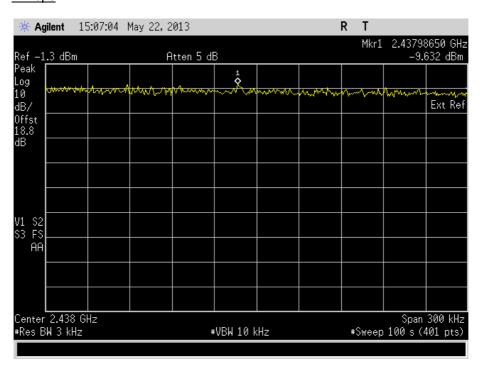

802.11(b)

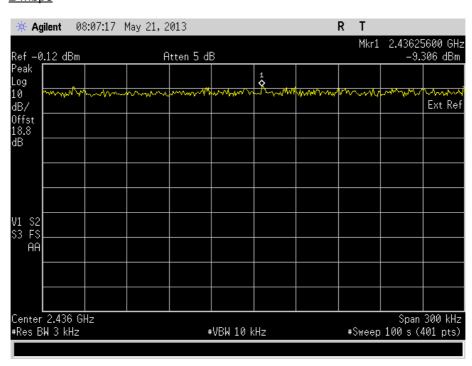

4.0 V DC Supply

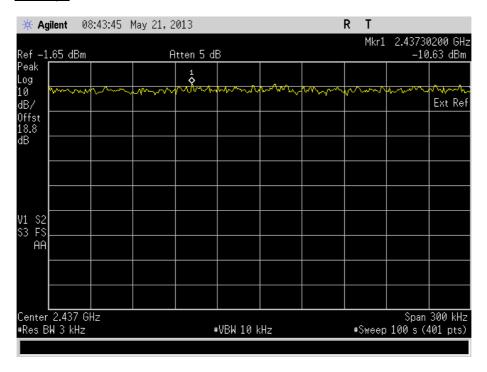
Frequency	Data Rate (Mbps)	Power Spectral Density in 3 kHz Bands (dBm)
2412 MHz	1	-9.75
	2	-9.91
	5.5	-10.73
	11	-10.40
2437 MHz	1	-9.63
	2	-9.31
	5.5	-10.63
	11	-9.77
2462 MHz	1	-10.41
	2	-9.98
	5.5	-10.87
	11	-12.93

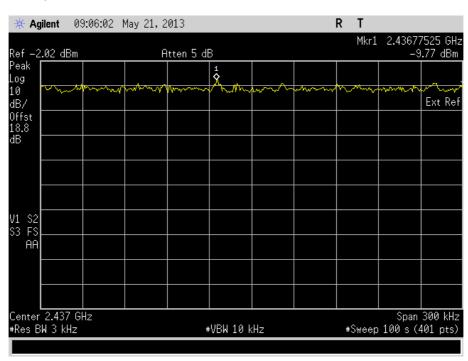


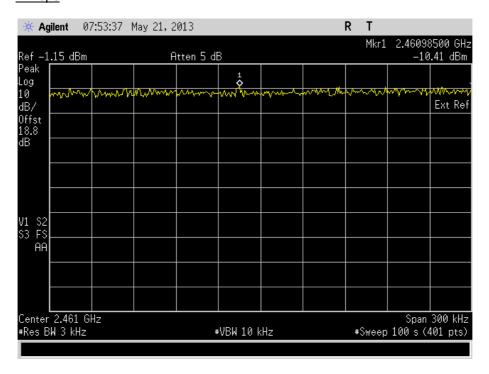

1 Mbps

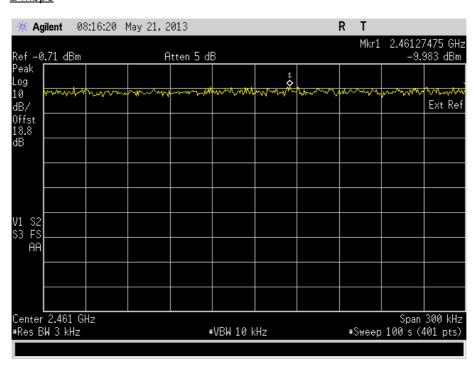


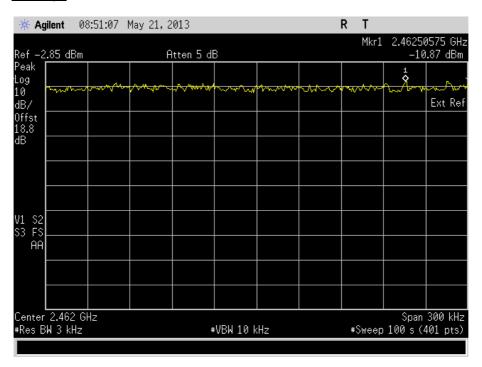




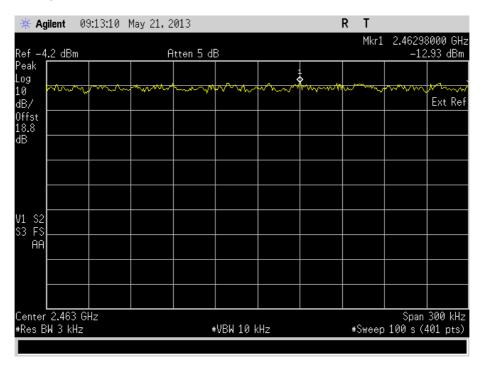

1 Mbps







1 Mbps

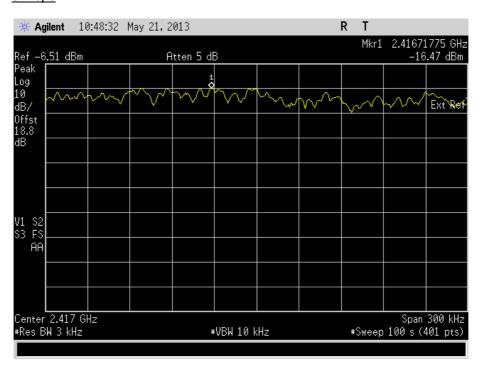


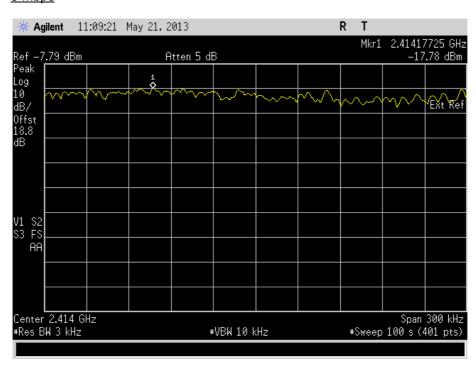
11 Mbps

Limit Clause

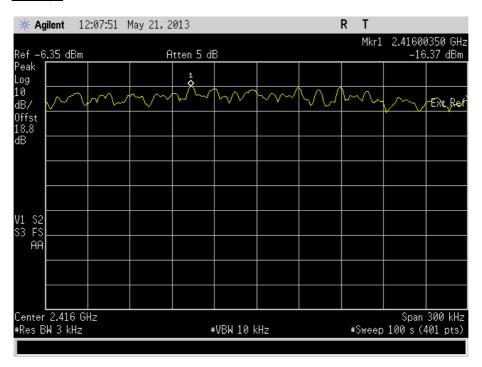
The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

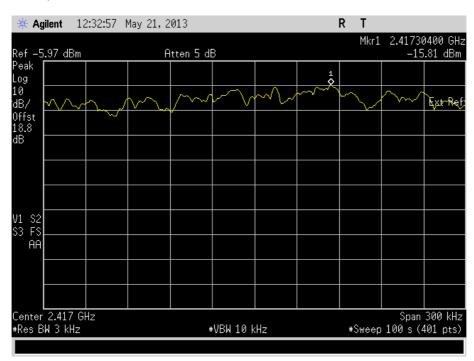
COMMERCIAL-IN-CONFIDENCE

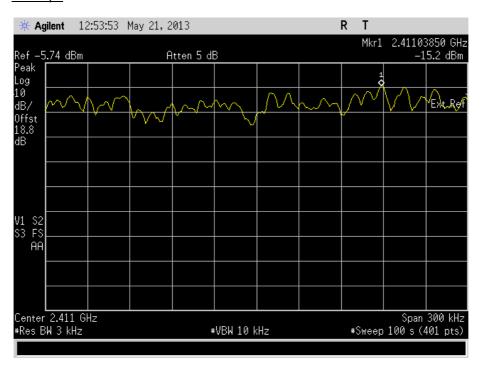

802.11(g)

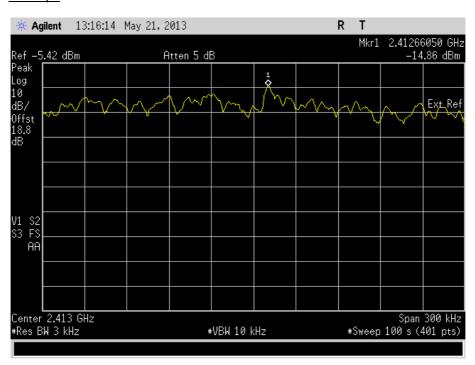

4.0 V DC Supply

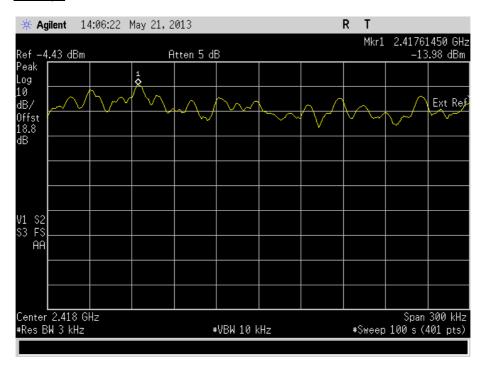
Frequency	Data Rate (Mbps)	Power Spectral Density in 3 kHz Bands (dBm)
2412 MHz	6	-16.47
	9	-17.78
	12	-16.37
	18	-15.81
	24	-15.20
	36	-14.86
	48	-13.99
	54	-16.82
	6	-15.67
	9	-17.70
2437 MHz	12	-14.59
	18	-16.28
	24	-14.76
	36	-15.08
	48	-14.88
	54	-16.64
2462 MHz	6	-15.71
	9	-15.48
	12	-14.76
	18	-16.26
	24	-15.34
	36	-14.71
	48	-14.85
	54	-15.29

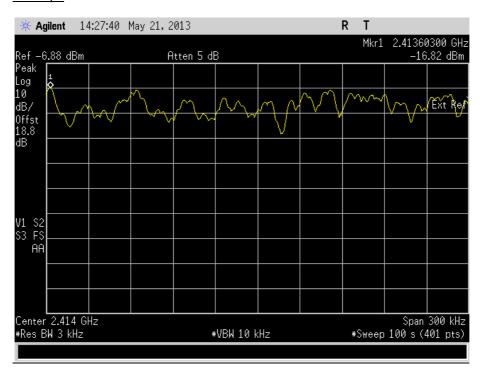


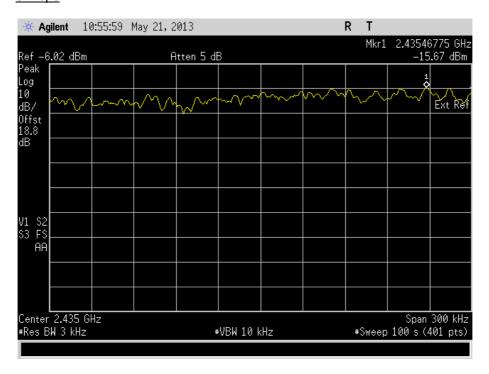

6 Mbps

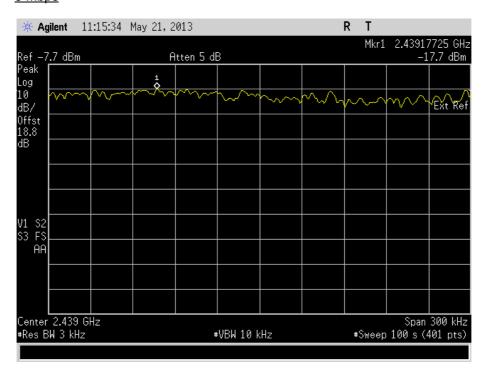


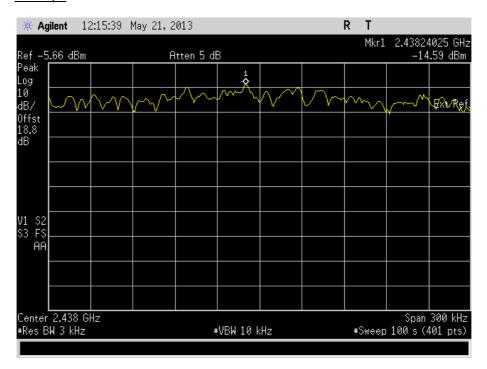


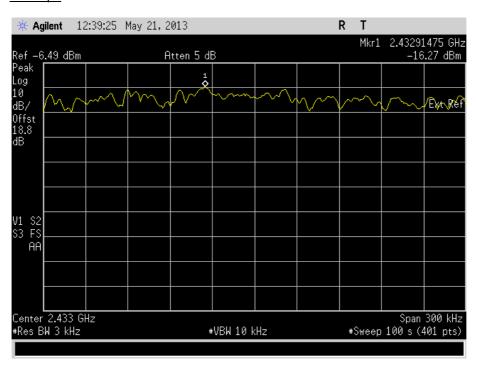


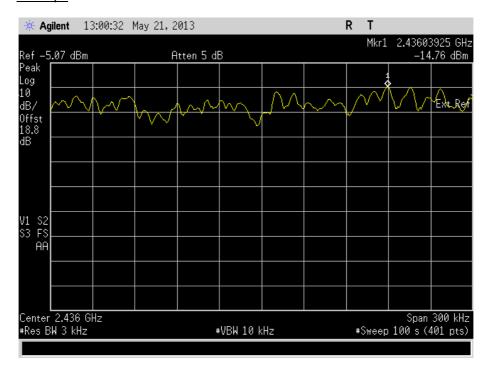


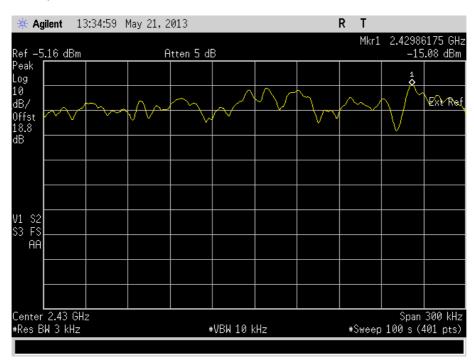


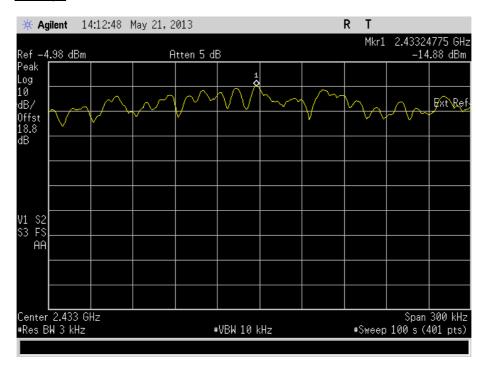


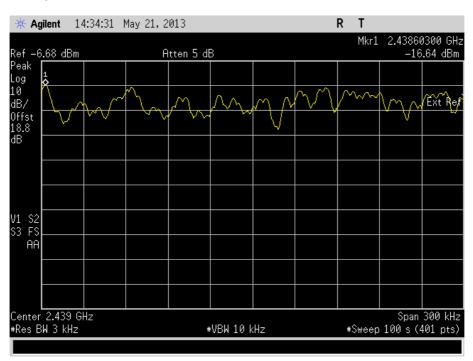


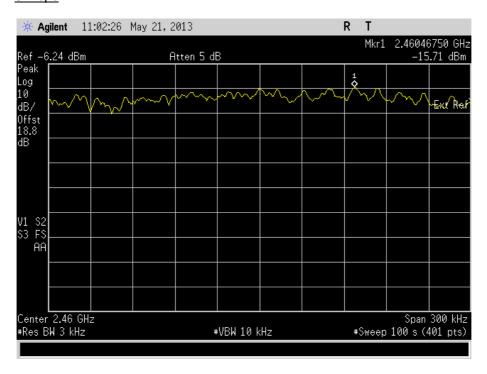

6 Mbps



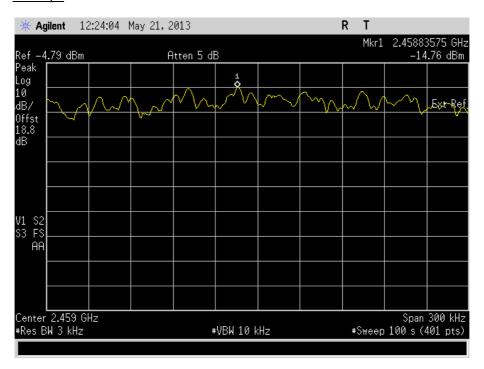




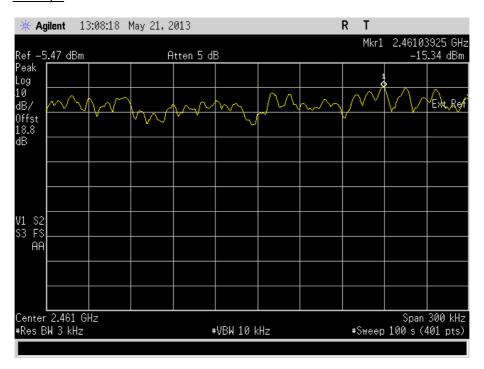


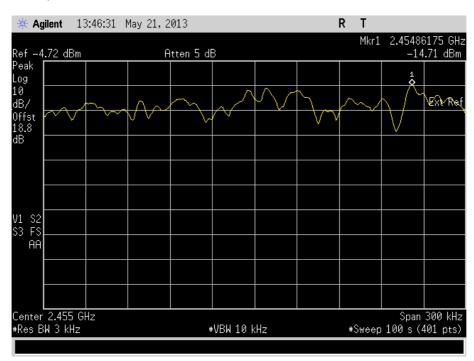


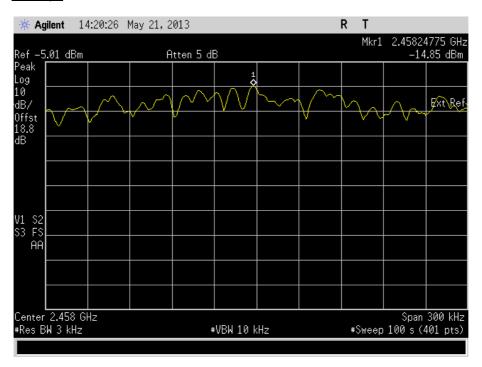


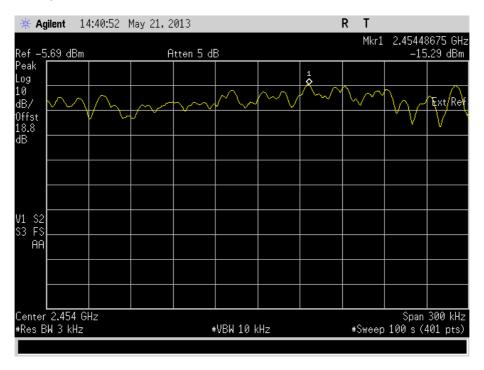



6 Mbps







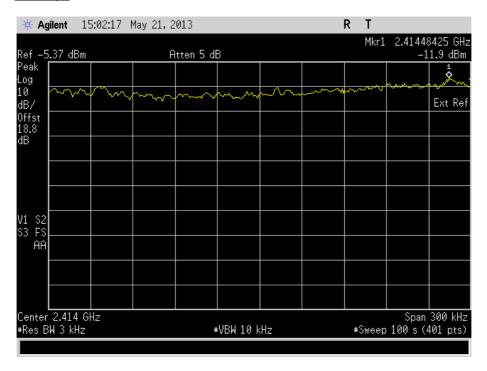


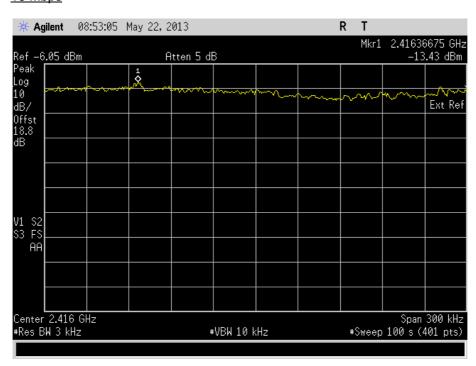
54 Mbps

Limit Clause

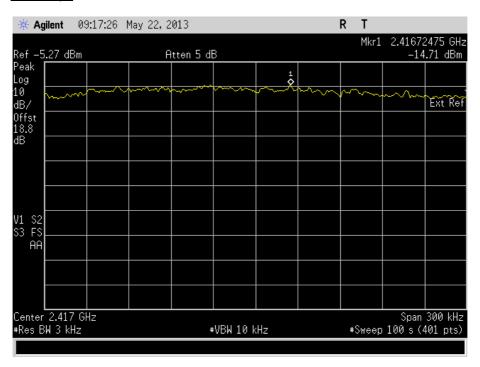
The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

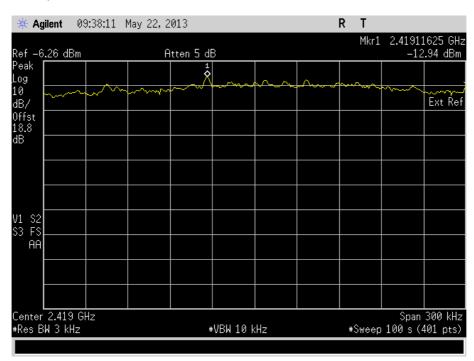
COMMERCIAL-IN-CONFIDENCE

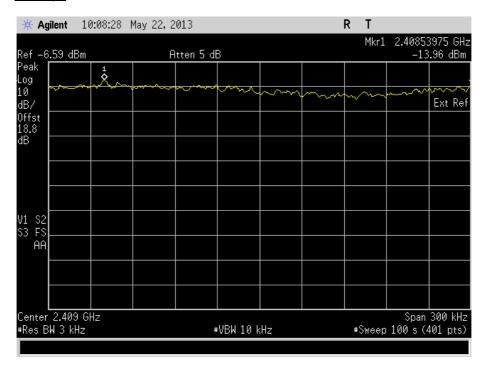

802.11(n)

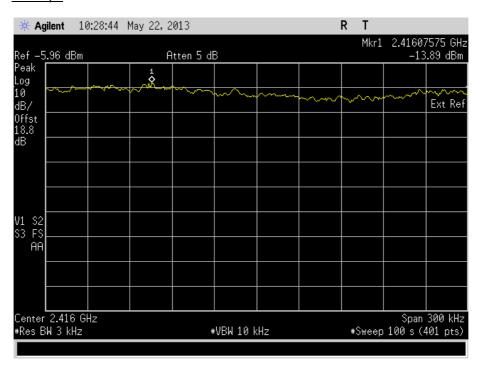

4.0 V DC Supply

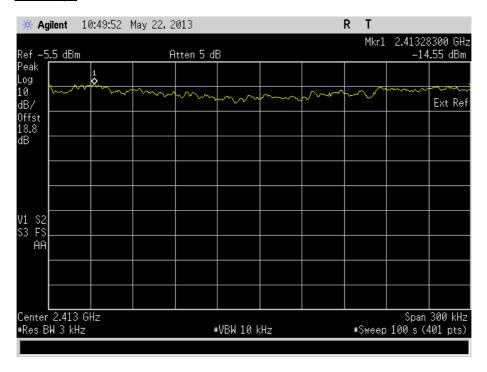
Frequency	Data Rate (Mbps)	Power Spectral Density in 3 kHz Bands (dBm)
2412 MHz	6.5	-11.90
	13	-13.43
	19.5	-14.71
	26	-12.94
	39	-13.96
	52	-13.89
	58.5	-14.55
	65	-15.06
	6.5	-13.63
	13	-15.00
	19.5	-14.22
2437 MHz	26	-14.20
	39	-13.48
	52	-14.88
	58.5	-14.52
	65	-14.07
	6.5	-13.00
	13	-12.95
	19.5	-15.71
	26	-14.39
2462 MHz	39	-13.17
	52	-14.26
	58.5	-14.59
	65	-14.21

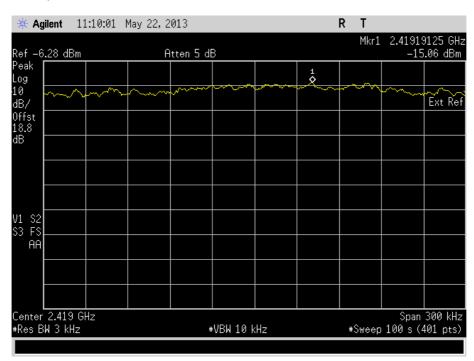


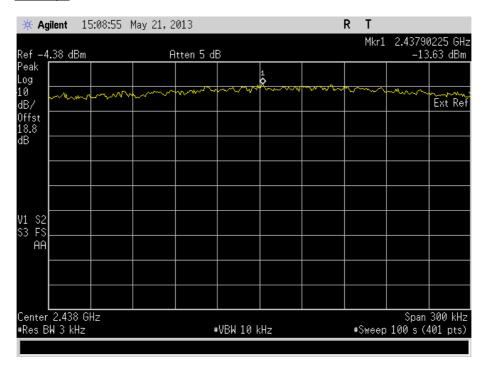

6.5 Mbps

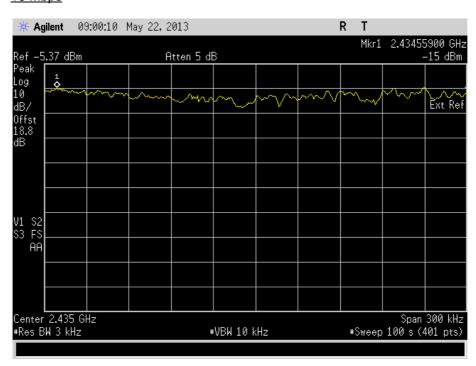


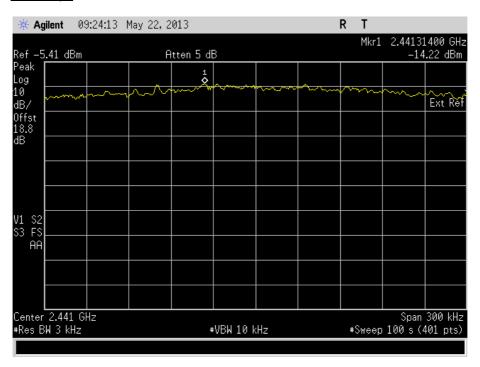


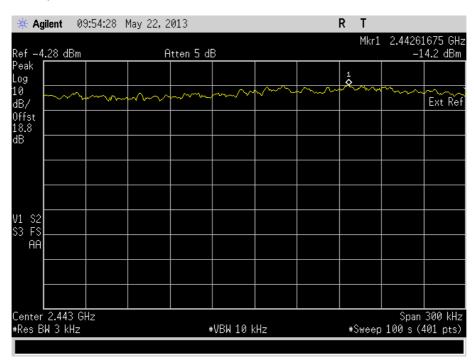


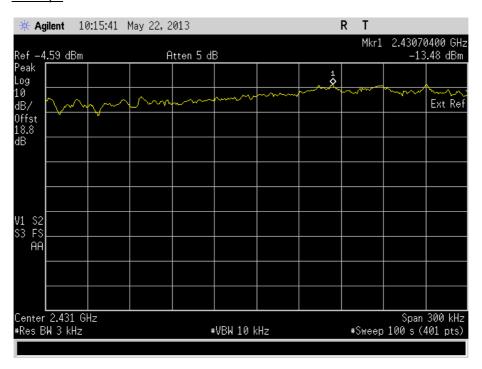


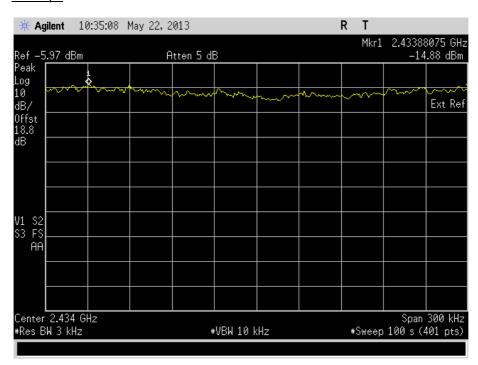


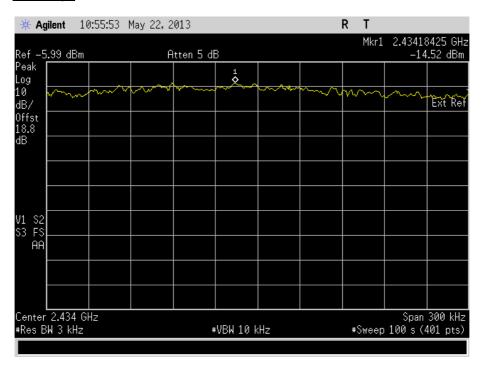


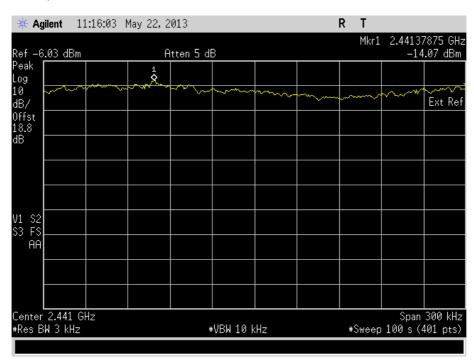


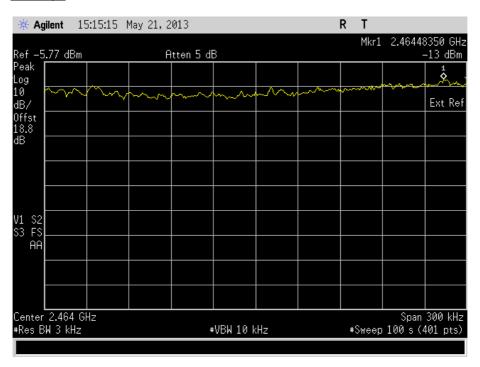

6.5 Mbps

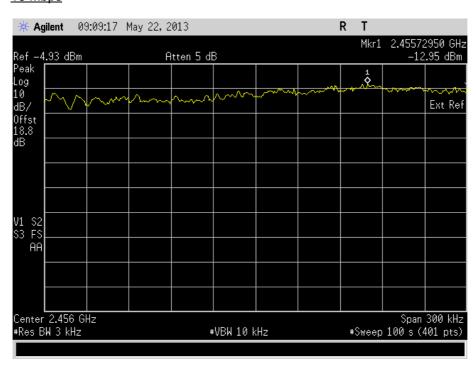


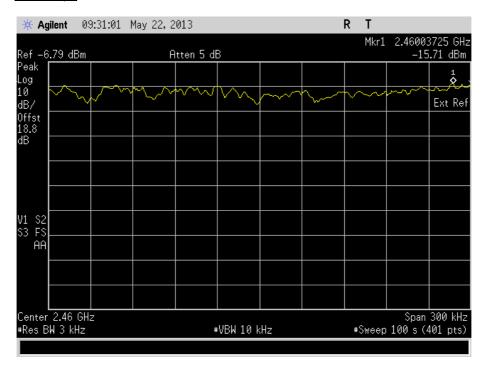


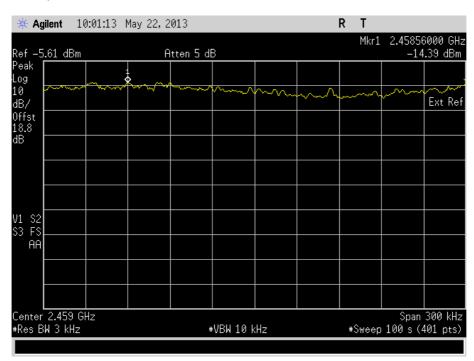


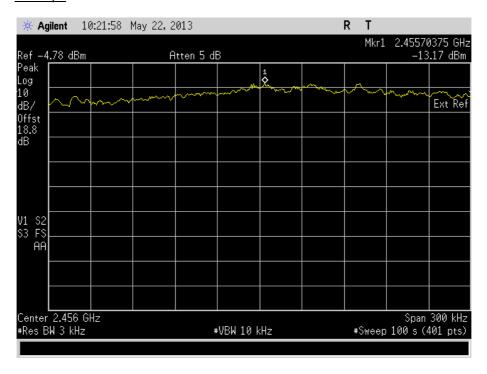


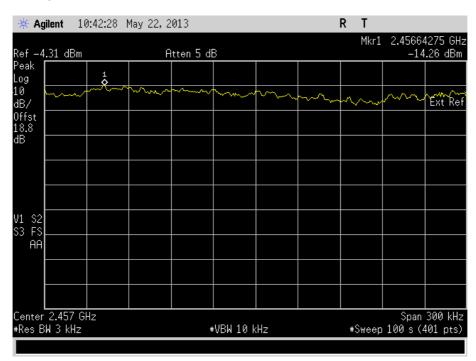


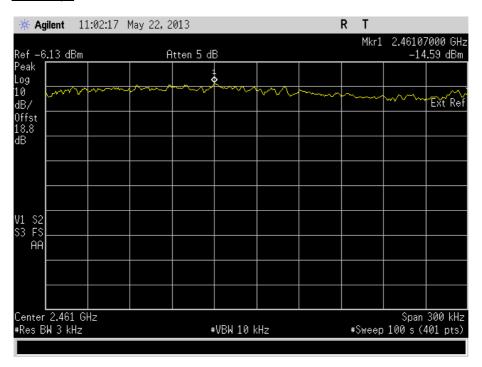


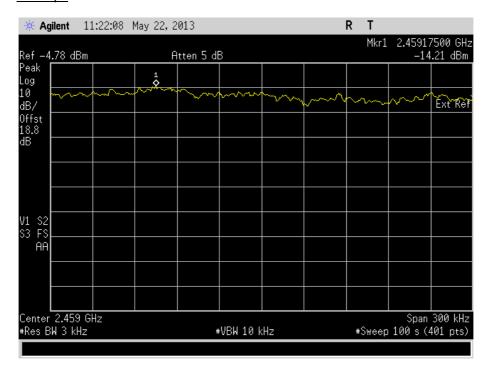



6.5 Mbps





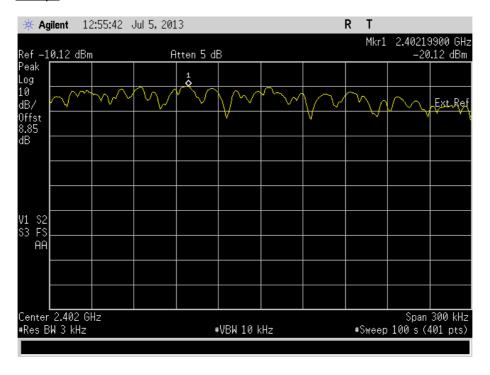




65 Mbps

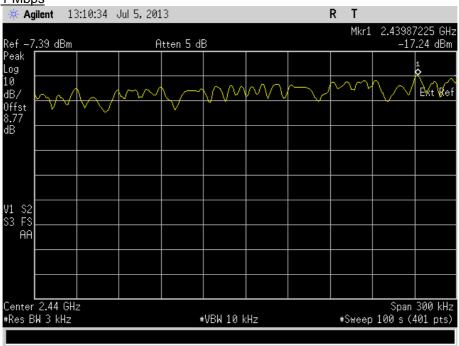
Limit Clause

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

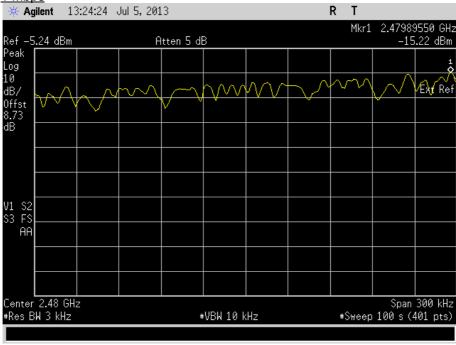


GFSK

4.0 V DC Supply


Frequency	Data Rate (Mbps)	Power Spectral Density in 3 kHz Bands (dBm)
2402 MHz	1	-20.12
2440 MHz	1	-17.24
2480 MHz	1	-15.22

2402 MHz



2480 MHz

Limit Clause

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Document 75920802 Report 16 Issue 2

Page 70 of 185

2.5 SPURIOUS AND BAND EDGE EMISSIONS

2.5.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (d)

2.5.2 Equipment Under Test and Modification State

SHL22 S/N: IMEI 004401114764687 - Modification State 0

2.5.3 Date of Test

1 June 2013, 2 June 2013, 7 June 2013, 13 June 2013, 14 June 2013, 17 June 2013, 5 July 2013 & 7 July 2013

2.5.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.5.5 Test Procedure

For conducted emissions, the EUT was set to operate at maximum power on the worst case data rate. The test was performed on the bottom, middle and top channels. The test was performed from 9 kHz to 25 GHz. Firstly, the power of each fundamental frequency was measured in 100 kHz bandwidth and this was used to shown a -20 dBc limit line on the trace. The measurement path loss in each relevant frequency band was measured and entered a s a reference level offset.

For radiated emissions, the test method described above was also used. However, the measurement was performed from 30 MHz to 25 GHz and the path loss is incorporated as a transducer factor and entered into the spectrum analyser.

The band edge measurements were performed in accordance with ANSI C63.10, Clause 6.9.3. The results were analysed to ensure compliance with restricted bands. The EUT was set to the lowest and highest operating frequencies.

2.5.6 Environmental Conditions

Ambient Temperature 18.9 - 23.0°C Relative Humidity 35.1 - 51.7%

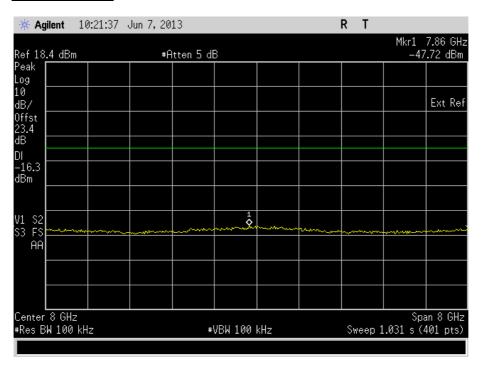
2.5.7 Test Results

802.11(b)

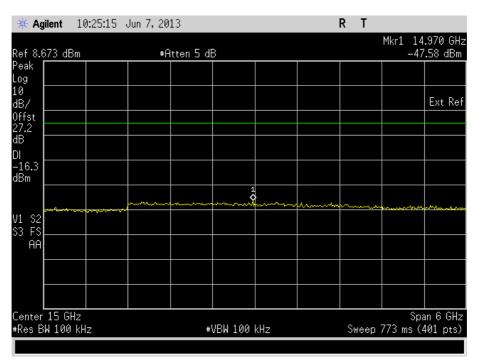

4.0 V DC Supply

Spurious Conducted Emissions

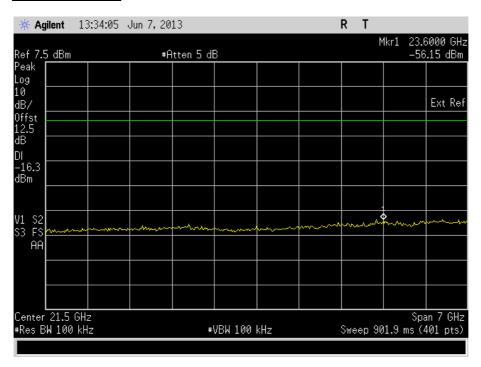
11 Mbps


2412 MHz

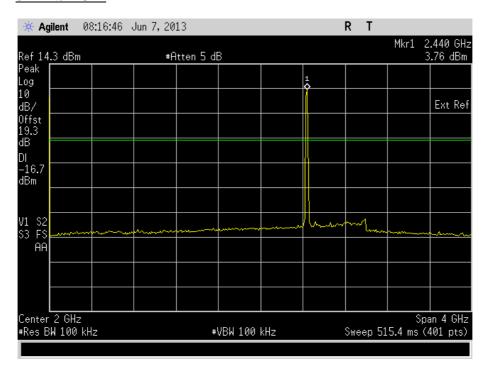
9 kHz to 4 GHz



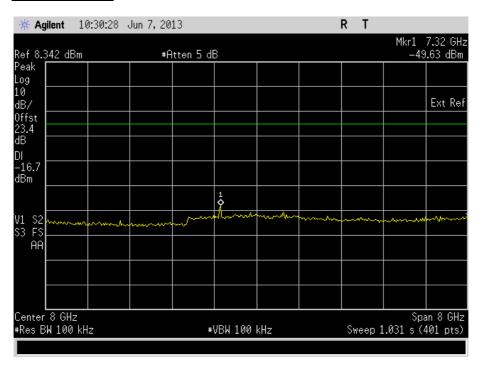
4 GHz to 12 GHz



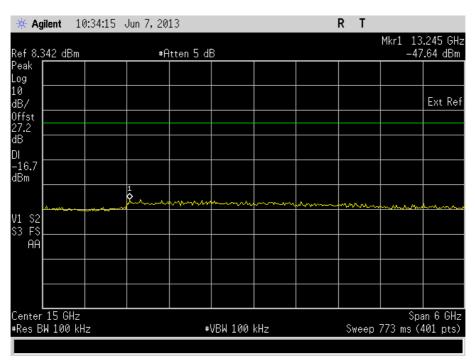
12 GHz to 18 GHz



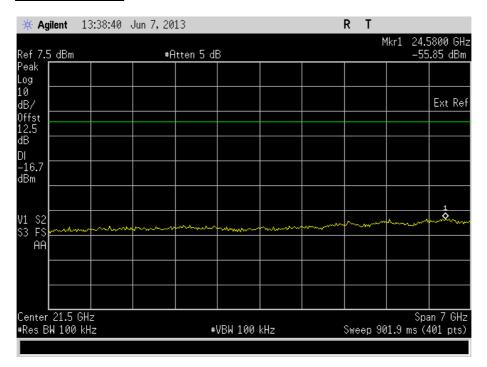
18 GHz to 25 GHz


2437 MHz

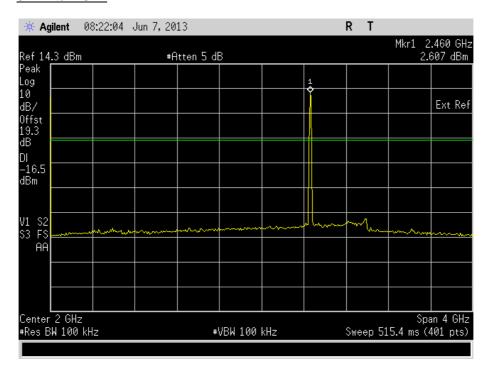
9 kHz to 4 GHz



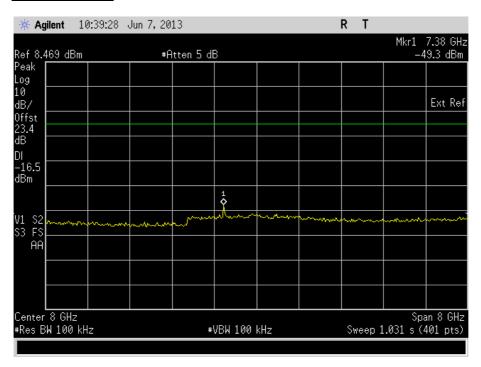
4 GHz to 12 GHz



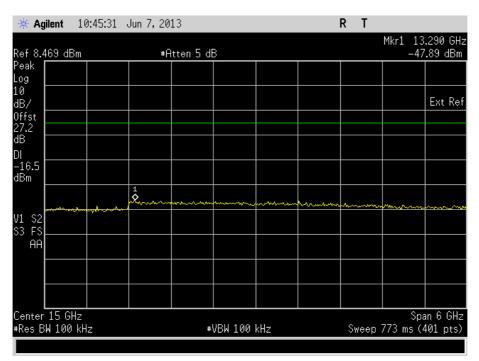
12 GHz to 18 GHz



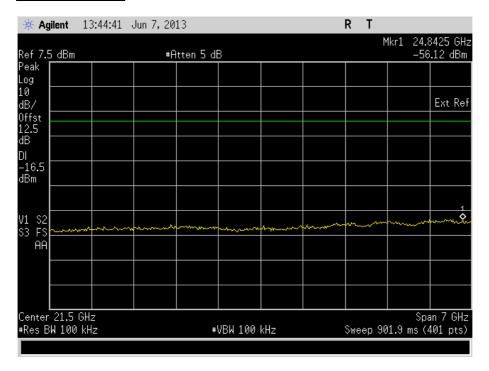
18 GHz to 25 GHz


2462 MHz

9 kHz to 4 GHz



4 GHz to 12 GHz

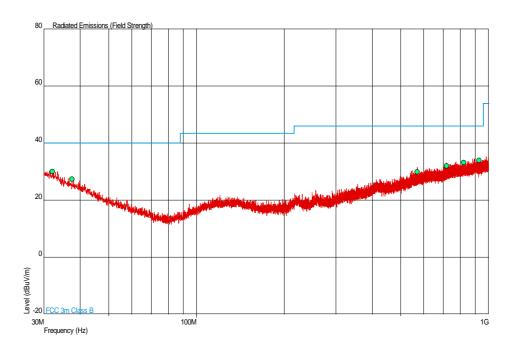


12 GHz to 18 GHz

18 GHz to 25 GHz

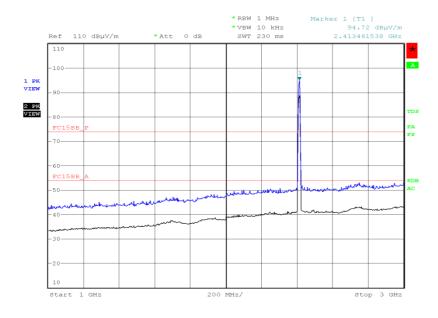
Limit Clause

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

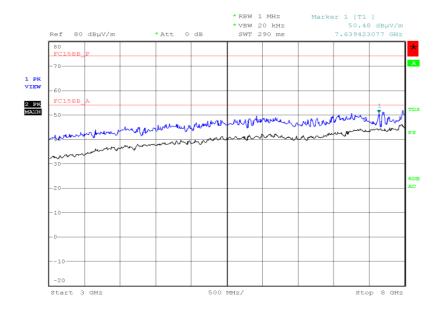

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval the attenuation required shall be 30 dB instead of 20 dB.

Spurious Radiated Emissions

2412 MHz

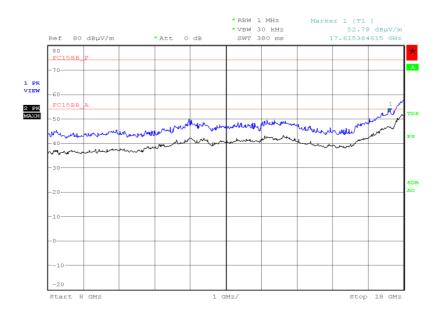

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBµV/m)	QP Level (µV/m	QP Limit (dBµV/m)	QP Limit (µV/m)	QP Margin (dBµV/m)	QP Margin (μV/m)	Angle (Deg)	Height (m)	Polarity
32.134	30.1	32.0	40.0	100	-9.9	68.0	0	1.00	Vertical
37.468	27.4	23.4	40.0	100	-12.6	76.6	0	1.00	Horizontal
570.205	29.9	31.3	46.0	200	-16.1	168.7	0	1.00	Horizontal
719.451	32.0	39.8	46.0	200	-14.0	160.2	0	1.00	Horizontal
822.199	33.3	46.2	46.0	200	-12.7	153.8	0	1.00	Horizontal
928.742	34.0	50.1	46.0	200	-12.0	149.9	0	1.00	Horizontal

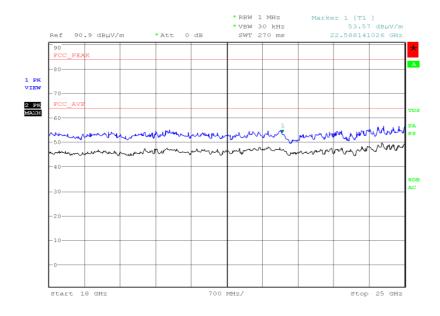


1 GHz to 3 GHz

Date: 12.JUN.2013 21:38:03


3 GHz to 8 GHz

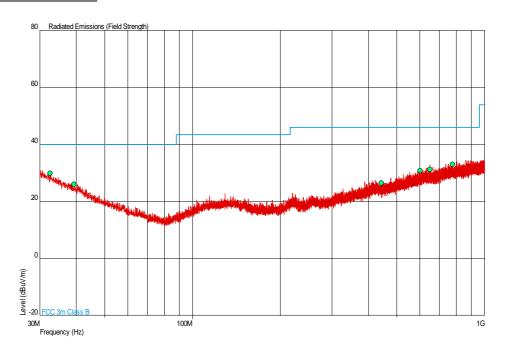
Date: 13.JUN.2013 01:31:21



8 GHz to 18 GHz

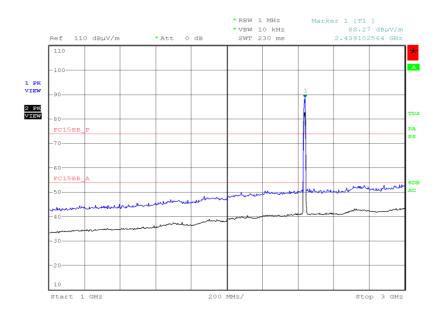
Date: 13.JUN.2013 04:12:09

18 GHz to 25 GHz

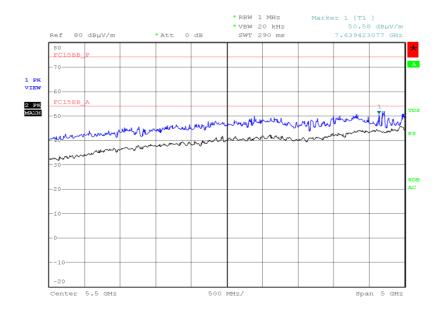


Date: 13.JUN.2013 23:58:42

2437 MHz

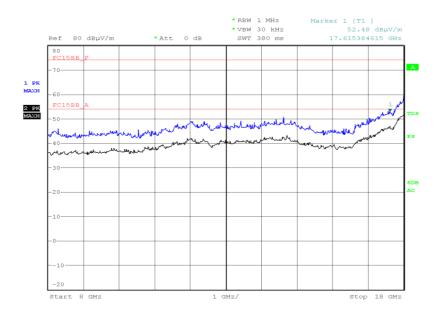

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBµV/m)	QP Level (µV/m	QP Limit (dBµV/m)	QP Limit (µV/m)	QP Margin (dBµV/m)	QP Margin (μV/m)	Angle (Deg)	Height (m)	Polarity
32.522	29.9	31.3	40.0	100	-10.1	68.7	0	1.00	Horizontal
39.361	26.1	20.2	40.0	100	-13.9	79.8	0	1.00	Horizontal
442.165	26.5	21.1	46.0	200	-19.5	178.9	0	1.00	Horizontal
600.469	30.9	35.1	46.0	200	-15.1	164.9	0	1.00	Horizontal
648.424	31.3	36.7	46.0	200	-14.7	163.3	0	1.00	Horizontal
775.251	33.1	45.2	46.0	200	-12.9	154.8	0	1.00	Vertical

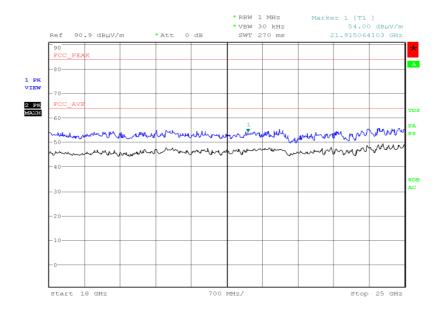


1 GHz to 3 GHz

Date: 12.JUN.2013 21:46:31


3 GHz to 8 GHz

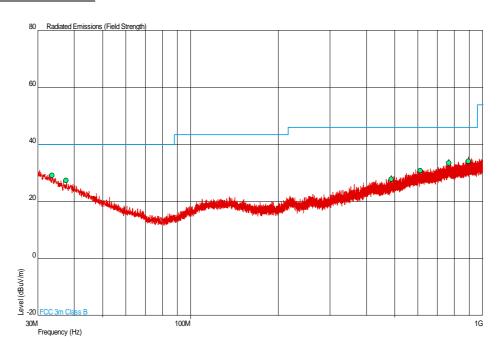
Date: 13.JUN.2013 01:42:22



8 GHz to 18 GHz

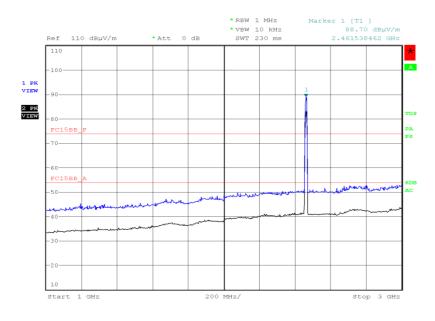
Date: 13.JUN.2013 04:16:37

18 GHz to 25 GHz

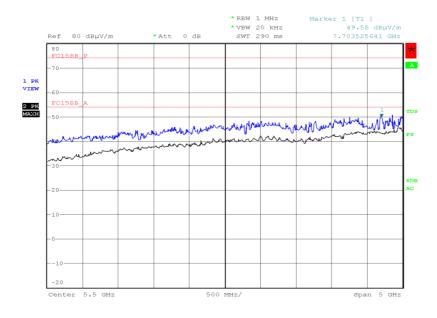

Date: 14.JUN.2013 00:08:59

COMMERCIAL-IN-CONFIDENCE

2462 MHz

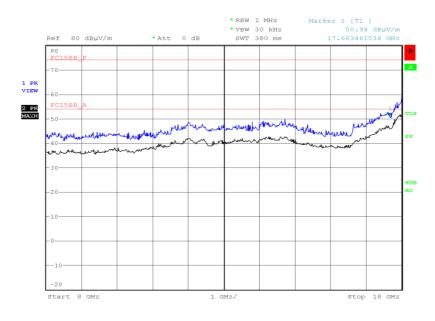

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBµV/m)	QP Level (µV/m	QP Limit (dBµV/m)	QP Limit (µV/m)	QP Margin (dBµV/m)	QP Margin (μV/m)	Angle (Deg)	Height (m)	Polarity
33.589	29.2	28.8	40.0	100	-10.8	71.2	0	1.00	Horizontal
37.518	27.4	23.4	40.0	100	-12.6	76.6	0	1.00	Vertical
487.161	27.8	24.5	46.0	200	-18.2	175.5	0	1.00	Horizontal
612.064	30.8	34.7	46.0	200	-15.2	165.3	0	1.00	Horizontal
764.872	33.5	47.3	46.0	200	-12.5	152.7	0	1.00	Horizontal
894.852	34.1	50.7	46.0	200	-11.9	149.3	0	1.00	Vertical

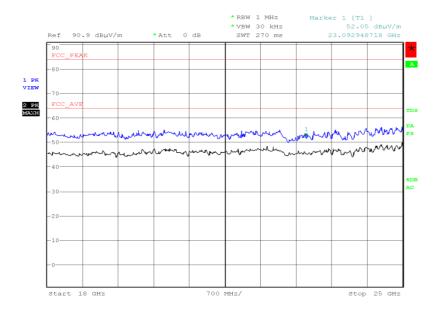


1 GHz to 3 GHz

Date: 12.JUN.2013 21:53:39


3 GHz to 8 GHz

Date: 13.JUN.2013 01:46:44



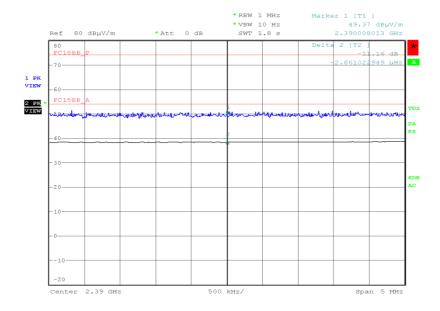
8 GHz to 18 GHz

Date: 13.JUN.2013 04:21:21

18 GHz to 25 GHz

Date: 14.JUN.2013 00:17:59

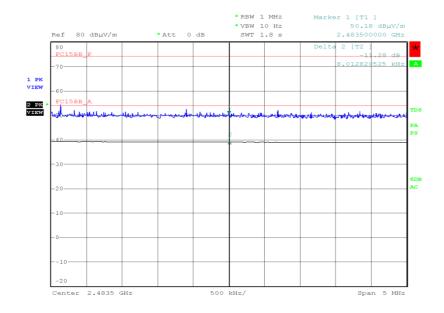
<u>Limit</u>


Peak (dBμV/m)	Average (dBµV/m)
74.0	54.0

Band Edge Emissions

2412 MHz

Polarisation	Final Peak (dBµV/m)	Final Average (dBµV/m)
Horizontal	49.37	38.21


Date: 2.JUN.2013 14:13:15

COMMERCIAL-IN-CONFIDENCE

2462 MHz

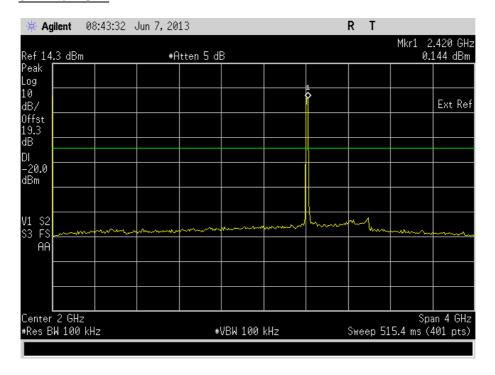
Polarisation	Final Peak (dBµV/m)	Final Average (dBµV/m)
Horizontal	50.18	38.90

Date: 2.JUN.2013 14:00:11

<u>Limit</u>

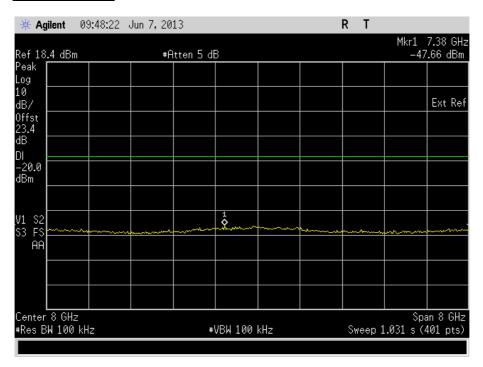
Peak (dBμV/m)	Average (dBµV/m)
74.0	54.0

802.11(g)

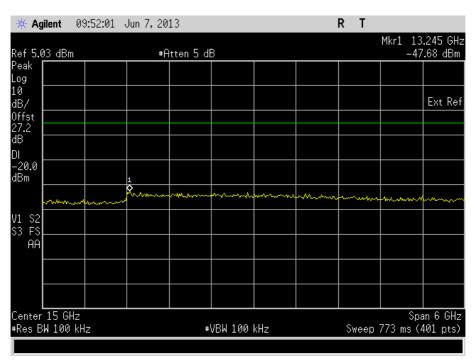

4.0 V DC Supply

Spurious Conducted Emissions

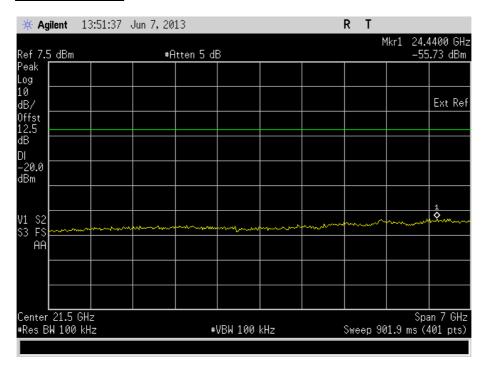
18 Mbps


2412 MHz

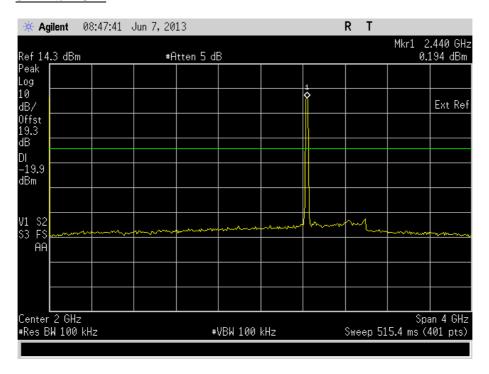
9 kHz to 4 GHz



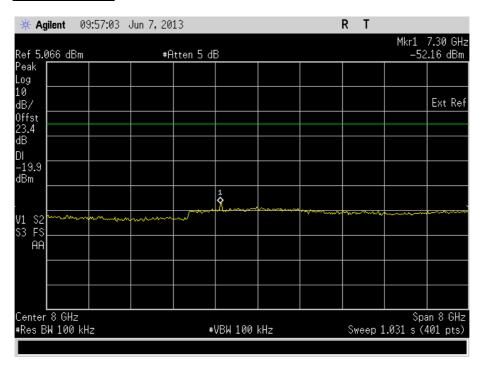
4 GHz to 12 GHz



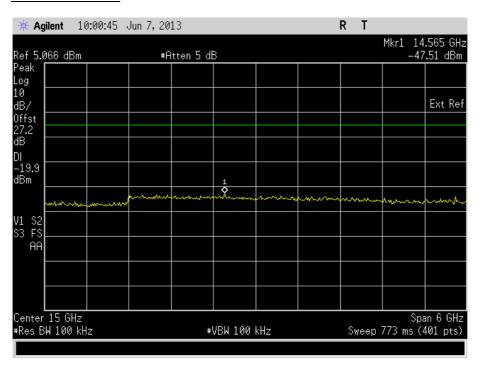
12 GHz to 18 GHz



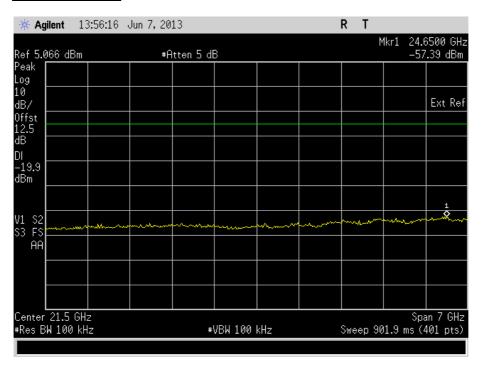
18 GHz to 25 GHz


2437 MHz

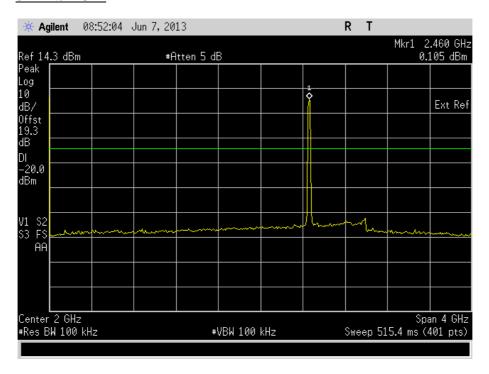
9 kHz to 4 GHz



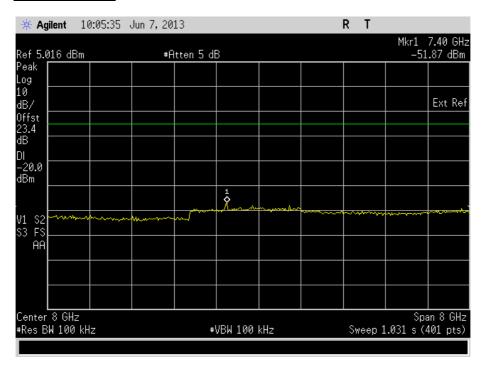
4 GHz to 12 GHz



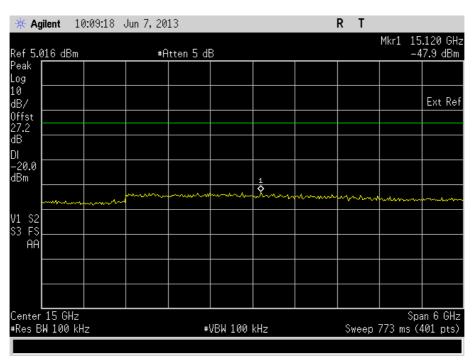
12 GHz to 18 GHz



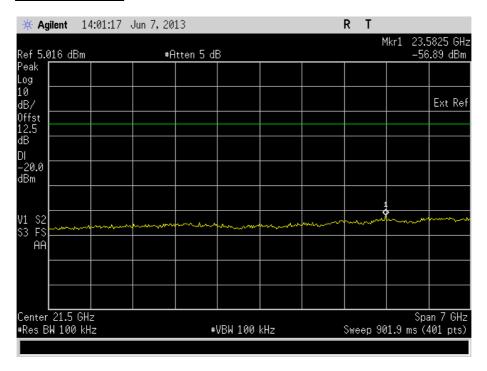
18 GHz to 25 GHz


2462 MHz

9 kHz to 4 GHz



4 GHz to 12 GHz

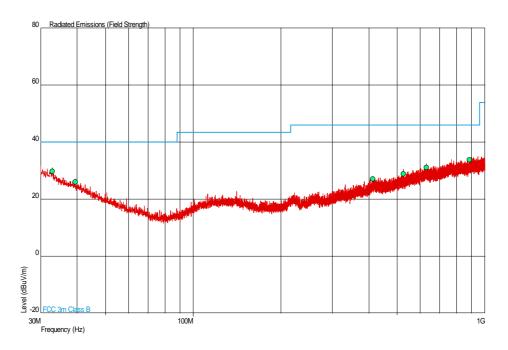


12 GHz to 18 GHz

18 GHz to 25 GHz

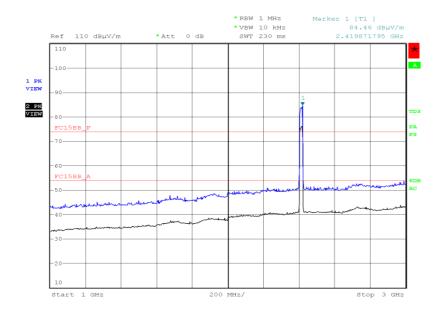
Limit Clause

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

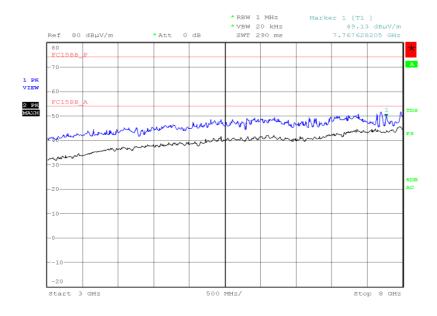

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval the attenuation required shall be 30 dB instead of 20 dB.

Spurious Radiated Emissions

2412 MHz

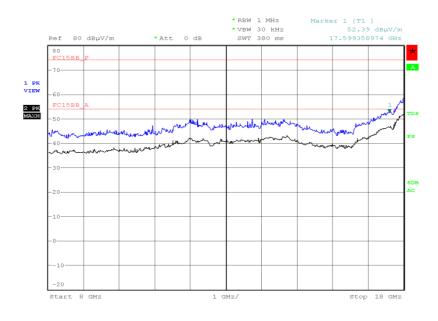

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBµV/m)	QP Level (µV/m	QP Limit (dBµV/m)	QP Limit (µV/m)	QP Margin (dBµV/m)	QP Margin (μV/m)	Angle (Deg)	Height (m)	Polarity
32.910	29.7	30.5	40.0	100	-10.3	69.5	0	1.00	Horizontal
39.409	26.1	20.2	40.0	100	-13.9	79.8	0	1.00	Horizontal
412.374	27.1	22.6	46.0	200	-18.9	177.4	0	1.00	Vertical
525.913	28.9	27.9	46.0	200	-17.1	172.1	0	1.00	Vertical
629.654	31.1	35.9	46.0	200	-14.9	164.1	0	1.00	Vertical
884.667	33.8	49.0	46.0	200	-12.2	151.0	0	1.00	Vertical

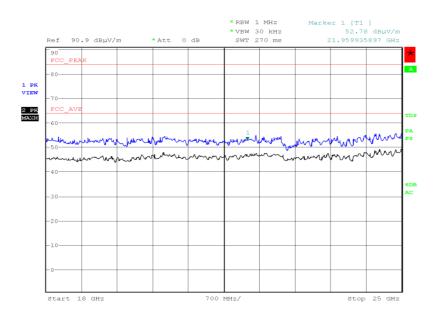


1 GHz to 3 GHz

Date: 12.JUN.2013 22:03:16


3 GHz to 8 GHz

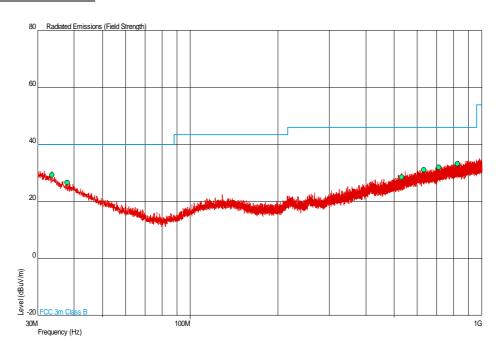
Date: 13.JUN.2013 00:44:33



8 GHz to 18 GHz

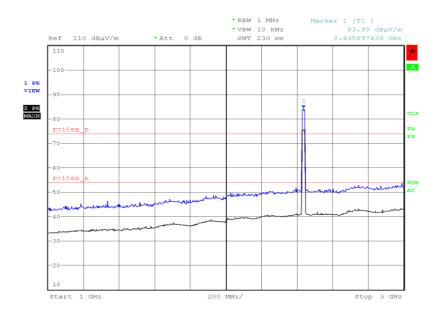
Date: 13.JUN.2013 04:27:36

18 GHz to 25 GHz

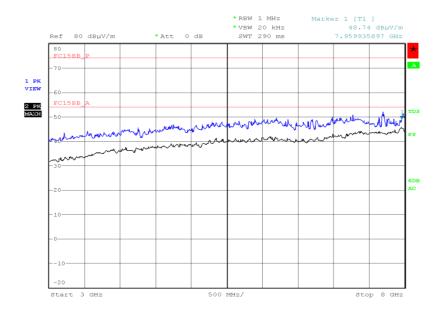

Date: 14.JUN.2013 00:25:24

COMMERCIAL-IN-CONFIDENCE

2437 MHz

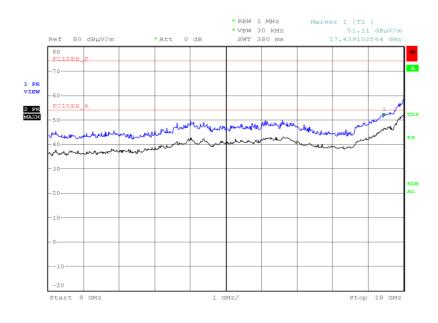

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBµV/m)	QP Level (µV/m	QP Limit (dBµV/m)	QP Limit (µV/m)	QP Margin (dBµV/m)	QP Margin (μV/m)	Angle (Deg)	Height (m)	Polarity
33.589	29.3	29.2	40.0	100	-10.7	70.8	0	1.00	Vertical
37.906	26.7	21.6	40.0	100	-13.3	78.4	0	1.00	Horizontal
530.617	28.6	26.9	46.0	200	-17.4	173.1	0	1.00	Vertical
633.098	31.1	35.9	46.0	200	-14.9	164.1	0	1.00	Vertical
710.310	32.0	39.8	46.0	200	-14.0	160.2	0	1.00	Horizontal
824.673	33.3	46.2	46.0	200	-12.7	153.8	0	1.00	Vertical

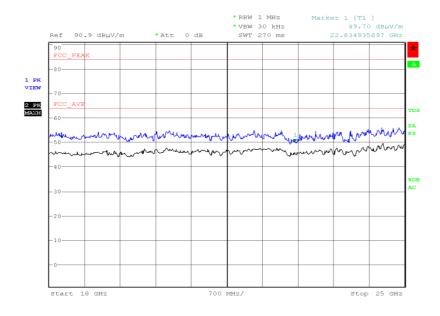


1 GHz to 3 GHz

Date: 12.JUN.2013 22:10:29


3 GHz to 8 GHz

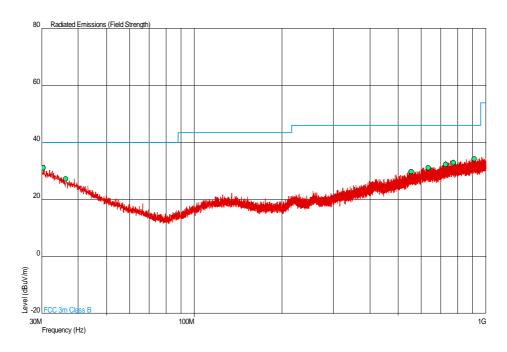
Date: 13.JUN.2013 00:52:56



8 GHz to 18 GHz

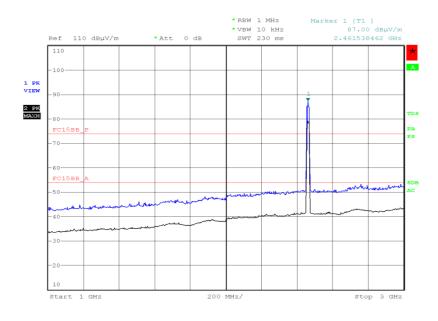
Date: 13.JUN.2013 04:33:12

18 GHz to 25 GHz

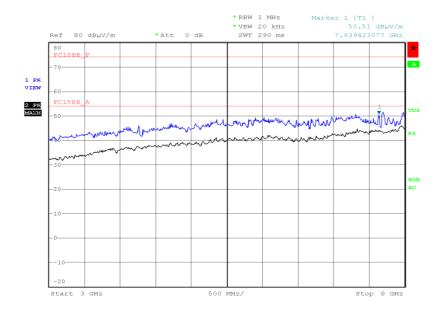

Date: 14.JUN.2013 00:32:45

COMMERCIAL-IN-CONFIDENCE

2462 MHz

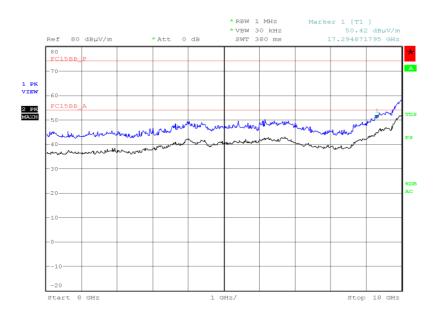

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBµV/m)	QP Level (µV/m	QP Limit (dBµV/m)	QP Limit (µV/m)	QP Margin (dBµV/m)	QP Margin (μV/m)	Angle (Deg)	Height (m)	Polarity
30.388	31.1	35.9	40.0	100	-8.9	64.1	0	1.00	Vertical
36.323	27.3	23.2	40.0	100	-12.7	76.8	0	1.00	Vertical
554.237	29.8	30.9	46.0	200	-16.2	169.1	0	1.00	Horizontal
635.377	31.1	35.9	46.0	200	-14.9	164.1	0	1.00	Horizontal
727.673	32.3	41.2	46.0	200	-13.7	158.8	0	1.00	Horizontal
772.923	32.9	44.2	46.0	200	-13.1	155.8	0	1.00	Vertical
912.167	34.3	51.9	46.0	200	-11.7	148.1	0	100	Horizontal

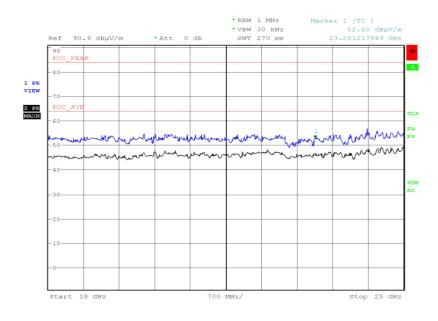


1 GHz to 3 GHz

Date: 12.JUN.2013 22:22:28


3 GHz to 8 GHz

Date: 13.JUN.2013 01:03:41



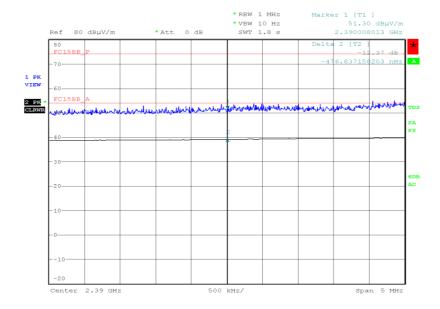
8 GHz to 18 GHz

Date: 13.JUN.2013 04:39:43

18 GHz to 25 GHz

Date: 14.JUN.2013 00:38:42

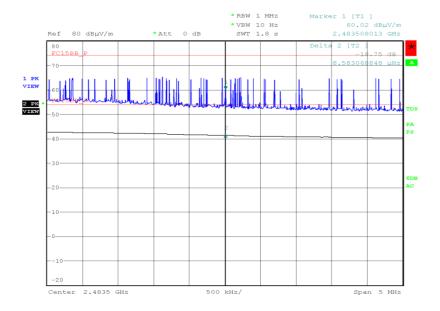
<u>Limit</u>


Peak (dBµV/m)	Average (dBµV/m)
74.0	54.0

Band Edge Emissions

2412 MHz

Polarisation	Final Peak (dBµV/m)	Final Average (dBµV/m)
Horizontal	51.30	38.93


Date: 2.JUN.2013 12:35:58

COMMERCIAL-IN-CONFIDENCE

2462 MHz

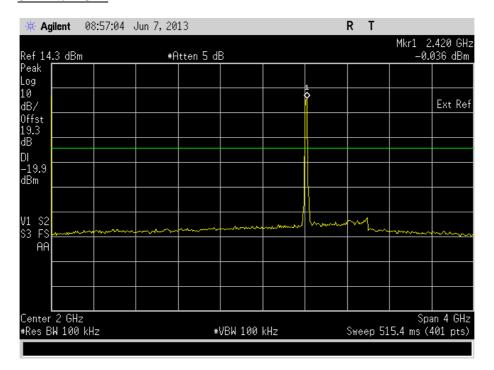
Polarisation	Final Peak (dBµV/m)	Final Average (dBµV/m)
Horizontal	60.02	41.27

Date: 2.JUN.2013 11:50:06

<u>Limit</u>

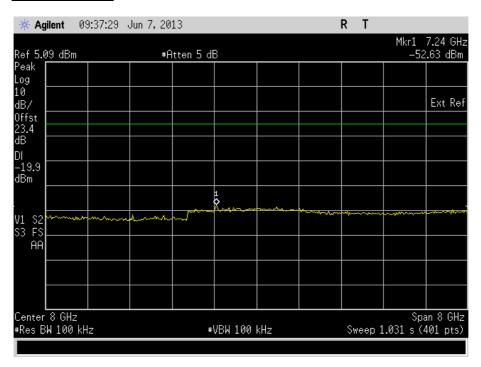
Peak (dBμV/m)	Average (dBµV/m)
74.0	54.0

802.11(n)

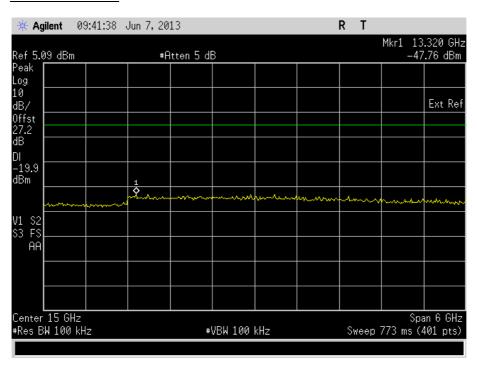

4.0 V DC Supply

Spurious Conducted Emissions

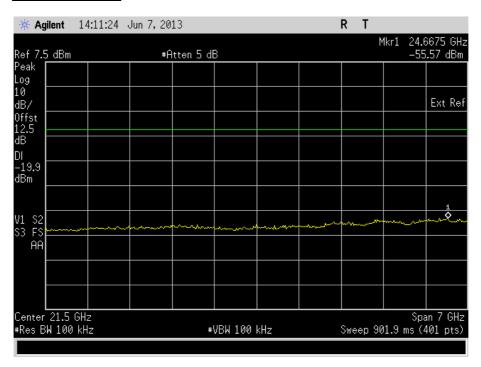
6.5 Mbps


2412 MHz

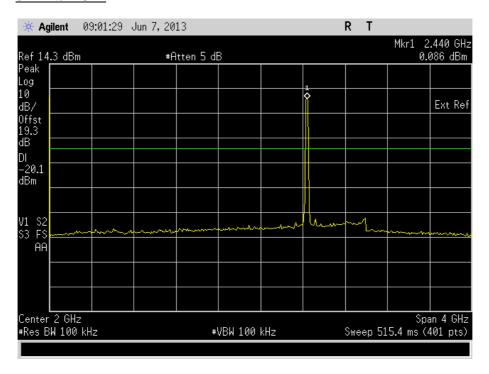
9 kHz to 4 GHz



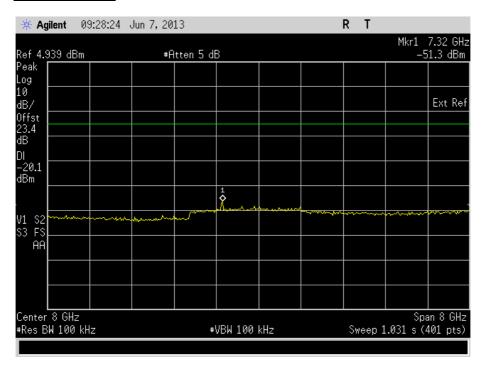
4 GHz to 12 GHz



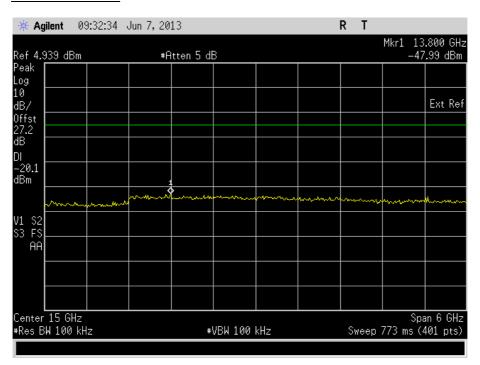
12 GHz to 18 GHz



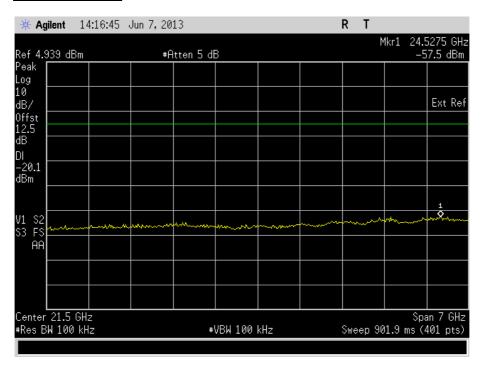
18 GHz to 25 GHz


2437 MHz

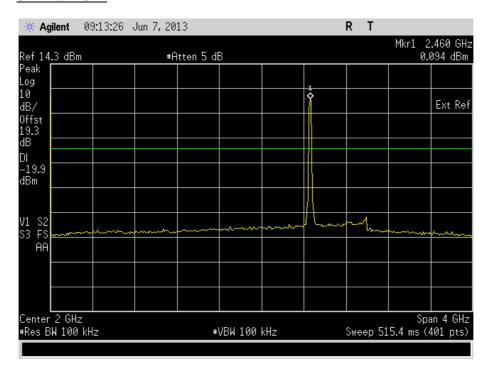
9 kHz to 4 GHz



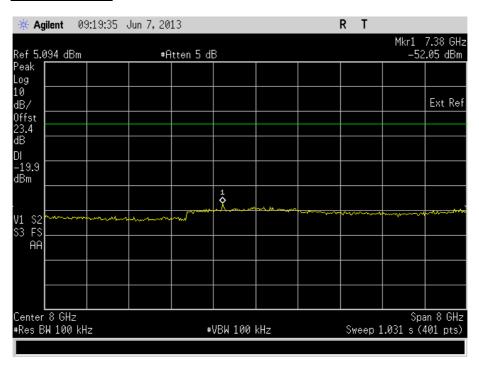
4 GHz to 12 GHz



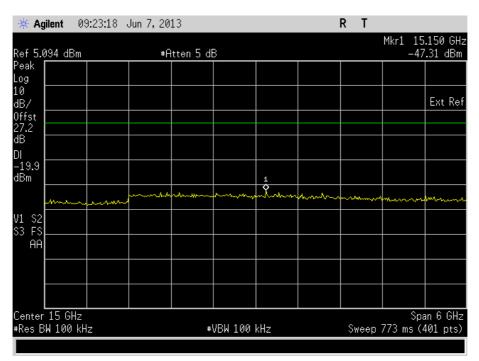
12 GHz to 18 GHz



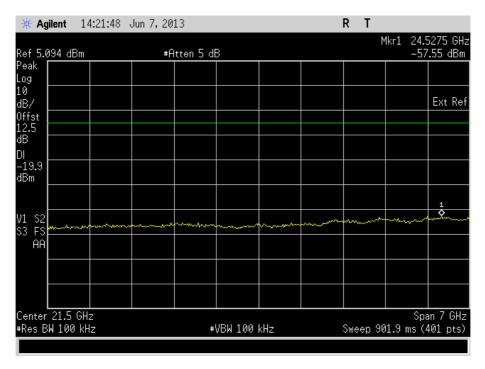
18 GHz to 25 GHz


2462 MHz

9 kHz to 4 GHz



4 GHz to 12 GHz

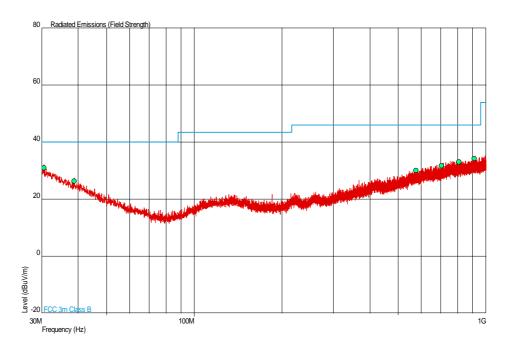


12 GHz to 18 GHz

18 GHz to 25 GHz

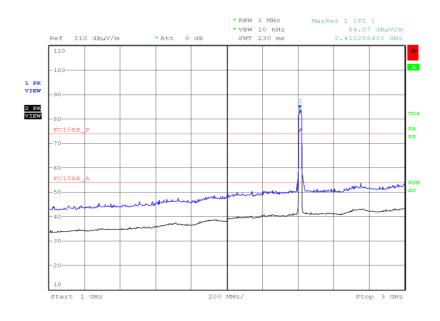
Limit Clause

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

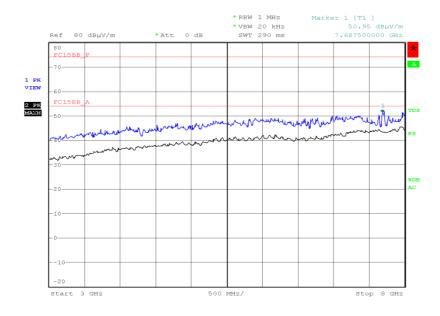

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval the attenuation required shall be 30 dB instead of 20 dB.

Spurious Radiated Emissions

2412 MHz

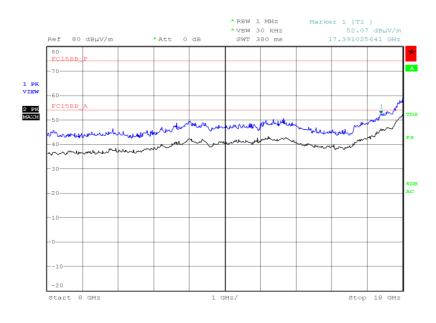

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBµV/m)	QP Level (µV/m	QP Limit (dBµV/m)	QP Limit (µV/m)	QP Margin (dBµV/m)	QP Margin (μV/m)	Angle (Deg)	Height (m)	Polarity
30.582	31.0	35.5	40.0	100	-9.0	64.5	0	1.00	Vertical
38.779	26.3	20.7	40.0	100	-13.7	79.3	0	1.00	Horizontal
574.752	30.1	32.0	46.0	200	-15.9	168.0	0	1.00	Vertical
703.374	31.6	38.0	46.0	200	-14.4	162.0	0	1.00	Horizontal
807.940	33.1	45.2	46.0	200	-12.9	154.8	0	1.00	Vertical
912.991	34.3	51.9	46.0	200	-11.7	148.1	0	1.00	Horizontal

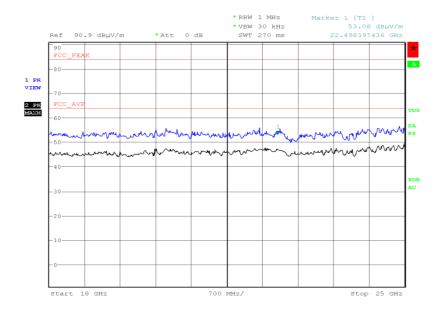


1 GHz to 3 GHz

Date: 12.JUN.2013 22:40:34


3 GHz to 8 GHz

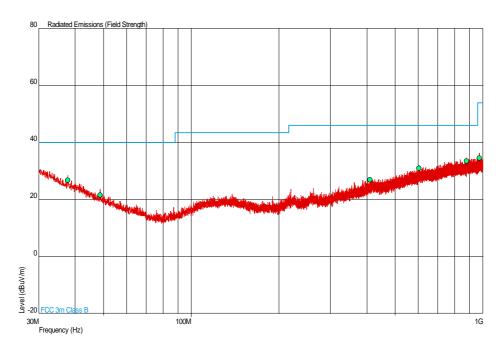
Date: 13.JUN.2013 00:03:20



8 GHz to 18 GHz

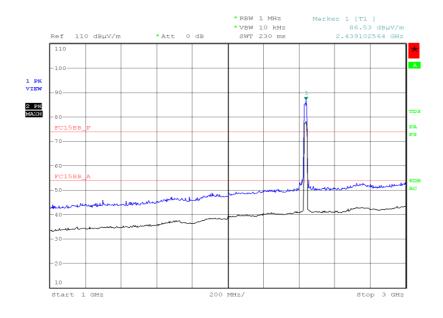
Date: 13.JUN.2013 04:46:49

18 GHz to 25 GHz

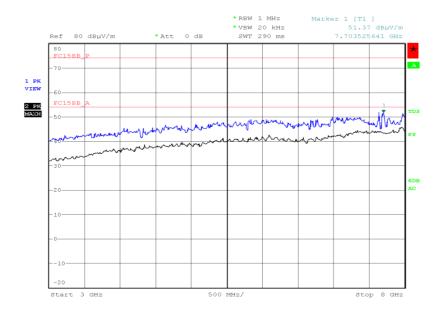

Date: 14.JUN.2013 00:49:14

COMMERCIAL-IN-CONFIDENCE

2437 MHz

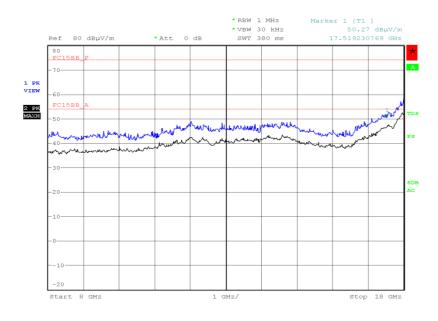

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBµV/m)	QP Level (µV/m	QP Limit (dBµV/m)	QP Limit (µV/m)	QP Margin (dBµV/m)	QP Margin (μV/m)	Angle (Deg)	Height (m)	Polarity
37.712	26.8	21.9	40.0	100	-13.2	78.1	0	1.00	Vertical
48.673	21.6	12.0	40.0	100	-18.4	88.0	0	1.00	Vertical
410.434	26.9	22.1	46.0	200	-19.1	177.9	0	1.00	Horizontal
603.319	31.0	35.5	46.0	200	-15.0	164.5	0	1.00	Vertical
879.138	33.5	47.3	46.0	200	-12.5	152.7	0	1.00	Vertical
970.415	34.6	53.7	54.0	501	-19.4	446.3	0	1.00	Vertical

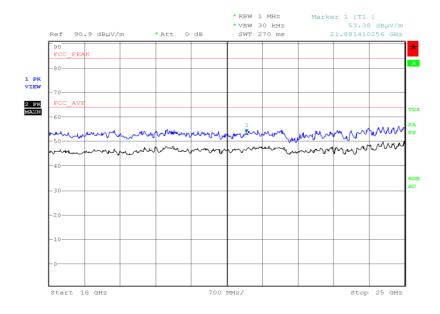


1 GHz to 3 GHz

Date: 12.JUN.2013 23:07:27


3 GHz to 8 GHz

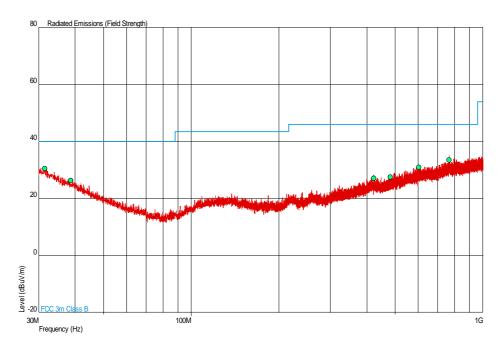
Date: 13.JUN.2013 00:15:04



8 GHz to 18 GHz

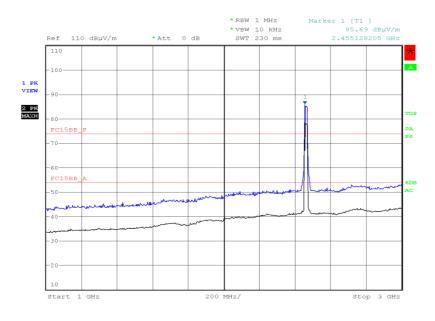
Date: 13.JUN.2013 04:59:26

18 GHz to 25 GHz

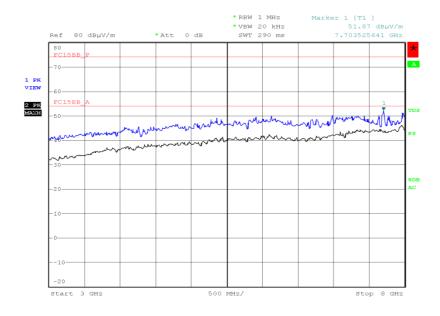


Date: 14.JUN.2013 00:59:37

2462 MHz

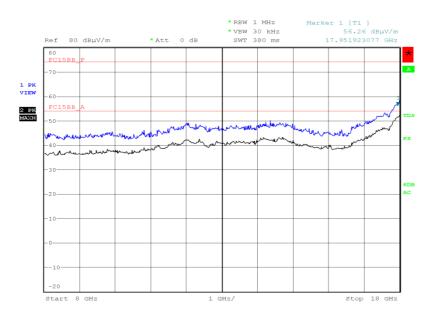

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBµV/m)	QP Level (µV/m	QP Limit (dBµV/m)	QP Limit (µV/m)	QP Margin (dBµV/m)	QP Margin (μV/m)	Angle (Deg)	Height (m)	Polarity
31.455	30.6	33.9	40.0	100	-9.4	66.1	0	1.00	Horizontal
38.715	26.3	20.7	40.0	100	-13.7	79.3	0	1.00	Horizontal
422.074	27.1	22.6	46.0	200	-18.9	177.4	0	1.00	Vertical
481.050	27.6	24.0	46.0	200	-18.4	176.0	0	1.00	Horizontal
602.252	31.0	35.5	46.0	200	-15.0	164.5	0	1.00	Horizontal
765.891	33.5	47.3	46.0	200	-12.5	152.7	0	1.00	Vertical

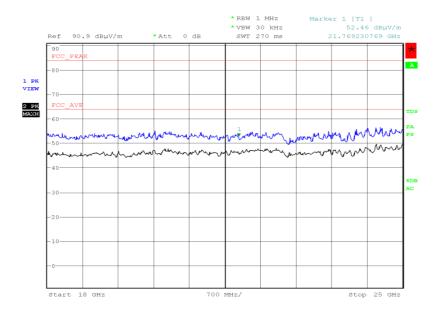


1 GHz to 3 GHz

Date: 12.JUN.2013 23:26:31


3 GHz to 8 GHz

Date: 13.JUN.2013 00:29:17



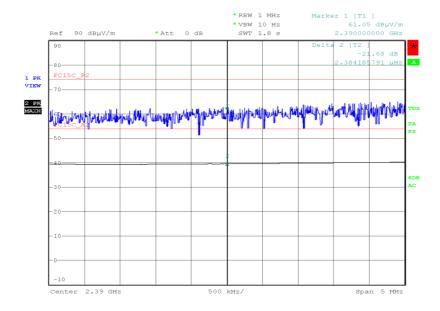
8 GHz to 18 GHz

Date: 13.JUN.2013 04:55:45

18 GHz to 25 GHz

Date: 14.JUN.2013 01:06:56

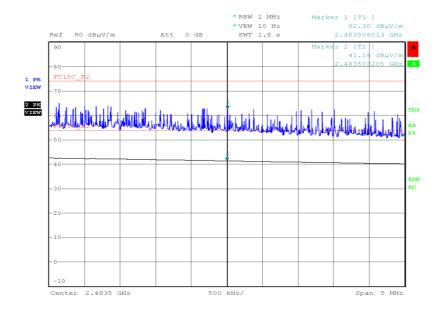
<u>Limit</u>


Peak (dBμV/m)	Average (dBµV/m)
74.0	54.0

Band Edge Emissions

2412 MHz

Polarisation	Final Peak (dBµV/m)	Final Average (dBµV/m)
Horizontal	61.05	39.37


Date: 2.JUN.2013 10:56:38

COMMERCIAL-IN-CONFIDENCE

2462 MHz

Polarisation	Final Peak (dBµV/m)	Final Average (dBµV/m)
Horizontal	62.30	41.16

Date: 2.JUN.2013 10:23:10

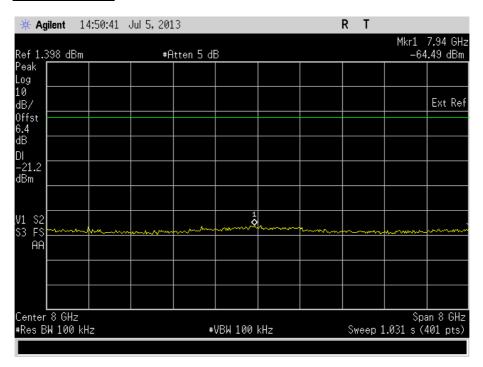
<u>Limit</u>

Peak (dBµV/m)	Average (dBµV/m)
74.0	54.0

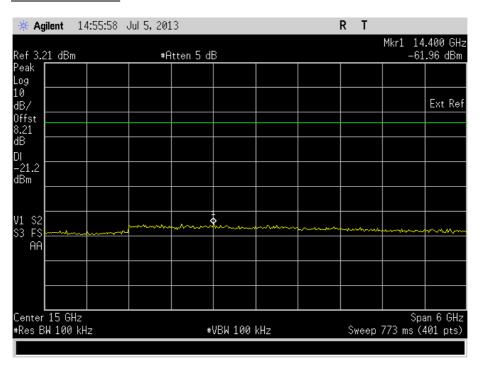

GFSK

4.0 V DC Supply

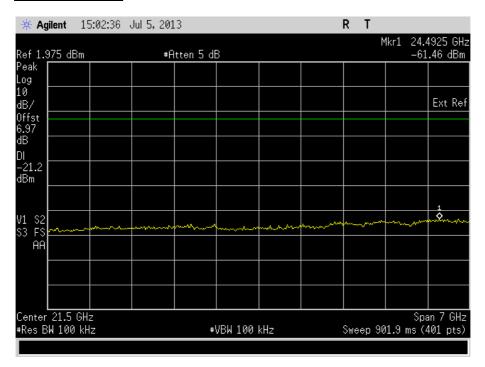
Spurious Conducted Emissions


2402 MHz

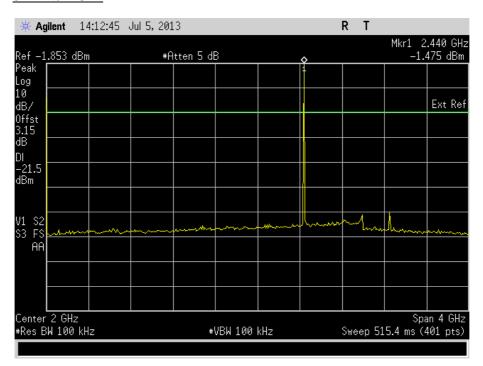
9 kHz to 4 GHz



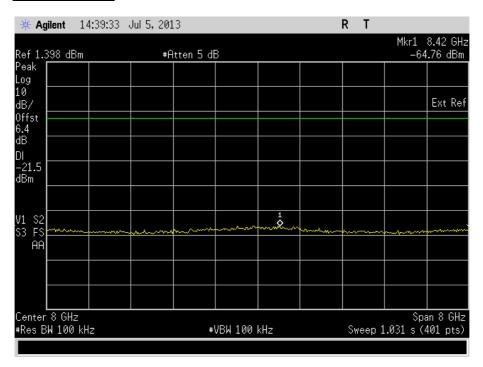
4 GHz to 12 GHz



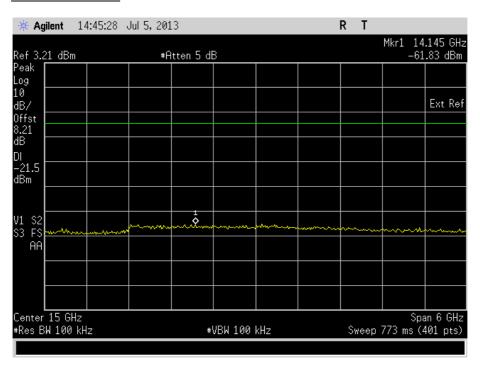
12 GHz to 18 GHz



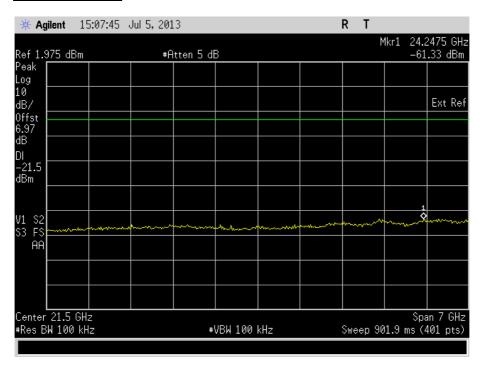
18 GHz to 25 GHz


2440 MHz

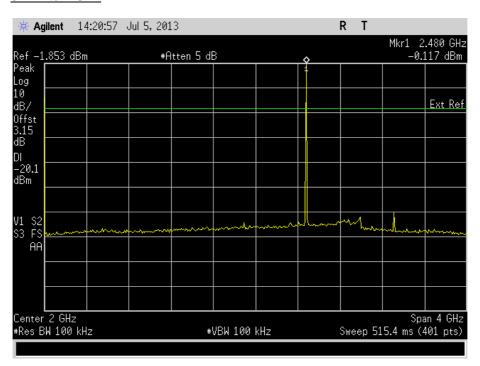
9 kHz to 4 GHz



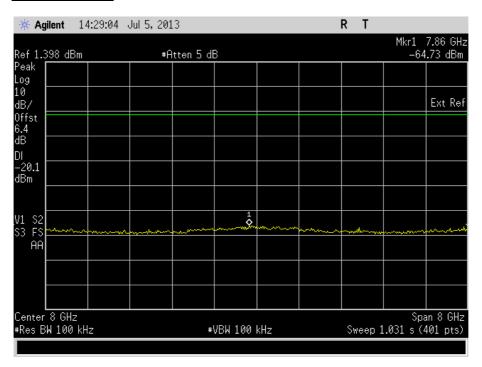
4 GHz to 12 GHz



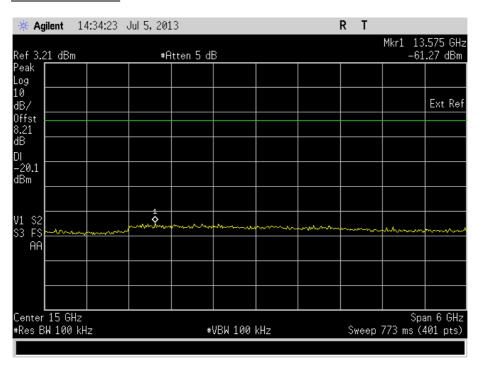
12 GHz to 18 GHz



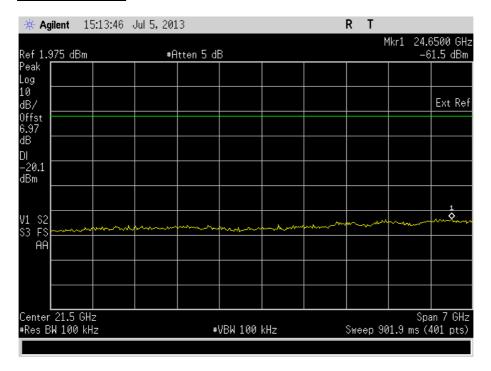
18 GHz to 25 GHz


2480 MHz

9 kHz to 4 GHz



4 GHz to 12 GHz

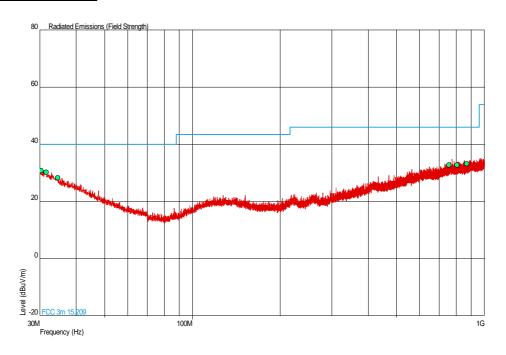


12 GHz to 18 GHz

18 GHz to 25 GHz

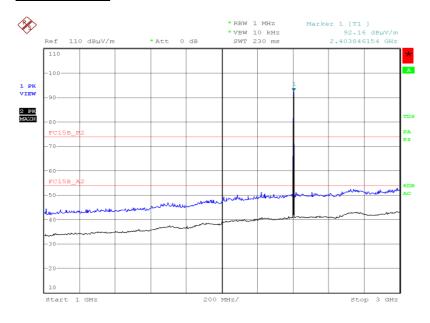
Limit Clause

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

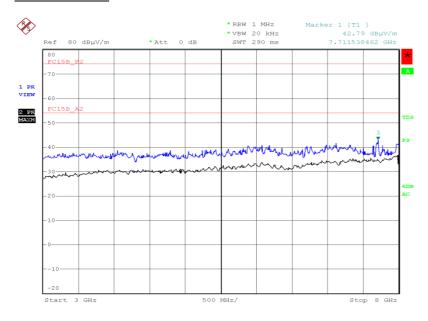

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval the attenuation required shall be 30 dB instead of 20 dB.

Spurious Radiated Emissions

2402 MHz

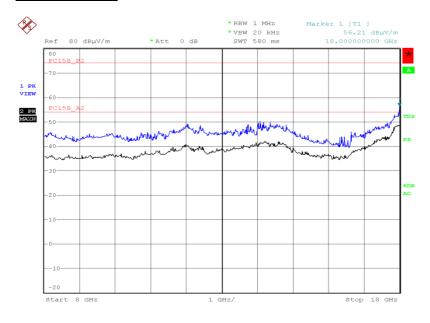

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBµV/m)	QP Level (µV/m	QP Limit (dBµV/m)	QP Limit (μV/m)	QP Margin (dBµV/m)	QP Margin (µV/m)	Angle (Deg)	Height (m)	Polarity
30.385	30.8	34.7	40.0	100	-9.2	65.3	0	0.00	Horizontal
31.601	30.2	32.4	40.0	100	-9.8	67.6	180	1.00	Vertical
34.559	28.2	25.7	46.0	200	-11.8	74.3	0	1.00	Horizontal
755.512	32.8	43.7	46.0	200	-13.2	156.3	270	1.00	Vertical
804.448	32.8	43.7	46.0	200	-13.2	156.3	0	1.00	Vertical
870.069	33.2	45.7	46.0	200	-12.8	154.3	0	1.00	Horizontal

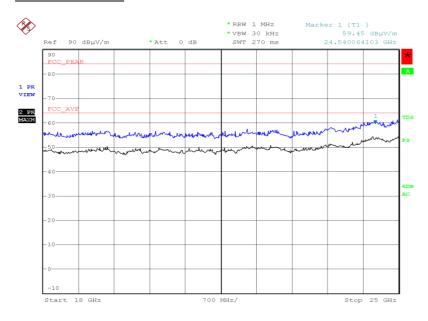


1 GHz to 3 GHz

Date: 6.JUL.2013 15:54:18


3 GHz to 8 GHz

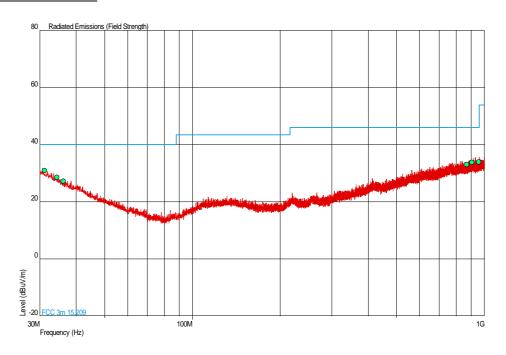
Date: 6.JUL.2013 17:35:09



8 GHz to 18 GHz

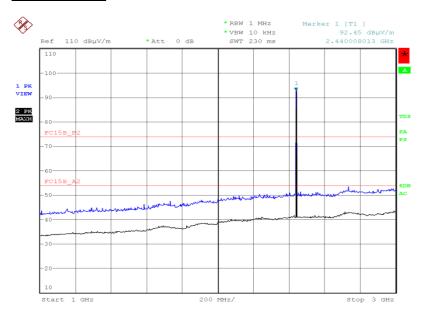
Date: 6.JUL.2013 18:48:44

18 GHz to 25 GHz

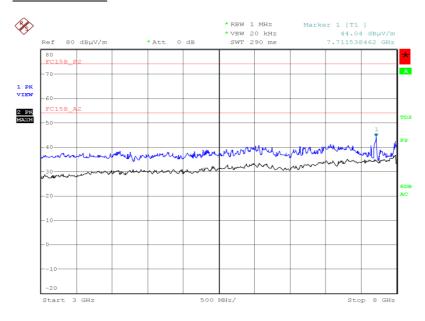


Date: 6.JUL.2013 19:37:57

2440 MHz

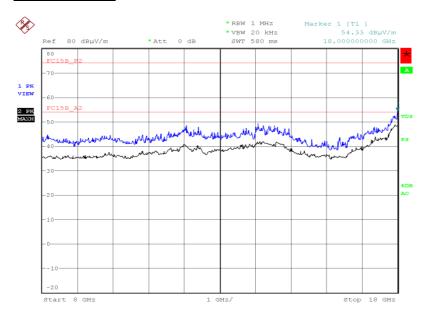

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBµV/m)	QP Level (µV/m	QP Limit (dBµV/m)	QP Limit (µV/m)	QP Margin (dBµV/m)	QP Margin (µV/m)	Angle (Deg)	Height (m)	Polarity
31.213	30.9	35.1	40.0	100	-9.1	64.9	180	0.00	Vertical
34.317	28.5	26.6	40.0	100	-11.5	73.4	270	1.00	Horizontal
36.208	27.2	22.9	46.0	200	-12.8	77.1	180	1.00	Horizontal
869.244	33.1	45.2	46.0	200	-12.9	154.8	0	1.00	Horizontal
904.795	33.9	49.5	46.0	200	-12.1	150.5	0	1.00	Vertical
956.981	34.0	50.1	46.0	200	-12.0	149.9	90	1.00	Vertical

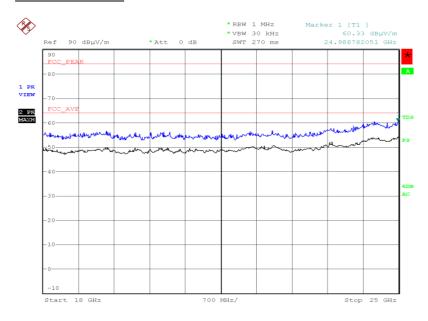


1 GHz to 3 GHz

Date: 6.JUL.2013 16:11:05


3 GHz to 8 GHz

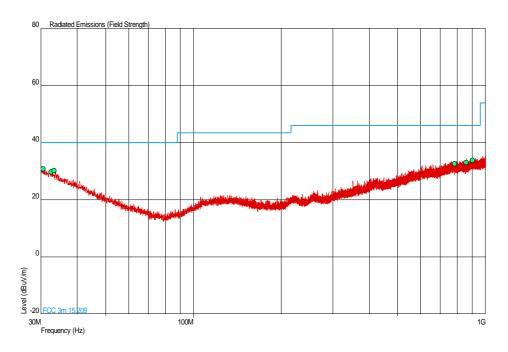
Date: 6.JUL.2013 17:38:25



8 GHz to 18 GHz

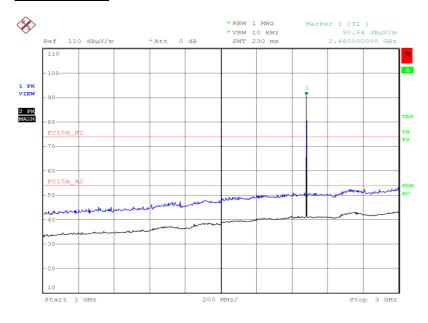
Date: 6.JUL.2013 18:22:04

18 GHz to 25 GHz

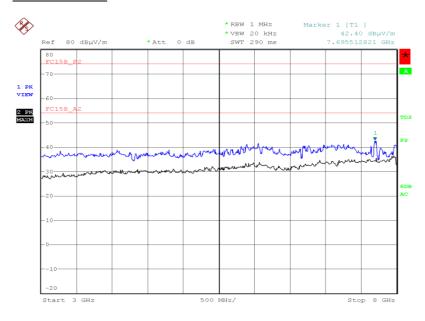


Date: 6.JUL.2013 19:48:09

2480 MHz

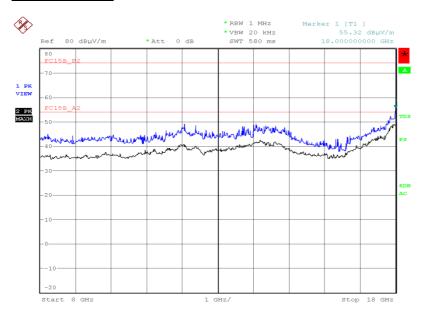

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBµV/m)	QP Level (µV/m	QP Limit (dBµV/m)	QP Limit (µV/m)	QP Margin (dBµV/m)	QP Margin (μV/m)	Angle (Deg)	Height (m)	Polarity
30.579	30.8	34.7	40.0	100	-9.2	65.3	0	0.00	Horizontal
32.592	29.7	30.5	40.0	100	-10.3	69.5	0	0.00	Horizontal
33.347	30.3	32.7	46.0	200	-9.7	167.3	90	1.00	Horizontal
784.951	32.7	43.2	46.0	200	-13.3	156.8	90	1.00	Horizontal
858.623	33.0	44.7	46.0	200	-13.0	155.3	0	1.00	Horizontal
903.243	33.8	49.0	46.0	200	-12.2	151.0	90	1.00	Vertical

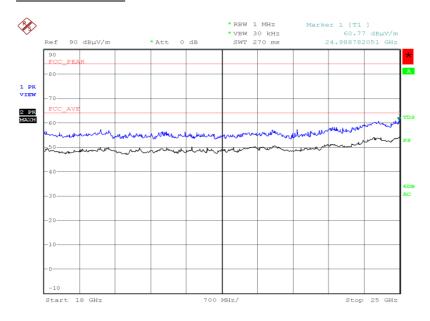


1 GHz to 3 GHz

Date: 6.JUL.2013 16:16:04


3 GHz to 8 GHz

Date: 6.JUL.2013 17:45:11



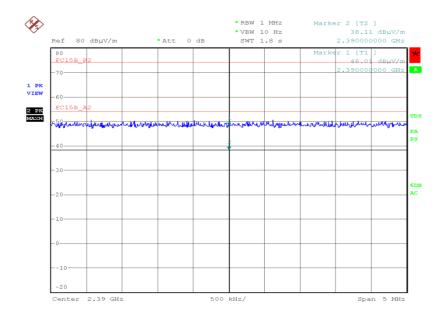
8 GHz to 18 GHz

Date: 6.JUL.2013 18:07:40

18 GHz to 25 GHz

Date: 6.JUL.2013 19:43:27

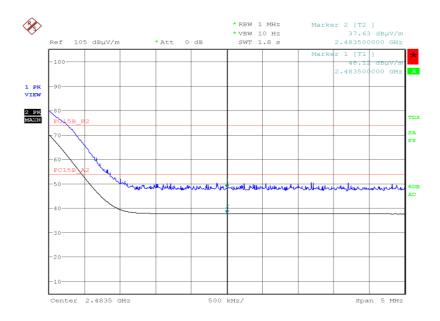
<u>Limit</u>


Peak (dBμV/m)	Average (dBμV/m)
74.0	54.0

Band Edge Emissions

2402 MHz

Polarisation	Final Peak (dBµV/m)	Final Average (dBµV/m)
Horizontal	48.01	38.11


Date: 6.JUL.2013 15:49:14

COMMERCIAL-IN-CONFIDENCE

2480 MHz

Polarisation	Final Peak (dBµV/m)	Final Average (dBμV/m)
Horizontal	48.12	37.63

Date: 6.JUL.2013 16:25:11

<u>Limit</u>

Peak (dBμV/m)	Average (dBμV/m)
74.0	54.0

COMMERCIAL-IN-CONFIDENCE

2.6 6dB BANDWIDTH

2.6.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (2)

2.6.2 Equipment Under Test and Modification State

SHL22 S/N: IMEI 004401114765106 - Modification State 0

2.6.3 Date of Test

22 May 2013 and 05 July 2013

2.6.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

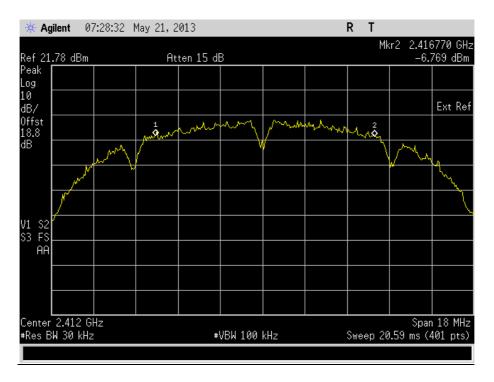
2.6.5 Test Procedure

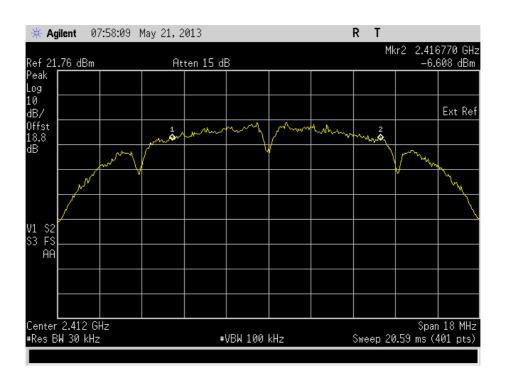
The EUT was transmitted at maximum power via a cable to the Spectrum Analyser. The Analyser settings were adjusted to display the resultant trace on screen. The peak point of the trace was measured and the markers positioned to give the -6dBc points of the displayed spectrum.

2.6.6 Environmental Conditions

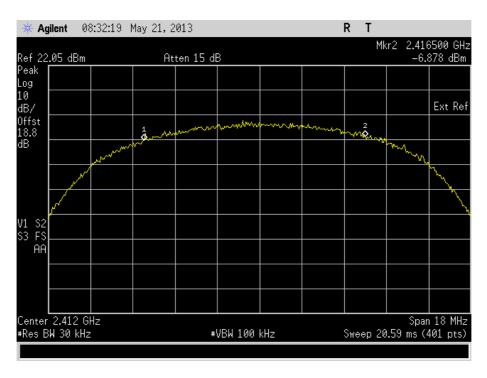
Ambient Temperature 23.1 - 25.2°C Relative Humidity 37.9 - 46.9%

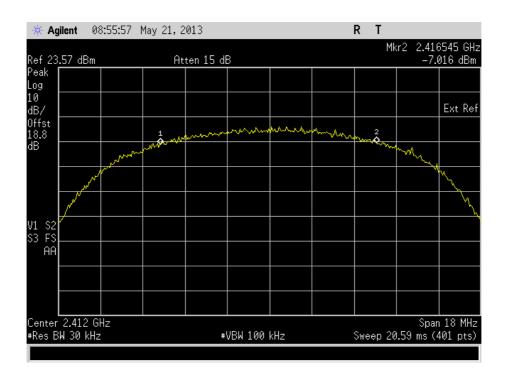
2.6.7 Test Results

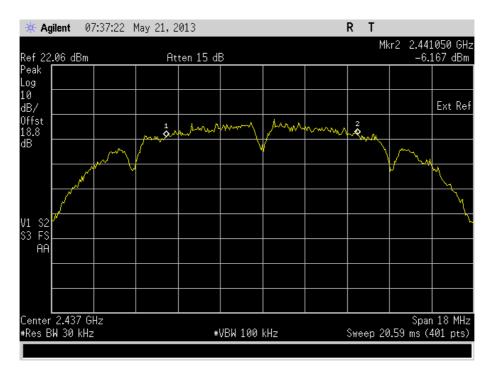

802.11(b)

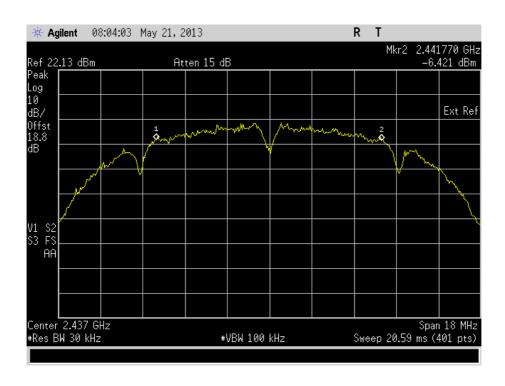

4.0 V DC Supply

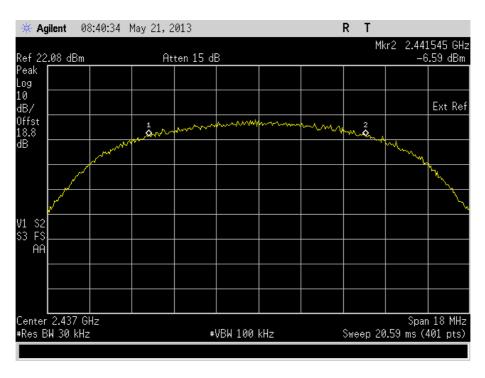
Frequency (MHz)	Data Rate (Mbps)	6dB Bandwidth (kHz)		
0440 MH-	1	9180		
	2	8865		
2412 MHz	5.5	9404		
	11	9180		
2437 MHz	1	8145		
	2	9585		
	5.5	9225		
	11	8055		
0400 MH-	1	9900		
	2	8820		
2462 MHz	5.5	9315		
	11	9315		

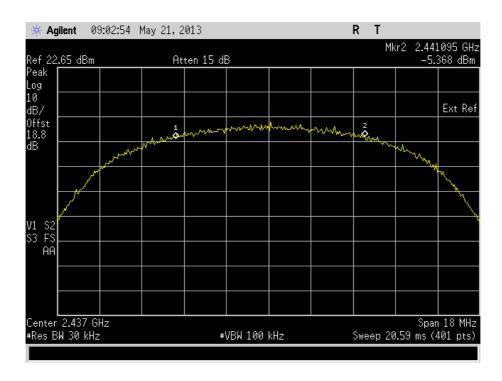


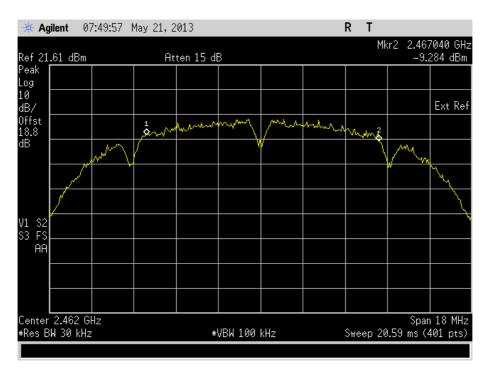

1 Mbps

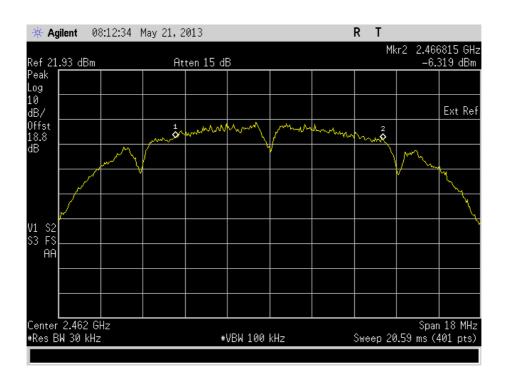


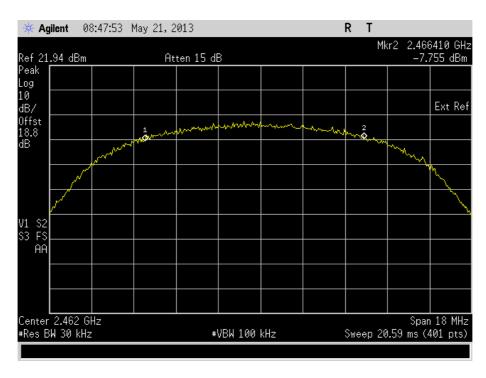




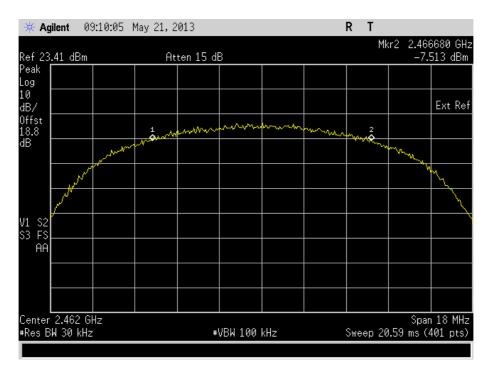

1 Mbps







1 Mbps

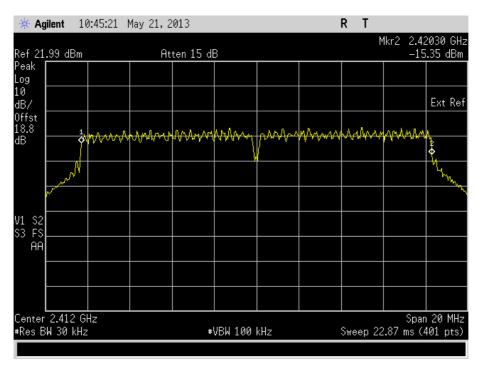


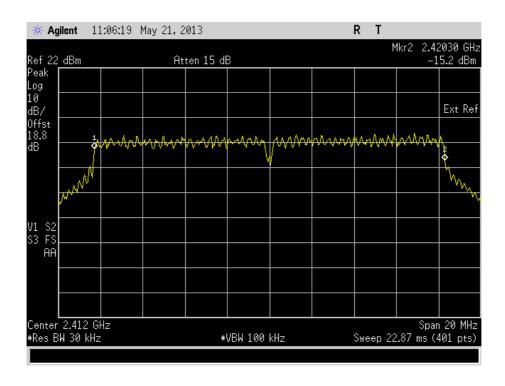
11 Mbps

Limit Clause

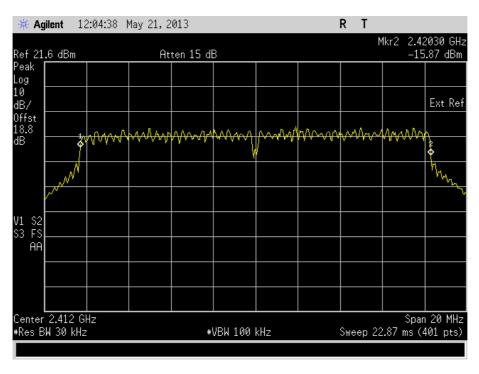
The minimum 6 dB Bandwidth shall be at least 500 kHz.

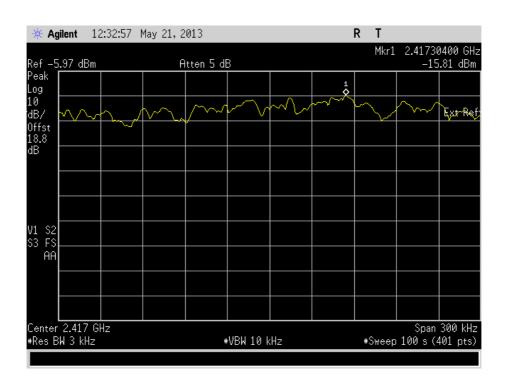
COMMERCIAL-IN-CONFIDENCE

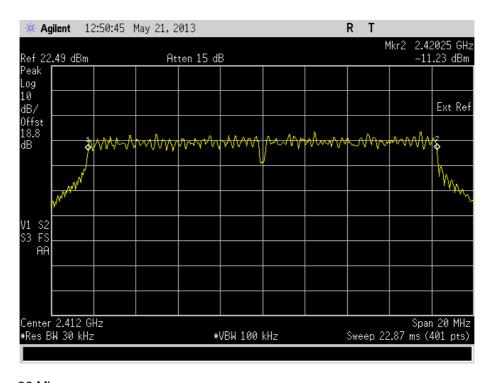

802.11(g)

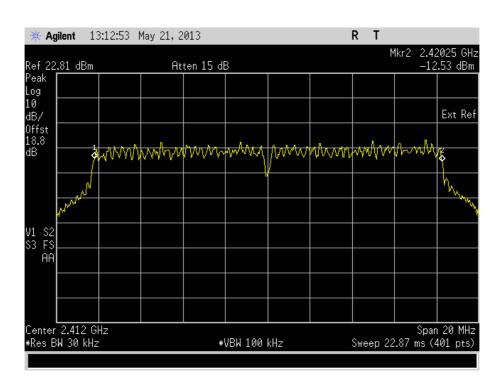

4.0 V DC Supply

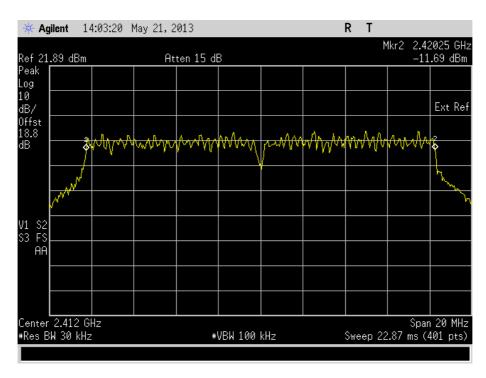
Frequency (MHz)	Data Rate (Mbps)	6dB Bandwidth (kHz)		
	6	16600		
	9	16600		
	12	16600		
	18	16500		
2412 MHz	24	16500		
	36	16450		
	48	16500		
	54	16500		
	6	16650		
	9	16650		
	12	16550		
	18	16550		
2437 MHz	24	16500		
	36	16450		
	48	16500		
	54	16500		
	6	16650		
	9	16650		
	12	16550		
2462 MH=	18	16550		
2462 MHz	24	16500		
	36	16450		
	48	16500		
	54	16500		

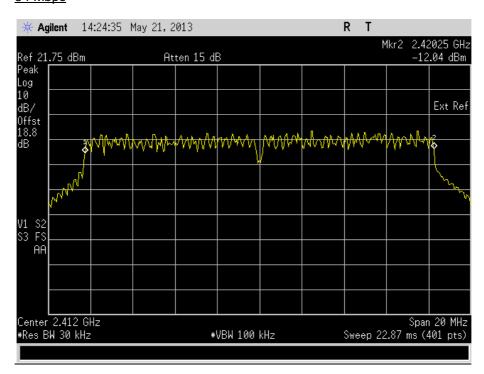


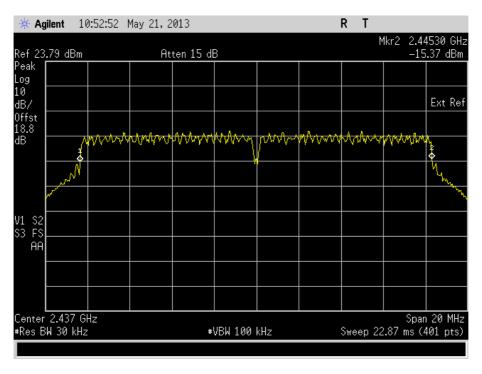

6 Mbps

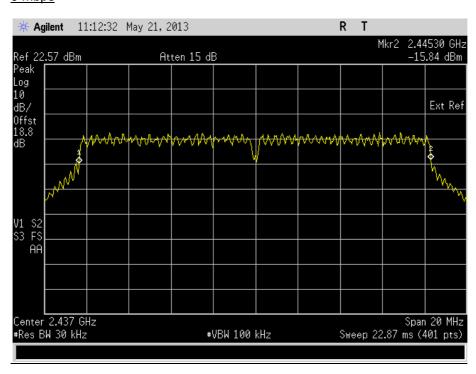


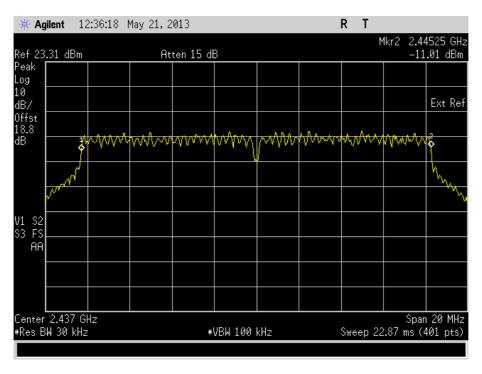


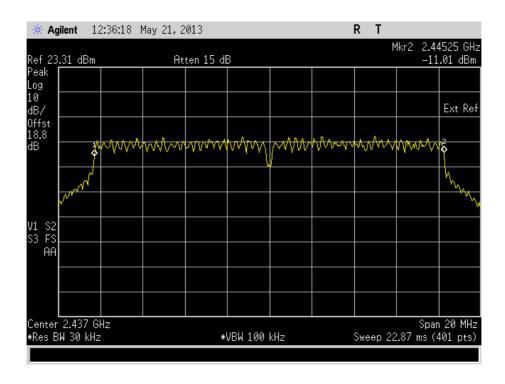


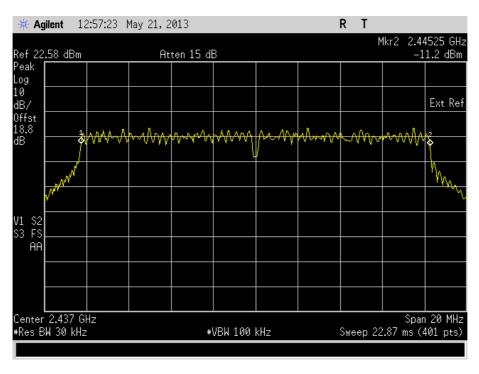


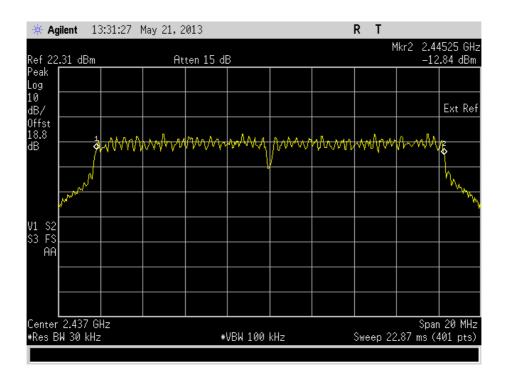


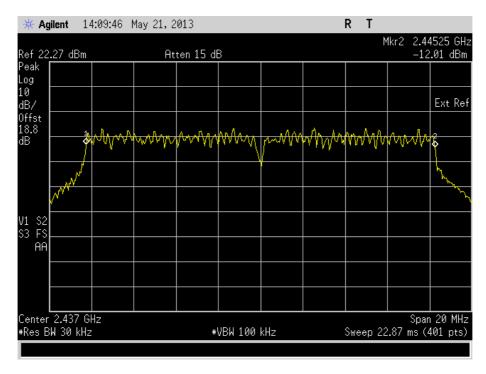


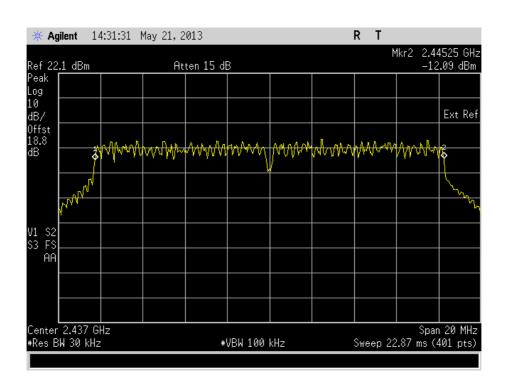


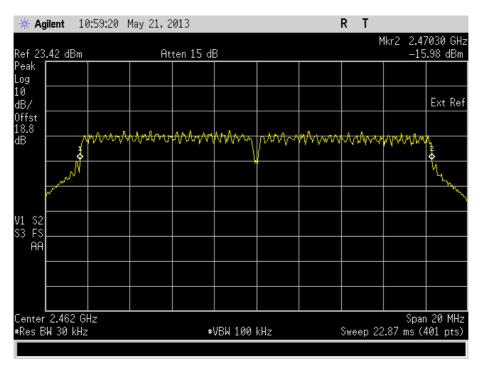

6 Mbps

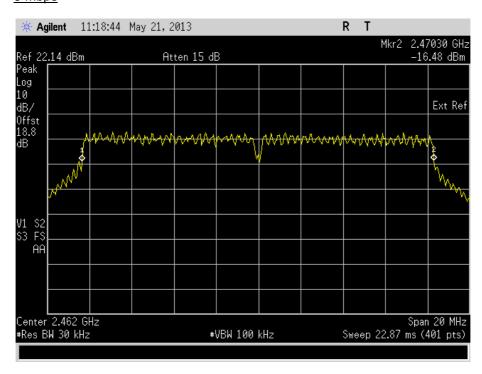


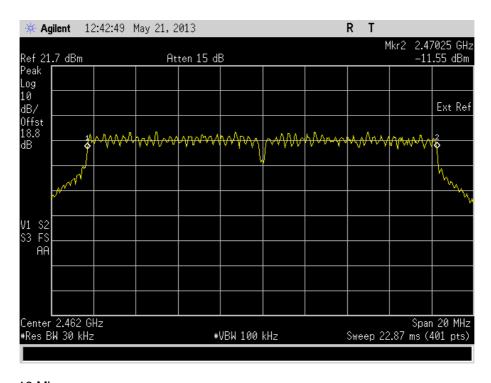


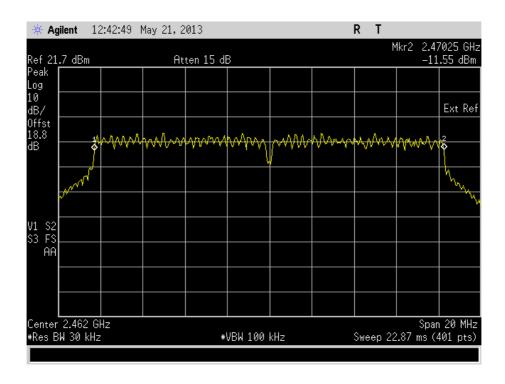


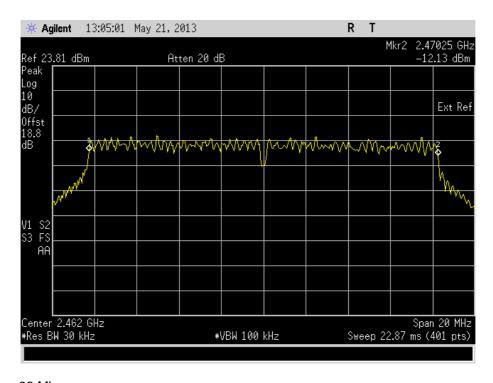


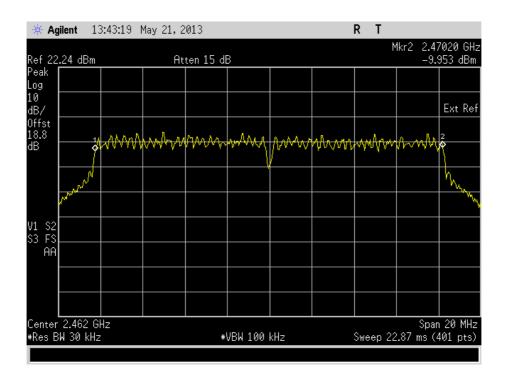


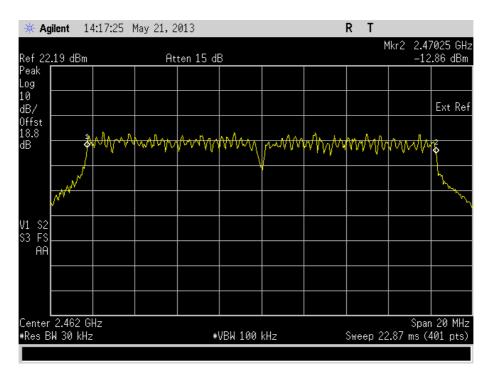


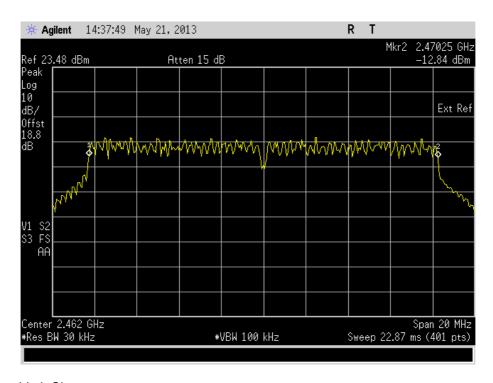



6 Mbps







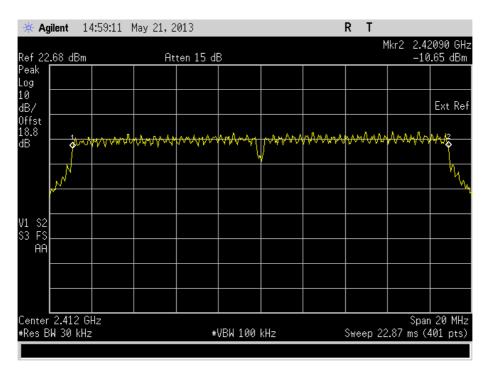


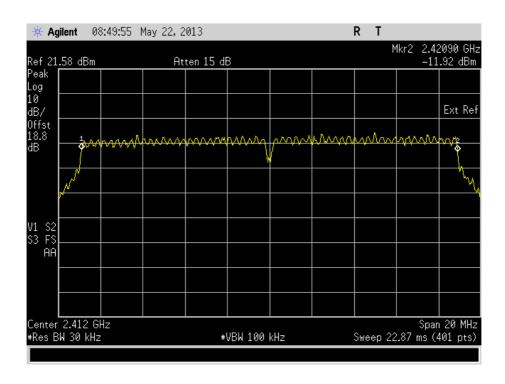
54 Mbps

Limit Clause

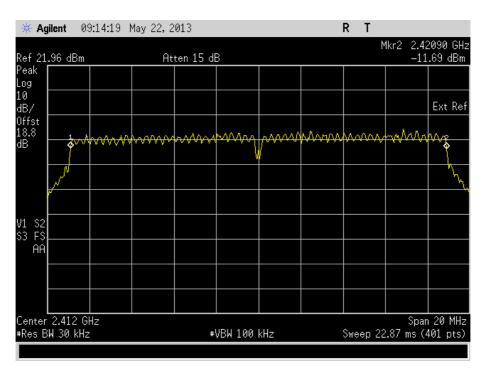
The minimum 6 dB Bandwidth shall be at least 500 kHz.

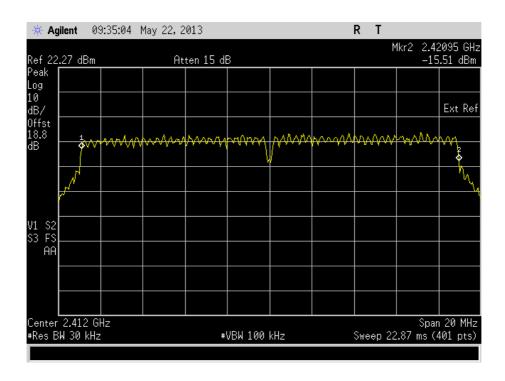
COMMERCIAL-IN-CONFIDENCE

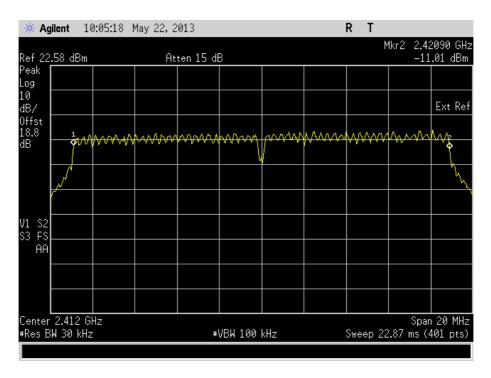

802.11(n)

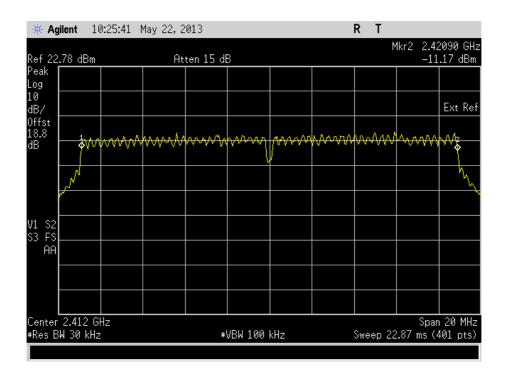

4.0 V DC Supply

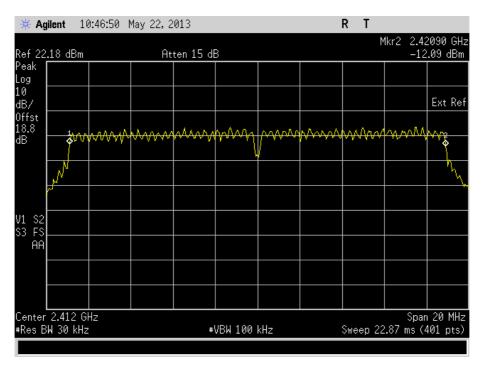
Frequency (MHz)	Data Rate (Mbps)	6dB Bandwidth (kHz)		
	6.5	17800		
	13	17800		
	19.5	17800		
0440 MH=	26	17850		
2412 MHz	39	17800		
	52	17800		
	58.5	17800		
	65	17800		
	6.5	17850		
	13	17850		
	19.5	17850		
2437 MHz	26	17850		
2437 MHZ	39	17800		
	52	17850		
	58.5	17800		
	65	17800		
2462 MHz	6.5	17850		
	13	17850		
	19.5	17850		
	26	17850		
	39	17750		
	52	17850		
	58.5	17850		
	65	17850		

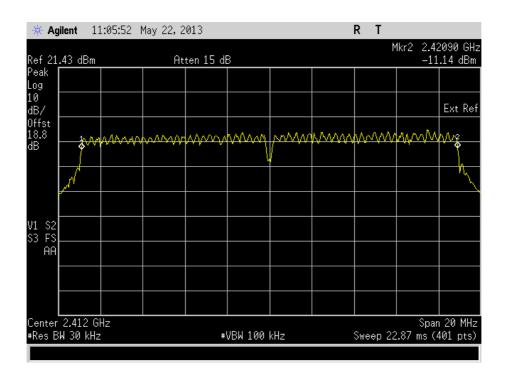


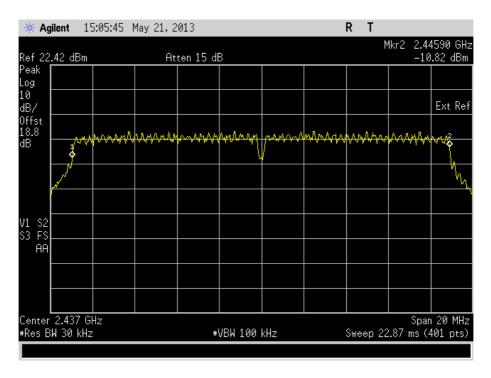

6.5 Mbps

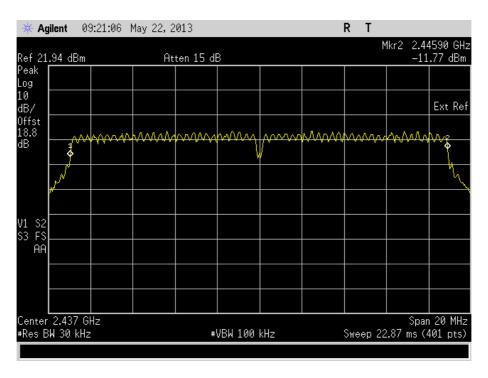


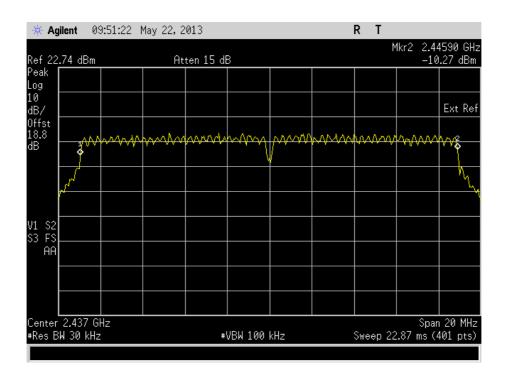


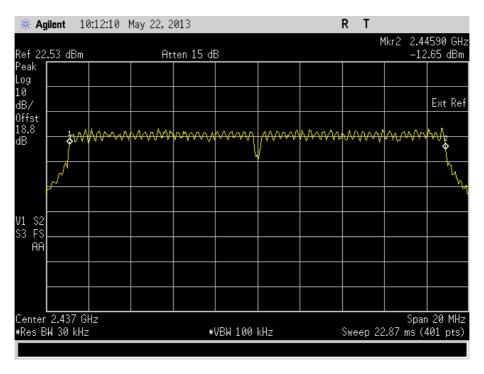


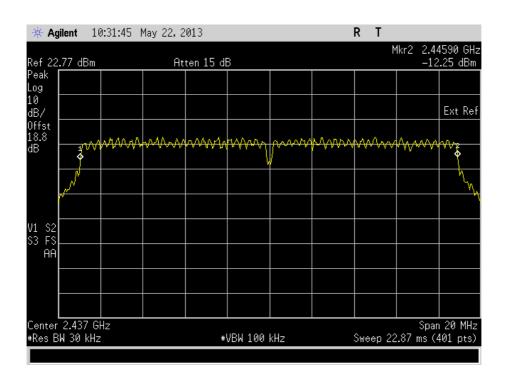


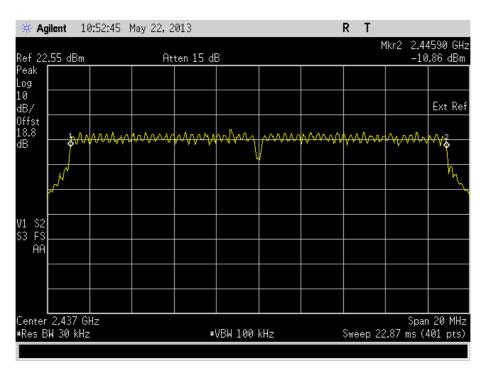


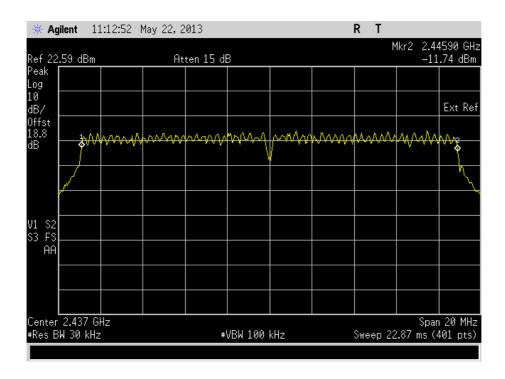


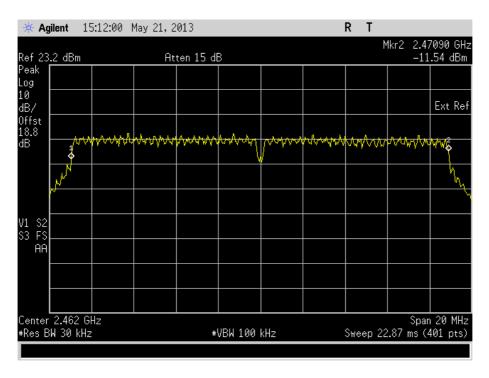

6.5 Mbps

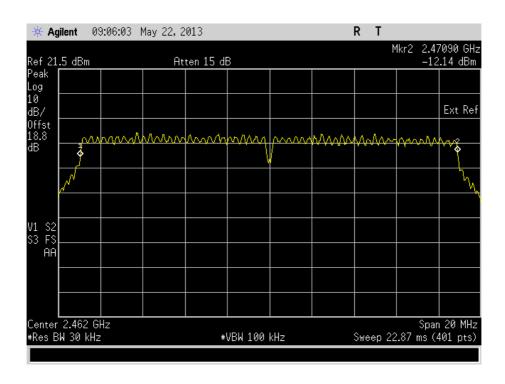


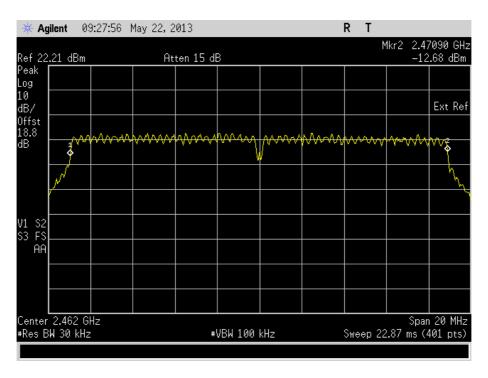


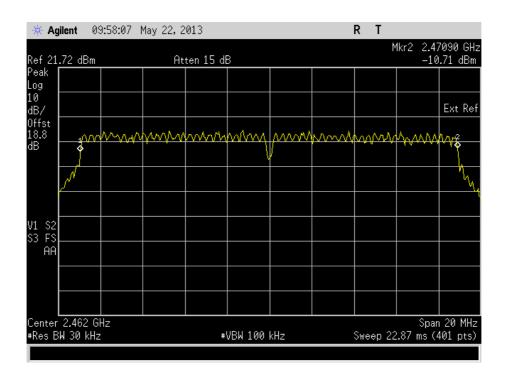


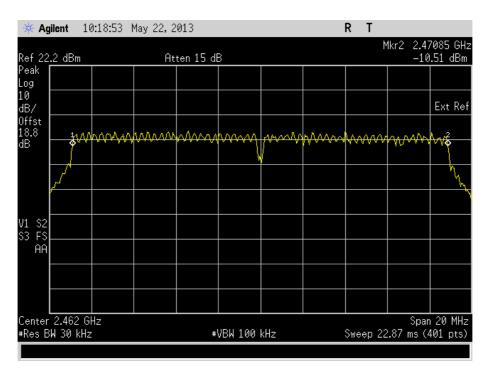


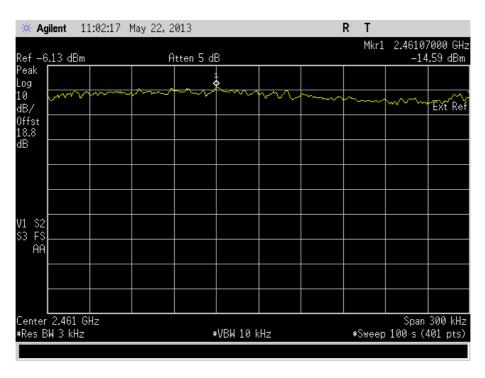


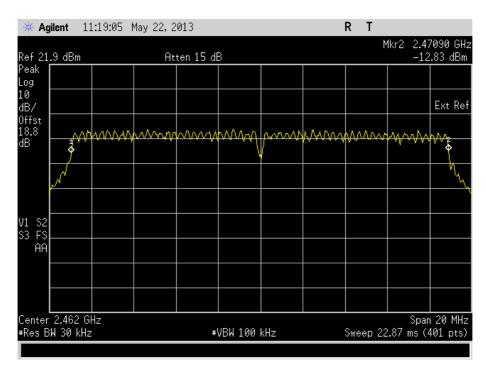





6.5 Mbps



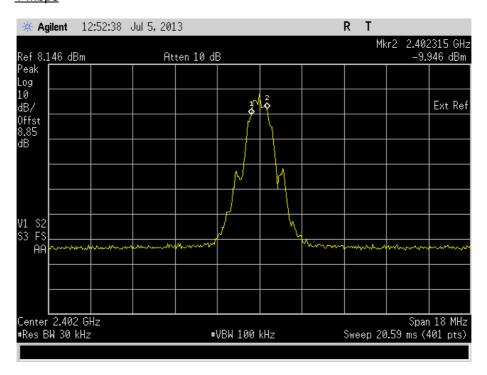




65 Mbps

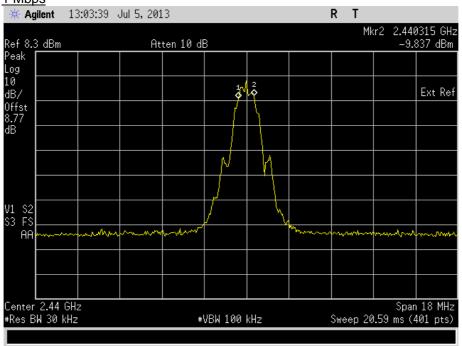
Limit Clause

The minimum 6 dB Bandwidth shall be at least 500 kHz.

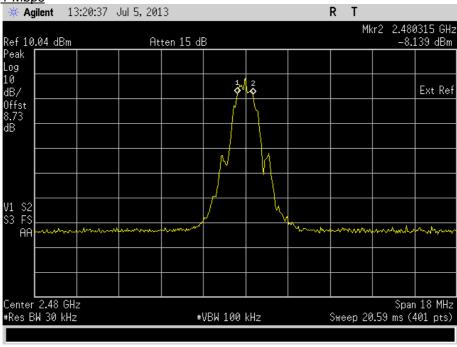


GFSK

4.0 V DC Supply


Frequency (MHz)	Data Rate (Mbps)	6dB Bandwidth (kHz)	
2402 MHz	1	675	
2440 MHz	1	675	
2480 MHz	1	675	

2402 MHz



2480 MHz

1 Mbps

Limit Clause

The minimum 6 dB Bandwidth shall be at least 500 kHz.

SECTION 3

TEST EQUIPMENT USED

3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Due
Section 2.1 AC Line Conducte					
LISN	Rohde & Schwarz	ESH2-Z5	17	12	31-Jul-2013
3 phase LISN	Rohde & Schwarz	ESH2-Z5	323	12	15-Jan-2014
Transient Limiter	Hewlett Packard	11947A	1032	12	28-Jun-2013
Screened Room (5)	Rainford	Rainford	1545	36	25-Dec-2013
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	11-Oct-2013
7m Armoured RF Cable	SSI Cable Corp.	1501-13-13-7m WA(-)	3600	-	TU
Section 2.2 - Maximum Peak C	onducted Output Pow				<u> </u>
Multimeter	White Gold	WG022	190	12	30-Oct-2013
Spectrum Analyser	Hewlett Packard	E4407B	1154	12	17-Jul-2013
GPS Frequency Standard	Rapco	GPS-804/3	1312	6	23-Jul-2013
Power Supply Unit	Farnell	TSV-70	2043	-	O/P Mon
Hygrometer	Rotronic	I-1000	3220	12	13-Jun-2013*
Hygrometer	RS Components	1361C	3844	12	22-Mar-2014
Attenuator (10dB, 20W)	Lucas Weinschel	1	3225	12	11-Dec-2013
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	31-Aug-2013
Combiner/Splitter	Weinschel	1506A	3877	12	19-Mar-2014
P-Series Power Meter	Agilent	N1911A	3981	12	17-Sep-2013
50 MHz-18 GHz Wideband Power Sensor	Agilent	N1921A	3982	12	17-Sep-2013
Section 2.3 - EIRP Peak Power	r				
Antenna (Double Ridge Guide, 1GHz-18GHz)	EMCO	3115	234	12	3-Apr-2014
Antenna (Double Ridge Guide, 1GHz-18GHz)	EMCO	3115	235	12	9-Nov-2013
Signal Generator (10MHz to 40GHz)	Rohde & Schwarz	SMR40	1002	12	7-Aug-2013
Screened Room (5)	Rainford	Rainford	1545	36	25-Dec-2013
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Antenna (Log Periodic)	Schaffner	UPA6108	3108	12	5-Apr-2014
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	11-Oct-2013
7m Armoured RF Cable	SSI Cable Corp.	1501-13-13-7m WA(-)	3600	-	TU
9m RF Cable (N Type)	Rhophase	NPS-2303-9000- NPS	3791	-	TU
Tilt Antenna Mast	maturo Gmbh	TAM 4.0-P	3916	-	TU
Mast Controller	maturo Gmbh	NCD	3917	1 -	TU
Section 2.4 - Power Spectral D					
Multimeter	White Gold	WG022	190	12	30-Oct-2013
Spectrum Analyser	Hewlett Packard	E4407B	1154	12	17-Jul-2013
GPS Frequency Standard	Rapco	GPS-804/3	1312	6	23-Jul-2013
Power Supply Unit	Farnell	TSV-70	2043	-	O/P Mon
Hygrometer	Rotronic	I-1000	3220	12	13-Jun-2013*
Hygrometer	RS Components	1361C	3844	12	22-Mar-2014
Attenuator (10dB, 20W)	Lucas Weinschel	1	3225	12	11-Dec-2013
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	31-Aug-2013
Combiner/Splitter	Weinschel	1506A	3877	12	19-Mar-2014
P-Series Power Meter	Agilent	N1911A	3981	12	17-Sep-2013
50 MHz-18 GHz Wideband Power Sensor	Agilent	N1921A	3982	12	17-Sep-2013

COMMERCIAL-IN-CONFIDENCE

Product Service

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Due
Section 2.5 - Spurious and E	Band Edge Emissions		· I	, ,	
Multimeter	White Gold	WG022	190	12	30-Oct-2013
Communications Tester	Rohde & Schwarz	CMU 200	442	12	1-Nov-2013
Attenuator: 6dB/10W	Trilithic	HFP-50N	476	12	24-Jul-2013
Filter (High Pass)	Lorch	SHP7-7000-SR	566	12	20-Feb-2014
Spectrum Analyser	Hewlett Packard	E4407B	1154	12	17-Jul-2013
GPS Frequency Standard	Rapco	GPS-804/3	1312	6	23-Jul-2013
Power Supply	Hewlett Packard	6104A	1948	-	TU
Power Supply Unit	Farnell	TSV-70	2043	-	O/P Mon
Multimeter	Iso-tech	IDM101	2419	12	3-Oct-2013
High Pass Filter (4GHz)	RLC Electronics	F-100-4000-5-R	2773	12	1-Feb-2014
Test Receiver	Rohde & Schwarz	ESIB40	2941	12	23-Oct-2013
Attenuator (20dB, 2W)	Pasternack	PE 7004-20	2943	12	27-Mar-2014
Hygrometer	Rotronic	I-1000	3220	12	13-Jun-2013
Attenuator (10dB, 20W)	Lucas Weinschel	1	3225	12	11-Dec-2013
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	31-Aug-2013
Combiner/Splitter	Weinschel	1506A	3877	12	19-Mar-2014
Data Logger	Yokogawa	MV1024	3948	12	05-Jul-2014
Section 2.6 – 6dB Bandwidth				•	•
Multimeter	White Gold	WG022	190	12	30-Oct-2013
Communications Tester	Rohde & Schwarz	CMU 200	442	12	1-Nov-2013
Attenuator 10dB/10W)	Trilithic	HFP-50N	454	12	24-Jul-2013
Attenuator: 6dB/10W	Trilithic	HFP-50N	476	12	24-Jul-2013
Spectrum Analyser	Hewlett Packard	E4407B	1154	12	17-Jul-2013
GPS Frequency Standard	Rapco	GPS-804/3	1312	6	23-Jul-2013
Power Supply	Hewlett Packard	6104A	1948	-	TU
Power Supply Unit	Farnell	TSV-70	2043	-	O/P Mon
Multimeter	Iso-tech	IDM101	2419	12	3-Oct-2013
Hygrometer	Rotronic	I-1000	3220	12	13-Jun-2013*
Hygrometer	RS Components	1361C	3844	12	22-Mar-2014
Attenuator (10dB, 20W)	Lucas Weinschel	1	3225	12	11-Dec-2013
Signal Analyser	Rohde & Schwarz	FSQ 26	3545	12	23-Jun-2013*
Spectrum Analyser	Rohde & Schwarz	FSU 26	2747	12	30-Nov-2013
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	31-Aug-2013
Combiner/Splitter	Weinschel	1506A	3877	12	19-Mar-2014
Combiner/Splitter	Weinschel	1506A	3878	12	19-Mar-2014
P-Series Power Meter	Agilent	N1911A	3980	12	17-Sep-2013
P-Series Power Meter	Agilent	N1911A	3981	12	17-Sep-2013
50 MHz-18 GHz Wideband	Agilent	N1921A	3982	12	17-Sep-2013
Power Sensor				1	
50 MHz-18 GHz Wideband Power Sensor	Agilent	N1921A	3983	12	17-Sep-2013
1 Metre SMA Cable	Rhophase	3PS-1801A-1000- 3PS	4100	12	25-Oct-2013
1 Metre K Type Cable	Rhophase	KPS-1501A-1000- KPS	4105	12	25-Oct-2013

^{*}in calibration at the time of testing

TU – Traceability Unscheduled O/P MON – Output Monitored with Calibrated Equipment

3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

Test Discipline	MU
6dB Bandwidth	± 212.114 kHz
EIRP Peak Power	30MHz to 1GHz: ± 5.1 dB 1GHz to 40GHz: ± 6.3 dB
Maximum Peak Conducted Output Power	± 0.70 dB
Spurious and Band Edge Emissions	30MHz to 1GHz: ± 5.1 dB 1GHz to 40GHz: ± 6.3 dB
Power Spectral Density	± 3.0 dB
AC Line Conducted Emissions	± 3.2 dB

SECTION 4

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service

© 2013 TÜV SÜD Product Service