

Choose certainty.
Add value.

Report On

Specific Absorption Rate Testing of the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled

COMMERCIAL-IN-CONFIDENCE FCC ID: APYHRO00192

Document 75920802 Report 18 Issue 1

June 2013

Product Service

TÜV SÜD Product Service, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: www.tuv-sud.co.uk

COMMERCIAL-IN-CONFIDENCE

REPORT ON Specific Absorption Rate Testing of the

Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dualband UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with

Bluetooth, WLAN, NFC (FeliCa) and GPS enabled

Document 75920802 Report 18 Issue 1

June 2013

PREPARED FOR Sharp Communication Compliance Ltd

Azure House Bagshot Road Bracknell Berkshire RG12 7QY

PREPARED BY

M Mawby Engineer (SAR)

APPROVED BY

M Jenkins

Authorised Signatory

DATED 27 June 2013

CONTENTS

Section		Page No
1	REPORT SUMMARY	3
1.1	Introduction	4
1.2	Brief Summary of Results	5
1.3	Test Results Summary	5
1.4	Product Information	
1.5	FCC Power Measurements	22
2	TEST DETAILS	26
2.1	SARA-C SAR Measurement System	27
2.2	GSM 850MHz Head SAR Test Results and Course Area Scans – 2D	
2.3	GPRS 850MHz Body SAR Test Results and Course Area Scans – 2D	37
2.4	WCDMA FDDV Head SAR Test Results and Course Area Scans – 2D	
2.5	WCDMA FDDV Body SAR Test Results and Course Area Scans – 2D	
2.6	GSM 1900MHz Head SAR Test Results and Course Area Scans – 2D	
2.7	GPRS 1900MHz Body SAR Test Results and Course Area Scans – 2D	
2.8	WLAN 2450MHz Head SAR Test Results and Course Area Scans – 2D	
2.9	WLAN 2450MHz Body SAR Test Results and Course Area Scans – 2D	
2.10	WLAN 5000MHz Head SAR Test Results and Course Area Scans – 2D	
2.11	WLAN 5000MHz Body SAR Test Results and Course Area Scans – 2D	
2.12	WLAN 5000MHz Head SAR Test Results and Course Area Scans – 2D	
2.13	WLAN 5000MHz Body SAR Test Results and Course Area Scans – 2D	
2.14 2.15	WLAN 5000MHz Head SAR Test Results and Course Area Scans – 2DWLAN 5000MHz Body SAR Test Results and Course Area Scans – 2D	
2.15	•	
3	TEST EQUIPMENT USED	
3.1	Test Equipment Used	93
3.2	Test Software	
3.3	Dielectric Properties of Simulant Liquids	
3.4	Test Conditions	
3.5	Measurement Uncertainty	97
4	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	99
4.1	Accreditation, Disclaimers and Copyright	100
ANNFX	▲ Probe Calibration Report	Α 2

SECTION 1

REPORT SUMMARY

Specific Absorption Rate Testing of the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled

1.1 INTRODUCTION

Power Class

The information contained in this report is intended to show verification of the Specific Absorption Rate Testing of the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled to the requirements of OET Bulletin 65 Supplement C Edition 01-01.

Objective To perform Specific Absorption Rate Testing to determine

the Equipment Under Test's (EUT's) compliance with the requirements specified of OET Bulletin 65 Supplement C

Edition 01-01, for the series of tests carried out.

Applicant Sharp Communication Compliance Ltd

Manufacturer Sharp Corporation
Manufacturing Description Mobile Handset

Model Number SHL22

GSM 850 MHz Class 4 GSM 1900 MHz Class 1 WCDMA FDD V Class 3

GPRS Class B
GPRS Multi-slot Class 12

Serial/IMEI Number(s) 004401114764513 004401114764521

Number of Samples Tested 2
Hardware Version PP1
Software Version A4100

Battery Cell Manufacturer Sharp Corporation

Battery Model Number Integral Battery; Non Removable

Test Specification/Issue/Date OET Bulletin 65 Supplement C Edition 01-01

Start of Test 28 May 2013 Finish of Test 05 June 2013

Related Document(s) FCC 47CFR 2.1093: 2012

KDB 447498 - D01 v05 KDB 248227 - v01r02 (Rev 1.2)

KDB 865664 - D01 v01 KDB 865664 - D02 v01 KDB 648474 - D04 v01 KDB 941225 - D01 v02 KDB 941225 - D06 v01 KDB 941225 - D02 v02r01

IEEE 1528-2003

Name of Engineer(s) Michael Mawby

Nigel Grigsby

1.2 BRIEF SUMMARY OF RESULTS

The measurements shown in this report were made in accordance with the procedures specified OET 65(C) - 2001.

The maximum 1g volume averaged SAR found during this Assessment

Max 1g SAR (W/kg) Body	0.41 (Measured)	0.57 (Scaled)
Max 1g SAR (W/kg) Head	0.38 (Measured)	0.47 (Scaled)

The maximum 1g volume averaged SAR level measured for all the tests performed did not exceed the limits for General Population/Uncontrolled Exposure (W/kg) Partial Body of 1.6 W/kg. Level defined in Supplement C (Edition 01-01) to OET Bulletin 65 (97-01).

1.3 TEST RESULTS SUMMARY

1.3.1 System Performance / Validation Check Results

Prior to formal testing being performed a System Check was performed in accordance with OET 65(C) – 2001 and the results were compared against published data in Standard IEEE 1528-2003. The following results were obtained: -

System performance / Validation results

Date	Dipole Used	Frequency (MHz)	Max 1g SAR (W/kg)*	Percentage Drift on Reference
28/05/2013	850	850	9.49	-0.77%
29/05/2013	850	850	9.65	0.90%
28/05/2013	1900	1900	40.28	5.73%
31/05/2013	1900	1900	36.01	-5.49%
03/06/2013	2450	2450	47.59	-9.18%
04/06/2013	2450	2450	50.45	-3.72%
28/05/2013	5200	5200	81.81	6.94%
28/05/2013	5500	5500	89.97	8.01%

^{*}Normalised to a forward power of 1W

1.3.2 Results Summary Tables

GSM 850MHz Head Specific Absorption Rate (Maximum SAR) 1g Results for the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled.

Test Position	Channel Number	Frequency (MHz)	Measured Conducted Power (dBm)	Tune Up limit (dBm)	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Area scan (Figure number)
Left Cheek	189	836.6	32.62	33.5	0.35	0.43	Figure 8
Left 15°	189	836.6	32.62	33.5	0.20	0.24	Figure 9
Right Cheek	189	836.6	32.62	33.5	0.38	0.47	Figure 10
Right 15°	189	836.6	32.62	33.5	0.24	0.29	Figure 11

Limit for General Population (Uncontrolled Exposure) 1.6 W/kg (1g)

KDB 447498 D01 - Testing of other required channels within the operation mode of a frequency band is not required when the reported 1g SAR for mid-band or highest output power channel is:

- ≤ 0.8W/kg when the transmission band is ≤ 100MHz
- \leq 0.6W/kg when the transmission band is between 100MHz and 200MHz
- ≤ 0.4W/kg when the transmission band is ≥ 200MHz

GPRS 850MHz Body Specific Absorption Rate (Maximum SAR) 1g Results for the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled.

Pos	ition			Measured				
Spacing	Position	Channel Number	Frequency (MHz)	Conducted Power (dBm)	Tune Up limit (dBm)	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Area scan (Figure number)
10mm	Front Facing	128	824.2	27.48	28.9	0.33	0.46	Figure 12
10mm	Rear Facing	128	824.2	27.48	28.9	0.41	0.57	Figure 13
10mm	Right Edge	128	824.2	27.48	28.9	0.30	0.42	Figure 14
10mm	Left Edge	128	824.2	27.48	28.9	0.20	0.28	Figure 15
10mm	Bottom Edge	128	824.2	27.48	28.9	0.07	0.10	Figure 16

Limit for General Population (Uncontrolled Exposure) 1.6 W/kg (1g)

KDB 447498 D01 - Testing of other required channels within the operation mode of a frequency band is not required when the reported 1g SAR for mid-band or highest output power channel is:

- ≤ 0.8W/kg when the transmission band is ≤ 100MHz
- $\leq 0.6 \text{W/kg}$ when the transmission band is between 100MHz and 200MHz
- ≤ 0.4W/kg when the transmission band is ≥ 200MHz

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 D06

WCDMA FDDV Head Specific Absorption Rate (Maximum SAR) 1g Results for the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled.

Test Position	Channel Number	Frequency (MHz)	Measured Conducted Power (dBm)	Tune Up limit (dBm)	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Area scan (Figure number)
Left Cheek	4175	835	23.33	23.6	0.34	0.36	Figure 17
Left 15°	4175	835	23.33	23.6	0.23	0.24	Figure 18
Right Cheek	4175	835	23.33	23.6	0.32	0.34	Figure 19
Right 15°	4175	835	23.33	23.6	0.20	0.21	Figure 20

Limit for General Population (Uncontrolled Exposure) 1.6 W/kg (1g)

KDB 447498 D01 - Testing of other required channels within the operation mode of a frequency band is not required when the reported 1g SAR for mid-band or highest output power channel is:

- ≤ 0.8W/kg when the transmission band is ≤ 100MHz
- \leq 0.6W/kg when the transmission band is between 100MHz and 200MHz
- ≤ 0.4W/kg when the transmission band is ≥ 200MHz

WCDMA FDDV Body Specific Absorption Rate (Maximum SAR) 1g Results for the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled.

Pos	Position			Measured				
Spacing	Position	Channel Number	Frequency (MHz)	Conducted Power (dBm)	Tune Up limit (dBm)	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Area scan (Figure number)
10mm	Front Facing	4175	835	23.33	23.6	0.33	0.35	Figure 21
10mm	Rear Facing	4175	835	23.33	23.6	0.43	0.46	Figure 22
10mm	Right Edge	4175	835	23.33	23.6	0.32	0.34	Figure 23
10mm	Left Edge	4175	835	23.33	23.6	0.21	0.22	Figure 24
10mm	Bottom Edge	4175	835	23.33	23.6	0.07	0.07	Figure 25

Limit for General Population (Uncontrolled Exposure) 1.6 W/kg (1g)

KDB $\,$ 447498 $\,$ D01 - Testing of other required channels within the operation mode of a frequency band is not required when the reported 1g SAR for mid-band or highest output power channel is:

- ≤ 0.8W/kg when the transmission band is ≤ 100MHz
- ≤ 0.6W/kg when the transmission band is between 100MHz and 200MHz
- ≤ 0.4W/kg when the transmission band is ≥ 200MHz

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 D06

GSM 1900MHz Head Specific Absorption Rate (Maximum SAR) 1g Results for the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled.

Test Position	Channel Number	Frequency (MHz)	Measured Conducted Power (dBm)	Tune Up limit (dBm)	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Area scan (Figure number)
Left Cheek	661	1880	30.63	31.0	0.08	0.09	Figure 26
Left 15°	661	1880	30.63	31.0	0.04	0.04	Figure 27
Right Cheek	661	1880	30.63	31.0	0.16	0.17	Figure 28
Right 15°	661	1880	30.63	31.0	0.05	0.05	Figure 29

Limit for General Population (Uncontrolled Exposure) 1.6 W/kg (1g)

KDB 447498 D01 - Testing of other required channels within the operation mode of a frequency band is not required when the reported 1g SAR for mid-band or highest output power channel is:

- ≤ 0.8W/kg when the transmission band is ≤ 100MHz
- \leq 0.6W/kg when the transmission band is between 100MHz and 200MHz
- ≤ 0.4W/kg when the transmission band is ≥ 200MHz

GPRS 1900MHz Body Specific Absorption Rate (Maximum SAR) 1g Results for the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled.

Pos	ition			Measured				
Spacing	Position	Channel Number	Frequency (MHz)	Conducted Power (dBm)	Tune Up limit (dBm)	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Area scan (Figure number)
10mm	Front Facing	512	1850.2	24.24	26.2	0.18	0.28	Figure 30
10mm	Rear Facing	512	1850.2	24.24	26.2	0.28	0.44	Figure 31
10mm	Right Edge	512	1850.2	24.24	26.2	0.05	0.08	Figure 32
10mm	Left Edge	512	1850.2	24.24	26.2	0.08	0.13	Figure 33
10mm	Bottom Edge	512	1850.2	24.24	26.2	0.24	0.38	Figure 34

Limit for General Population (Uncontrolled Exposure) 1.6 W/kg (1g)

KDB 447498 D01 - Testing of other required channels within the operation mode of a frequency band is not required when the reported 1g SAR for mid-band or highest output power channel is:

- ≤ 0.8W/kg when the transmission band is ≤ 100MHz
- ≤ 0.6W/kg when the transmission band is between 100MHz and 200MHz
- ≤ 0.4W/kg when the transmission band is ≥ 200MHz

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 D06

WLAN 2450MHz Head Specific Absorption Rate (Maximum SAR) 1g Results for the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled.

Test Position	Channel Number	Frequency (MHz)	Measured Conducted Power (dBm)	Tune Up limit (dBm)	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Area scan (Figure number)
Left Cheek	6	2437.0	14.19	14.5	0.10	0.11	Figure 35
Left 15°	6	2437.0	14.19	14.5	0.10	0.11	Figure 36
Right Cheek	6	2437.0	14.19	14.5	0.16	0.17	Figure 37
Right 15°	6	2437.0	14.19	14.5	0.13	0.14	Figure 38

Limit for General Population (Uncontrolled Exposure) 1.6 W/kg (1g)

KDB 447498 D01 - Testing of other required channels within the operation mode of a frequency band is not required when the reported 1g SAR for mid-band or highest output power channel is:

- \leq 0.8W/kg when the transmission band is \leq 100MHz
- ≤ 0.6W/kg when the transmission band is between 100MHz and 200MHz
- ≤ 0.4W/kg when the transmission band is ≥ 200MHz

WLAN 2450MHz Body & Hotspot Specific Absorption Rate (Maximum SAR) 1g Results for the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled.

Pos	ition			Measured					
Spacing	Position	Channel Number	Frequency (MHz)	Conducted Power (dBm)	Tune Up limit (dBm)	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Area scan (Figure number)	
10mm	Front Face	6	2437.0	14.19	14.5	0.04	0.04	Figure 39	
10mm	Rear Face	6	2437.0	14.19	14.5	0.03	0.03	Figure 40	
10mm	Right Edge	6	2437.0	14.19	14.5	0.02	0.02	Figure 41	
10mm	Top Edge	6	2437.0	14.19	14.5	0.02	0.02	Figure 42	

Limit for General Population (Uncontrolled Exposure) 1.6 W/kg (1g)

KDB 447498 D01 - Testing of other required channels within the operation mode of a frequency band is not required when the reported 1g SAR for mid-band or highest output power channel is:

- ≤ 0.8W/kg when the transmission band is ≤ 100MHz
- ≤ 0.6W/kg when the transmission band is between 100MHz and 200MHz
- ≤ 0.4W/kg when the transmission band is ≥ 200MHz

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 D06

Product Service

WLAN 5000MHz Head Specific Absorption Rate (Maximum SAR) 1g Results for the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled.

Test Position	Channel Number	Frequency (MHz)	Measured Conducted Power (dBm)	Tune Up limit (dBm)	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Area scan (Figure number)
Left Cheek	48	5240.0	14.26	15.0	0.02	0.02	Figure 43
Left 15°	48	5240.0	14.26	15.0	0.03	0.04	Figure 44
Right Cheek	48	5240.0	14.26	15.0	0.12	0.14	Figure 45
Right 15°	48	5240.0	14.26	15.0	0.07	0.08	Figure 46

Limit for General Population (Uncontrolled Exposure) 1.6 W/kg (1g)

KDB 447498 D01 - Testing of other required channels within the operation mode of a frequency band is not required when the reported 1g SAR for mid-band or highest output power channel is:

- ≤ 0.8W/kg when the transmission band is ≤ 100MHz
- \leq 0.6W/kg when the transmission band is between 100MHz and 200MHz
- ≤ 0.4W/kg when the transmission band is ≥ 200MHz
- *(NUA) Not UKAS Accredited

WLAN 5000MHz Body & Hotspot Specific Absorption Rate (Maximum SAR) 1g Results for the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled.

Pos	ition			Measured				
Spacing	Position	Channel Number	Frequency (MHz)	Conducted Power (dBm)	Tune Up limit (dBm)	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Area scan (Figure number)
10mm	Front Face	48	5240.0	14.26	15.0	0.02	0.02	Figure 47
10mm	Rear Face	48	5240.0	14.26	15.0	0.09	0.11	Figure 48
10mm	Right Edge	48	5240.0	14.26	15.0	0.05	0.06	Figure 49
10mm	Top Edge	48	5240.0	14.26	15.0	0.01	0.01	Figure 50

Limit for General Population (Uncontrolled Exposure) 1.6 W/kg (1g)

KDB 447498 D01 - Testing of other required channels within the operation mode of a frequency band is not required when the reported 1g SAR for mid-band or highest output power channel is:

- ≤ 0.8W/kg when the transmission band is ≤ 100MHz
- ≤ 0.6W/kg when the transmission band is between 100MHz and 200MHz
- ≤ 0.4W/kg when the transmission band is ≥ 200MHz

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 D06 KDB – 648474 D04 - When the reported SAR for body-worn accessory, measured without a headset connected to the handset, is >1.2W/kg, the highest reported SAR configuration for that wireless mode and frequency band is repeated for that body worn accessory with a headset attached to the handset.

*(NUA) Not UKAS Accredited

Product Service

WLAN 5000MHz Head Specific Absorption Rate (Maximum SAR) 1g Results for the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled.

Test Position	Channel Number	Frequency (MHz)	Measured Conducted Power (dBm)	Tune Up limit (dBm)	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Area scan (Figure number)
Left Cheek	52	5260.0	14.95	15.0	0.04	0.04	Figure 51
Left 15°	52	5260.0	14.95	15.0	0.06	0.06	Figure 52
Right Cheek	52	5260.0	14.95	15.0	0.12	0.12	Figure 53
Right 15°	52	5260.0	14.95	15.0	0.12	0.12	Figure 54

Limit for General Population (Uncontrolled Exposure) 1.6 W/kg (1g)

KDB 447498 D01 - Testing of other required channels within the operation mode of a frequency band is not required when the reported 1g SAR for mid-band or highest output power channel is:

- ≤ 0.8W/kg when the transmission band is ≤ 100MHz
- \leq 0.6W/kg when the transmission band is between 100MHz and 200MHz
- ≤ 0.4W/kg when the transmission band is ≥ 200MHz
- *(NUA) Not UKAS Accredited

WLAN 5000MHz Body & Hotspot Specific Absorption Rate (Maximum SAR) 1g Results for the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled.

Pos	ition			Measured				
Spacing	Position	Channel Number	Frequency (MHz)	Conducted Power (dBm)	Tune Up limit (dBm)	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Area scan (Figure number)
10mm	Front Face	52	5260.0	14.95	15.0	0.02	0.02	Figure 55
10mm	Rear Face	52	5260.0	14.95	15.0	0.10	0.10	Figure 56
10mm	Right Edge	52	5260.0	14.95	15.0	0.06	0.06	Figure 57
10mm	Top Edge	52	5260.0	14.95	15.0	0.01	0.01	Figure 58

Limit for General Population (Uncontrolled Exposure) 1.6 W/kg (1g)

KDB 447498 D01 - Testing of other required channels within the operation mode of a frequency band is not required when the reported 1g SAR for mid-band or highest output power channel is:

- ≤ 0.8W/kg when the transmission band is ≤ 100MHz
- ≤ 0.6W/kg when the transmission band is between 100MHz and 200MHz
- ≤ 0.4W/kg when the transmission band is ≥ 200MHz

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 D06 KDB – 648474 D04 - When the reported SAR for body-worn accessory, measured without a headset connected to the handset, is >1.2W/kg, the highest reported SAR configuration for that wireless mode and frequency band is repeated for that body worn accessory with a headset attached to the handset.

*(NUA) Not UKAS Accredited

Product Service

WLAN 5000MHz Head Specific Absorption Rate (Maximum SAR) 1g Results for the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled.

Test Position	Channel Number	Frequency (MHz)	Measured Conducted Power (dBm)	Tune Up limit (dBm)	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Area scan (Figure number)
Left Cheek	116	5580.0	14.46	15.0	0.10	0.10	Figure 59
Left 15°	116	5580.0	14.46	15.0	0.13	0.13	Figure 60
Right Cheek	116	5580.0	14.46	15.0	0.23	0.23	Figure 61
Right 15°	116	5580.0	14.46	15.0	0.25	0.25	Figure 62

Limit for General Population (Uncontrolled Exposure) 1.6 W/kg (1g)

KDB 447498 D01 - Testing of other required channels within the operation mode of a frequency band is not required when the reported 1g SAR for mid-band or highest output power channel is:

- ≤ 0.8W/kg when the transmission band is ≤ 100MHz
- \leq 0.6W/kg when the transmission band is between 100MHz and 200MHz
- ≤ 0.4W/kg when the transmission band is ≥ 200MHz
- *(NUA) Not UKAS Accredited

WLAN 5000MHz Body & Hotspot Specific Absorption Rate (Maximum SAR) 1g Results for the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled.

Pos	ition			Measured				
Spacing	Position	Channel Number	Frequency (MHz)	Conducted Power (dBm)	Tune Up limit (dBm)	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Area scan (Figure number)
10mm	Front Face	116	5580.0	14.46	15.0	0.04	0.04	Figure 63
10mm	Rear Face	116	5580.0	14.46	15.0	0.09	0.09	Figure 64
10mm	Right Edge	116	5580.0	14.46	15.0	0.06	0.06	Figure 65
10mm	Top Edge	116	5580.0	14.46	15.0	0.04	0.04	Figure 66

Limit for General Population (Uncontrolled Exposure) 1.6 W/kg (1g)

KDB 447498 D01 - Testing of other required channels within the operation mode of a frequency band is not required when the reported 1g SAR for mid-band or highest output power channel is:

- ≤ 0.8W/kg when the transmission band is ≤ 100MHz
- ≤ 0.6W/kg when the transmission band is between 100MHz and 200MHz
- ≤ 0.4W/kg when the transmission band is ≥ 200MHz

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 D06 KDB – 648474 D04 - When the reported SAR for body-worn accessory, measured without a headset connected to the handset, is >1.2W/kg, the highest reported SAR configuration for that wireless mode and frequency band is repeated for that body worn accessory with a headset attached to the handset.

*(NUA) Not UKAS Accredited

1.3.3 Simultaneous Transmission

Position	WCDMA FDDV	WLAN 2.4GHz			
Head	1g SAR (W/kg) CH 4175 (Scaled SAR values)	1g SAR (W/kg) CH 6 (Scaled SAR values)	∑ 1g SAR (W/kg)		
Left Cheek	0.36	0.11	0.47		
Left 15°	0.24	0.11	0.35		
Right Cheek	0.34	0.17	0.51		
Right 15°	0.21	0.14	0.35		
Simultaneous Transmission KDB 447498 D01					

Simultaneous SAR measurements were not required as the sum of the 1g SAR measurements did not exceed 1.6 $\,$ W/kg.

Position	WCDMA FDDV	WLAN 2.4GHz				
Body	1g SAR (W/kg) CH 4175 (Scaled SAR values)	1g SAR (W/kg) CH 6 (Scaled SAR values)	∑ 1g SAR (W/kg)			
Front Facing	0.35	0.04	0.39			
Rear Facing	0.46	0.03	0.49			
Right Edge	0.34	0.02	0.36			
Left Edge	0.22	N/A	N/A			
Bottom Edge	0.07	N/A	N/A			
Top Edge	N/A	0.02	N/A			
Simultaneous Transmission KDB 447498 D01						

Simultaneous Transmission KDB 447498 D01

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 $\,$ D06

Simultaneous SAR measurements were not required as the sum of the 1g SAR measurements did not exceed 1.6 W/kg.

Position	WCDMA FDDV	WLAN 5GHz			
Head	1g SAR (W/kg) CH 4175 (Scaled SAR values)	1g SAR (W/kg) CH 48 (Scaled SAR values)	∑ 1g SAR (W/kg)		
Left Cheek	0.36	0.02	0.38		
Left 15°	0.24	0.04	0.28		
Right Cheek	0.34	0.14	0.48		
Right 15°	0.21	0.08	0.29		
Simultaneous Transmission KDB 447498 D01					

Position	WCDMA FDDV	WLAN 5GHz				
Body	1g SAR (W/kg) CH 4175 (Scaled SAR values)	1g SAR (W/kg) CH 48 (Scaled SAR values)	∑ 1g SAR (W/kg)			
Front Facing	0.35	0.02	0.37			
Rear Facing	0.46	0.11	0.57			
Right Edge	0.34	0.06	0.40			
Left Edge	0.22	N/A	N/A			
Bottom Edge	0.07	N/A	N/A			
Top Edge	N/A	0.01	N/A			
Simultaneous Transmission KDB 447498 D01						

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 $\,$ D06

did not exceed 1.6 W/kg.

Simultaneous SAR measurements were not required as the sum of the 1g SAR measurements

Position	WCDMA FDDV	WLAN 5GHz			
Head	1g SAR (W/kg) CH 4175 (Scaled SAR values)	1g SAR (W/kg) CH 52 (Scaled SAR values)	∑ 1g SAR (W/kg)		
Left Cheek	0.36	0.04	0.4		
Left 15°	0.24	0.06	0.3		
Right Cheek	0.34	0.12	0.46		
Right 15°	0.21	0.12	0.33		
Simultaneous Transmission KDB 447498 D01					

Simultaneous SAR measurements were not required as the sum of the 1g SAR measurements did not exceed 1.6 W/kg.

r.			
Position	WCDMA FDDV	WLAN 5GHz	
Body	1g SAR (W/kg) CH 4175 (Scaled SAR values)	1g SAR (W/kg) CH 52 (Scaled SAR values)	∑ 1g SAR (W/kg)
Front Facing	0.35	0.02	0.37
Rear Facing	0.46	0.10	0.56
Right Edge	0.34	0.06	0.4
Left Edge	0.22	N/A	N/A
Bottom Edge	0.07	N/A	N/A
Top Edge	N/A	0.01	N/A

Simultaneous Transmission KDB 447498 D01

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 $\,$ D06

Position	WCDMA FDDV	WLAN 5GHz				
Head	1g SAR (W/kg) CH 4175 (Scaled SAR values)	1g SAR (W/kg) CH 116 (Scaled SAR values)	∑ 1g SAR (W/kg)			
Left Cheek	0.36	0.10	0.46			
Left 15°	0.24	0.13	0.37			
Right Cheek	0.34	0.23	0.57			
Right 15°	0.21	0.25	0.46			
Simultaneous Transmission KDB 447498 D01						

Simultaneous SAR measurements were not required as the sum of the 1g SAR measurements did not exceed 1.6 $\,\mathrm{W/kg}$.

Position	WCDMA FDDV	WLAN 5GHz	
Body	1g SAR (W/kg) CH 4175 (Scaled SAR values)	1g SAR (W/kg) CH 116 (Scaled SAR values)	∑ 1g SAR (W/kg)
Front Facing	0.35	0.04	0.39
Rear Facing	0.46	0.09	0.55
Right Edge	0.34	0.06	0.4
Left Edge	0.22	N/A	N/A
Bottom Edge	0.07	N/A	N/A
Top Edge	N/A	0.04	N/A

Simultaneous Transmission KDB 447498 D01

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 $\,$ D06

Position	GSM 850 GPRS	WLAN 2.4GHz		
Body	1g SAR (W/kg) CH 128 (Scaled SAR values)	1g SAR (W/kg) CH 6 (Scaled SAR values)	∑ 1g SAR (W/kg)	
Front Facing	0.46	0.04	0.50	
Rear Facing	0.57	0.03	0.60	
Right Edge	0.42	0.02	0.44	
Left Edge	0.28	N/A	N/A	
Bottom Edge	0.10	N/A	N/A	
Top Edge	N/A	0.02	N/A	
Simultaneous Transmission KDR 447498 D01				

Simultaneous Transmission KDB 447498 D01

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 D06

Simultaneous SAR measurements were not required as the sum of the 1g SAR measurements did not exceed 1.6 W/kg.

Position	GSM 850 GPRS	WLAN 5GHz	
Body	1g SAR (W/kg) CH 128 (Scaled SAR values)	1g SAR (W/kg) CH 48 (Scaled SAR values)	∑ 1g SAR (W/kg)
Front Facing	0.46	0.02	0.48
Rear Facing	0.57	0.11	0.68
Right Edge	0.42	0.06	0.48
Left Edge	0.28	N/A	N/A
Bottom Edge	0.10	N/A	N/A
Top Edge	N/A	0.01	N/A
il			

Simultaneous Transmission KDB 447498 D01

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 $\,$ D06

Position	GSM 850 GPRS	WLAN 5GHz	
Body	1g SAR (W/kg) CH 128 (Scaled SAR values)	1g SAR (W/kg) CH 52 (Scaled SAR values)	∑ 1g SAR (W/kg)
Front Facing	0.46	0.02	0.48
Rear Facing	0.57	0.10	0.67
Right Edge	0.42	0.06	0.48
Left Edge	0.28	N/A	N/A
Bottom Edge	0.10	N/A	N/A
Top Edge	N/A	0.01	N/A

Simultaneous Transmission KDB 447498 D01

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 $\,$ D06

Simultaneous SAR measurements were not required as the sum of the 1g SAR measurements did not exceed 1.6 W/kg.

Position	GSM 850 GPRS 1g SAR (W/kg) CH 128 (Scaled SAR values)	WLAN 5GHz 1g SAR (W/kg) CH 116 (Scaled SAR values)	∑ 1g SAR (W/kg)
Body			
Front Facing	0.46	0.04	0.50
Rear Facing	0.57	0.09	0.66
Right Edge	0.42	0.06	0.48
Left Edge	0.28	N/A	N/A
Bottom Edge	0.10	N/A	N/A
Top Edge	N/A	0.04	N/A

Simultaneous Transmission KDB 447498 D01

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 $\,$ D06

Position	GSM 1900 GPRS	WLAN 2.4GHz	
Body	1g SAR (W/kg) CH 512 (Scaled SAR values)	1g SAR (W/kg) CH 6 (Scaled SAR values)	∑ 1g SAR (W/kg)
Front Facing	0.28	0.04	0.32
Rear Facing	0.44	0.03	0.47
Right Edge	0.08	0.02	0.10
Left Edge	0.13	N/A	N/A
Bottom Edge	0.38	N/A	N/A
Top Edge	N/A	0.02	N/A

Simultaneous Transmission KDB 447498 D01

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 $\,$ D06

Simultaneous SAR measurements were not required as the sum of the 1g SAR measurements did not exceed 1.6 W/kg.

Position	GSM 1900 GPRS 1g SAR (W/kg) CH 512 (Scaled SAR values)	WLAN 5GHz 1g SAR (W/kg) CH 48 (Scaled SAR values)	∑ 1g SAR (W/kg)
Body			
Front Facing	0.28	0.02	0.30
Rear Facing	0.44	0.11	0.55
Right Edge	0.08	0.06	0.14
Left Edge	0.13	N/A	N/A
Bottom Edge	0.38	N/A	N/A
Top Edge	N/A	0.01	N/A

Simultaneous Transmission KDB 447498 D01

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 $\,$ D06

Position	GSM 1900 GPRS	WLAN 5GHz	
Body	1g SAR (W/kg) CH 512 (Scaled SAR values)	1g SAR (W/kg) CH 52 (Scaled SAR values)	∑ 1g SAR (W/kg)
Front Facing	0.28	0.02	0.30
Rear Facing	0.44	0.10	0.54
Right Edge	0.08	0.06	0.14
Left Edge	0.13	N/A	N/A
Bottom Edge	0.38	N/A	N/A
Top Edge	N/A	0.01	N/A

Simultaneous Transmission KDB 447498 D01

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 D06

Simultaneous SAR measurements were not required as the sum of the 1g SAR measurements did not exceed 1.6 W/kg.

Position	GSM 1900 GPRS 1g SAR (W/kg) CH 512 (Scaled SAR values)	WLAN 5GHz 1g SAR (W/kg) CH 116 (Scaled SAR values)	∑ 1g SAR (W/kg)	
Body				
Front Facing	0.28	0.04	0.32	
Rear Facing	0.44	0.09	0.53	
Right Edge	0.08	0.06	0.14	
Left Edge	0.13	N/A	N/A	
Bottom Edge	0.38	N/A	N/A	
Top Edge	N/A	0.04	N/A	
·				

Simultaneous Transmission KDB 447498 D01

Testing was carried out with a 10mm separation distance to meet the requirements of KDB 941225 $\,$ D06

1.4 PRODUCT INFORMATION

1.4.1 Technical Description

The equipment under test (EUT) was a Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled. A full technical description can be found in the manufacturer's documentation.

1.4.2 Test Configuration and Modes of Operation

The testing was performed with standard batteries supplied and manufactured by Sharp Corporation. Each battery was fully charged before each measurement and there were no external connections.

For head SAR assessment, testing was performed with the device in the declared normal position of operation for GSM 850MHz, GSM 1900MHz, WCDMA FDD V, WLAN 2.4GHz and WLAN 5GHz frequency bands at maximum power. The device was placed against a Specific Anthropomorphic Mannequin (SAM) phantom as specified in the CENELEC standard EN 62209-1: 2006. The phantom was filled with simulant liquid appropriate to the frequency band. The dielectric properties were measured and found to be in accordance with the requirements for the dielectric properties specified in EN 62209-1: 2006.

For body SAR assessment, testing was performed for GSM 850MHz, GSM 1900MHz, WCDMA FDDV, WLAN 2.4GHz and WLAN 5GHz frequency bands at maximum power. The device was placed at a distance of 10 mm from the bottom of the flat phantom for all body testing. The Flat Phantom dimensions were 245mm x 195mm x 200mm with a sidewall thickness of 2.00mm. The phantom was filled to a minimum depth of 150mm with the appropriate Body simulant liquid. The dielectric properties were in accordance with the requirements specified in Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).

As the device is capable of hotspot configuration a 10mm separation distance was used to meet the requirements of KDB 941225 D06 Hotspot.

Testing was performed in each position at the frequency that gave the highest output power for each band. Where SAR levels were found to be >0.80 W/kg (KDB 447498 D01) additional testing was completed at the remaining frequencies / channels of the bands. WLAN testing was achieved using the devices internal software, customer supplied software and settings supplied by the customer. The worse case data rate for 2.4GHz and 5GHz testing was obtained from data provided by TUV. The worst case was deemed as the data rate which produced the highest level of conducted average power. For WLAN 2.4GHz this was 11Mbps for 802.11b. For WLAN 5GHz this was 6Mbps for 802.11a.

Included in this report are descriptions of the test method; the equipment used and an analysis of the test uncertainties applicable and diagrams indicating the locations of maximum SAR for each test position along with photographs indicating the positioning of the handset against the body as appropriate.

1.5 FCC POWER MEASUREMENTS

1.5.1 **Method**

Conducted power measurements were made using a power meter.

1.5.2 Conducted Power Measurements

GSM 850

Modulation	Frequency (MHz)	Conducted Carrier Power (dBm)	
Modulation		Peak	Average
	824.2	33.09	32.62
GMSK - Voice	836.6	33.09	32.62
	849.2	33.04	32.57
	824.2	27.60	27.48
GMSK - GPRS	836.6	27.47	27.78
	849.2	27.47	27.33

GSM 1900

Modulation	Frequency	Conducted Carrier Power (dBm)	
Modulation	(MHz)	Peak	Average
	1850.2	31.03	30.58
GMSK - Voice	1880.0	31.08	30.63
	1909.8	31.07	30.62
	1850.2	24.45	24.24
GMSK - GPRS	1880.0	24.46	24.16
	1909.8	24.44	24.15

WCDMA FDD V

Modulation	Frequency	Conducted Carr	ier Power (dBm)
Modulation	(MHz)	Peak	Average
	826.6	27.34	23.31
WCDMA - 12.2kbps RMC	835.0	27.02	23.33
	826.4	27.25	23.20
WCDMA - 12.2kbps	826.6	27.28	23.26
AMR with 3.4kbps SRB	835.0	27.06	23.32
SKB	826.4	27.19	23.18
	826.6	26.78	22.78
WCDMA - HSDPA (Subtest #1)	835.0	26.95	22.75
,	826.4	26.89	22.78
	826.6	28.15	22.21
WCDMA - HSDPA (Subtest #2)	835.0	27.76	22.11
,	826.4	28.05	22.17
	826.6	27.77	21.50
WCDMA - HSDPA (Subtest #3)	835.0	27.62	21.52
,	826.4	27.51	21.34
	826.6	28.00	21.53
WCDMA - HSDPA (Subtest #4)	835.0	27.61	21.50
,	826.4	27.62	21.36
	826.6	28.60	22.20
WCDMA - HSUPA (Subtest #1)	835.0	28.24	22.30
,	826.4	28.15	22.14
	826.6	27.84	22.06
WCDMA - HSUPA (Subtest #2)	835.0	27.71	22.05
,	826.4	27.66	21.91
WCDMA - 12.2kbps	826.6	28.19	22.36
RMCWCDMA -	835.0	27.86	22.47
HSUPA (Subtest #3)	826.4	28.15	22.35
	826.6	27.55	22.80
WCDMA - HSUPA (Subtest #4)	835.0	27.05	22.74
(-22:20: ")	826.4	27.34	22.68
	826.6	28.47	22.41
WCDMA - HSUPA (Subtest #5)	835.0	28.06	22.31
, , , , , , , , , , , , , , , , , , ,	826.4	28.31	22.33

WLAN

Madelatia	Frequency	Conducted Carrier Power (dBm)		
Modulation	(MHz)	Peak	Average	
802.11(b) - 2.4 GHz 11 Mbps	2412	16.46	13.97	
	2437	16.76	14.19	
	2462	16.19	13.80	
	2412	22.28	13.31	
802.11(g) - 2.4 GHz 18 Mbps	2437	22.47	13.79	
	2462	22.64	13.32	
	2412	22.50	13.57	
802.11(n20) - 2.4 GHz 19.5 Mbps	2437	22.58	13.92	
·	2462	22.57	13.40	
	5180	24.21	13.72	
	5200	24.84	12.62	
	5220	24.33	13.54	
802.11a - 5GHz	5240	25.02	14.26	
6Mbps	5260	23.17	14.95	
	5280	23.84	14.08	
	5300	21.41	13.01	
	5320	21.75	13.38	
802.11a - 5GHz - 6Mbps	5500	22.25	13.69	
	5520	20.80	12.28	
	5540	20.96	12.43	
	5560	22.34	13.76	
	5580	23.07	14.46	
	5660	23.55	12.93	
	5680	22.31	13.82	
	5700	22.71	14.06	

Bluetooth

Modulation	Frequency (MHz)	Conducted Carrier Power (dBm)		
		Peak	Average	
DH5	2441	-2.55	-4.27	

1.5.3 Standalone SAR Test Exclusion Considerations (KDB 447498 D01)

The 1g SAR Test exclusion thresholds for 100 MHz to 6 GHz test separation distances \leq 50 mm are determined by:

[(max power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $[\sqrt{f}(_{GHz})] \le 3.0$, where

- f (GHz) is the RF channel transmit frequency in GHz.
- Power and distance are rounded to the nearest mW and mm before calculation.
- The result is rounded to one decimal place for comparison.
- When the maximum test separation distance is < 5 mm, a distance of 5 mm is applied.

Band Frequency (MHz)	Frequency	Max Power		Test	Distance	Threshold	Test
		(dBm)	(mW)	Position	(mm)	rniesnoid	Exclusion
FDD V 835	835	23.6 229	229.08	Head	< 5	41.9	No
T DD V	655		229.00	Body	10	20.9	No
WLAN 2.4 GHz 2437	14.5	28.18	Head	< 5	8.8	No	
WEAN 2.4 GHZ	2437	14.5	20.18	Body	10	4.4	No
WILANI FOLI-	5240	15	31.62	Head	< 5	14.5	No
WEAN 3GHZ	WLAN 5GHz 5240	15		Body	10	7.2	No
NA/I ANI 5011-	15	24.62	Head	< 5	14.5	No	
WLAN 5GHZ	AN 5GHz 5260 15	15	31.62	Body	10	7.3	No
WLAN 5GHz 5580	EE00	5580 15	31.62	Head	< 5	14.9	No
	3360			Body	10	7.5	No
Bluetooth 2441	2441	0	1	Head	< 5	0.3	Yes
	2441			Body	10	0.2	Yes

SECTION 2

TEST DETAILS

Specific Absorption Rate Testing of the Sharp SHL22 Dual-band CDMA (800MHz_BC0, 1900MHz_BC6) & Quad-band GSM (GSM850/GSM900/DCS1800/PCS1900) & Dual-band UMTS (2100MHz_FDDI, 850MHz_FDDV)&Tri-band LTE (1.9G_B1, 1.5G_B11, 800M_B18) multi mode cellular phone with Bluetooth, WLAN, NFC (FeliCa) and GPS enabled

2.1 SARA-C SAR MEASUREMENT SYSTEM

2.1.1 Robot System Specification

The SAR measurement system being used is the IndexSAR SARA-C system, which consists of a cartestian 6-axis robot jig, a dedicated robot controller, a straight IndexSAR probe, an L-shaped Indexsar probe, a fast amplifier, and two phantoms: an upside-down SAM phantom, and a rectangular box phantom,

Figure 1. The L-probe is used in connection with measurements on DUTs held against the SAM phantom, while the straight probe is used exclusively in the box phantom. The robot is used to articulate the probe to programmed positions inside the phantom head to obtain SAR readings from the DUT.

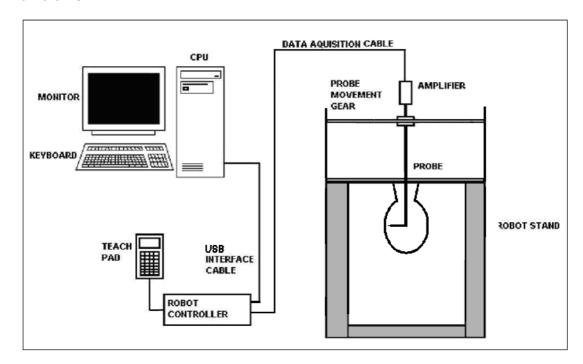


Figure 1 Schematic diagram of the SARA-C measurement system showing the L-probe and upside-down SAM phantom

The system is controlled remotely from a PC, which contains the software to drive the robot and data acquisition equipment. The software also displays the data obtained from test scans.

The position and digitised shape of the phantom heads are made available to the software for accurate positioning of the probe and reduction of set-up time. The SAM phantom heads are individually digitised using a Mitutoyo CMM machine to a precision of 0.001mm. The data is then converted into a shape format for the software, providing an accurate description of the phantom shell. Even with this accuracy, registration errors and deformation of the phantom when filled with 7 litres of fluid, can lead to probe placement errors of 1mm or more. For this reason, the L-probes house a 2-axis strain gauge unit, which allow the actual phantom wall position to be sensed to an accuracy of 0.3mm during probe movements.

In operation, the system first does an area (2D) scan within the liquid following the curve of the phantom wall at a fixed distance. When the maximum SAR point has been found, the system will then carry out a 3D scan centred at that point to determine volume averaged SAR level.

2.1.2 Probe and Amplifier Specification

IndexSAR isotropic immersible straight SAR probes

Straight probes are constructed using three orthogonal dipole sensors arranged on an interlocking, triangular prism core. The probes have built-in shielding against static charges and are contained within a PEEK cylindrical enclosure material at the tip. The tips come in either 5mm (typically for use up to 3GHz) or 2.5mm (above 3GHz) versions, model types IXP-050 and IXP-025 respectively.

Straight probes are calibrated by NPL in the UK.

Straight probes are used exclusively in the box phantom, to measure SAR from DUTs placed against the phantom base. In SARA2, straight probes were also used in the SAM phantom, but this is forbidden in SARA-C, where L-probes are demanded. NB the reverse is not true: L-probes can be used in the box phantom.

IndexSAR L-probes

The L-shaped probe is so designed to ensure the probe tip can remain perpendicular to the SAM phantom wall during scans. To allow for greater probe articulation freedom, the SAM phantom head has been turned upside down and the probe is inserted through the throat aperture, rather than through a small hole at the top of the head in the old SARA2 SAR measurement system.

Like the straight probes, L-probes also come in the same two tip sizes: IXP-020 (5mm) and IXP-021 (2.5mm).

L-probes are calibrated to national standards in-house by IndexSAR.

L-probes can be used either in the SAM head, or against the side wall of the box phantom.

IFA-020 Fast Amplifier

A block diagram of the fast probe amplifier electronics is shown below.

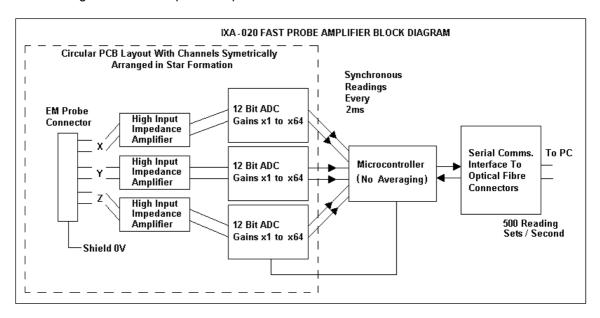


Figure 2 Schematic diagram of the fast amplifier

This amplifier has a time constant of approx. 50µs, which is much faster than the SAR probe response time. The overall system time constant is therefore that of the probe (<1ms) and a reading containing data for all three channels is returned to the PC every 2ms. The conversion period is approx. 1 µs at the start of each 2ms period. This enables the probe to follow pulse modulated signals of periods >>2ms. The PC software applies the linearisation procedure separately to each reading, so no linearisation corrections for the averaging of modulated signals are needed in this case.

The fast amplifier sampling rate can be adjusted via the SARA-C user interface from 1.7ms to 2.3ms. When not measuring CW signals, it is important to ensure that this probe reading rate and the modulated signal's pulse repetition rate are not unintentionally synchronised since this can lead to aliasing and a gross reduction in accuracy. For GSM signals, the default amplifier sampling rate of 2ms is entirely satisfactory, whereas changing it to 2.3ms (almost exactly half the GSM frame rate) could mean GSM bursts are always missed.

When aggregating 2ms samples to reduce the stochastic noise, it is equally important to match the number of samples with the longer-term timing structure of the modulation scheme. Taking GSM as an example again, since 120ms is the precise length of a GSM traffic channel multiframe, best practice would dictate that aggregated samples should cover exact multiples of this timescale. In this case, setting the number of samples to be aggregated to 120 (2 multiframes), or 240 samples (4 multiframes) should be ideal. Other signalling protocols would require changing these numbers as appropriate.

Phantoms

The Flat phantom used is a rectangular Perspex Box IndexSAR item IXB-2HF, dimensions 240 \times 190 \times 195mm (w x d x h). The base and one side wall are made of FR4 material which has specific dielectric properties and a tightly-controlled thickness. The base is used in tandem with straight probes, measuring either a DUT or a validation dipole, while the side wall is for performing validations with the L-probe. It is also feasible to perform measurements on bodyworn devices with the L-probe against the side window, but only if the L-probe is suitably calibrated (ie if the measurement standard demands body and head fluids have the same dielectric properties).

The Specific Anthropomorphic Mannequin (SAM) Upright Phantom is fabricated using moulds generated from the CAD files as specified by CENELEC EN 62209-1: 2006.

2.1.3 SAR Measurement Procedure

Detailed measurement procedures for SARA-C are set out in a separate IndexSAR technical document ("SARA-C Operational Procedures"

A test set and dipole antenna control the handset via an air link and a low-mass phone holder can position the phone at either ear. Graduated scales are provided to set the phone in the 15 degree position. The upright phantom head holds approx. 7 litres of simulant liquid. The phantom is filled and emptied through the 110mm diameter penetration hole in the neck.

An area scan is performed inside the head at a fixed distance of 5mm from the curved surface on the source side. An algorithm presents the user with the location of any local hotspots and allows one to be selected for a follow-up 3D scan, looking at how the signal absorption varies with depth. A comparison between the start and end readings at a fixed distance from the DUT also enables the power drift during measurement to be assessed.

SARA-C Interpolation and Extrapolation schemes

SARA-C software contains support for both 2D cubic B-spline interpolation as well as 3D cubic B-spline interpolation. In addition, for extrapolation purposes, a proprietary curve-fitting routine is implemented as a weighted average of 3 different polynomial fits. The polynomial fitting procedures have been extensively tested by comparing the fitting coefficients generated by the SARA-C procedures with those obtained using the polynomial fit functions of Microsoft Excel when applied to the same test input data.

Interpolation of 2D area scan

The 2D cubic B-spline interpolation is used after the initial area scan at fixed distance from the phantom shell wall. The initial scan data are collected with approx. 115mm spatial resolution and spline interpolation is used to find the location of the local maximum to within a 1mm resolution for positioning the subsequent 3D scanning.

Extrapolation of 3D scan

For the 3D scan, data are collected on a spatially regular, but conformal, 3D grid having (by default) 6.4 mm steps in the lateral dimensions and 3.5 mm steps in the depth direction (away from the source). SARA-C enables full control over the selection of alternative step sizes in all directions.

Product Service

The overall accuracy of the 1g and 10g SAR volume average depends largely on the accuracy with which the probe can be re-positioned in the head. Although the digitised shape of the head is available to the SARA-C software, a better positioning solution is to use strain gauges attached to the L-probe to feel for the actual surface and to base all movements relative to this positive detection. An even more precise, but time-consuming, method is to place the probe tip in positive contact against the phantom wall, then step backwards 0.01mm at a time while monitoring the recorded SAR reading. At the exact moment that the probe detaches from contact, the SAR reading will suddenly fall.

After the data collection, the data are extrapolated up to the shell wall in the depth direction to assign values to points in the 3D array which cannot be measured in practice because of the finite size of the sensor tip. For automated measurements inside the head, the distance of the closest plane from the wall cannot be less than 2.7mm (for 5mm probes) and 1.39mm (for 2.5mm probes), this being the distance of the probe sensors behind the front edge of the probe tip.

Interpolation of 3D scan and volume averaging

The procedure used in SARA-C for defining the volumes used in SAR averaging follow the method of adapting the surface of the 'cube' to conform with the curved inner surface of the phantom (see Appendix C.2.2.1 in EN 62209-1: 2006). This is called, here, the conformal scheme.

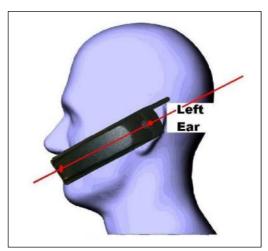
For each row of data in the depth direction, the data are extrapolated to the phantom wall, and interpolated to less than 1mm spacing and average values are calculated from the phantom surface for the row of data over distances corresponding to the requisite depth for 10g and 1g cubes. This results in two 2D arrays of data, one for 1g and the other for 10g masses, which are then cubic B-spline interpolated to sub mm lateral resolution. A search routine then moves an averaging square around through the 2D array and records the maximum value of the corresponding 1g and 10g volume averages.

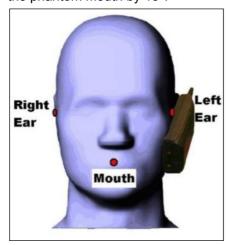
The default step size is 3.5mm, but this is under user-control. The compromise is with time of scan, so it is not practical to make it much smaller or scan times become long and power-drop influences become larger.

The robot positioning system specification for the repeatability of the positioning (dss in EN 62209-1: 2006) is +/- 0.04mm.

2.1.4 Head Test Positions

This recommended practice specifies exactly two test positions for the handset against the head phantom, the "Cheek" position and the "tilted" position. The handset should be tested in both positions on the left and right sides of the SAM phantom. In each test position the centre of the earpiece of the device is placed directly at the entrance of the auditory canal. The angles mentioned in the test positions used are referenced to the line connecting both auditory canal openings. The plane this line is on is known as the reference plane. Testing is performed on the right and left-hand sides of the generic phantom head.




Figure 3 Side view of mobile next to head showing alignment

The Cheek Position

The Cheek Position is where the mobile is in the reference plane and the line between the mobile and the line connecting both auditory canal openings is reduced until any part of the mobile touches any part of the generic twin phantom head.

The 15° Position

The 15° Position is where the mobile is in the reference Cheek position and the phone is kept in contact with the auditory canal at the earpiece; the bottom of the phone is then tilted away from the phantom mouth by 15°.

Figure 4 Cheek position

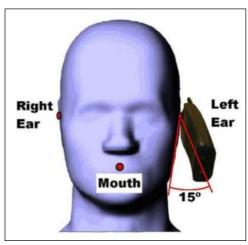


Figure 5 15º Tilt Position

2.2 GSM 850MHz HEAD SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	30/05/2013-10:09:48	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.50°C	LIQUID SIMULANT:	850Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	39.51
RELATIVE HUMIDITY:	49.90%	CONDUCTIVITY:	0.868
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.70°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	57.10mm
DUT POSITION:	Left-Cheek	MAX SAR Z-AXIS LOCATION:	-114.00mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	18.793
TEST FREQUENCY:	836.6MHz	SAR 1g:	0.349 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	12.5%	SAR START:	0.331 W/kg
INPUT POWER LEVEL:	33dBm	SAR END:	0.318 W/kg
PROBE BATTERY LAST CHANGED:	30/05/2013	SAR DRIFT DURING SCAN:	-3.900 %

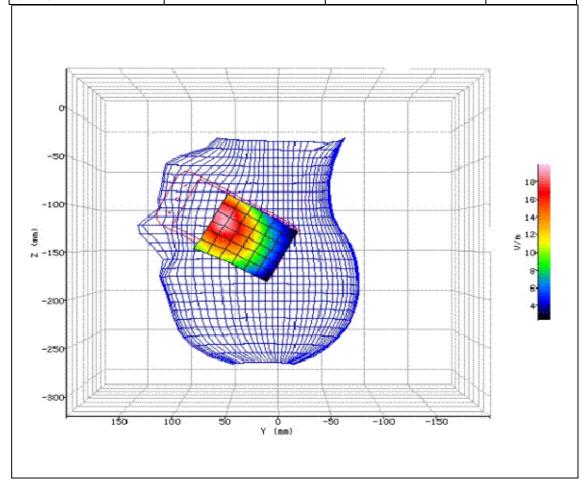


Figure 8: SAR Head Testing Results for the SHL22 Mobile Handset at 836.6MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	30/05/2013-10:29:13	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.50°C	LIQUID SIMULANT:	850Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	39.51
RELATIVE HUMIDITY:	49.90%	CONDUCTIVITY:	0.868
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.70°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	41.50mm
DUT POSITION:	Left-15°	MAX SAR Z-AXIS LOCATION:	-129.70mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	14.502
TEST FREQUENCY:	836.6MHz	SAR 1g:	0.198 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	12.5%	SAR START:	0.185 W/kg
INPUT POWER LEVEL:	33dBm	SAR END:	0.198 W/kg
PROBE BATTERY LAST CHANGED:	30/05/2013	SAR DRIFT DURING SCAN:	7.000 %

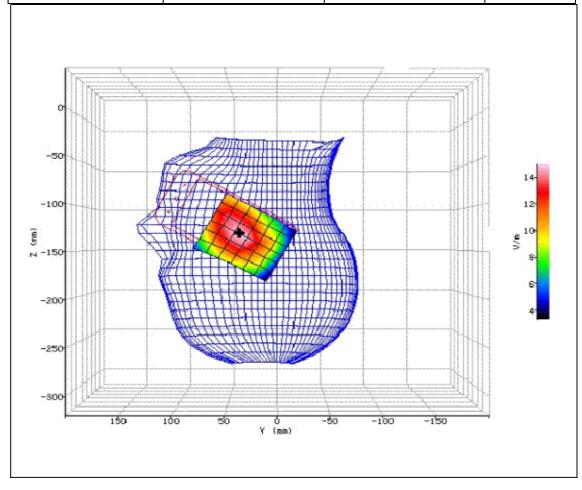


Figure 9: SAR Head Testing Results for the SHL22 Mobile Handset at 836.6MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	30/05/2013-14:40:23	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.50°C	LIQUID SIMULANT:	850Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	39.51
RELATIVE HUMIDITY:	49.90%	CONDUCTIVITY:	0.868
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.70°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	59.70mm
DUT POSITION:	Right-Cheek	MAX SAR Z-AXIS LOCATION:	-118.30mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	19.336
TEST FREQUENCY:	836.6MHz	SAR 1g:	0.380 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	12.5%	SAR START:	0.433 W/kg
INPUT POWER LEVEL:	33dBm	SAR END:	0.401 W/kg
PROBE BATTERY LAST CHANGED:	30/05/2013	SAR DRIFT DURING SCAN:	-7.400 %

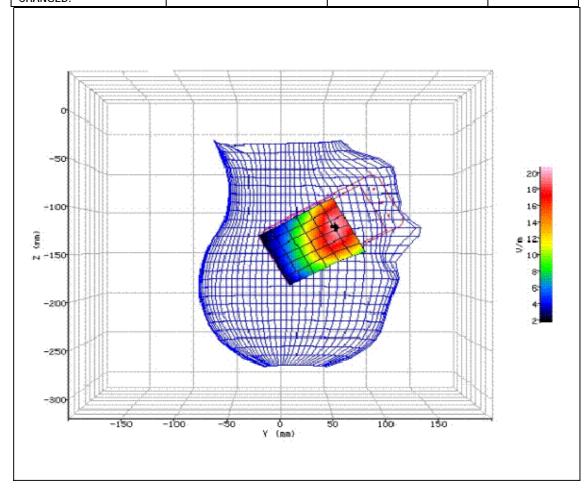


Figure 10: SAR Head Testing Results for the SHL22 Mobile Handset at 836.6MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	30/05/2013-15:10:07	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.50°C	LIQUID SIMULANT:	850Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	39.51
RELATIVE HUMIDITY:	49.90%	CONDUCTIVITY:	0.868
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.70°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	51.20mm
DUT POSITION:	Right-15°	MAX SAR Z-AXIS LOCATION:	-131.20mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	15.628
TEST FREQUENCY:	836.6MHz	SAR 1g:	0.241 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	12.5%	SAR START:	0.232 W/kg
INPUT POWER LEVEL:	33dBm	SAR END:	0.246 W/kg
PROBE BATTERY LAST CHANGED:	30/05/2013	SAR DRIFT DURING SCAN:	6.000 %

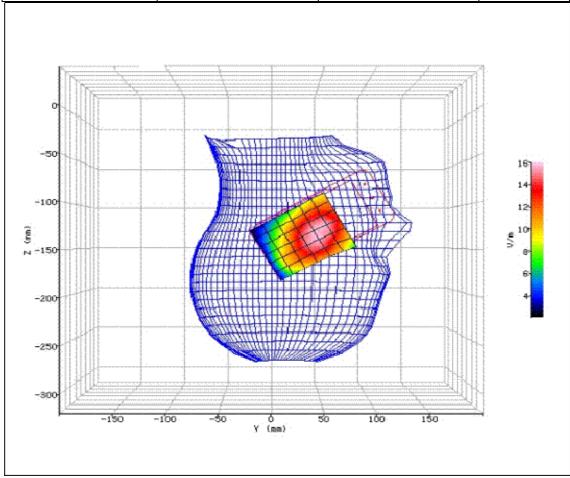


Figure 11: SAR Head Testing Results for the SHL22 Mobile Handset at 836.6MHz.

2.3 GPRS 850MHz BODY SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-15:00:25	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	23.00°C	LIQUID SIMULANT:	850Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	57.12
RELATIVE HUMIDITY:	40.30%	CONDUCTIVITY:	1.013
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.80°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	12.20mm
DUT POSITION:	10mm-Front Facing	MAX SAR Y-AXIS LOCATION:	0.80mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	18.549
TEST FREQUENCY:	824.2MHz	SAR 1g:	0.334 W/kg
TYPE OF MODULATION:	GMSK (GPRS Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	25%	SAR START:	0.342 W/kg
INPUT POWER LEVEL:	30dBm	SAR END:	0.327 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	-4.500 %

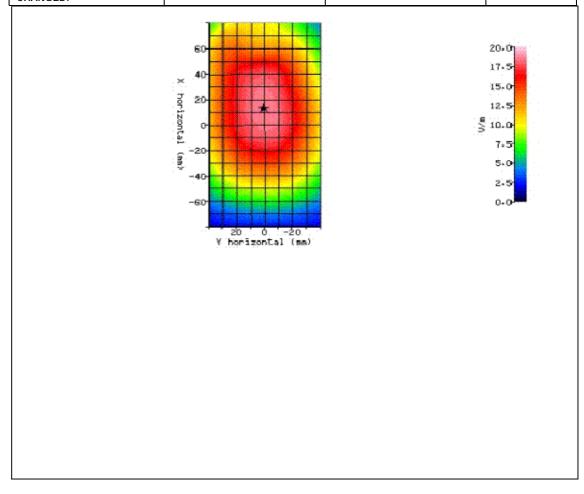


Figure 12: SAR Body Testing Results for the SHL22 Mobile Handset at 824.2MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-15:17:27	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	23.00°C	LIQUID SIMULANT:	850Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	57.12
RELATIVE HUMIDITY:	40.30%	CONDUCTIVITY:	1.013
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.80°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	29.30mm
DUT POSITION:	10mm-Rear Facing	MAX SAR Y-AXIS LOCATION:	0.30mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	20.156
TEST FREQUENCY:	824.2MHz	SAR 1g:	0.409 W/kg
TYPE OF MODULATION:	GMSK (GPRS Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	25%	SAR START:	0.500 W/kg
INPUT POWER LEVEL:	30dBm	SAR END:	0.500 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	0.000 %

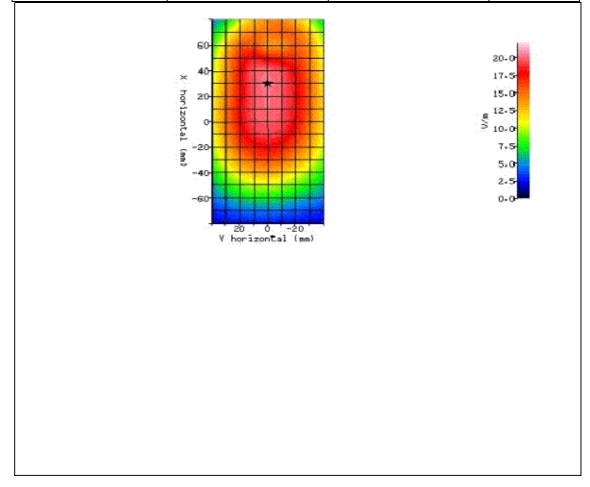


Figure 13: SAR Body Testing Results for the SHL22 Mobile Handset at 824.2MHz.

	1		1
SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-15:47:27	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	23.00°C	LIQUID SIMULANT:	850Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	57.12
RELATIVE HUMIDITY:	40.30%	CONDUCTIVITY:	1.013
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.80°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	4.20mm
DUT POSITION:	10mm-Right Edge	MAX SAR Y-AXIS LOCATION:	-2.50mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	17.231
TEST FREQUENCY:	824.2MHz	SAR 1g:	0.304 W/kg
TYPE OF MODULATION:	GMSK (GPRS Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	25%	SAR START:	0.322 W/kg
INPUT POWER LEVEL:	30dBm	SAR END:	0.322 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	-0.100 %
1			

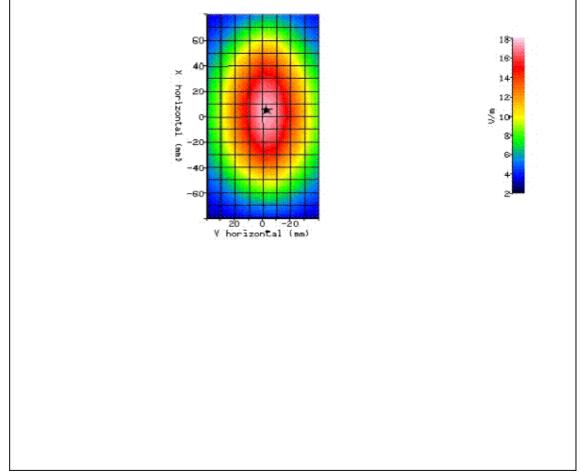


Figure 14: SAR Body Testing Results for the SHL22 Mobile Handset at 824.2MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-15:59:21	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	23.00°C	LIQUID SIMULANT:	850Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	57.12
RELATIVE HUMIDITY:	40.30%	CONDUCTIVITY:	1.013
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.80°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	3.50mm
DUT POSITION:	10mm-Left Edge	MAX SAR Y-AXIS LOCATION:	0.20mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	13.729
TEST FREQUENCY:	824.2MHz	SAR 1g:	0.196 W/kg
TYPE OF MODULATION:	GMSK (GPRS Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	25%	SAR START:	0.202 W/kg
INPUT POWER LEVEL:	30dBm	SAR END:	0.203 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	0.500 %

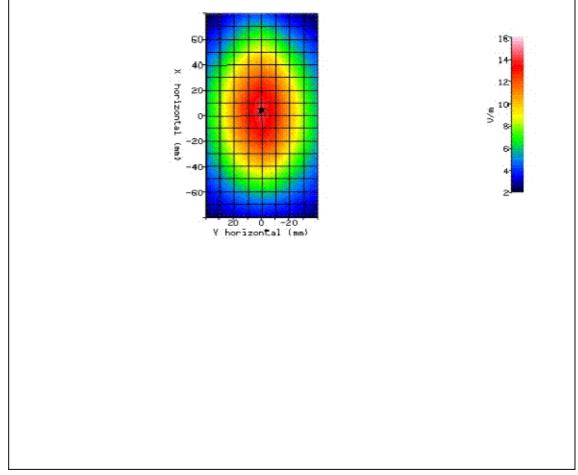


Figure 15: SAR Body Testing Results for the SHL22 Mobile Handset at 824.2MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	29/05/2013-08:28:49	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.80°C	LIQUID SIMULANT:	850Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	57.12
RELATIVE HUMIDITY:	36.50%	CONDUCTIVITY:	1.013
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.60°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	3.30mm
DUT POSITION:	10mm-Bottom Edge	MAX SAR Y-AXIS LOCATION:	1.40mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	7.835
TEST FREQUENCY:	824.2MHz	SAR 1g:	0.067 W/kg
TYPE OF MODULATION:	GMSK (GPRS Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	25%	SAR START:	0.074 W/kg
INPUT POWER LEVEL:	30dBm	SAR END:	0.070 W/kg
PROBE BATTERY LAST CHANGED:	29/05/2013	SAR DRIFT DURING SCAN:	-6.300 %

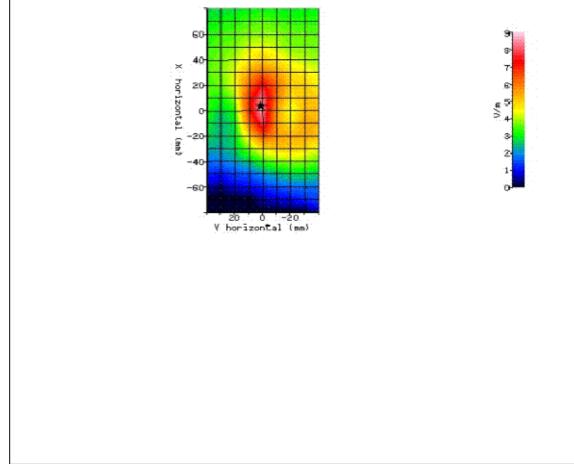


Figure 16: SAR Body Testing Results for the SHL22 Mobile Handset at 824.2MHz.

2.4 WCDMA FDDV HEAD SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	29/05/2013-16:21:49	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.50°C	LIQUID SIMULANT:	850Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	39.51
RELATIVE HUMIDITY:	42.10%	CONDUCTIVITY:	0.868
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.60°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	56.50mm
DUT POSITION:	Left-Cheek	MAX SAR Z-AXIS LOCATION:	-110.20mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	18.628
TEST FREQUENCY:	835MHz	SAR 1g:	0.343 W/kg
TYPE OF MODULATION:	QPSK (RMC Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.341 W/kg
INPUT POWER LEVEL:	24dBm	SAR END:	0.322 W/kg
PROBE BATTERY LAST CHANGED:	29/05/2013	SAR DRIFT DURING SCAN:	-5.600 %

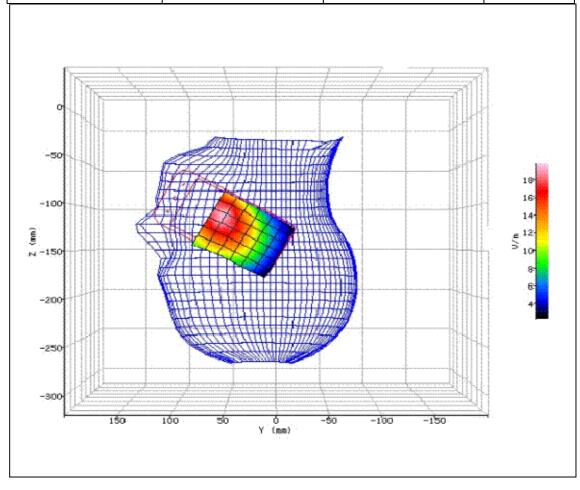


Figure 17: SAR Head Testing Results for the SHL22 Mobile Handset at 835MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	30/05/2013-08:17:46	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.50°C	LIQUID SIMULANT:	850Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	39.51
RELATIVE HUMIDITY:	49.90%	CONDUCTIVITY:	0.868
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.70°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	40.00mm
DUT POSITION:	Left-15°	MAX SAR Z-AXIS LOCATION:	-127.20mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	15.737
TEST FREQUENCY:	835MHz	SAR 1g:	0.228 W/kg
TYPE OF MODULATION:	QPSK (RMC Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.235 W/kg
INPUT POWER LEVEL:	24dBm	SAR END:	0.229 W/kg
PROBE BATTERY LAST CHANGED:	30/05/2013	SAR DRIFT DURING SCAN:	-2.600 %

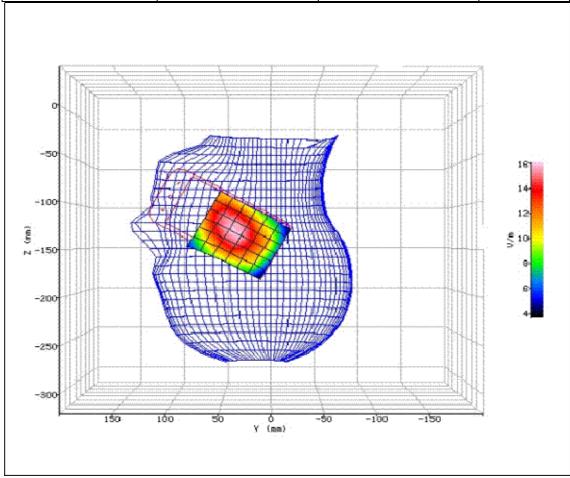


Figure 18: SAR Head Testing Results for the SHL22 Mobile Handset at 835MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	30/05/2013-08:56:53	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.50°C	LIQUID SIMULANT:	850Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	39.51
RELATIVE HUMIDITY:	49.90%	CONDUCTIVITY:	0.868
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.70°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	58.60mm
DUT POSITION:	Right-Cheek	MAX SAR Z-AXIS LOCATION:	-121.00mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	19.023
TEST FREQUENCY:	835MHz	SAR 1g:	0.322 W/kg
TYPE OF MODULATION:	QPSK (RMC Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.357 W/kg
INPUT POWER LEVEL:	24dBm	SAR END:	0.362 W/kg
PROBE BATTERY LAST CHANGED:	30/05/2013	SAR DRIFT DURING SCAN:	1.400 %

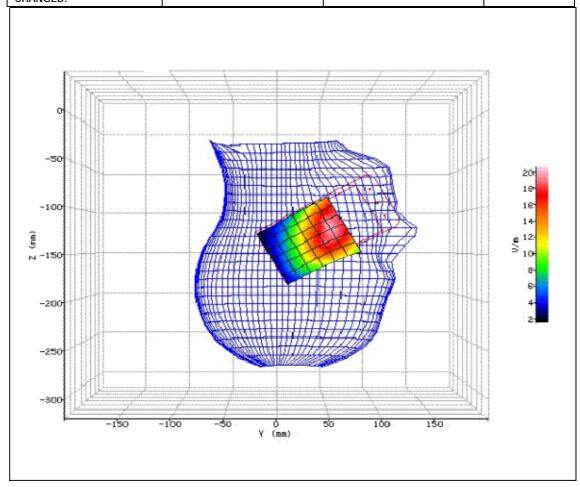


Figure 19: SAR Head Testing Results for the SHL22 Mobile Handset at 835MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	30/05/2013-09:15:16	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.50°C	LIQUID SIMULANT:	850Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	39.51
RELATIVE HUMIDITY:	49.90%	CONDUCTIVITY:	0.868
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.70°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	47.00mm
DUT POSITION:	Right-15°	MAX SAR Z-AXIS LOCATION:	-136.50mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	14.827
TEST FREQUENCY:	835MHz	SAR 1g:	0.199 W/kg
TYPE OF MODULATION:	QPSK (RMC Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.203 W/kg
INPUT POWER LEVEL:	24dBm	SAR END:	0.202 W/kg
PROBE BATTERY LAST CHANGED:	30/05/2013	SAR DRIFT DURING SCAN:	-0.500 %

Figure 20: SAR Head Testing Results for the SHL22 Mobile Handset at 835MHz.

2.5 WCDMA FDDV BODY SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	29/05/2013-10:34:40	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.80°C	LIQUID SIMULANT:	850Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	57.12
RELATIVE HUMIDITY:	36.50%	CONDUCTIVITY:	1.013
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.60°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	6.10mm
DUT POSITION:	10mm-Front Facing	MAX SAR Y-AXIS LOCATION:	-1.60mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	18.316
TEST FREQUENCY:	835MHz	SAR 1g:	0.328 W/kg
TYPE OF MODULATION:	QPSK (RMC Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.342 W/kg
INPUT POWER LEVEL:	24dBm	SAR END:	0.346 W/kg
PROBE BATTERY LAST CHANGED:	29/05/2013	SAR DRIFT DURING SCAN:	1.400 %

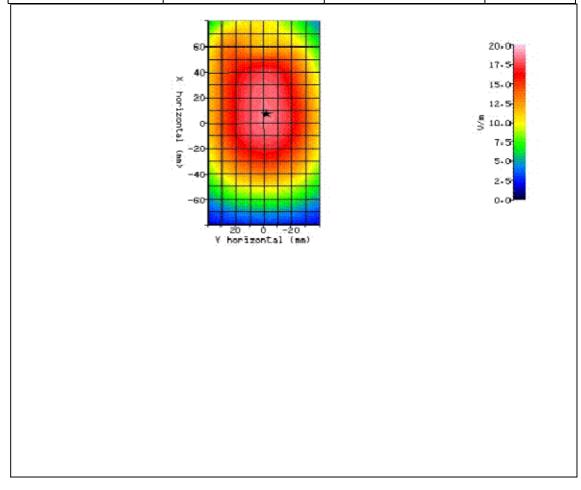


Figure 21: SAR Body Testing Results for the SHL22 Mobile Handset at 835MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	29/05/2013-10:46:59	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.80°C	LIQUID SIMULANT:	850Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	57.12
RELATIVE HUMIDITY:	36.50%	CONDUCTIVITY:	1.013
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.60°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	26.20mm
DUT POSITION:	10mm-Rear Facing	MAX SAR Y-AXIS LOCATION:	4.90mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	20.541
TEST FREQUENCY:	835MHz	SAR 1g:	0.426 W/kg
TYPE OF MODULATION:	QPSK (RMC Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.445 W/kg
INPUT POWER LEVEL:	24dBm	SAR END:	0.443 W/kg
PROBE BATTERY LAST CHANGED:	29/05/2013	SAR DRIFT DURING SCAN:	-0.400 %

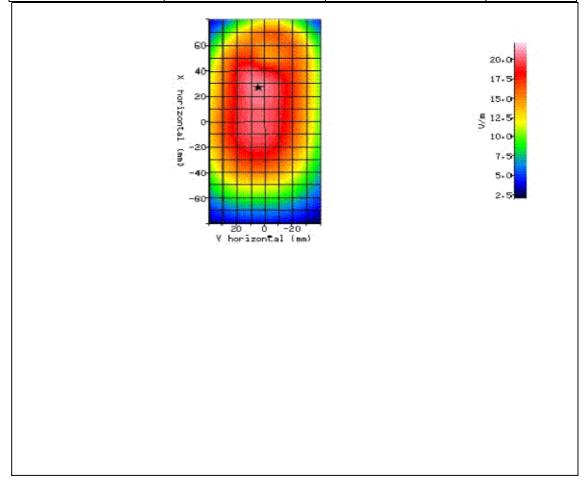


Figure 22: SAR Body Testing Results for the SHL22 Mobile Handset at 835MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	29/05/2013-11:49:48	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.80°C	LIQUID SIMULANT:	850Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	57.12
RELATIVE HUMIDITY:	36.50%	CONDUCTIVITY:	1.013
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.60°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	3.10mm
DUT POSITION:	10mm-Right Edge	MAX SAR Y-AXIS LOCATION:	2.50mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	17.630
TEST FREQUENCY:	835MHz	SAR 1g:	0.318 W/kg
TYPE OF MODULATION:	QPSK (RMC Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.332 W/kg
INPUT POWER LEVEL:	24dBm	SAR END:	0.335 W/kg
PROBE BATTERY LAST CHANGED:	29/05/2013	SAR DRIFT DURING SCAN:	0.700 %
	-		

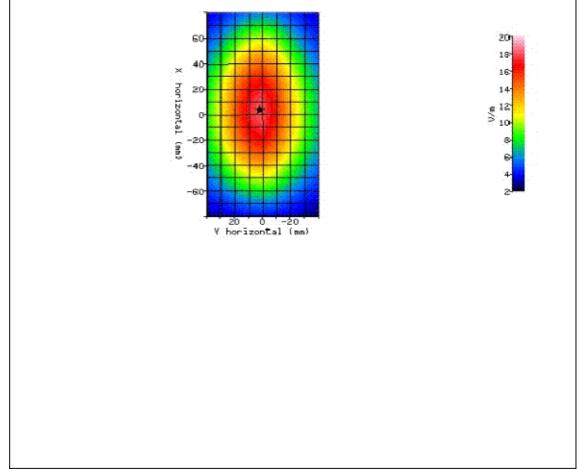


Figure 23: SAR Body Testing Results for the SHL22 Mobile Handset at 835MHz.

Produ	uct S	ervice
-------	-------	--------

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	29/05/2013-12:01:00	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.80°C	LIQUID SIMULANT:	850Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	57.12
RELATIVE HUMIDITY:	36.50%	CONDUCTIVITY:	1.013
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.60°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-7.60mm
DUT POSITION:	10mm-Left Edge	MAX SAR Y-AXIS LOCATION:	0.60mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	14.114
TEST FREQUENCY:	835MHz	SAR 1g:	0.205 W/kg
TYPE OF MODULATION:	QPSK (RMC Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.214 W/kg
INPUT POWER LEVEL:	24dBm	SAR END:	0.213 W/kg
PROBE BATTERY LAST CHANGED:	29/05/2013	SAR DRIFT DURING SCAN:	-0.900 %

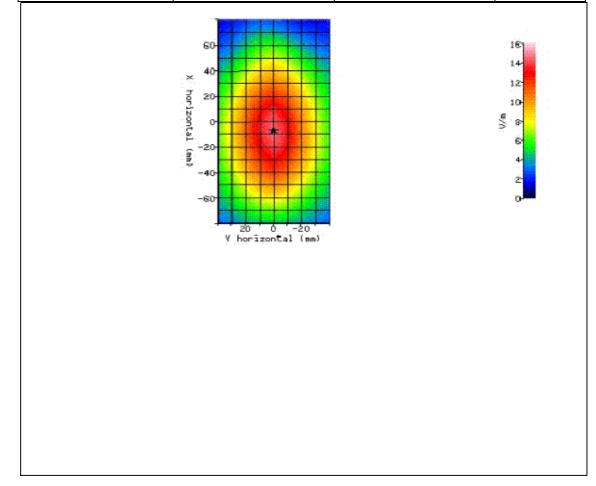


Figure 24: SAR Body Testing Results for the SHL22 Mobile Handset at 835MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	29/05/2013-13:24:30	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.80°C	LIQUID SIMULANT:	850Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	57.12
RELATIVE HUMIDITY:	36.50%	CONDUCTIVITY:	1.013
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.60°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	5.90mm
DUT POSITION:	10mm-Bottom Edge	MAX SAR Y-AXIS LOCATION:	10.00mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	7.960
TEST FREQUENCY:	835MHz	SAR 1g:	0.070 W/kg
TYPE OF MODULATION:	QPSK (RMC Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.079 W/kg
INPUT POWER LEVEL:	24dBm	SAR END:	0.079 W/kg
PROBE BATTERY LAST CHANGED:	29/05/2013	SAR DRIFT DURING SCAN:	0.500 %

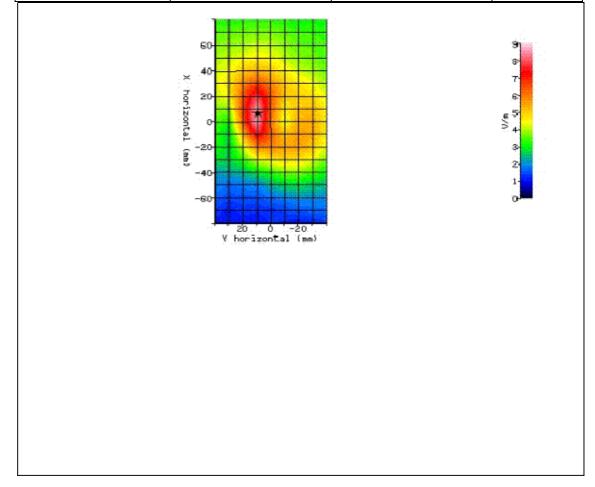


Figure 25: SAR Body Testing Results for the SHL22 Mobile Handset at 835MHz.

2.6 GSM 1900MHz HEAD SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	31/05/2013-11:52:05	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	1900Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	38.70
RELATIVE HUMIDITY:	42.00%	CONDUCTIVITY:	1.353
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.60°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	60.50mm
DUT POSITION:	Left-Cheek	MAX SAR Z-AXIS LOCATION:	-99.10mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	7.416
TEST FREQUENCY:	1880MHz	SAR 1g:	0.083 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	12.5%	SAR START:	0.082 W/kg
INPUT POWER LEVEL:	30dBm	SAR END:	0.084 W/kg
PROBE BATTERY LAST CHANGED:	31/05/2013	SAR DRIFT DURING SCAN:	2.400 %

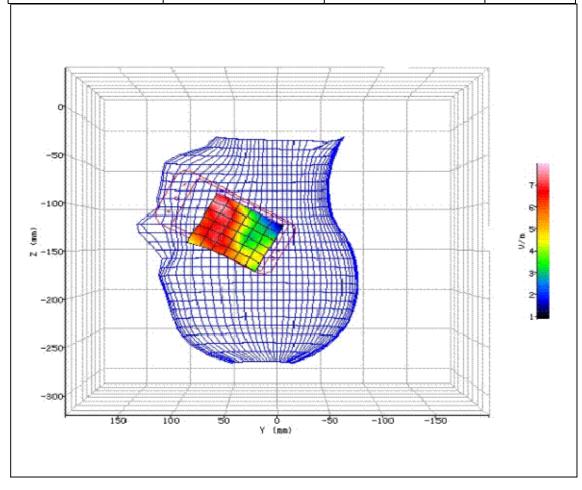


Figure 26: SAR Head Testing Results for the SHL22 Mobile Handset at 1880MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	31/05/2013-12:13:25	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	1900Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	38.70
RELATIVE HUMIDITY:	42.00%	CONDUCTIVITY:	1.353
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.60°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	11.00mm
DUT POSITION:	Left-15°	MAX SAR Z-AXIS LOCATION:	-152.50mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	5.066
TEST FREQUENCY:	1880MHz	SAR 1g:	0.042 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	12.5%	SAR START:	0.048 W/kg
INPUT POWER LEVEL:	30dBm	SAR END:	0.050 W/kg
PROBE BATTERY LAST CHANGED:	31/05/2013	SAR DRIFT DURING SCAN:	4.200 %

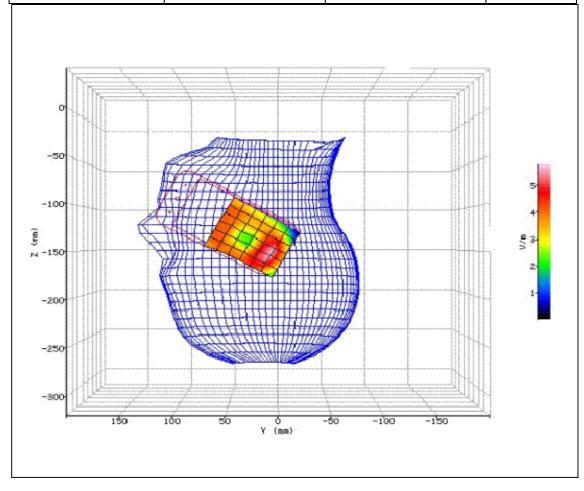


Figure 27: SAR Head Testing Results for the SHL22 Mobile Handset at 1880MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	31/05/2013-13:39:03	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	1900Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	38.70
RELATIVE HUMIDITY:	42.00%	CONDUCTIVITY:	1.353
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.60°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	64.90mm
DUT POSITION:	Right-Cheek	MAX SAR Z-AXIS LOCATION:	-93.50mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	11.108
TEST FREQUENCY:	1880MHz	SAR 1g:	0.156 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	12.5%	SAR START:	0.201 W/kg
INPUT POWER LEVEL:	30dBm	SAR END:	0.206 W/kg
PROBE BATTERY LAST CHANGED:	31/05/2013	SAR DRIFT DURING SCAN:	2.500 %

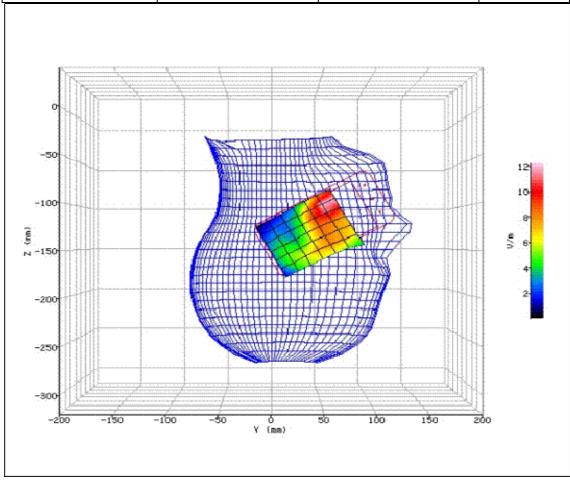


Figure 28: SAR Head Testing Results for the SHL22 Mobile Handset at 1880MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	31/05/2013-14:04:54	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	1900Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	38.70
RELATIVE HUMIDITY:	42.00%	CONDUCTIVITY:	1.353
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.60°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	30.70mm
DUT POSITION:	Right-15°	MAX SAR Z-AXIS LOCATION:	-160.90mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	5.368
TEST FREQUENCY:	1880MHz	SAR 1g:	0.045 W/kg
TYPE OF MODULATION:	GMSK (Voice Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	12.5%	SAR START:	0.048 W/kg
INPUT POWER LEVEL:	30dBm	SAR END:	0.046 W/kg
PROBE BATTERY LAST CHANGED:	31/05/2013	SAR DRIFT DURING SCAN:	-4.200 %

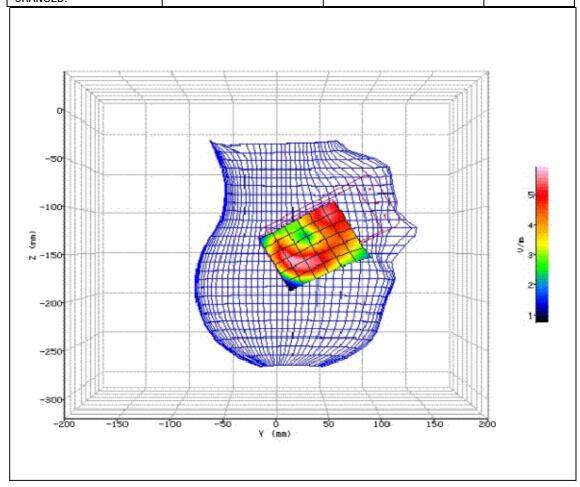


Figure 29: SAR Head Testing Results for the SHL22 Mobile Handset at 1880MHz.

2.7 GPRS 1900MHz BODY SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-11:00:15	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	1900Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	52.79
RELATIVE HUMIDITY:	40.20%	CONDUCTIVITY:	1.578
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.70°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	46.10mm
DUT POSITION:	10mm-Front Facing	MAX SAR Y-AXIS LOCATION:	-1.10mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	10.820
TEST FREQUENCY:	1850.2MHz	SAR 1g:	0.184 W/kg
TYPE OF MODULATION:	GMSK (GPRS Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	25%	SAR START:	0.193 W/kg
INPUT POWER LEVEL:	30dBm	SAR END:	0.191 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	-0.800 %

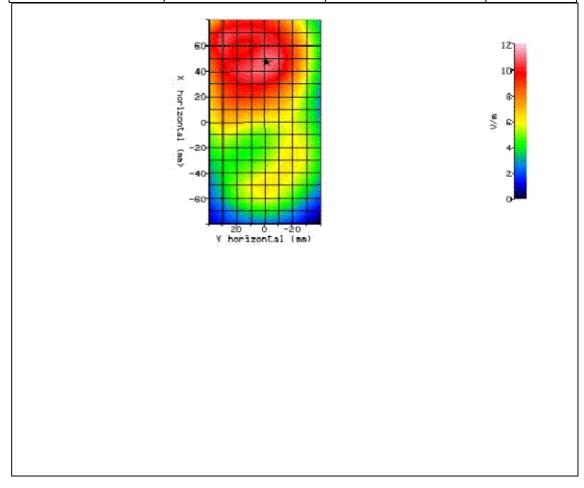


Figure 30: SAR Body Testing Results for the SHL22 Mobile Handset at 1850.2MHz.

SYSTEM/SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-11:12:28	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	1900Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	52.79
RELATIVE HUMIDITY:	40.20%	CONDUCTIVITY:	1.578
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.70°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	69.40mm
DUT POSITION:	10mm-Rear Facing	MAX SAR Y-AXIS LOCATION:	-1.90mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	12.770
TEST FREQUENCY:	1850.2MHz	SAR 1g:	0.281 W/kg
TYPE OF MODULATION:	GMSK (GPRS Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	25%	SAR START:	0.322 W/kg
INPUT POWER LEVEL:	30dBm	SAR END:	0.315 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	-2.200 %

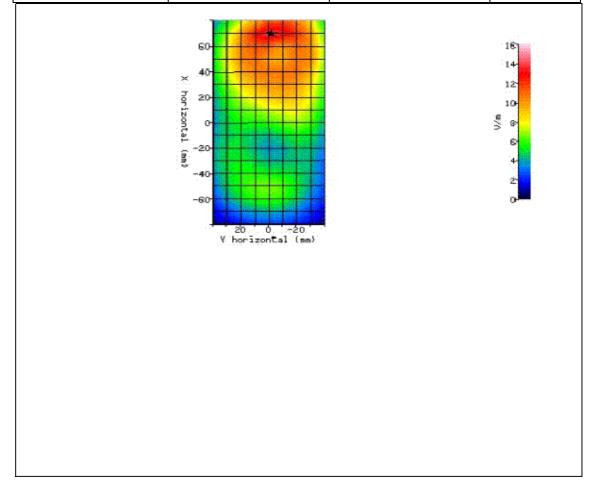


Figure 31: SAR Body Testing Results for the SHL22 Mobile Handset at 1850.2MHz.

	1	T	T
SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-12:49:59	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	1900Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	52.79
RELATIVE HUMIDITY:	40.20%	CONDUCTIVITY:	1.578
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.70°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	49.40mm
DUT POSITION:	10mm-Right Edge	MAX SAR Y-AXIS LOCATION:	0.00mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	5.613
TEST FREQUENCY:	1850.2MHz	SAR 1g:	0.051 W/kg
TYPE OF MODULATION:	GMSK (GPRS Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	25%	SAR START:	0.055 W/kg
INPUT POWER LEVEL:	30dBm	SAR END:	0.056 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	2.100 %
I .			

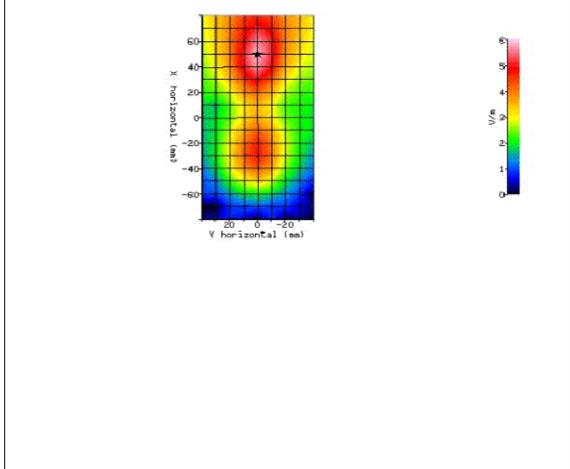


Figure 32: SAR Body Testing Results for the SHL22 Mobile Handset at 1850.2MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-13:02:50	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	1900Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	52.79
RELATIVE HUMIDITY:	40.20%	CONDUCTIVITY:	1.578
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.70°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	48.90mm
DUT POSITION:	10mm-Left Edge	MAX SAR Y-AXIS LOCATION:	4.30mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	7.055
TEST FREQUENCY:	1850.2MHz	SAR 1g:	0.080 W/kg
TYPE OF MODULATION:	GMSK (GPRS Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	25%	SAR START:	0.090 W/kg
INPUT POWER LEVEL:	30dBm	SAR END:	0.900 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	0.800 %
L			J

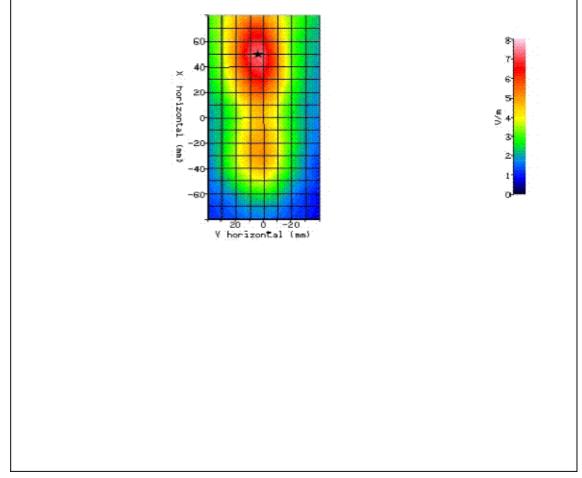


Figure 33: SAR Body Testing Results for the SHL22 Mobile Handset at 1850.2MHz.

SYSTEM/SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-13:24:48	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	1900Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	52.79
RELATIVE HUMIDITY:	40.20%	CONDUCTIVITY:	1.578
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.70°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	6.60mm
DUT POSITION:	10mm-Bottom Edge	MAX SAR Y-AXIS LOCATION:	3.50mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	11.830
TEST FREQUENCY:	1850.2MHz	SAR 1g:	0.237 W/kg
TYPE OF MODULATION:	GMSK (GPRS Mode)	SAR 10g:	N/A
MODN. DUTY CYCLE:	25%	SAR START:	0.268 W/kg
INPUT POWER LEVEL:	30dBm	SAR END:	0.267 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	-0.300 %

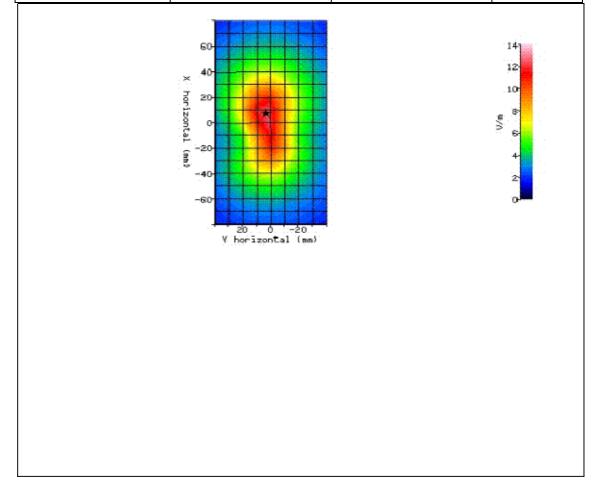


Figure 34: SAR Body Testing Results for the SHL22 Mobile Handset at 1850.2MHz.

2.8 WLAN 2450MHz HEAD SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	04/06/2013-10:16:45	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	23.70°C	LIQUID SIMULANT:	2450Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	38.16
RELATIVE HUMIDITY:	29.00%	CONDUCTIVITY:	1.084
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	23.30°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	16.40mm
DUT POSITION:	Left-Cheek	MAX SAR Z-AXIS LOCATION:	-148.90mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	6.129
TEST FREQUENCY:	2437.0MHz	SAR 1g:	0.100 W/kg
TYPE OF MODULATION:	DSSS (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.089 W/kg
INPUT POWER LEVEL:	20dBm	SAR END:	0.095 W/kg
PROBE BATTERY LAST CHANGED:	04/06/2013	SAR DRIFT DURING SCAN:	6.700 %

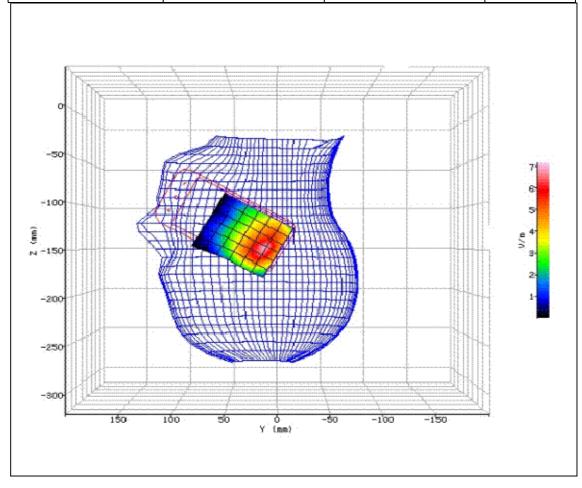


Figure 35: SAR Head Testing Results for the SHL22 Mobile Handset at 2437.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	04/06/2013-10:33:12	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	23.70°C	LIQUID SIMULANT:	2450Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	38.16
RELATIVE HUMIDITY:	29.00%	CONDUCTIVITY:	1.084
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	23.30°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	14.20mm
DUT POSITION:	Left-15°	MAX SAR Z-AXIS LOCATION:	-156.60mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	5.800
TEST FREQUENCY:	2437.0MHz	SAR 1g:	0.099 W/kg
TYPE OF MODULATION:	DSSS (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.086 W/kg
INPUT POWER LEVEL:	20dBm	SAR END:	0.084 W/kg
PROBE BATTERY LAST CHANGED:	04/06/2013	SAR DRIFT DURING SCAN:	-2.300 %

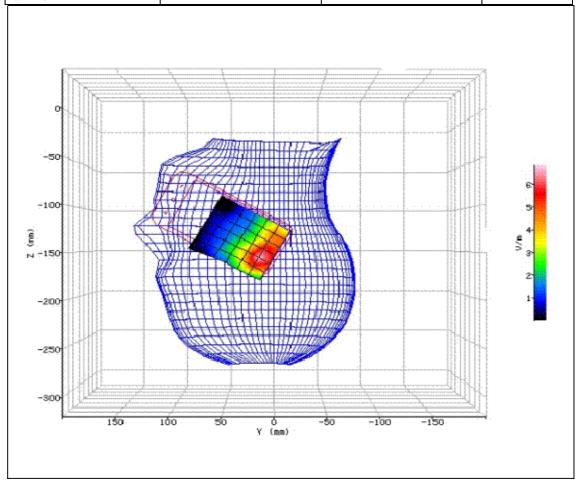


Figure 36: SAR Head Testing Results for the SHL22 Mobile Handset at 2437.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	04/06/2013-12:18:09	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	23.70°C	LIQUID SIMULANT:	2450Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	38.16
RELATIVE HUMIDITY:	29.00%	CONDUCTIVITY:	1.084
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	23.30°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	28.80mm
DUT POSITION:	Right-Cheek	MAX SAR Z-AXIS LOCATION:	-169.70mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	8.734
TEST FREQUENCY:	2437.0MHz	SAR 1g:	0.159 W/kg
TYPE OF MODULATION:	DSSS (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.188 W/kg
INPUT POWER LEVEL:	20dBm	SAR END:	0.177 W/kg
PROBE BATTERY LAST CHANGED:	04/06/2013	SAR DRIFT DURING SCAN:	-5.900 %

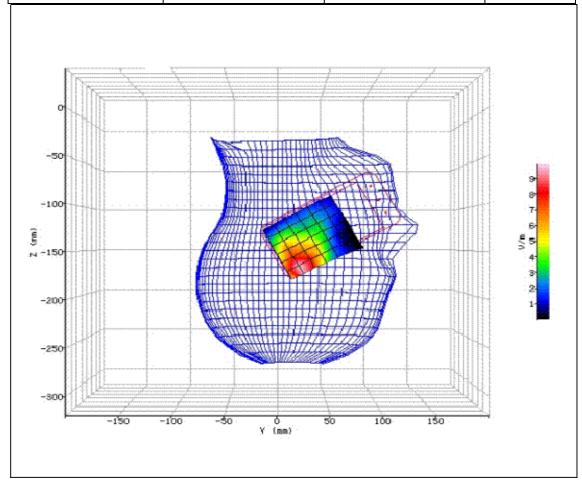


Figure 37: SAR Head Testing Results for the SHL22 Mobile Handset at 2437.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	04/06/2013-12:36:34	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	23.70°C	LIQUID SIMULANT:	2450Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	38.16
RELATIVE HUMIDITY:	29.00%	CONDUCTIVITY:	1.084
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	23.30°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	25.50mm
DUT POSITION:	Right-15°	MAX SAR Z-AXIS LOCATION:	-169.50mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	7.185
TEST FREQUENCY:	2437.0MHz	SAR 1g:	0.130 W/kg
TYPE OF MODULATION:	DSSS (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.133 W/kg
INPUT POWER LEVEL:	20dBm	SAR END:	0.134 W/kg
PROBE BATTERY LAST CHANGED:	04/06/2013	SAR DRIFT DURING SCAN:	0.800 %

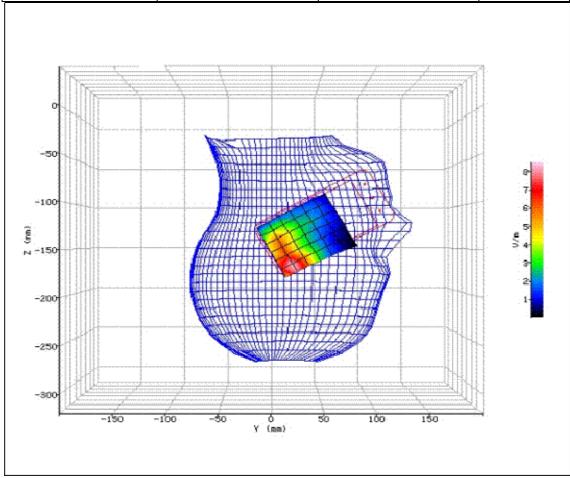


Figure 38: SAR Head Testing Results for the SHL22 Mobile Handset at 2437.0MHz.

2.9 WLAN 2450MHz BODY SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	04/06/2013-15:58:09	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.80°C	LIQUID SIMULANT:	2450Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	51.71
RELATIVE HUMIDITY:	30.90%	CONDUCTIVITY:	1.981
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.60°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-55.40mm
DUT POSITION:	10mm-Front Face	MAX SAR Y-AXIS LOCATION:	9.60mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	4.057
TEST FREQUENCY:	2437.0MHz	SAR 1g:	0.037 W/kg
TYPE OF MODULATION:	DSSS (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.040 W/kg
INPUT POWER LEVEL:	20dBm	SAR END:	0.038 W/kg
PROBE BATTERY LAST CHANGED:	04/06/2013	SAR DRIFT DURING SCAN:	-2.800 %

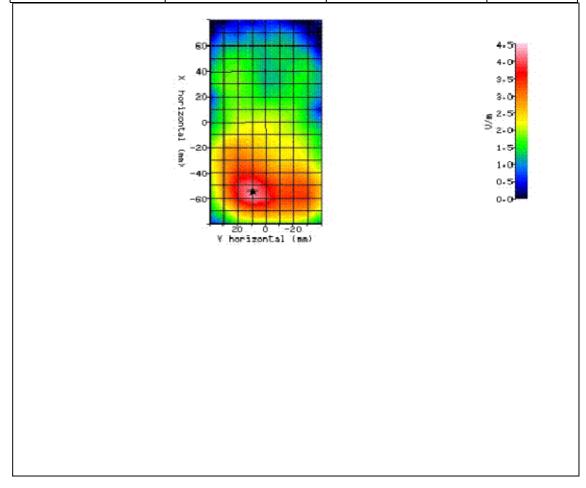


Figure 39: SAR Body Testing Results for the SHL22 Mobile Handset at 2437.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	04/06/2013-16:10:49	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.80°C	LIQUID SIMULANT:	2450Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	51.71
RELATIVE HUMIDITY:	30.90%	CONDUCTIVITY:	1.981
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.60°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-58.90mm
DUT POSITION:	10mm-Rear Face	MAX SAR Y-AXIS LOCATION:	27.50mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	3.624
TEST FREQUENCY:	2437.0MHz	SAR 1g:	0.034 W/kg
TYPE OF MODULATION:	DSSS (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.041 W/kg
INPUT POWER LEVEL:	20dBm	SAR END:	0.042 W/kg
PROBE BATTERY LAST CHANGED:	04/06/2013	SAR DRIFT DURING SCAN:	2.800 %

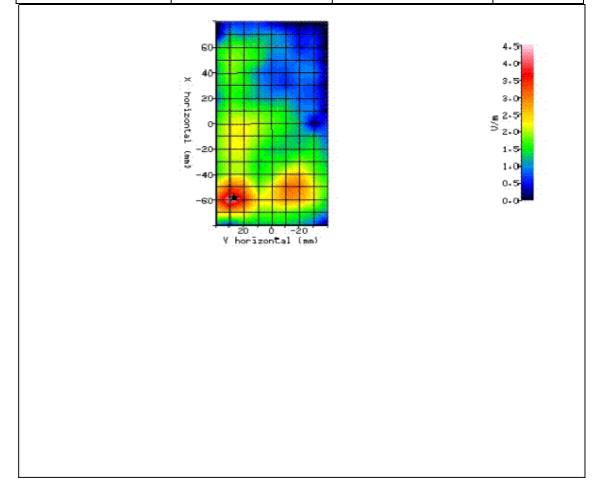


Figure 40: SAR Body Testing Results for the SHL22 Mobile Handset at 2437.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	05/06/2013-08:12:34	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	23.20°C	LIQUID SIMULANT:	2450Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	51.71
RELATIVE HUMIDITY:	34.90%	CONDUCTIVITY:	1.981
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.90°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-50.90mm
DUT POSITION:	10mm-Right Edge	MAX SAR Y-AXIS LOCATION:	4.30mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	2.728
TEST FREQUENCY:	2437.0MHz	SAR 1g:	0.017 W/kg
TYPE OF MODULATION:	DSSS (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.017 W/kg
INPUT POWER LEVEL:	20dBm	SAR END:	0.018 W/kg
PROBE BATTERY LAST CHANGED:	05/06/2013	SAR DRIFT DURING SCAN:	5.300 %

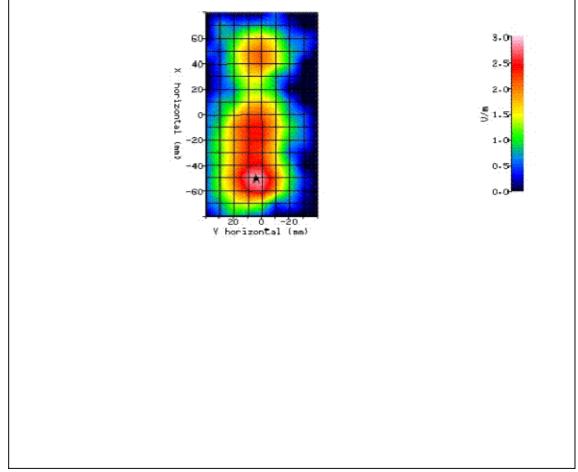


Figure 41: SAR Body Testing Results for the SHL22 Mobile Handset at 2437.0MHz.

SYSTEM/SOFTWARE:	SARA-C / v6.07.10	INPUT POWER DRIFT:	0 dB
DATE / TIME:	05/06/2013-08:47:23	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	23.20°C	LIQUID SIMULANT:	2450Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	51.71
RELATIVE HUMIDITY:	34.90%	CONDUCTIVITY:	1.981
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.90°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	11.20mm
DUT POSITION:	10mm-Top Edge	MAX SAR Y-AXIS LOCATION:	-2.90mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	2.660
TEST FREQUENCY:	2437.0MHz	SAR 1g:	0.016 W/kg
TYPE OF MODULATION:	DSSS (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.017 W/kg
INPUT POWER LEVEL:	20dBm	SAR END:	0.016 W/kg
PROBE BATTERY LAST CHANGED:	05/06/2013	SAR DRIFT DURING SCAN:	-6.400 %

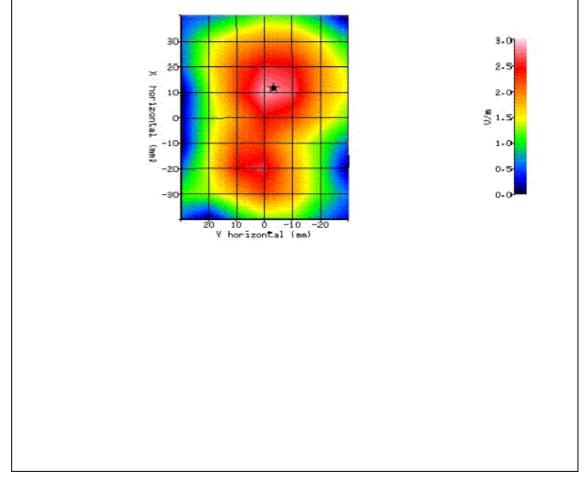


Figure 42: SAR Body Testing Results for the SHL22 Mobile Handset at 2437.0MHz.

2.10 WLAN 5000MHz HEAD SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB
DATE / TIME:	29/05/2013-11:01:17	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.60°C	LIQUID SIMULANT:	5200Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	37.24
RELATIVE HUMIDITY:	43.20%	CONDUCTIVITY:	4.882
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.90°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	-3.00mm
DUT POSITION:	Left-Cheek	MAX SAR Z-AXIS LOCATION:	-126.20mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	1.391
TEST FREQUENCY:	5240.0MHz	SAR 1g:	0.016 W/kg
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.028 W/kg
INPUT POWER LEVEL:	13dBm	SAR END:	0.028 W/kg
PROBE BATTERY LAST CHANGED:	29/05/2013	SAR DRIFT DURING SCAN:	0.000 %

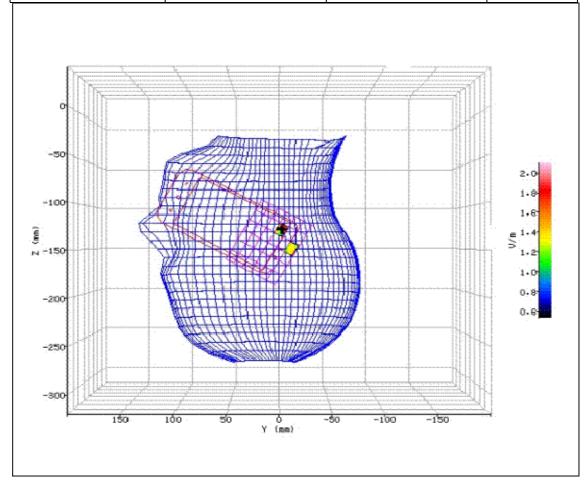


Figure 43: SAR Head Testing Results for the SHL22 Mobile Handset at 5240.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB
DATE / TIME:	29/05/2013-11:10:46	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.60°C	LIQUID SIMULANT:	5200Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	37.24
RELATIVE HUMIDITY:	43.20%	CONDUCTIVITY:	4.882
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.90°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	-5.70mm
DUT POSITION:	Left-15°	MAX SAR Z-AXIS LOCATION:	-127.80mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	1.411
TEST FREQUENCY:	5240.0MHz	SAR 1g:	0.026 W/kg
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.034 W/kg
INPUT POWER LEVEL:	13dBm	SAR END:	0.034 W/kg
PROBE BATTERY LAST CHANGED:	29/05/2013	SAR DRIFT DURING SCAN:	0.000 %

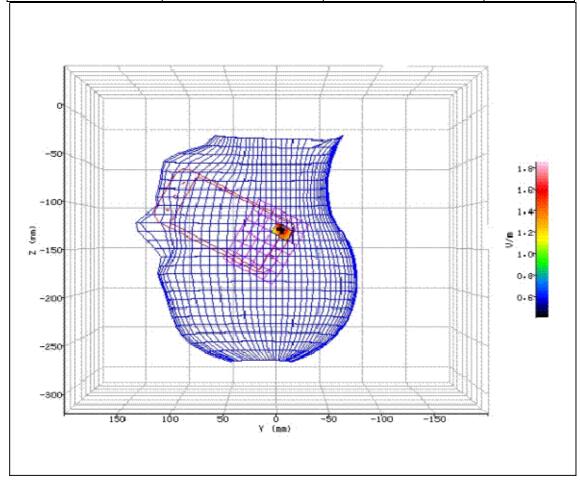


Figure 44: SAR Head Testing Results for the SHL22 Mobile Handset at 5240.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB
DATE / TIME:	29/05/2013-11:25:19	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.60°C	LIQUID SIMULANT:	5200Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	37.24
RELATIVE HUMIDITY:	43.20%	CONDUCTIVITY:	4.882
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.90°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	33.80mm
DUT POSITION:	Right-Cheek	MAX SAR Z-AXIS LOCATION:	-169.80mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	4.612
TEST FREQUENCY:	5240.0MHz	SAR 1g:	0.117 W/kg
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.217 W/kg
INPUT POWER LEVEL:	13dBm	SAR END:	0.213 W/kg
PROBE BATTERY LAST CHANGED:	29/05/2013	SAR DRIFT DURING SCAN:	-1.800 %

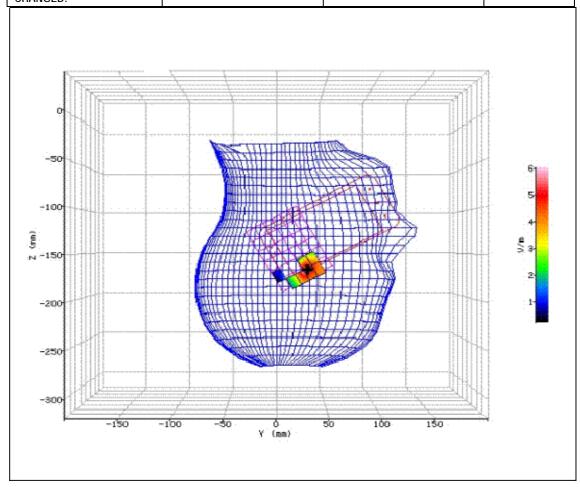


Figure 45: SAR Head Testing Results for the SHL22 Mobile Handset at 5240.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB
DATE / TIME:	29/05/2013-11:39:10	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.60°C	LIQUID SIMULANT:	5200Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	37.24
RELATIVE HUMIDITY:	43.20%	CONDUCTIVITY:	4.882
PHANTOM S/NO:	generic_head.asc	LIQUID TEMPERATURE:	22.90°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	29.70mm
DUT POSITION:	Right-15°	MAX SAR Z-AXIS LOCATION:	-175.30mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	3.099
TEST FREQUENCY:	5240.0MHz	SAR 1g:	0.074 W/kg
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.130 W/kg
INPUT POWER LEVEL:	13dBm	SAR END:	0.123 W/kg
PROBE BATTERY LAST CHANGED:	29/05/2013	SAR DRIFT DURING SCAN:	-5.400 %

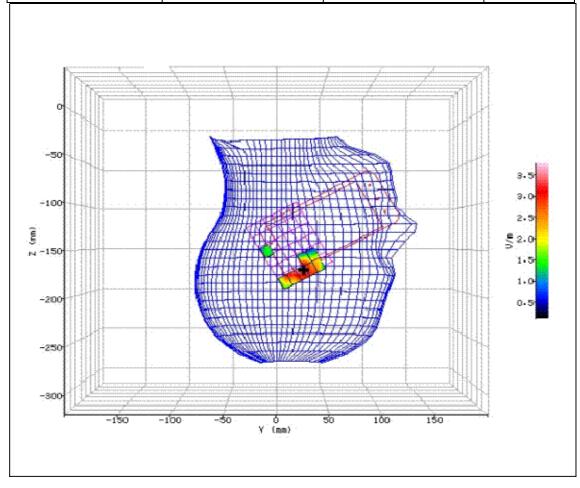


Figure 46: SAR Head Testing Results for the SHL22 Mobile Handset at 5240.0MHz.

2.11 WLAN 5000MHz BODY SAR TEST RESULTS AND COURSE AREA SCANS – 2D

	T	1	1
SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-09:52:27	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	5200Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	48.13
RELATIVE HUMIDITY:	41.80%	CONDUCTIVITY:	5.101
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.40°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-59.30mm
DUT POSITION:	10mm-Front Face	MAX SAR Y-AXIS LOCATION:	-33.70mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	2.49
TEST FREQUENCY:	5240.0MHz	SAR 1g:	0.023 W/kg
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.034 W/kg
INPUT POWER LEVEL:	13dBm	SAR END:	0.034 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	0.000 %

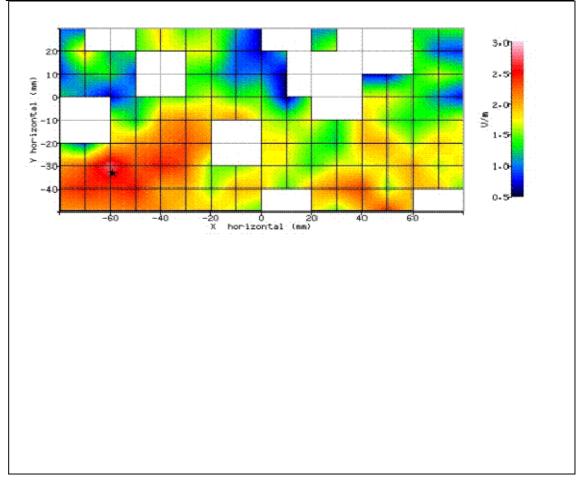


Figure 47: SAR Body Testing Results for the SHL22 Mobile Handset at 5240.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-10:01:43	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	5200Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	48.13
RELATIVE HUMIDITY:	41.80%	CONDUCTIVITY:	5.101
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.40°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-53.70mm
DUT POSITION:	10mm-Rear Face	MAX SAR Y-AXIS LOCATION:	29.80mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	4.35
TEST FREQUENCY:	5240.0MHz	SAR 1g:	0.085 W/kg
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.123 W/kg
INPUT POWER LEVEL:	13dBm	SAR END:	0.124 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	1.300 %

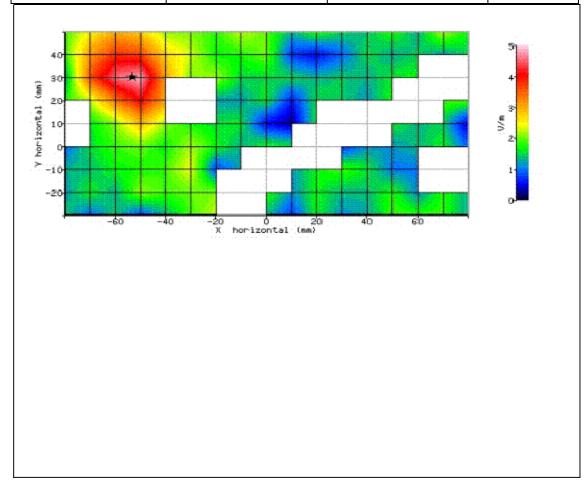


Figure 48: SAR Body Testing Results for the SHL22 Mobile Handset at 5240.0MHz.

SYSTEM/SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-10:17:41	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	5200Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	48.13
RELATIVE HUMIDITY:	41.80%	CONDUCTIVITY:	5.101
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.40°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-48.80mm
DUT POSITION:	10mm-Right Edge	MAX SAR Y-AXIS LOCATION:	-13.70mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	3.47
TEST FREQUENCY:	5240.0MHz	SAR 1g:	0.050 W/kg
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.070 W/kg
INPUT POWER LEVEL:	13dBm	SAR END:	0.070 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	0.000 %

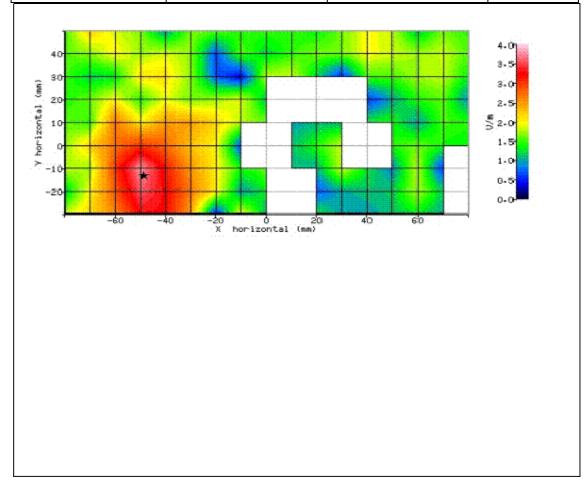


Figure 49: SAR Body Testing Results for the SHL22 Mobile Handset at 5240.0MHz.

SYSTEM/SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-10:25:17	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	5200Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	48.13
RELATIVE HUMIDITY:	41.80%	CONDUCTIVITY:	5.101
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.40°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-43.00mm
DUT POSITION:	10mm-Top Edge	MAX SAR Y-AXIS LOCATION:	20.30mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	2.03
TEST FREQUENCY:	5240.0MHz	SAR 1g:	0.013 W/kg
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.010 W/kg
INPUT POWER LEVEL:	13dBm	SAR END:	0.010 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	0.000 %

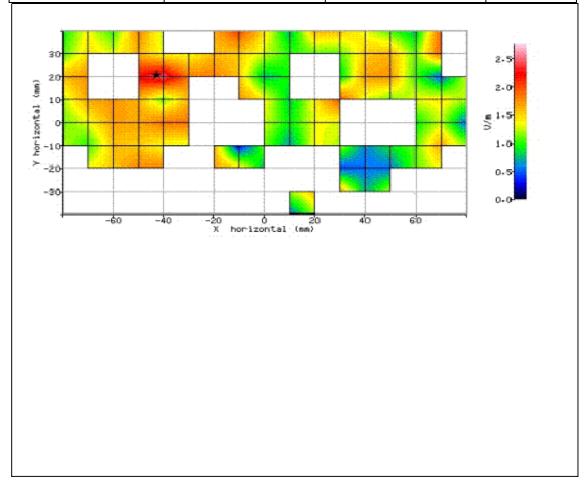


Figure 50: SAR Body Testing Results for the SHL22 Mobile Handset at 5240.0MHz.

2.12 WLAN 5000MHz HEAD SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB
DATE / TIME:	30/05/2013-09:15:24	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	23.40°C	LIQUID SIMULANT:	5200Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	37.24
RELATIVE HUMIDITY:	40.90%	CONDUCTIVITY:	4.882
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	23.00°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	-8.00mm
DUT POSITION:	Left-Cheek	MAX SAR Z-AXIS LOCATION:	-122.70mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	2.483
TEST FREQUENCY:	5260.0MHz	SAR 1g:	0.038 W/kg
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.043 W/kg
INPUT POWER LEVEL:	13dBm	SAR END:	0.043 W/kg
PROBE BATTERY LAST CHANGED:	30/05/2013	SAR DRIFT DURING SCAN:	0.000 %

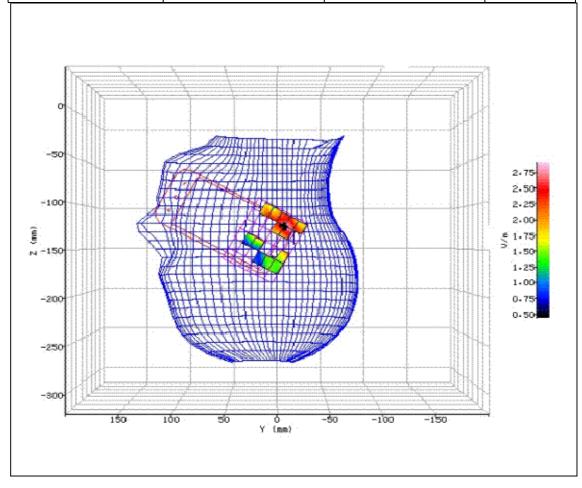


Figure 51: SAR Head Testing Results for the SHL22 Mobile Handset at 5260.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB
DATE / TIME:	30/05/2013-09:30:40	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	23.40°C	LIQUID SIMULANT:	5200Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	37.24
RELATIVE HUMIDITY:	40.90%	CONDUCTIVITY:	4.882
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	23.00°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	-11.80mm
DUT POSITION:	Left-15°	MAX SAR Z-AXIS LOCATION:	-123.00mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	2.280
TEST FREQUENCY:	5260.0MHz	SAR 1g:	0.058 W/kg
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.037 W/kg
INPUT POWER LEVEL:	13dBm	SAR END:	0.023 W/kg
PROBE BATTERY LAST CHANGED:	30/05/2013	SAR DRIFT DURING SCAN:	0.000 %

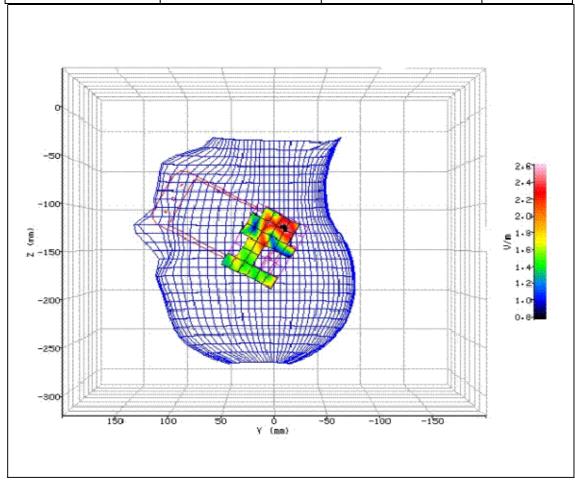


Figure 52: SAR Head Testing Results for the SHL22 Mobile Handset at 5260.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB
DATE / TIME:	30/05/2013-08:43:38	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	23.40°C	LIQUID SIMULANT:	5200Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	37.24
RELATIVE HUMIDITY:	40.90%	CONDUCTIVITY:	4.882
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	23.00°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	33.60mm
DUT POSITION:	Right-Cheek	MAX SAR Z-AXIS LOCATION:	-170.00mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	5.381
TEST FREQUENCY:	5260.0MHz	SAR 1g:	0.119 W/kg
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.225 W/kg
INPUT POWER LEVEL:	13dBm	SAR END:	0.212 W/kg
PROBE BATTERY LAST CHANGED:	30/05/2013	SAR DRIFT DURING SCAN:	-5.600 %

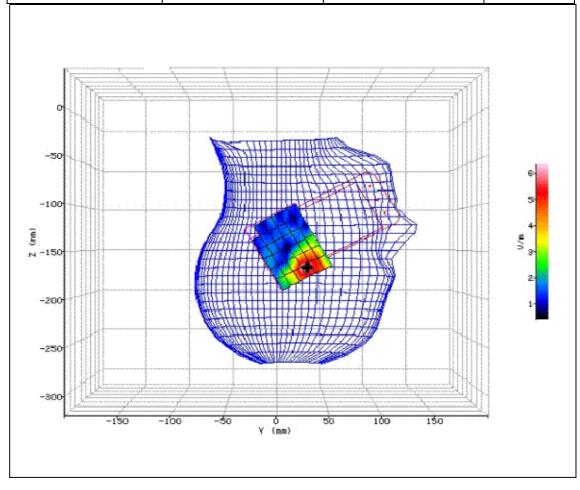


Figure 53: SAR Head Testing Results for the SHL22 Mobile Handset at 5260.0MHz.

		1	
SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB
DATE / TIME:	30/05/2013-08:54:47	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	23.40°C	LIQUID SIMULANT:	5200Head
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	37.24
RELATIVE HUMIDITY:	40.90%	CONDUCTIVITY:	4.882
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	23.00°C
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	30.40mm
DUT POSITION:	Right-15°	MAX SAR Z-AXIS LOCATION:	-175.40mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	4.046
TEST FREQUENCY:	5260.0MHz	SAR 1g:	0.120 W/kg
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.156 W/kg
INPUT POWER LEVEL:	13dBm	SAR END:	0.165 W/kg
PROBE BATTERY LAST CHANGED:	30/05/2013	SAR DRIFT DURING SCAN:	5.800 %

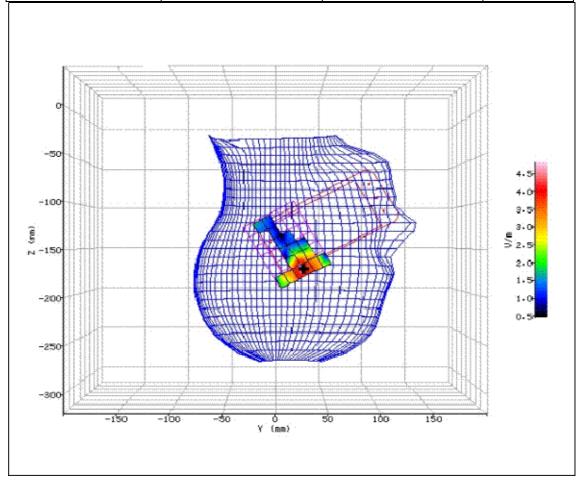


Figure 54: SAR Head Testing Results for the SHL22 Mobile Handset at 5260.0MHz.

2.13 WLAN 5000MHz BODY SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-11:02:40	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	5200Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	48.13
RELATIVE HUMIDITY:	41.80%	CONDUCTIVITY:	5.101
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.40°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-53.100mm
DUT POSITION:	10mm-Front Face	MAX SAR Y-AXIS LOCATION:	-35.300mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	2.476
TEST FREQUENCY:	5260.0MHz	SAR 1g:	0.024 W/kg
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.036 W/kg
INPUT POWER LEVEL:	13dBm	SAR END:	0.036 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	6.700 %

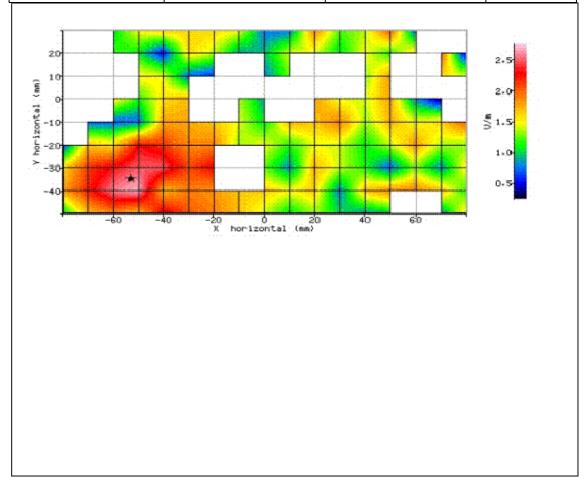


Figure 55: SAR Body Testing Results for the SHL22 Mobile Handset at 5260.0MHz.

Proc	luct	Serv	ice

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-11:09:41	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	5200Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	48.13
RELATIVE HUMIDITY:	41.80%	CONDUCTIVITY:	5.101
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.40°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-54.900mm
DUT POSITION:	10mm-Rear Face	MAX SAR Y-AXIS LOCATION:	32.500mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	4.690
TEST FREQUENCY:	5260.0MHz	SAR 1g:	0.095 W/kg
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.150 W/kg
INPUT POWER LEVEL:	13dBm	SAR END:	0.150 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	0.000 %

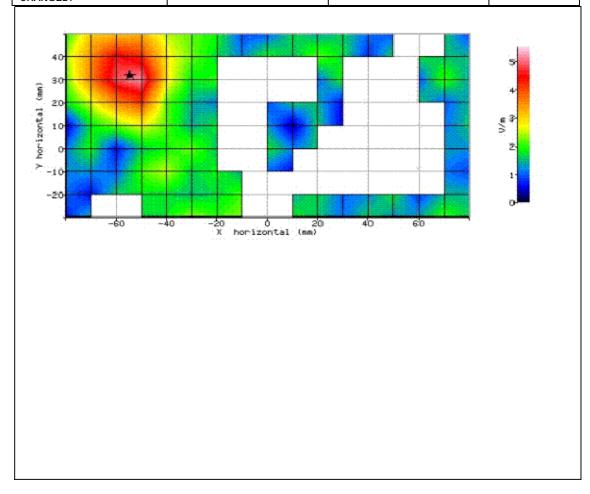


Figure 56: SAR Body Testing Results for the SHL22 Mobile Handset at 5260.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB
DATE / TIME:	28/05/2013-10:55:05	DUT BATTERY MODEL/NO:	Integral
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	5200Body
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	48.13
RELATIVE HUMIDITY:	41.80%	CONDUCTIVITY:	5.101
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.40°C
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-46.80mm
DUT POSITION:	10mm-Right Edge	MAX SAR Y-AXIS LOCATION:	-13.00mm
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	3.843
TEST FREQUENCY:	5260.0MHz	SAR 1g:	0.057 W/kg
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A
MODN. DUTY CYCLE:	100%	SAR START:	0.082 W/kg
INPUT POWER LEVEL:	13dBm	SAR END:	0.082 W/kg
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	0.000 %

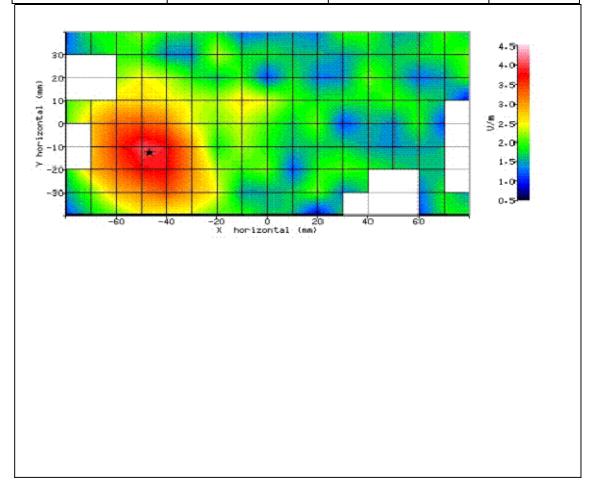


Figure 57: SAR Body Testing Results for the SHL22 Mobile Handset at 5260.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB		
DATE / TIME:	28/05/2013-10:47:10	DUT BATTERY MODEL/NO:	Integral		
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	5200Body		
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	48.13		
RELATIVE HUMIDITY:	41.80%	CONDUCTIVITY:	5.101		
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.40°C		
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-38.80mm		
DUT POSITION:	10mm-Top Edge	MAX SAR Y-AXIS LOCATION:	0.10mm		
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	2.155		
TEST FREQUENCY:	5260.0MHz	SAR 1g:	0.013 W/kg		
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A		
MODN. DUTY CYCLE:	100%	SAR START:	0.011 W/kg		
INPUT POWER LEVEL:	13dBm	SAR END:	0.011 W/kg		
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	-5.900 %		

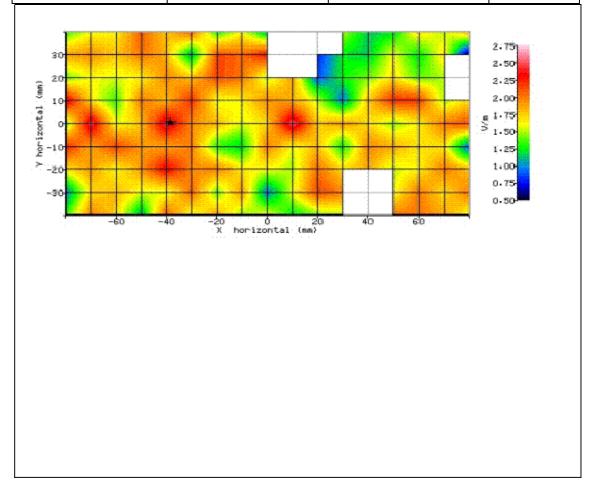


Figure 58: SAR Body Testing Results for the SHL22 Mobile Handset at 5260.0MHz.

2.14 WLAN 5000MHz HEAD SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB		
DATE / TIME:	29/05/2013-13:47:47	DUT BATTERY MODEL/NO:	Integral		
AMBIENT TEMPERATURE:	22.60°C	LIQUID SIMULANT:	5500Head		
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	36.68		
RELATIVE HUMIDITY:	43.20%	CONDUCTIVITY:	5.204		
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.90°C		
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	-9.70mm		
DUT POSITION:	Left-Cheek	MAX SAR Z-AXIS LOCATION:	-131.60mm		
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	2.658		
TEST FREQUENCY:	5580.0MHz	SAR 1g:	0.100 W/kg		
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A		
MODN. DUTY CYCLE:	100%	SAR START:	0.115 W/kg		
INPUT POWER LEVEL:	13dBm	SAR END:	0.115 W/kg		
PROBE BATTERY LAST CHANGED:	29/05/2013	SAR DRIFT DURING SCAN:	0.000 %		

Figure 59: SAR Head Testing Results for the SHL22 Mobile Handset at 5580.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB		
DATE / TIME:	29/05/2013-13:55:36	DUT BATTERY MODEL/NO:	Integral		
AMBIENT TEMPERATURE:	22.60°C	LIQUID SIMULANT:	5500Head		
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	36.68		
RELATIVE HUMIDITY:	43.20%	CONDUCTIVITY:	5.204		
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.90°C		
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	-11.90mm		
DUT POSITION:	Left-15°	MAX SAR Z-AXIS LOCATION:	-132.90mm		
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	2.687		
TEST FREQUENCY:	5580.0MHz	SAR 1g:	0.131 W/kg		
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A		
MODN. DUTY CYCLE:	100%	SAR START:	0.110 W/kg		
INPUT POWER LEVEL:	13dBm	SAR END:	0.101 W/kg		
PROBE BATTERY LAST CHANGED:	29/05/2013	SAR DRIFT DURING SCAN:	-8.200 %		

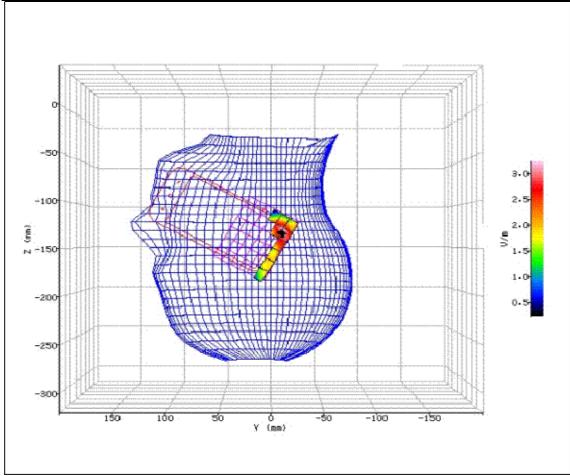


Figure 60: SAR Head Testing Results for the SHL22 Mobile Handset at 5580.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB			
DATE / TIME:	29/05/2013-14:14:18	DUT BATTERY MODEL/NO:	Integral			
AMBIENT TEMPERATURE:	22.60°C	LIQUID SIMULANT:	5500Head			
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	36.68			
RELATIVE HUMIDITY:	43.20%	CONDUCTIVITY:	5.204			
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.90°C			
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	20.90mm			
DUT POSITION:	Right-Cheek	-174.80mm				
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	5.962			
TEST FREQUENCY:	5580.0MHz	SAR 1g:	0.225 W/kg			
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A			
MODN. DUTY CYCLE:	100%	SAR START:	0.461 W/kg			
INPUT POWER LEVEL:	13dBm	SAR END:	0.473 W/kg			
PROBE BATTERY LAST CHANGED:	29/05/2013	SAR DRIFT DURING SCAN:	2.600 %			

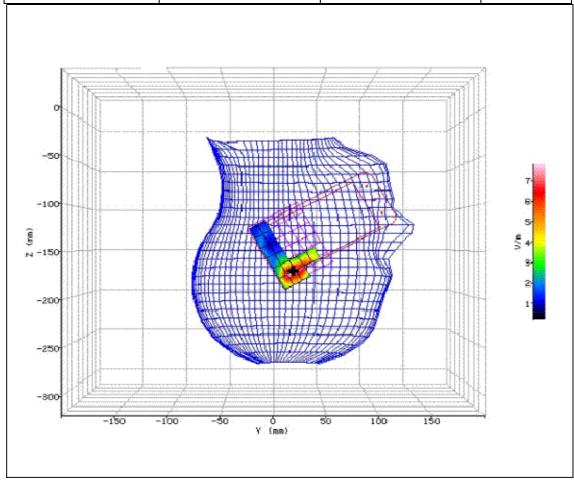


Figure 61: SAR Head Testing Results for the SHL22 Mobile Handset at 5580.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB		
DATE / TIME:	29/05/2013-14:22:11	DUT BATTERY MODEL/NO:	Integral		
AMBIENT TEMPERATURE:	22.60°C	LIQUID SIMULANT:	5500Head		
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	36.68		
RELATIVE HUMIDITY:	43.20%	CONDUCTIVITY:	5.204		
PHANTOM S/NO:	IBX-040	LIQUID TEMPERATURE:	22.90°C		
PHANTOM ROTATION:	N/A	MAX SAR Y-AXIS LOCATION:	16.50mm		
DUT POSITION:	Right-15°	MAX SAR Z-AXIS LOCATION:	-74.80mm		
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	5.509		
TEST FREQUENCY:	5580.0MHz	SAR 1g:	0.250 W/kg		
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A		
MODN. DUTY CYCLE:	100%	SAR START:	0.465 W/kg		
INPUT POWER LEVEL:	13dBm	SAR END:	0.453 W/kg		
PROBE BATTERY LAST CHANGED:	29/05/2013	SAR DRIFT DURING SCAN:	-2.600 %		

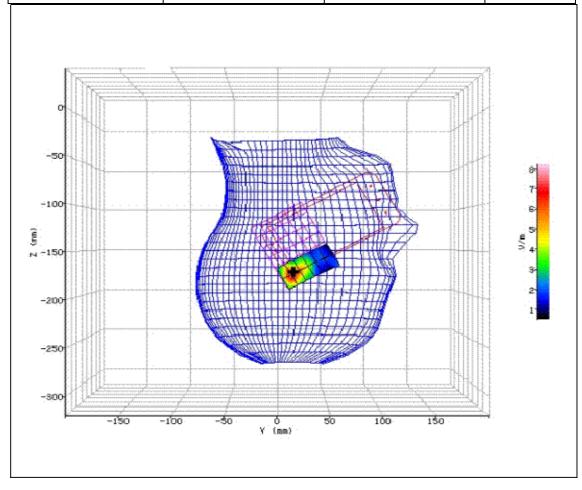


Figure 62: SAR Head Testing Results for the SHL22 Mobile Handset at 5580.0MHz.

2.15 WLAN 5000MHz BODY SAR TEST RESULTS AND COURSE AREA SCANS – 2D

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB		
DATE / TIME:	28/05/2013-11:23:35	DUT BATTERY MODEL/NO:	Integral		
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	5500Body		
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	47.34		
RELATIVE HUMIDITY:	41.80%	CONDUCTIVITY:	5.582		
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.40°C		
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-66.600mm		
DUT POSITION:	10mm-Front Face	MAX SAR Y-AXIS LOCATION:	-34.600mm		
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	2.747		
TEST FREQUENCY:	5580.0MHz	SAR 1g:	0.042 W/kg		
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A		
MODN. DUTY CYCLE:	100%	SAR START:	0.057 W/kg		
INPUT POWER LEVEL:	13dBm	SAR END:	0.056 W/kg		
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	-3.100 %		

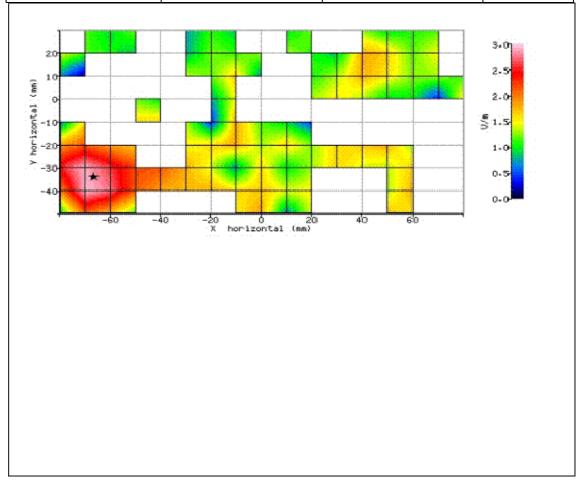


Figure 63: SAR Body Testing Results for the SHL22 Mobile Handset at 5580.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB		
DATE / TIME:	28/05/2013-11:30:10	DUT BATTERY MODEL/NO:	Integral		
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	5500Body		
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	47.34		
RELATIVE HUMIDITY:	41.80%	CONDUCTIVITY:	5.582		
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.40°C		
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-65.200mm		
DUT POSITION:	10mm-Rear Face	MAX SAR Y-AXIS LOCATION:	27.100mm		
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	4.337		
TEST FREQUENCY:	5580.0MHz	SAR 1g:	0.094 W/kg		
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A		
MODN. DUTY CYCLE:	100%	SAR START:	0.136 W/kg		
INPUT POWER LEVEL:	13dBm	SAR END:	0.141 W/kg		
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	3.200 %		

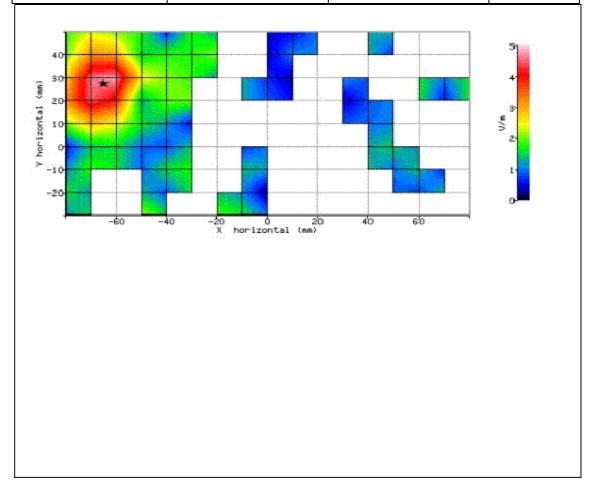


Figure 64: SAR Body Testing Results for the SHL22 Mobile Handset at 5580.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB		
DATE / TIME:	28/05/2013-11:38:12	DUT BATTERY MODEL/NO:	Integral		
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	5500Body		
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	47.34		
RELATIVE HUMIDITY:	41.80%	CONDUCTIVITY:	5.582		
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.40°C		
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-63.00mm		
DUT POSITION:	10mm-Right Edge	MAX SAR Y-AXIS LOCATION:	-1.10mm		
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	3.369		
TEST FREQUENCY:	5580.0MHz	SAR 1g:	0.055 W/kg		
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A		
MODN. DUTY CYCLE:	100%	SAR START:	0.085 W/kg		
INPUT POWER LEVEL:	13dBm	SAR END:	0.086 W/kg		
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	0.700 %		

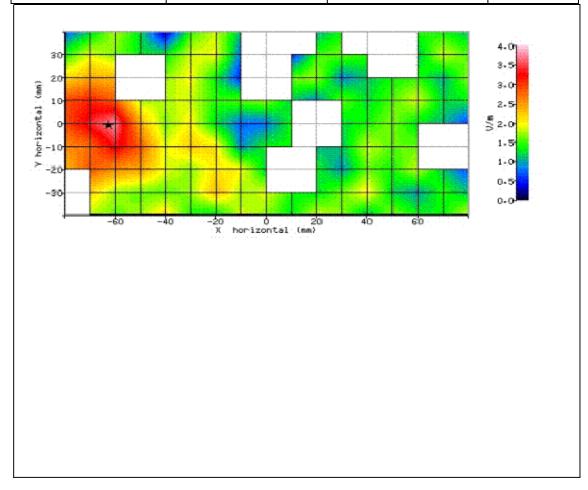


Figure 65: SAR Body Testing Results for the SHL22 Mobile Handset at 5580.0MHz.

SYSTEM / SOFTWARE:	SARA-C / v6.08.07	INPUT POWER DRIFT:	0 dB		
DATE / TIME:	28/05/2013-11:47:23	DUT BATTERY MODEL/NO:	Integral		
AMBIENT TEMPERATURE:	22.70°C	LIQUID SIMULANT:	5500Body		
DEVICE UNDER TEST:	SHL22	RELATIVE PERMITTIVITY:	47.34		
RELATIVE HUMIDITY:	41.80%	CONDUCTIVITY:	5.582		
PHANTOM S/NO:	IXB-2HF	LIQUID TEMPERATURE:	22.40°C		
PHANTOM ROTATION:	N/A	MAX SAR X-AXIS LOCATION:	-25.70mm		
DUT POSITION:	10mm-Top Edge	MAX SAR Y-AXIS LOCATION:	14.70mm		
ANTENNA CONFIGURATION:	N/A	MAX E FIELD:	3.041		
TEST FREQUENCY:	5580.0MHz	SAR 1g:	0.041 W/kg		
TYPE OF MODULATION:	ODFM (WLAN)	SAR 10g:	N/A		
MODN. DUTY CYCLE:	100%	SAR START:	0.063 W/kg		
INPUT POWER LEVEL:	13dBm	SAR END:	0.057 W/kg		
PROBE BATTERY LAST CHANGED:	28/05/2013	SAR DRIFT DURING SCAN:	-9.600 %		

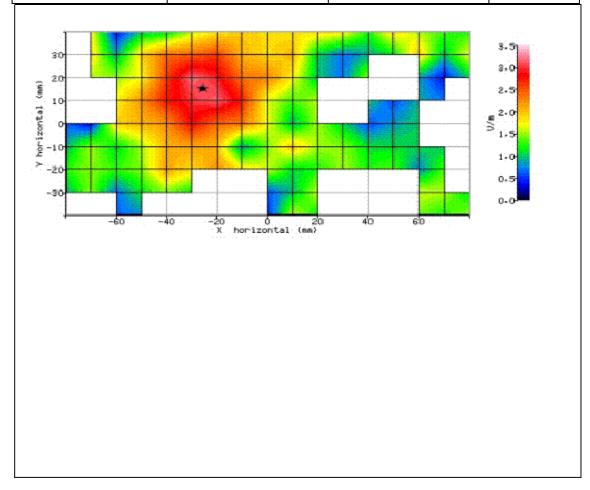


Figure 66: SAR Body Testing Results for the SHL22 Mobile Handset at 5580.0MHz.

SECTION 3

TEST EQUIPMENT USED

3.1 TEST EQUIPMENT USED

The following test equipment was used at TÜV SÜD Product Service:

Instrument Description	Manufacturer	Model Type	TE Number	Cal Period (months)	Calibration Due Date		
Power Sensor	Rohde & Schwarz	NRV-Z1	60	12	12-Jun-2013		
Signal Generator	Hewlett Packard	ESG4000A	61	12	22-May-2014		
Thermometer	Digitron	T208	64	12	16-Jan-2014		
Amplifier (5GHz)	IndexSar Ltd	5GHz	157	-	TU		
Communications Tester	Rohde & Schwarz	CMU 200	442	12	1-Nov-2013		
Directional Coupler	Hewlett Packard	11692D	452	-	TU		
Attenuator (20dB, 20W)	Narda	766F-20	483	12	13-Jun-2013		
Immersible SAR Probe	IndexSar Ltd	IXP-050	1555	12	28-Feb-2014		
Dipole Positioner/Support	IndexSar Ltd	IXH-020	1584	-	TU		
Bi-directional Coupler	IndexSar Ltd	7401 (VDC0830-20)	2414	-	TU		
Validation Amplifier	IndexSar Ltd	VBM2500-3	2415	-	TU		
Hygromer	Rotronic	I-1000	2784	12	3-Apr-2014		
Power Sensor	Rohde & Schwarz	NRV- Z5	2878	12	12-Jun-2013		
Communications Tester	Rohde & Schwarz	CMU 200	3035	12	6-Dec-2013		
Dual Channel Power Meter	Rohde & Schwarz	NRVD	3259	12	12-Jun-2013		
SAR 1800 MHz dipole	Speag	D1800V2	3855	-	O/P Mon		
SAR 900 MHz dipole	Speag	D900V2	3856	-	O/P Mon		
SAR 2450 MHz dipole	Speag	D2450V2 V.n/a	3875	-	TU		
SAR 1900 MHz dipole	Speag	D1900V2	3876	-	O/P Mon		
Head Phantom	IndexSar Ltd	IXB-040 Inverted SAM phantom	4075	-	TU		
Part of SARAC System	IndexSar Ltd	Robot Controller	4076	-	TU		
Immersible SAR Probe	IndexSar Ltd	IPX-020	4077	12	16-Jun-2013		
Part of SARAC System	IndexSar Ltd	Cartesian Leg Extension	4078	-	TU		
Cartesian 4-axis Robot	IndexSar Ltd	SARAC	4079	-	TU		
Part of SARAC System	IndexSar Ltd	White Benchtop	4080	-	TU		
Part of SARAC System	IndexSar Ltd	Wooden Bench	4081	-	TU		
Flat Phantom	IndexSar Ltd	IXB-2HF 800- 6000MHz	4255	-	TU		
Flat Phantom	IndexSar Ltd	IXB-2HF 800- 6000MHz	4256	-	TU		
SAR 5GHz Di-pole	Speag	D5GHzV2	4309		TU		
Immersible SAR Probe	IndexSar Ltd	IXP-025	4310	24	28-Nov-2013		
Immersible SAR Probe	IndexSar Ltd	IXP-021	4311	24	24-Oct-2014		
850 MHz Head Fluid	TUV Product Service	Batch 19	N/A	1	06-Jun-2013		
850 MHz Body Fluid	TUV Product Service	Batch 13	N/A	1	06-Jun-2013		
1900 MHz Head Fluid	TUV Product Service	Batch 8	N/A	1	06-Jun-2013		
1900 MHz Body Fluid	0 MHz Body Fluid TUV Product Service		N/A	1	06-Jun-2013		
2450 MHz Head Fluid TUV Product Se		Batch 10	N/A	1	06-Jun-2013		
2450 MHz Body Fluid	TUV Product Service	Batch 7	N/A	1	06-Jun-2013		
5000 MHz Head Fluid	TUV Product Service	Batch 3	N/A	1	06-Jun-2013		
5000 MHz Body Fluid	TUV Product Service	Batch 2	N/A	1	06-Jun-2013		

TU – Traceability Unscheduled

COMMERCIAL-IN-CONFIDENCE

3.2 TEST SOFTWARE

The following software was used to control the TÜV SÜD Product Service SARA-C System.

Instrument	Version Number	Date		
SARA-C system	v.6.07.10	28 February 2010		
IFA-10 Probe amplifier	Version 2	-		

3.3 DIELECTRIC PROPERTIES OF SIMULANT LIQUIDS

The fluid properties of the simulant fluids used during routine SAR evaluation meet the dielectric properties required by OET 65(C) - 2001.

IEEE 1528 Recipes

Frequency (MHz)	300	45	450 835			900		1450	1800		1900 195		1950	2000	21	00	2	2450	3000		
Recipe#	1	1	3	1	1	2	3	1	1	2	2	3	1	2	4	1	1	2	2	3	2
	Ingredients (% by weight)																				
1, 2-Pro- panediol						64.81															
Bactericide	0.19	0.19	0.50	0.10	0.10		0.50													0.50	
Diacetin			48.90				49.20													49.45	
DGBE								45.41	47.00	13.84	44.92		44.94	13.84	45.00	50.00	50.00	7.99	7.99		7.99
HEC	0.98	0.96		1.00	1.00																
NaCl	5.95	3.95	1.70	1.45	1.48	0.79	1.10	0.67	0.36	0.35	0.18	0.64	0.18	0.35				0.16	0.16		0.16
Sucrose	55.32	56.32		57.00	56.50																
Triton X-100										30.45				30.45				19.97	19.97		19.97
Water	37.56	38.56	48.90	40.45	40.92	34.40	49.20	53.80	52.64	55.36	54.90	49.43	54.90	55.36	55.00	50.00	50.00	71.88	71.88	49.75	71.88
								Measu	red die	lectric p	arame	ers									
ε΄,	46.00	43.40	44.30	41.60	41.20	41.80	42.70	40.9	39.3	41.00	40.40	39.20	39.90	41.00	40.10	37.00	36.80	41.10	40.30	39.20	37.90
σ (S/m)	0.86	0.85	0.90	0.90	0.98	0.97	0.99	1.21	1.39	1.38	1.40	1.40	1.42	1.38	1.41	1.40	1.51	1.55	1.88	1.82	2.46
Temp (°C)	22	22	20	22	22	22	20	22	22	21	22	20	21	21	20	22	22	20	20	20	20
							Ta	arget die	electric	parame	ters (Ta	able 2)									
ε̈́r	45.30	43	.50	41.5		41.50		40.50	40			.00				39.	80	3!	9.20	38.50	
σ (S/m)	0.87	0.	87	0.9		0.97		1.20	1.40 1.49 1.80 2.40						2.40						
	OTE – Multiple columns for any single frequency are optional recipe #, reference: 1 (Kanda et al. [B185]), 2 (Vigneras [B143]), 3 (Peyman and Gabriel [B119]), (Fukunaga et al [B50])																				

The dielectric properties of the tissue simulant liquids used for the SAR testing at TÜV SÜD Product Service are as follows:-

Fluid Type and Frequency	Relative Permittivity εR (ε') Target	Relative Permittivity εR (ε') Measured	Conductivity σ Target	Conductivity σ Measured
850MHz Head	41.5	39.51	0.90	0.868
850MHz Body	55.0	57.12	0.97	1.013
850MHz Head	41.5	39.51	0.90	0.868
850MHz Body	55.0	57.12	0.97	1.013
1900MHz Head	40.0	38.70	1.40	1.353
1900MHz Body	53.3	52.79	1.52	1.578
2450MHz Head	39.2	38.16	1.8	1.084
2450MHz Body	52.7	51.71	1.95	1.981
5200MHz Head	36.0	37.24	4.66	4.882
5200MHz Body	49.0	48.13	5.3	5.101
5500MHz Head	35.5	36.68	4.96	5.204
5500MHz Body	48.6	47.34	5.65	5.582

3.4 TEST CONDITIONS

3.4.1 Test Laboratory Conditions

Ambient temperature: Within +15°C to +35°C.

The actual temperature during the testing ranged from 22.5°C to 23.7°C. The actual humidity during the testing ranged from 29% to 49.9% RH.

3.4.2 Test Fluid Temperature Range

Frequency	Body / Head Fluid	Min Temperature °C	Max Temperature °C
850 MHz	Head	22.6	22.7
850 MHz	Body	22.6	22.8
1900 MHz	Head	22.6	22.6
1900 MHz	Body	22.7	22.7
2450 MHz	Head	22.9	23.3
2450 MHz	Body	22.6	22.9
5000 MHz	Head	22.9	23.0
5000 MHz	Body	22.4	22.4

3.4.3 SAR Drift

The SAR Drift was within acceptable limits during scans. The maximum SAR Drift, drift due to the handset electronics, was recorded as 7.4% (1.08 dB) for all of the testing. The measurement uncertainty budget for this assessment includes the maximum SAR Drift figures for Head and/or Body as applicable.

3.5 MEASUREMENT UNCERTAINTY

Head SAR Measurements.

Source of Uncertainty	Description	Tolerance / Uncertainty ± %	Probability distribution	Div	с _і (1g)	Standard Uncertainty ± % (1g)	V _i or V _{eff}
Measurement System							
Probe calibration	7.2.1	8.73	N	1	1	8.73	8
Isotropy	7.2.1.2	3.18	R	1.73	1	1.84	8
Probe angle >30deg	additional	12.00	R	1.73	1	6.93	∞
Boundary effect	7.2.1.5	0.49	R	1.73	1	0.28	∞
Linearity	7.2.1.3	1.00	R	1.73	1	0.58	∞
Detection limits	7.2.1.4	0.00	R	1.73	1	0.00	8
Readout electronics	7.2.1.6	0.30	N	1	1	0.30	8
Response time	7.2.1.7	0.00	R	1.73	1	0.00	8
Integration time (equiv.)	7.2.1.8	1.38	R	1.73	1	0.80	∞
RF ambient conditions	7.2.3.6	3.00	R	1.73	1	1.73	8
Probe positioner mech. restrictions	7.2.2.1	5.35	R	1.73	1	3.09	∞
Probe positioning with respect to phantom shell	7.2.2.3	5.00	R	1.73	1	2.89	∞
Post-processing	7.2.4	7.00	R	1.73	1	4.04	8
Test sample related							
Test sample positioning	7.2.2.4	1.50	R	1.73	1	0.87	8
Device holder uncertainty	7.2.2.4.2	1.73	R	1.73	1	1.00	8
Drift of output power	7.2.3.4	7.4	R	1.73	1	2.89	8
Phantom and set-up							
Phantom uncertainty (shape and thickness tolerances)	7.2.2.2	2.01	R	1.73	1	1.16	∞
Liquid conductivity (target)	7.2.3.3	5.00	R	1.73	0.64	1.85	∞
Liquid conductivity (meas.)	7.2.3.3	5.00	N	1	0.64	3.20	∞
Liquid permittivity (target)	7.2.3.4	5.00	R	1.73	0.6	1.73	8
Liquid permittivity (meas.)	7.2.3.4	3.00	N	1	0.6	1.80	∞
Combined standard uncertainty			RSS			11.11	
Expanded uncertainty (95% confidence interval	al)		K=2			22.22	

COMMERCIAL-IN-CONFIDENCE

Body SAR Measurements.

Source of Uncertainty	Description	Tolerance / Uncertainty ± %	Probability distribution	Div	c _i (1g)	Standard Uncertainty ± % (1g)	V _i or V _{eff}
Measurement System							
Probe calibration	7.2.1	8.73	N	1	1	8.73	8
Isotropy	7.2.1.2	3.18	R	1.73	1	1.84	8
Boundary effect	7.2.1.5	0.49	R	1.73	1	0.28	8
Linearity	7.2.1.3	1.00	R	1.73	1	0.58	8
Detection limits	7.2.1.4	0.00	R	1.73	1	0.00	∞
Readout electronics	7.2.1.6	0.30	N	1	1	0.30	∞
Response time	7.2.1.7	0.00	R	1.73	1	0.00	∞
Integration time (equiv.)	7.2.1.8	1.38	R	1.73	1	0.80	8
RF ambient conditions	7.2.3.6	3.00	R	1.73	1	1.73	8
Probe positioner mech. restrictions	7.2.2.1	0.60	R	1.73	1	0.35	8
Probe positioning with respect to phantom shell	7.2.2.3	2.00	R	1.73	1	1.15	8
Post-processing	7.2.4	7.00	R	1.73	1	4.04	8
Test sample related							
Test sample positioning	7.2.2.4	1.50	R	1.73	1	0.87	8
Device holder uncertainty	7.2.2.4.2	1.73	R	1.73	1	1.00	8
Drift of output power	7.2.3.4	9.6	R	1.73	1	5.54	8
Phantom and set-up							
Phantom uncertainty (shape and thickness tolerances)	7.2.2.2	2.01	R	1.73	1	1.16	8
Liquid conductivity (target)	7.2.3.3	5.00	R	1.73	0.64	1.85	8
Liquid conductivity (meas.)	7.2.3.3	5.00	N	1	0.64	3.20	8
Liquid permittivity (target)	7.2.3.4	5.00	R	1.73	0.6	1.73	8
Liquid permittivity (meas.)	7.2.3.4	3.00	N	1	0.6	1.80	8
Combined standard uncertainty			RSS			11.87	
Expanded uncertainty (95% confidence interval	al)		K=2			23.74	

SECTION 4

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service

© 2013 TÜV SÜD Product Service

ANNEX A

PROBE CALIBRATION REPORT

NATIONAL PHYSICAL LABORATORY

Teddington Middlesex UK TW11 0LW Telephone +44 20 8977 3222

Certificate of Calibration

SAR PROBE

IndexSAR Model: IXP-050 Serial number: 0170

This certificate provides traceability of measurement to recognised national standards, and to the units of measurement realised at the National Physical Laboratory or other recognised national standards laboratories. This certificate may not be reproduced other than in full unless permission for the publication of an approved extract has been obtained in writing from the Managing Director. It does not of itself impute to the subject of calibration any attributes beyond those shown by the data contained herein.

FOR:

Indexsar Ltd. Oakfield House Cudworth Lane Newdigate Surrey RH5 5BG

DESCRIPTION:

An IndexSAR isotropic electric field probe for determining specific absorption rates (SAR) in dielectric liquids. The probe has three orthogonal sensors, and the output voltage of the sensors is converted to an optical signal by a meter unit containing an analogue to digital (AD) converter. Probe readings are obtained using software via the RS232 port. The probe was calibrated with IndexSAR amplifier model IXA-010 S/N 036 belonging to NPL.

IDENTIFICATION: The probe is marked with the manufacturer's serial number 0170

MEASUREMENTS COMPLETED ON: 1 March 2012

The reported uncertainty is based on a coverage factor k = 2, providing a level of confidence of approximately 95%

Reference: 2012020074-1

Page 1 of 7

Date of Issue: 1 March 2012

Signed: B loader (Authorised Signatory)

Checked by : BQL

Name: Mr B G Loader

on behalf of NPLML

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

MEASUREMENT PROCEDURE

For frequencies at or above 835 MHz, the calibration method is based on establishing a calculable specific absorption rate (SAR) using a matched waveguide cell [1]. The cell has a feed-section and a liquid-filled section separated by a matching window that is designed to minimise reflections at the interface. A TE_{01} mode is launched into the waveguide by means of a N-type-to-waveguide adapter. The power delivered to the liquid is calculated from the forward power and reflection coefficient measured at the input to the cell. At the centre of the cross-section of the waveguide cell, the volume specific absorption rate (SAR^{ν}) in the liquid as a function of distance from the window is given by

$$SAR^{V} = \frac{4(P_{w})}{ab\delta}e^{-2Z/\delta}$$
(1)

where

a = the larger cross-sectional dimension of the waveguide.

b = the smaller cross-sectional dimension of the waveguide.

δ = the skin depth for the liquid in the waveguide.

Z = the distance of the probe's sensors from the liquid to matching window boundary.

 P_w = the power delivered to the liquid.

For frequencies below 835 MHz, the SAR in the liquid is established by measuring the rate of temperature rise in the liquid at the calibration point. In this case the SAR in the liquid is related to the temperature rise by

$$SAR = c \frac{dT}{dt}$$
(2)

where c is the specific heat of the liquid.

Liquids having the properties specified by SAR measurement standards [2, 3, 4] were used for the calibration. The value of δ for the liquid was obtained by measuring the electric field (E) at a number of distances from the matching window. The calibration was for continuous wave (CW) signals, and the axis of the probe was parallel to the direction of propagation of the incident field i.e. end-on to the incident radiation. The probe was rotated about its axis in 15-degree steps, and the ratio of the calibration factors for the three probe sensors X, Y, & Z were optimized to give the best axial isotropy.

Reference: 2012020074-1 Page 2 of 7

Date of Issue : 1 March 2012 Checked by : BUL

COMMERCIAL-IN-CONFIDENCE

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

The probe was calibrated with the linearisation and air-correction factors enabled. Comparing the measured values of E^2 in the liquid to those calculated for the waveguide cell allows the ratio, ConvF, of sensitivity for $(E^2_{LIQUID}) / (E^2_{AIR})$ to be determined, as required by the probe software.

The linear response of the probe to continuous wave signals was tested at 1800 MHz over the range 0.12 W/kg to 100 W/kg in accordance with [3].

The spherical isotropy of the probe was tested in head liquid at 900 MHz, in accordance with [3, 5, 6], for probe axial rotation (0) through 360° and source polarisation (ϕ) rotation through 90° in 15° increments.

ENVIRONMENT

Measurements were made in a temperature-controlled laboratory at $22 \pm 1^{\circ}$ C. The temperature of the liquid used was measured at the beginning and end of each measurement.

UNCERTAINTIES

The estimated uncertainty in calibration for SAR (W kg⁻¹) is \pm 10 %. The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%.

This uncertainty is valid when the probe is used in a liquid with the same dielectric properties as those used for the calibration. No estimate is made for the long-term stability of the device calibrated or of the fluids used in the calibration.

When using the probe for SAR testing, additional uncertainties should be added to account for the spherical isotropy of the probe, proximity effects, linearity, and response to pulsed fields. There will be additional uncertainty if the probe is used in liquids having significantly different electrical properties to those used for the calibration. The electrical properties of the liquids will be related to temperature.

RESULTS

Tables I and 2 give the results for calibration in liquid.

These calibration factors are only correct when the values for sensitivity in free-space, diode compression and sensor offset from the tip of the probe, as set in the probe software, are the same as those given in Table 1 and 2.

Reference: 2012020074-1 Page 3 of 7

Date of Issue: 1 March 2012 Checked by: Blek

COMMERCIAL-IN-CONFIDENCE

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

Table 3 contains the values of the boundary correction factors f(0) and d.

Table 4 gives the probe linearity and spherical isotropy.

REFERENCES:

- [1] Pokovic, KT, T.Schmid and N.Kuster, "Robust set-up for Precise Calibration of E-field probes in Tissue Simulating Liquids at Mobile Phone Frequencies", Proceedings ICECOM 1997, pp 120 – 124, Dubrovnik, Croatia Oct 12-17, 1997.
- [2] British Standard BS EN 503361:2001. "Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz)".
- [3] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".
- [4] Federal Communications Commission, FCC OET Bulletin 65, Supplement C, June 2001, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", David L. Means, Kwok W. Chan.
- [5] IEC Standard 62209-1 Ed 1. (2005), "Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices - Human models, Instrumentation, and Procedures - - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)".
- [6] IEC Standard 62209-2 Ed 1. (2010), "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)".

Reference: 2012020074-1 Page 4 of 7

Date of Issue: 1 March 2012 Checked by: Blek

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

Table 1 Sensitivity in Head Simulating Liquids. SAR probe: IXP-050 S/N 0170

		Probe se	ttings for c	alibration	-		
Sensitivity in free-space(1)		ce ⁽¹⁾ Dioc	de Compress	Sensor offset from tip of probe ⁽²⁾			
Lin X =524.99 $(V/m)^2/(V*200)$			DCP _X = 20 (V*200)		2.7 mm		
Lin Y = 453.82 $(V/m)^2/(V*200)$ Lin Z = 484.81			DCP _Y = 20 (V*200) DCP _Z = 20 (V*200)				
	2/(V*200)		2 20(1.2				
		Sensitivity in	Head Simu	ılating Liqı	iid.		
Calibration frequency	Liquid	Phantom ⁽³⁾		bration Factor	A		
(MHz)	ε' ⁽³⁾	σ ⁽³⁾ (Sm ⁻¹)	$ConvF_X$	ConvF _Y	ConvF _Z	(dB)	
450	41.8	0.88	0.180 0.177		0.187	±0.01	
835	40.2	0.93	0.240	0.215	0.228	±0.01	
900	39.8	0.97	0.242	0.217	0.228	±0.01	
1800	40.0	1.41	0.277	0.299	0.295	±0.05	
1900	39.2	1.39	0.308	0.335	0.292	±0.01	
2100	40.5	1.46	0.319	0.350	0.331	±0.02	
2450	39.1	1.80	0.308	0.342	0.325	±0.02	
2600	38.6	1.95	0.323	0.360	0.344	±0.02	

Reference: 2012020074-1

Date of Issue: 1 March 2012 Checked by: Bal Page 5 of 7

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

Table 2 Sensitivity in Body Simulating Liquids. SAR probe: IXP-050

S/N 0170

			5/N 01/U		-		
		Probe se	ettings for c	alibration			
Sensitivity in free-space ⁽¹⁾		ce ⁽¹⁾ Dio	de Compress	ion ⁽²⁾	Sensor offset from tip of probe ⁽²⁾		
Lin X = 524.99 $(V/m)^2/(V*200)$ Lin Y = 453.82			DCP _Y = 20 (V*200) DCP _Y = 20 (V*200)		2.7 mm		
Lin Z	2/(V*200) = 484.81 2/(V*200)	DC	CP z= 20 (V*2	200)			
	5	Sensitivity in	Body Simu	ılating Liqu	id.		
Calibration frequency	Liquid I	Phantom ⁽³⁾	Calibration Factor			Axial Isotropy	
(MHz)	ε' ⁽³⁾	σ ⁽³⁾ (Sm ⁻¹)) ConvF _X ConvF		ConvF _Z	(dB)	
450	55.6	0.98	0.194	0.187	0.200	±0.03	
835	56.1	1.02	0.225	0.231	0.233	±0.01	
900	55.8	1.05	0.234	0.242	0.243	±0.01	
1800	52.3	1.51	0.305	0.320	0.321	±0.02	
1900	52.0	1.59	0.319	0.337	0.338	±0.03	
2100	51.5	1.63	0.341	0.375	0.365	±0.01	
2450	50.5	1.96	0.342	0.383	0.367	±0.02	
2600	50.2	2.12	0.355	0.399	0.382	±0.02	

Notes.

- (1) Measured at 900 MHz
- (2) The manufacturer supplied these figures.
- $^{(3)}$ Measured at a temperature of 22 \pm 1 0 C.

Reference: 2012020074-1
Date of Issue: 1 March 2012
Checked by: 13CeL

Page 6 of 7

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

Table 3
Boundary Correction Factors
SAR probe: IXP-050
S/N 0170

Frequency	Head Simulating Liquid		Body Simul	ating Liquid
(MHz)	f(0)	d	f(0)	d
450	4_99	0.77	1.17	1.27
835	0.49	2.51	2.71	0.92
900	1.14	1.24	0.98	1.47
1800	0.64	1.73	0.59	1.90
1900	0.76	1.55	0.63	1.80
2100	0.71	1.71	0.69	1.72
2450	1.10	1.30	0.99	1.39
2600	0.77	1.50	0.78	1.55

Table 4 Linearity and Spherical Isotropy SAR probe: IXP-050 S/N 0170

Parameter	Frequency	Range	Maximum deviation
Linearity	1800 MHz	0.12 - 100 W/kg	± 0.10 dB
Spherical isotropy in head liquid	900 MHz	$\theta = 0 \text{ to } 360^{\circ},$ $\phi = 0 \text{ to } 90^{\circ}$	± 0.9 dB

Reference: 2012020074-1 Page 7 of 7

Date of Issue: 1 March 2012 Checked by: Blok

NATIONAL PHYSICAL LABORATORY

Teddington Middlesex UK TW11 0LW Telephone +44 20 8977 3222

Certificate of Calibration

SAR PROBE

IndexSAR

Model: IXP-025 Serial number: G0006

This certificate provides traceability of measurement to recognised national standards, and to the units of measurement realised at the National Physical Laboratory or other recognised national standards laboratories. This certificate may not be reproduced other than in full, unless permission for the publication of an approved extract has been obtained in writing from the Managing Director. It does not of itsall impute to the subject of calibration any attributes beyond those shown by the data contained herein.

FOR:

Indexsar Ltd.
Oakfield House
Cuclworth Lane
Newdigate
Surrey
RH5 5BG

DESCRIPTION:

An IndexSAR isotropic electric field probe for determining specific absorption rates (SAR) in dielectric liquids. The probe has three orthogonal sensors, and the output voltage of the sensors is converted to an optical signal by a meter unit containing an analogue to digital (AD) converter. Probe readings are obtained using software via the RS232 port. The probe was calibrated with IndexSAR amplifier model IXA-010 S/N 036 belonging to NPL.

IDENTIFICATION: The probe is marked with the manufacturer's serial number G0006

MEASUREMENTS COMPLETED ON: 28 November 2011

The reported uncertainty is based on a coverage factor k = 2, providing a level of confidence of approximately 95%

Reference : 2011110089-1

Date of Issue : 6 December 2011 Signed : B leader (Authorised Signatory)

Checked by : Bell Name : Mr B G Loader on behalf of NPLML

Page 1 of 6

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

MEASUREMENT PROCEDURE

For frequencies at or above 835 MHz, the calibration method is based on establishing a calculable specific absorption rate (SAR) using a matched waveguide cell [1]. The cell has a feed-section and a liquid-filled section separated by a matching window that is designed to minimise reflections at the interface. A TE_{01} mode is launched into the waveguide by means of a N-type-to-waveguide adapter. The power delivered to the liquid is calculated from the forward power and reflection coefficient measured at the input to the cell. At the centre of the cross-section of the waveguide cell, the volume specific absorption rate (SAR^F) in the liquid as a function of distance from the window is given by

$$SAR^{V} = \frac{4(P_{w})}{ab\delta}e^{-2Z/\delta}$$
(1)

where

a = the larger cross-sectional dimension of the waveguide.

b = the smaller cross-sectional dimension of the waveguide.

 δ = the skin depth for the liquid in the waveguide.

Z = the distance of the probe's sensors from the liquid to matching window boundary.

 $P_{w'}$ = the power delivered to the liquid.

For frequencies below 835 MHz, the SAR in the liquid is established by measuring the rate of temperature rise in the liquid at the calibration point. In this case the SAR in the liquid is related to the temperature rise by

$$SAR = c\frac{dT}{dt} \tag{2}$$

where c is the specific heat of the liquid.

Liquids having the properties specified by SAR measurement standards [2, 3, 4] were used for the calibration. The value of δ for the liquid was obtained by measuring the electric field (E) at a number of distances from the matching window. The calibration was for continuous wave (CW) signals, and the axis of the probe was parallel to the direction of propagation of the incident field i.e. end-on to the incident radiation. The probe was rotated about its axis in 15-degree steps, and the ratio of the calibration factors for the three probe sensors X, Y, & Z were optimized to give the best axial isotropy.

Reference: 2011110089-1 Page 2 of 6

Date of Issue: 6 December 2011

Checked by : Bld

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

The probe was calibrated with the linearisation and air-correction factors enabled. Comparing the measured values of E^2 in the liquid to those calculated for the waveguide cell allows the ratio, ConvF, of sensitivity for $(E^2_{LIQUID}) \nmid (E^2_{AIR})$ to be determined, as required by the probe software.

ENVIRONMENT

Measurements were made in a temperature-controlled laboratory at 22 ± 1 °C. The temperature of the liquid used was measured at the beginning and end of each measurement.

UNCERTAINTIES

The estimated uncertainty in calibration for SAR (W kg⁻¹) is \pm 10 %. The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%.

This uncertainty is valid when the probe is used in a liquid with the same dielectric properties as those used for the calibration. No estimate is made for the long-term stability of the device calibrated or of the fluids used in the calibration.

When using the probe for SAR testing, additional uncertainties should be added to account for the spherical isotropy of the probe, proximity effects, linearity, and response to pulsed fields. There will be additional uncertainty if the probe is used in liquids having significantly different electrical properties to those used for the calibration. The electrical properties of the liquids will be related to temperature.

RESULTS

Tables 1 and 2 give the results for calibration in liquid.

These calibration factors are only correct when the values for sensitivity in free-space, diode compression and sensor offset from the tip of the probe, as set in the probe software, are the same as those given in Table 1 and 2.

Table 3 contains the values of the boundary correction factors f(0) and d.

Reference: 2011110089-1

Page 3 of 6

Date of Issue: 6 December 2011

Checked by : BG(

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

REFERENCES:

- [1] Pokovic, KT, T.Schmid and N.Kuster, "Robust set-up for Precise Calibration of E-field probes in Tissue Simulating Liquids at Mobile Phone Frequencies", Proceedings ICECOM 1997, pp 120 – 124, Dubrovnik, Croatia Oct 12-17, 1997.
- [2] British Standard BS EN 503351:2001. "Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz)".
- [3] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".
- [4] Federal Communications Commission, FCC OET Bulletin 65, Supplement C, June 2001, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluating Compliance of Mcbile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", David L. Means, Kwok W. Chan.

Reference: 2011110089-1 Page 4 of 6

Date of Issue: 6 December 2011

Checked by : BCL

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

Table 1 Sensitivity in Head Simulating Liquids. SAR probe: IXP-025 S/N G0006

		de Compress	ion ⁽²⁾	Sensor offset from tip o probe ⁽²⁾		
		$P_X = 20 (V^*)$	200)			
	4634.25 (V*200)	DC	DCP _Y = 20 (V*200) DCP _Z = 20 (V*200)		1.39 n	nm
	3860,61 (V*200)	DO				
	5	Sensitivity in	Head Simu	lating Liqu	id.	
Calibration frequency			Calibration Factors for $E^2_{\text{Liquid}} / E^2_{\text{Air}}$			Axial Isotropy
(MHz)	ε' (3)	σ ⁽¹⁾ (Sm ⁻¹)	ConvF _X	ConvF _y	ConvFz	(dB)
5200	35.16	4.89	0.343	0.335	0.162	±0.09
5800	33.78	5.57	0.405	0.413	0.200	±0.07

Reference: 2011110089-1

Date of Issue: 6 December 2011

Checked by: Blel

Page 5 of 6

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

Table 2 Sensitivity in Body Simulating Liquids. SAR probe: IXP-025 S/N G0006

		Probe se	ttings for ca	alibration		
Lin X = 4181.03 DCI (V/m) ² /(V*200)				Sensor offset probe		
		$P_X = 20 \text{ (V*)}$	200)			
		$P_{\Upsilon} = 20 (V^*)$	200)	1.39 n	nm	
	3860.61 (V*200)	DC	P z= 20 (V*2	200)		
	5	Sensitivity in	Body Simu	ılating Liqı	iid.	
Calibration frequency	and a surrous		Calibration Factors for $E^2_{\ \text{Liquid}} / E^2_{\ \text{Air}}$			Axial Isotropy
(MHz)	ε' (3)	σ ⁽³⁾ (Sm ⁻¹)	$ConvF_X$	ConvF _Y	ConvFz	(dB)
5200	50.52	5.38	0.439	0.436	0.214	±0.04
5800	48.91	6.24	0.473	0.494	0.235	±0.06

Notes.

Table 3

Boundary Correction Factors
SAR probe: IXP-025
S/N G0006

Frequency	Head Simulating Liquid		Body Simulating Liquid	
(MHz)	f(0)	d	f(0)	d
5200	0.247	1.332	0.281	1.630
5800	0.627	0.992	0.235	2.036

Reference : 2011110089-1 Page 6 of 6

Date of Issue: 6 December 2011

Checked by : Bld .

⁽¹⁾ Measured at 900 MHz

⁽²⁾ The manufacturer supplied these figures.

 $^{^{(3)}}$ Measured at a temperature of 22 \pm 1 $^{\circ}$ C.

IMMERSIBLE SAR PROBE

CALIBRATION REPORT

Part Number: IXP-021

S/N LG0018

October 2012

Indexsar Limited Oakfield House Cudworth Lane Newdigate Surrey RH5 5BG

Tel: +44 (0) 1306 632 870 Fax: +44 (0) 1306 631 834 e-mail: enquiries@indexsar.com

Reproduction of this report is authorized by Indexsar Ltd provided the report is reproduced in its entirety

Indexsar Limited Oakfield House Cudworth Lane Newdigate Surrey RH5 5BG Tel: +44 (0) 1306 632 870 Fax: +44 (0) 1306 631 834

e-mail: enquiries@indexsar.com

Calibration Certificate 1210/LG0018 Date of Issue: 24th October 2012 Immersible SAR Probe

Type:	IXP-021	
Manufacturer:	IndexSAR, UK	
Serial Number:	LG0018	
Place of Calibration:	IndexSAR, UK	
Date of Receipt of Probe:	N/A	
calibrated for conformity to methods described in this of	TUV Sud res that the IXP-021 Probe name the IEEE 1528 and BSEN 62209 calibration document. Where ap cess are traceable to the UK's Na	-1 standards using the pplicable, the standards
IndexSAR Ltd hereby decla calibrated for conformity to methods described in this o	res that the IXP-021 Probe name the IEEE 1528 and BSEN 62209 calibration document. Where ap	-1 standards using the pplicable, the standards

INTRODUCTION

This Report presents measured calibration data for a particular Indexsar SAR probe (S/N LG0018) only and describes the procedures used for characterisation and calibration.

Indexsar probes are characterised using procedures that, where applicable, follow the recommendations of BSEN 622009-1 [Ref 1] & IEEE [Ref 2] standards. The procedures incorporate techniques for probe linearisation, isotropy assessment and determination of liquid factors (conversion factors). Calibrations are determined by comparing probe readings with analytical computations in canonical test geometries (waveguides) using normalised power inputs.

Each step of the calibration procedure and the equipment used is described in the sections below.

CALIBRATION PROCEDURE

Objectives

The calibration process comprises two stages:-

- Determination of the channel sensitivity factors which optimise the probe's overall rotational isotropy in brain fluid
- At each frequency of interest, application of these channel sensitivity factors to model the exponential decay of SAR in a waveguide fluid cell, and hence derive the liquid conversion factors at that frequency

2. Probe output

The probe channel output signals are linearised in the manner set out in Refs [1] and [2]. The following equation is utilized for each channel:

$$U_{lin} = U_{o/p} + U_{o/p}^2 / DCP$$
 (1)

where U_{lin} is the linearised signal, $U_{o/p}$ is the raw output signal in mV and DCP is the diode compression potential, also in mV.

DCP is determined from fitting equation (1) to measurements of U_{lin} versus source feed power over the full dynamic range of the probe. The DCP is a characteristic of the Schottky diodes used as the sensors. For the IXP-021 probes with CW signals the DCP values are typically 100mV.

In turn, measurements of E-field are determined using the following equation:

$$E_{liq}^{2} (V/m) = U_{linx} * Air Factor_{x} * Liq Factor_{x} + U_{liny} * Air Factor_{y} * Liq Factor_{y} + U_{linz} * Air Factor_{z} * Liq Factor_{z}$$
(3)

Here, "Air Factor" represents each channel's sensitivity, while "Liq Factor" represents the enhancement in signal level when the probe is immersed in tissue-simulant liquids at each frequency of interest.

3. Selecting channel sensitivity factors to optimise isotropic response

After manufacture, the first stage of the calibration process is to balance the three channels' Air Factor values, there by optimising the probe's overall response to incoming signals of any polarisation position angle ("rotational isotropy"). The setup for measuring the probe's rotational isotropy for frequencies below 3GHz is shown in Figure 1, while above 3GHz, the probe is clamped with the short shaft hanging down vertically in the mouth of a waveguide mounted on a turntable, Figure 2.

A box phantom containing head fluid is irradiated by a vertically-polarised, tuned dipole, mounted at the side of the phantom on the robot's seventh axis. The dipole is connected to a signal generator and amplifier via a directional coupler and power meter. The absolute power level is not important as long as it is stable, with stability being monitored using the coupler and power meter.

During calibration, the spherical response is generated by changing the orientation of the probe sensors with respect to the dipole, keeping the long shaft of the probe vertical and the probe sensors at the same position in space.

Initially, the short shaft of the probe is positioned parallel to the phantom wall with its sensors at the same vertical height as the centre of the source dipole and the line joining sensors to dipole perpendicular to the phantom wall (see Figure 1). In this position, the probe is said to be at a position angle of -90 degrees. During the scan, the probe is rotated from -90 to +90 degrees in 10 degree steps, and at each position angle, the dipole polarisation changes from 0 to 360 degrees in 20 degree steps. The short shaft of the probe thereby starts moving increasingly end-on to the dipole, and after perpendicularity, it carries on until facing in the opposite direction from its starting position, all the time with the centroid of the sensors occupying the same position in space. When the short shaft is exactly end-on to the dipole, rotating the dipole generates the rotational isotropy figure.

At each position, an Indexsar 'Fast' amplifier samples the probe channels 500 times per second for 0.4 s. The raw $U_{\omega p}$ data from each sample are packed into 10 bytes and transmitted back to the PC controller via an optical cable. U_{linx} , U_{liny} and U_{linz} are derived from the raw $U_{\omega p}$ values and written to an Excel template.

Once a full set of data has been collected, the Air Factors are adjusted using a special Excel Solver routine to equalise the output from each channel and hence minimise the rotational isotropy. This automated approach to optimisation removes the effect of human bias.

The process is repeated for each frequency of interest.

Determination of Conversion ("Liquid") Factors at each frequency of interest

A lookup table of conversion factors for a probe allows a SAR value to be derived at the measured frequencies, and for either brain or body fluid-simulant

The method by which the conversion factors are assessed is based on the comparison between measured and analytical rates of decay of SAR with perpendicular distance from a dielectric window. This way, not only can the conversion factors for that frequency/fluid combination be determined, but an allowance can also be made for the scale and range of boundary layer effects.

The theoretical relationship between the SAR at the cross-sectional centre of the lossy waveguide as a function of the longitudinal distance (z) from the dielectric separator is given by Equation 4:

$$SAR(z) = \frac{4(P_f - P_b)}{\rho ab\delta} e^{-2z/\delta}$$
(4)

Here, the density ρ is conventionally assumed to be 1000 kg/m³, ab is the cross-sectional area of the waveguide, and P_f and P_b are the forward and reflected power inside the lossless section of the waveguide, respectively. The penetration depth δ (which is the reciprocal of the waveguide-mode attenuation coefficient) is a property of the lossy liquid and is given by Equation (5).

$$\delta = \left[\text{Re} \left\{ \sqrt{(\pi / a)^2 + j\omega \mu_o (\sigma + j\omega \varepsilon_o \varepsilon_r)} \right\} \right]^{-1}$$
(5)

where σ is the conductivity of the tissue-simulant liquid in S/m, ε_r is its relative permittivity, and ω is the radial frequency (rad/s). Values for σ and ε_r are obtained prior to each waveguide test using an Indexsar DiLine measurement kit, which uses the TEM method as recommended in [2]. σ and ε_r are both temperature- and fluid-dependent, so are best measured using a sample of the tissue-simulant fluid immediately prior to the actual calibration.

Wherever possible, all DiLine and calibration measurements should be made in the open laboratory at $22 \pm 2.0^{\circ}\text{C}$; if this is not possible, the values of σ and ε , should reflect the actual temperature. Values employed for calibration are listed in the tables below.

Dedicated waveguides have been designed to accommodate the geometry of an L-shaped probe as it traces out the decay profile. Traditional straight probes measure the decay rate of a vertical-travelling signal above a horizontal dielectric window; for the L-shaped probes below 3GHz, the geometry has had to be changed, and the waveguide now lies horizontally

and instead of being open at the end, is capped with a metal plate (see Figure 4). A slot is cut in the top ("b") face through which tissue simulant fluid can be poured, and through which the probe can enter the guide and be offered up to the now vertical waveguide window. Above 3GHz, where the short shaft is longer than the height of the fluid-filled waveguide cell, the probe is oriented as shown in Figure 2.

During calibration, the probe is moved carefully until the flat face of the tip is just touching the cross-sectional centre of the dielectric window. 200 samples are then taken and written to an Excel template file before moving the probe into the liquid away from the waveguide window. This cycle is repeated 150 times. The spatial separation between readings is determined from practical considerations of the expected SAR decay rate, and range from 0.2mm steps at low frequency, through 0.1mm at 2450MHz, down to 0.05mm at 5GHz.

Once the data collection is complete, a Solver routine is run which optimises the measured-theoretical fit by varying the conversion factor, and the boundary correction size and range.

By ensuring the waveguide cap is at least three penetration depths, reflections are negligible. The power absorbed in the liquid is therefore determined solely from the waveguide forward and reflected power.

Different waveguides are used for 835/900MHz, 1800/1900MHz, 2100/2450/2600MHz and 5200/5800MHz measurements. Table A.1 of [1] can be used for designing calibration waveguides with a return loss greater than 20 dB at the most important frequencies used for personal wireless communications, and better than 15dB for frequencies greater than 5GHz. Values for the penetration depth for these specific fixtures and tissue-simulating mixtures are also listed in Table A.1.

For 450 MHz calibrations, a slightly different technique must be used — the equatorial response of the probe-under-test is compared with the equivalent response of a probe whose 450MHz characteristics have already been determined by NPL. The conversion factor of the probe-under-test can then be deduced.

According to [1], this calibration technique provides excellent accuracy, with standard uncertainty of less than 3.6% depending on the frequency and medium. The calibration itself is reduced to power measurements traceable to a standard calibration procedure. The practical limitation to the frequency band of 800 to 5800 MHz because of the waveguide size is not severe in the context of compliance testing.

CALIBRATION FACTORS MEASURED FOR PROBE S/N LG0018

The probe was calibrated at 5200 and 5800 MHz in liquid samples representing brain and muscle tissue at these frequencies.

The calibration was for CW signals only, and the horizontal axis of the probewas parallel to the direction of propagation of the incident field i.e. end-on to the incident radiation.

The reference point for the calibration is in the centre of the probe's cross-section at a distance of 2.7 mm from the probe tip in the direction of the probe amplifier. A value of 2.7 mm should be used for the tip to sensor offset distance in the software. The distance of 2.7mm for assembled probes has been confirmed by taking X-ray images of the probe tips (see Figure 9).

It is important that the diode compression point and air factors used in the software are the same as those quoted in the results tables, as these are used to convert the diode output voltages to a SAR value.

CALIBRATION EQUIPMENT

The Table on page 16 indicates the calibration status of all test equipment used during probe calibration.

MEASUREMENT UNCERTAINTIES

A complete measurement uncertainty analysis for the SARA-C measurement system has been published in Reference [3]. Table 17 from that document is re-created below, and lists the uncertainty factors associated just with the calibration of probes.

Source of uncertainty	Uncertainty value ± %	Probability distribution	Divisor	Cį	Standard uncertainty ui ± %	V _i or V _{ett}
Forward power	3.92	N	1.00	- 1	3.92	-
Reflected power	4.09	. N	1.00	1	4.09	
Liquid conductivity	1.308	N	1.00	1.1	1.31	
Liquid permittivity	1.271	N	1.00	1	1.27	-
Field horngeneity	3.0	R	1.73	- 1	1.73	**
Probe positioning	0.22	R	1.73	1.	0.13	
Field probe linearity	0.2	R	1.73	- 1	0.12	
Combined standard uncertainty		RSS			6.20	

At the 95% confidence level, therefore, the expanded uncertainty is ±12.4%

SUMMARY OF CAL FACTORS FOR PROBE IXP-021 S/N LG0018

Freq (MHz)	Tissue Type	Air Factor X ((V/m)²/mV)	Air Factor Y ((V/m) ² /mV)	Air Factor Z ((V/m)²/mV)	Rotational Isotropy (± dB)	SAR Conv Factor	Boundary Correction f(0)	Boundary Correction d(mm
5200	100000000000000000000000000000000000000	285.66	352.95	321.39	0.07	0.784	0.675	0.891
5500	Head	287.11	350.55	322.34	Samuel . (and south	0.851	0.635	1.084
5800	V. 382.25	288.55	348.15	323.30	0.04	0.919	0.594	1.277
5200	7255	287.52	347.12	325.35	0.02	1.029	0.541	1.790
5500	Body	286.25	347.27	326.48	CONTRACTOR OF THE	1.039	0.515	1.705
5800	Carrier Man	284.98	347.41	327.61	0.02	1.049	0.489	1.619

* Data for 5500MHz are interpolated from measured data at 5200 and 5800MHz

PROBE SPECIFICATIONS

Indexsar probe LG0018, along with its calibration, is compared with BSEN 62209-1 and IEEE standards recommendations (Refs [1] and [2]) in the Tables below. A listing of relevant specifications is contained in the tables below:

Dimensions	S/N LG0018	BSEN [1]	IEEE [2]
Vertical shaft (mm)	510		
Horizontal shaft (mm)	90		
Tip length (mm)	10		
Body diameter (mm)	12		
Tip diameter (mm)	5.2	8	8
Distance from probe tip to dipole centers (mm)	2.7		

Dynamic range	S/N LG0018	BSEN [1]	IEEE [2]
Minimum (W/kg)	0.01	<0.02	0.01
Maximum (W/kg) N.B. only measured to > 100 W/kg on representative probes	>100	>100	100

Rotational Isotropy	\$/N LG0018	BSEN [1]	IEEE [2]
5200 Head	0.07		
5800 Head	0.04	0.5	0.25
5200 Body	0.02	0.5	0.25
5800 Body	0.02		

Construction	Each probe contains three orthogonal dipole sensors arranged on a triangular prism core, protected against static charges by built-in shielding, and covered at the tip by PEEK cylindrical enclosure material. Outer case materials are PEEK and heat-shrink sleeving.
Chemical resistance	Tested to be resistant to TVVEEN and sugar/salt-based simulant liquids but probes should be removed, cleaned and dried when not in use. NOT recommended for use with glycol or soluble oil-based liquids.

REFERENCES

- [1] BSEN 62209-1:2006. Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- [2] IEEE 1528, 2003 Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- [3] SARA-C SAR Testing System: Measurement Uncertainty, v1.0.3. 13 October 2011.

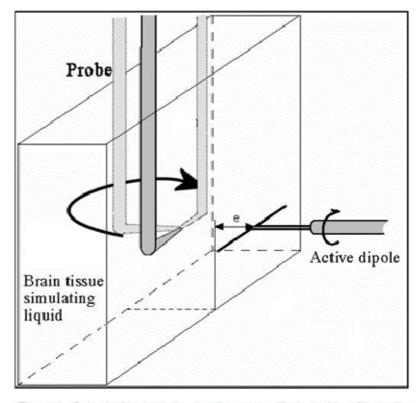


Figure 1. Spherical isotropy jig showing probe, dipole and box filled with simulated brain liquid (see Ref [2], Section A.5.2.1)

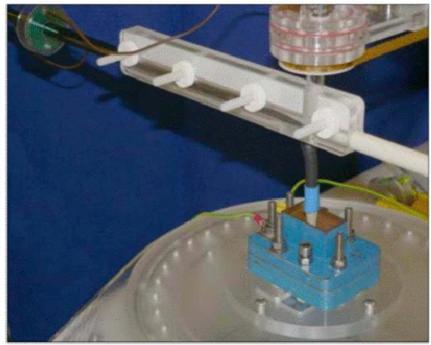


Figure 2 Test geometry used for isotropy determination above 3GHz

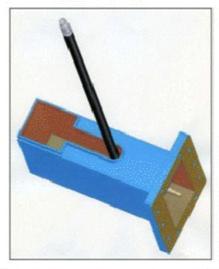


Figure 4. Schematic showing the innovative design of slot in the waveguide termination

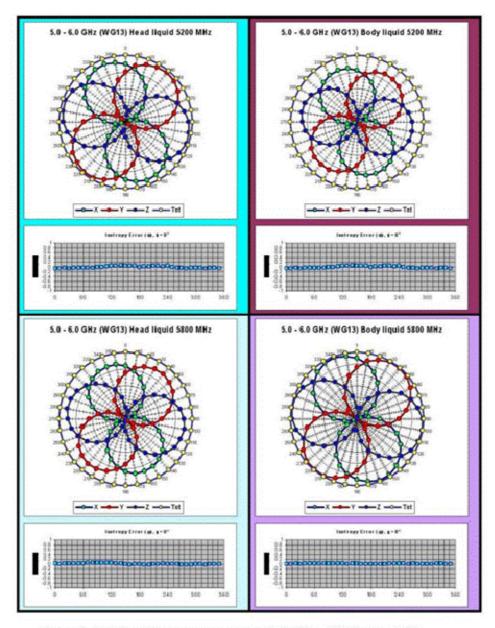


Figure 6. Rotational isotropy measurements inside a WG13 waveguide.

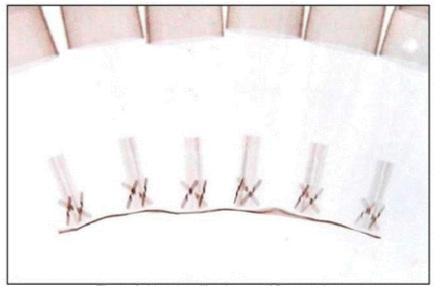


Figure 9: X-ray positive image of 5mm probes

Table indicating the dielectric parameters of the liquids used for calibrations at each frequency

Liquid used	Relative permittivity (measured)	Conductivity (S/m) (measured)
5200 MHz HEAD	36.24	4.53
5800 MHz HEAD	35.17	4.99
5200 MHz BODY	50.89	4.93
5800 MHz BODY	48.67	6.02

Table of test equipment calibration status as at time of probe calibration

Instrument description	Supplier / Manufacturer	Model	Serial No.	Calibration due date
Power sensor	Rohde & Schwarz	NRP-Z23	100063	08/09/2014
Dielectric property measurement	Indexsar	DiLine (sensor lengths: 160mm, 80mm and 60mm)	N/A	N/A
Vector network analyser	Anritsu	MS6423B	003102	16/01/2013
SMA autocalibration module	Anritsu	36581KKF/1	001902	16/01/2013

IMMERSIBLE SAR PROBE

CALIBRATION REPORT

Part Number: IXP-020

S/N L0011

October 2011

Indexsar Limited Oakfield House Cudworth Lane Newdigate Surrey RH5 5BG

Tel: +44 (0) 1306 632 870 Fax: +44 (0) 1306 631 834 e-mail: <u>enquiries@indexsar.com</u>

Reproduction of this report is authorized by Indexsar Ltd provided the report is reproduced in its entirety

Indexsar Limited Oakfield House Cudworth Lane Newdigate Surrey RH5 5BG

Tel: +44 (0) 1306 632 870 Fax: +44 (0) 1306 631 834 e-mail: enquiries@indexsar.com

Calibration Certificate 1110/L0011 Date of Issue: 11th October 2011 Immersible SAR Probe

Туре:	IXP-020	
Manufacturer:	IndexSAR, UK	
Serial Number:	L0011	
Place of Calibration:	IndexSAR, UK	
Date of Receipt of Probe:	N/A	
Calibration Dates:	7 th April — 18 th May 20	011
calibrated for conformity to t methods described in this ca	TUV es that the IXP-020 Probe name he IEEE 1528 and BSEN 62200 libration document. Where ap	9-1 standards using the policable, the standards
IndexSAR Ltd hereby declare calibrated for conformity to t methods described in this ca	es that the IXP-020 Probe name the IEEE 1528 and BSEN 62209	9-1 standards using the policable, the standards

INTRODUCTION

This Report presents measured calibration data for a particular Indexsar SAR probe (S/N L0011) only and describes the procedures used for characterisation and calibration.

Indexsar probes are characterised using procedures that, where applicable, follow the recommendations of BSEN 622009-1 [Ref 1] & IEEE [Ref 2] standards. The procedures incorporate techniques for probe linearisation, isotropy assessment and determination of liquid factors (conversion factors). Calibrations are determined by comparing probe readings with analytical computations in canonical test geometries (waveguides) using normalised power inputs.

Each step of the calibration procedure and the equipment used is described in the sections below.

CALIBRATION PROCEDURE

1. Objectives

The calibration process comprises two stages:-

- Determination of the channel sensitivity factors which optimise the probe's overall spherical isotropy in 900MHz brain fluid
- At each frequency of interest, application of these channel sensitivity factors to model the exponential decay of SAR in a waveguide fluid cell, and hence derive the liquid conversion factors at that frequency

2. Probe output

The probe channel output signals are linearised in the manner set out in Refs [1] and [2]. The following equation is utilized for each channel:

$$U_{lin} = U_{o/p} + U_{o/p}^2 / DCP$$
 (1)

where U_{lin} is the linearised signal, U_{olp} is the raw output signal in mV and DCP is the diode compression potential, also in mV.

DCP is determined from fitting equation (1) to measurements of U_{lin} versus source feed power over the full dynamic range of the probe. The DCP is a characteristic of the Schottky diodes used as the sensors. For the IXP-020 probes with CW signals the DCP values are typically 100mV.

In turn, measurements of E-field are determined using the following equation:

Here, "Air Factor" represents each channel's sensitivity, while "Liq Factor" represents the enhancement in signal level when the probe is immersed in tissue-simulant liquids at each frequency of interest.

3. Selecting channel sensitivity factors to optimise isotropic response

After manufacture, the first stage of the calibration process is to balance the three channels' Air Factor values, thereby optimising the probe's overall response to incoming signals of any polarisation position angle ("spherical isotropy"). The setup for measuring the probe's spherical isotropy is shown in Figure 1.

A box phantom containing 900MHz head fluid is irradiated by a vertically-polarised, tuned dipole, mounted at the side of the phantom on the robot's seventh axis. The dipole is connected to a signal generator and amplifier via a directional coupler and power meter. The absolute power level is not important as long as it is stable, with stability being monitored using the coupler and power meter.

During calibration, the spherical response is generated by changing the orientation of the probe sensors with respect to the dipole, keeping the long shaft of the probe vertical and the probe sensors at the same position in space.

Initially, the short shaft of the probe is positioned parallel to the phantom wall with its sensors at the same vertical height as the centre of the source dipole and the line joining sensors to dipole perpendicular to the phantom wall (see Figure 1). In this position, the probe is said to be at a position angle of -90 degrees. During the scan, the probe is rotated from -90 to +90 degrees in 10 degree steps, and at each position angle, the dipole polarisation changes from 0 to 360 degrees in 20 degree steps. The short shaft of the probe thereby starts moving increasingly end-on to the dipole, and after perpendicularity, it carries on until facing in the opposite direction from its starting position, all the time with the centroid of the sensors occupying the same position in space.

At each position, an Indexsar 'Fast' amplifier samples the probe channels 500 times per second for 0.4 s. The raw $U_{o/p}$ data from each sample are packed into 10 bytes and transmitted back to the PC controller via an optical cable. U_{linx} , U_{liny} and U_{linz} are derived from the raw $U_{o/p}$ values and written to an Excel template.

Once a full set of data has been collected, the Air Factors are adjusted using a special Excel Solver routine to equalise the output from each channel and hence minimise the spherical isotropy. This automated approach to optimisation removes the effect of human bias.

Determination of Conversion ("Liquid") Factors at each frequency of interest

A lookup table of conversion factors for a probe allows a SAR value to be derived at the measured frequencies, and for either brain or body fluid-simulant.

The method by which the conversion factors are assessed is based on the comparison between measured and analytical rates of decay of SAR with perpendicular distance from a dielectric window. This way, not only can the conversion factors for that frequency/fluid combination be determined, but an allowance can also be made for the scale and range of boundary layer effects.

The theoretical relationship between the SAR at the cross-sectional centre of the lossy waveguide as a function of the longitudinal distance (z) from the dielectric separator is given by Equation 4:

$$SAR(z) = \frac{4(P_f - P_b)}{\rho ab \delta} e^{-2z/\delta}$$
(4)

Here, the density ρ is conventionally assumed to be 1000 kg/m³, ab is the cross-sectional area of the waveguide, and P_t and P_b are the forward and reflected power inside the lossless section of the waveguide, respectively. The penetration depth δ (which is the reciprocal of the waveguide-mode attenuation coefficient) is a property of the lossy liquid and is given by Equation (5).

$$\delta = \left[\operatorname{Re} \left\{ \sqrt{(\pi / a)^{2} + j\omega_{0} (\sigma + j\omega_{0} \varepsilon_{r})} \right\} \right]^{-1}$$
(5)

where σ is the conductivity of the tissue-simulant liquid in S/m, ε_r is its relative permittivity, and ω is the radial frequency (rad/s). Values for σ and ε_r are obtained prior to each waveguide test using an Indexsar DiLine measurement kit, which uses the TEM method as recommended in [2]. σ and ε_r are both temperature- and fluid-dependent, so are best measured using a sample of the tissue-simulant fluid immediately prior to the actual calibration.

Wherever possible, all DiLine and calibration measurements should be made in the open laboratory at $22 \pm 2.0^{\circ}\text{C}$; if this is not possible, the values of σ and ε , should reflect the actual temperature. Values employed for calibration are listed in the tables below.

Dedicated waveguides have been designed to accommodate the geometry of an L-shaped probe as it traces out the decay profile. Traditional straight probes measure the decay rate of a vertical-travelling signal above a horizontal dielectric window; for the L-shaped probes, the geometry has had to be changed, and the waveguide now lies horizontally and instead of being open at the end, is capped with a metal plate (see Figure 4). A slot is cut in

the top ("b") face through which tissue simulant fluid can be poured, and through which the probe can enter the guide and be offered up to the now vertical waveguide window.

During calibration, the probe is moved carefully until the flat face of the tip is just touching the cross-sectional centre of the dielectric window. 200 samples are then taken and written to an Excel template file before moving the probe into the liquid away from the waveguide window. This cycle is repeated 150 times. The spatial separation between readings is determined from practical considerations of the expected SAR decay rate, and range from 0.2mm steps at low frequency, through 0.1mm at 2450MHz, down to 0.05mm at 5GHz.

Once the data collection is complete, a Solver routine is run which optimises the measured-theoretical fit by varying the conversion factor, and the boundary correction size and range.

By ensuring the waveguide cap is at least three penetration depths, reflections are negligible. The power absorbed in the liquid is therefore determined solely from the waveguide forward and reflected power.

Different waveguides are used for 835/900MHz, 1800/1900MHz, 2100/2450/2600MHz and 5200/5800MHz measurements. Table A.1 of [1] can be used for designing calibration waveguides with a return loss greater than 20 dB at the most important frequencies used for personal wireless communications, and better than 15dB for frequencies greater than 5GHz. Values for the penetration depth for these specific fixtures and tissue-simulating mixtures are also listed in Table A.1.

For 450 MHz calibrations, a slightly different technique must be used — the equatorial response of the probe-under-test is compared with the equivalent response of a probe whose 450MHz characteristics have already been determined by NPL. The conversion factor of the probe-under-test can then be deduced.

According to [1], this calibration technique provides excellent accuracy, with standard uncertainty of less than 3.6% depending on the frequency and medium. The calibration itself is reduced to power measurements traceable to a standard calibration procedure. The practical limitation to the frequency band of 800 to 5800 MHz because of the waveguide size is not severe in the context of compliance testing.

CALIBRATION FACTORS MEASURED FOR PROBE S/N L0011

The probe was calibrated at 835, 900, 1800, 1900, 2100 and 2450 MHz in liquid samples representing brain liquid at these frequencies.

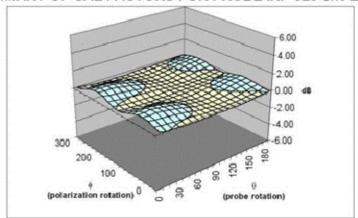
The calibration was for CW signals only, and the horizontal axis of the probe was parallel to the direction of propagation of the incident field i.e. end-on to the incident radiation.

The reference point for the calibration is in the centre of the probe's crosssection at a distance of 2.7 mm from the probe tip in the direction of the probe amplifier. A value of 2.7 mm should be used for the tip to sensor offset distance in the software. The distance of 2.7mm for assembled probes has been confirmed by taking X-ray images of the probe tips (see Figure 9).

It is important that the diode compression point and air factors used in the software are the same as those quoted in the results tables, as these are used to convert the diode output voltages to a SAR value.

CALIBRATION EQUIPMENT

The Table on page 16 indicates the calibration status of all test equipment used during probe calibration.


MEASUREMENT UNCERTAINTIES

A complete measurement uncertainty analysis for the SARA2 measurement system has been published in Reference [3]. Table 10 from that document is re-created below, and lists the uncertainty factors associated just with the calibration of probes.

Source of uncertainty	Uncert ainty value ±%	Proba bility distrib ution	Divi sor	cį	Standard uncertainty ui ± %	v _i or V _{eff}
Incident or forward power	5.743	N	1.00	1	5.743	80
Refelected power	5.773	N	1.00	1	5.773	60
Liquid conductivity	1.120	N	1.00	1	1.120	845
Liquid permittivity	1.085	N	1.00	1	1.085	60
Field homgeneity	0.002	R	1.73	. 1	0.001	90
Probe positioning: +/-0.05mm	0.55	R	1.73	1	0.318	
Influence on Probe pos: 11%/mm						
Field probe linearity	4.7	R	1.73	1	2.714	90
Combined standard uncertainty		RSS			8.729	

At the 95% confidence level, therefore, the expanded uncertainty is 17.1%

SUMMARY OF CAL FACTORS FOR PROBE IXP-020 S/N L0011

Surface Isotropy diagram of IXP-020 Probe S/N L0011 at 900MHz (axial isotropy +/-0.03dB, spherical isotropy +/-0.58dB, other subsets listed below)

Measured Isotropy at 900MHz	Probe orientation range relative to dipole	(+/-) dB
	±90°	0.58
Spherical Isotropy	±60°	0.54
	±30°	0.32
	±20°	0.22
Axial Isotropy	0°	0.03

	Cha	nnel Sensitiv	ities	mpropryvijanjanjanjanjanja
	X	Y	Z	
Air Factors	69.36	84.92	85.72	(V/m) ² /mV
CW DCPs	100	100	100	mV

Freq (MHz)	SAR Conv Factor	Boundary Correction f(0)	Boundary Correction d(mm)	Notes
835	0.265	1.9	1.1	1,2
900	0.273	2.0	1.0	1,2
1800	0.327	1.3	1.3	1,2
1900	0.331	0.9	1.5	1,2
2100	0.350	1.0	1.5	1,2
2450	0.359	0.8	1.6	1,2
Notes				
1)	Calibrations	done at 22°C	+/-2°C	
2)	Waveguide o	alibration		

Probe tip radius	0 mm
X Ch. Angle to red dot	0°

PROBE SPECIFICATIONS

Indexsar probe L0011, along with its calibration, is compared with BSEN 62209-1 and IEEE standards recommendations (Refs [1] and [2]) in the Tables below. A listing of relevant specifications is contained in the tables below:

Dimensions	S/N L0011	BSEN [1]	IEEE [2]
Vertical shaft (mm)	510		
Horizontal shaft (mm)	90		
Tip length (mm)	10		
Body diameter (mm)	12		
Tip diameter (mm)	5.2	8	8
Distance from probe tip to dipole	2.7		
centers (mm)			

Dynamic range	S/N L0011	BSEN [1]	IEEE [2]
Minimum (W/kg)	0.01	<0.02	0.01
Maximum (W/kg) N.B. only measured to > 100 W/kg	>100	>100	100
on representative probes			

Isotropy (me	easured at 900MHz)	S/N L0011	BSEN [1]	IEEE [2]
	Probe at ±90°	0.58		
Probe at:	Probe at ±60°	0.54	1.0	0.50
	Probe at ±30°	0.32		
	Probe at ±20°	0.22	l	
Axia I	Probe at 0°	0.03	0.5	0.25

Construction	Each probe contains three orthogonal dipole sensors arranged on a triangular prism core, protected against static charges by built-in shielding, and covered at the tip by PEEK cylindrical enclosure material. Outer case materials are PEEK and heat-shrink sleeving.
Chemical resistance	Tested to be resistant to TWEEN and sugar/salt-based simulant liquids but probes should be removed, cleaned and dried when not in use. NOT recommended for use with glycol or soluble oil-based liquids.

REFERENCES

- [1] BSEN 62209-1:2006. Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- [2] IEEE 1528, 2003 Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- [3] Indexsar Report IXS-0300, October 2007. Measurement uncertainties for the SARA2 system assessed against the recommendations of BS EN 62209-1:2006

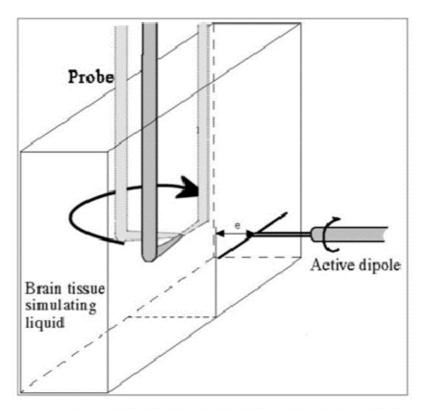


Figure 1. Spherical isotropy jig showing probe, dipole and box filled with simulated brain liquid (see Ref [2], Section A.5.2.1)

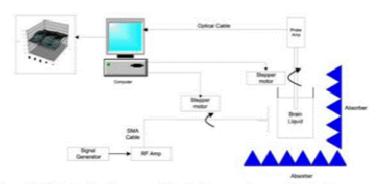


Figure 2. Schematic diagram of the test geometry used for isotropy determination

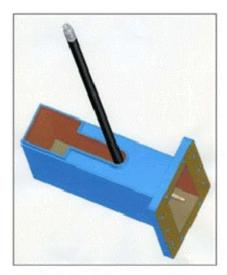


Figure 4. Schematic showing the innovative design of slot in the waveguide termination

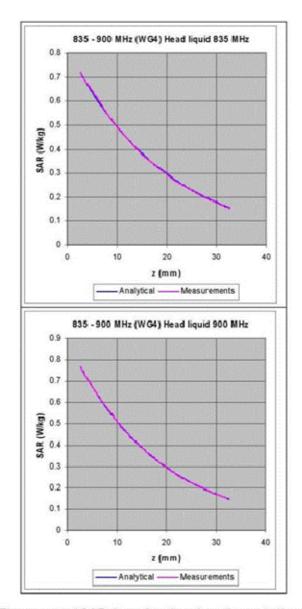
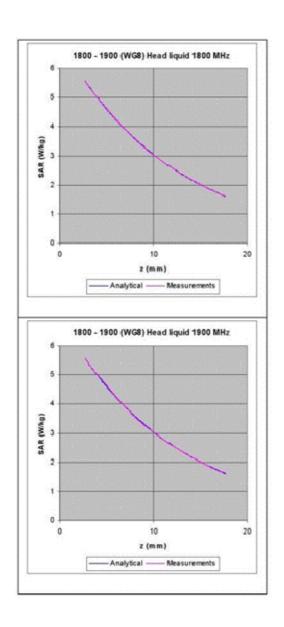



Figure 6. The measured SAR decay function along the centreline of the WG4 waveguide with conversion factors adjusted to fit to the theoretical function for the particular dimension, frequency, power and liquid properties employed.

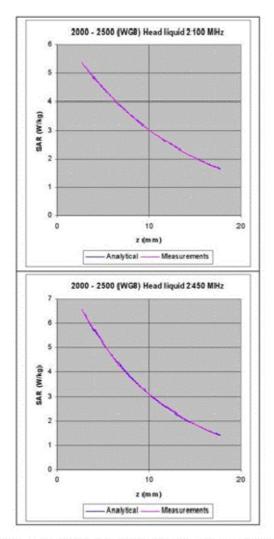


Figure 7. The measured SAR decay function along the centreline of the R22 waveguide with conversion factors adjusted to fit to the theoretical function for the particular dimension, frequency, power and liquid properties employed.

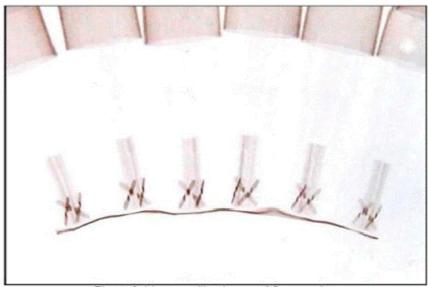


Figure 9: X-ray positive image of 5mm probes

Table indicating the dielectric parameters of the liquids used for calibrations at each frequency

Liquid used	Relative permittivity (measured)	Conductivity (S/m) (measured)	
835 MHz BRAIN	42.80	0.91	
900 MHz BRAIN	40.47	0.95	
1800 MHz BRAIN	40.01	1.42	
1900 MHz BRAIN	40.08	1.42	
2100 MHz BRAIN	41.98	1.38	
2450 MHz BRAIN	40.68	1.77	

Table of test equipment calibration status

Instrument description	Supplier / Manufacturer	Model	Serial No.	Last calibration date	Calibration due date
Power sensor	Rohde & Schwarz	NRP-Z23	100169	14/09/2010	14/9/2012
Dielectric property measurement	Indexsar	DiLine (sensor lengths: 160mm, 80mm and 60mm)	N/A	(absolute) – checked against NPL values using reference liquids	N/A
Vector network analyser	Anritsu	MS6423B	003102	17/01/2011	17/01/2012
SMA autocalibration module	Anritsu	36581KKF/1	001902	17/01/2011	17/01/2012