

Choose certainty.
Add value.

# Report On

FCC Testing of the Sharp CDMA SHI11
Tri Band CDMA (BC0/BC3, BC6) Cellular Phone with Bluetooth, WLAN & FeliCa and GPS
In accordance with FCC CFR 47 Part 15C (Bluetooth)

COMMERCIAL-IN-CONFIDENCE

FCC ID: APYHRO00149

Document 75913699 Report 07 Issue 1

June 2011



TUV Product Service Ltd, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: www.tuvps.co.uk

COMMERCIAL-IN-CONFIDENCE

**REPORT ON** FCC Testing of the Sharp CDMA SHI11 Tri Band CDMA (BC0/BC3,

BC6) Cellular Phone with Bluetooth, WLAN & FeliCa and GPS In

accordance with FCC CFR 47 Part 15C (Bluetooth)

Document 75913699 Report 07 Issue 1

June 2011

PREPARED FOR Sharp Communication Compliance Limited

Azure House Bagshot Road Bracknell Berkshire RG12 7QY

PREPARED BY

Liberton

**N** Bennett

Senior Administrator

**APPROVED BY** 

M Jenkins

**Authorised Signatory** 

**DATED** 11 June 2011

G Lawler

#### **ENGINEERING STATEMENT**

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47 Part 15C. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineer(s);

Benneti

UKAS



#### **CONTENTS**

| Section    | า                                        | Page No |
|------------|------------------------------------------|---------|
| 1          | REPORT SUMMARY                           | 3       |
| 1.1        | Introduction                             | 4       |
| 1.2        | Brief Summary of Results                 | 5       |
| 1.3        | Application Form                         |         |
| 1.4        | Product Information                      |         |
| 1.5        | Test Conditions                          |         |
| 1.6        | Deviations From the Standard             |         |
| 1.7        | Modification Record                      | 8       |
| 2          | TEST DETAILS                             | 9       |
| 2.1        | 20dB Bandwidth                           | 10      |
| 2.2        | Channel Separation                       |         |
| 2.3        | Channel Dwell Time                       | 20      |
| 2.4        | Number of Hopping Channels               |         |
| 2.5        | Radiated Emissions (Enclosure Port)      |         |
| 2.6        | Maximum Peak Conducted Output Power      | 39      |
| 2.7        | EIRP Peak Power                          | 41      |
| 2.8        | Spurious Emissions                       |         |
| 2.9        | Band Edge Emissions                      | 47      |
| 3          | TEST EQUIPMENT USED                      | 50      |
| 3.1        | Test Equipment Used                      | 51      |
| 3.2        | Measurement Uncertainty                  | 53      |
| 4          | ACCREDITATION, DISCLAIMERS AND COPYRIGHT | 54      |
| <b>4</b> 1 | Accreditation Disclaimers and Convright  | 55      |



## **SECTION 1**

#### **REPORT SUMMARY**

FCC Testing of the Sharp CDMA SHI11
Tri Band CDMA (BC0/BC3, BC6) Cellular Phone with Bluetooth, WLAN & FeliCa and GPS
In accordance with FCC CFR 47 Part 15C (Bluetooth)



#### 1.1 INTRODUCTION

The information contained in this report is intended to show verification of Sharp CDMA SHI11 Tri Band CDMA (BC0/BC3, BC6) Cellular Phone with Bluetooth, WLAN & FeliCa and GPS to the requirements of FCC CFR 47 Part 15C.

Objective To perform FCC Testing to determine the Equipment Under

Test's (EUT's) compliance with the Test Specification, for

the series of tests carried out.

Manufacturer Sharp Corporation

Manufacturing Description Tri Band CDMA (BC0/BC3, BC6) Cellular Phone with

Bluetooth, WLAN & FeliCa and GPS

Model Number(s) CDMA SHI11

Serial Number(s) SSHFA001007

SSHFA001005 SSHFA001004

Software Version A4010

Hardware Version PP1

Number of Samples Tested Three

Test Specification/Issue/Date FCC CFR 47 Part 15C: 2010

Incoming Release Application Form

Date 2011

Disposal Held Pending Disposal

Reference Number Not Applicable
Date Not Applicable

Order Number 8528

Date 10 May 2011 Start of Test 06 May 2011

Finish of Test 10 June 2011

Name of Engineer(s) S Bennett

G Lawler R Henley

Related Document(s) ANSI C63.4: 2003



#### 1.2 BRIEF SUMMARY OF RESULTS

A brief summary of results for each configuration, in accordance with FCC CFR 47 Part 15C is shown below.

| Configura | ation 1: Bluetooth with | EDR                                   |             |           |            |               |
|-----------|-------------------------|---------------------------------------|-------------|-----------|------------|---------------|
| Section   | Spec Clause             | Test Description                      | Mode        | Mod State | Result     | Base Standard |
|           | 15.247 (a)(1)           |                                       | 2402 MHz Tx | 0         | Pass       |               |
| 2.1       |                         | 20dB Bandwidth                        | 2441 MHz Tx | 0         | Pass       | ANSI C63.4    |
|           |                         |                                       | 2480 MHz Tx | 0         | Pass       |               |
|           |                         |                                       | 2402 MHz Tx | 0         | Pass       |               |
| 2.2       | 15.247 (a)(1)           | Channel Separation                    | 2441 MHz Tx | 0         | Pass       | ANSI C63.4    |
|           |                         |                                       | 2480 MHz Tx | 0         | Pass       |               |
|           |                         |                                       | 2402 MHz Tx | -         | N/A        |               |
| 2.3       | 15.247 (a)(1)(iii)      | Channel Dwell Time                    | 2441 MHz Tx | 0         | Pass       | ANSI C63.4    |
|           |                         |                                       | 2480 MHz Tx | -         | N/A        |               |
|           |                         |                                       | 2402 MHz Tx | 0         | Pass       |               |
| 2.4       | 15.247 (a)(1)(iii)      | Number of Hopping Channels            | 2441 MHz Tx | 0         | Pass       | ANSI C63.4    |
|           |                         |                                       | 2480 MHz Tx | 0         | Pass       |               |
|           | 15.247(a)(2)            |                                       | 2402 MHz Tx | 0         | Pass       |               |
| 2.5       |                         | Radiated Emissions (Enclosure Port)   | 2441 MHz Tx | 0         | Pass       | ANSI C63.4    |
|           |                         |                                       | 2480 MHz Tx | 0         | Pass       |               |
|           | 15.247 (b)(3)           |                                       | 2402 MHz Tx | 0         | Pass       |               |
| 2.6       |                         | Maximum Peak Conducted Output Power   | 2441 MHz Tx | 0         | Pass       | ANSI C63.4    |
|           |                         |                                       | 2480 MHz Tx | 0         | Pass       |               |
|           |                         |                                       | 2402 MHz Tx | 0         | Pass       |               |
| 2.7       | 15.247 (b)(4)           | 47 (b)(4) EIRP Peak Power 2441 MHz Tx | 0           | Pass      | ANSI C63.4 |               |
|           |                         |                                       | 2480 MHz Tx | 0         | Pass       |               |
|           |                         |                                       | 2402 MHz Tx | 0         | Pass       |               |
| 2.8       | 15.247(d)               | Spurious Emissions                    | 2441 MHz Tx | 0         | Pass       | ANSI C63.4    |
|           |                         |                                       | 2480 MHz Tx | 0         | Pass       |               |
|           |                         | Band Edge Emissions                   | 2402 MHz Tx | 0         | Pass       |               |
| 2.9       | 15.247(d)               |                                       | 2441 MHz Tx | -         | N/A        | ANSI C63.4    |
|           |                         |                                       | 2480 MHz Tx | 0         | Pass       |               |

N/A - Not Applicable



#### 1.3 APPLICATION FORM

| 1.5 AFFLICATION FORM                                                                                             |     |   |                                      |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|-----|---|--------------------------------------|--|--|--|--|--|
| APPLICANT'S DETAILS                                                                                              |     |   |                                      |  |  |  |  |  |
| COMPANY NAME:  Sharp Telecommunications of Europe Ltd  Azure House, Bagshot Road  Bracknell, Berkshire  RG12 7QY |     |   |                                      |  |  |  |  |  |
| NAME FOR CONTACT PURPOSES : Ken Newman                                                                           |     |   |                                      |  |  |  |  |  |
| TELEPHONE NO: 01344 301 8                                                                                        | 383 | _ | 01344 300 293<br>ken.newman@sharp.eu |  |  |  |  |  |

| EQUIPMENT INFORMATION                                                                                                                                                                         |                                           |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|--|--|
| Equipment designator:                                                                                                                                                                         |                                           |  |  |  |  |  |  |  |  |  |
| Model name/number CDMA SHI11 Identification number APYHRO00149                                                                                                                                |                                           |  |  |  |  |  |  |  |  |  |
| Supply Voltage:  [ ] AC mains State AC voltage V and AC frequency Hz [ ] DC (external) State DC voltage V and DC current A [ X ] DC (internal) State DC voltage 3.7 V and Battery type Li-ion |                                           |  |  |  |  |  |  |  |  |  |
| Frequency characteristics:                                                                                                                                                                    |                                           |  |  |  |  |  |  |  |  |  |
| Frequency range 2402 MHz to 2480 MHz                                                                                                                                                          | Channel spacing 1MHz (if channelized)     |  |  |  |  |  |  |  |  |  |
| Designated test frequencies: Bottom: 2402 MHz Middle: 2440 MHz                                                                                                                                | Top: 2480 MHz                             |  |  |  |  |  |  |  |  |  |
| Power characteristics:                                                                                                                                                                        |                                           |  |  |  |  |  |  |  |  |  |
| Maximum transmitter power 6 dBm                                                                                                                                                               | Minimum transmitter power W (if variable) |  |  |  |  |  |  |  |  |  |
| [ X ] Continuous transmission [ ] Intermittent transmission State duty cycle  If intermittent, can transmitter be set to continuous transmit test mode? Y/N  Antenna characteristics:         |                                           |  |  |  |  |  |  |  |  |  |
| [ ] Antenna connector State impedance ohm [ X ] Temporary antenna connector State impedance 50 ohm [ ] Integral antenna State gain 2.14 dBi                                                   |                                           |  |  |  |  |  |  |  |  |  |
| Modulation characteristics:                                                                                                                                                                   |                                           |  |  |  |  |  |  |  |  |  |
| [ ] Amplitude<br>[ X ] Frequency<br>[ X ] Phase                                                                                                                                               | [ ] Other<br>Details:                     |  |  |  |  |  |  |  |  |  |
| Can the transmitter operate un-modulated?  ITU Class of emission:                                                                                                                             |                                           |  |  |  |  |  |  |  |  |  |
| Extreme conditions:                                                                                                                                                                           |                                           |  |  |  |  |  |  |  |  |  |
| Maximum temperature +60 °C Minimum temperature -20 °C Minimum supply voltage 4.0 V Minimum supply voltage 3.7 V                                                                               |                                           |  |  |  |  |  |  |  |  |  |



#### 1.4 PRODUCT INFORMATION

#### 1.4.1 Technical Description

The Equipment Under Test (EUT) was a Sharp CDMA SHI11 Tri Band CDMA (BC0/BC3, BC6) Cellular Phone with Bluetooth, WLAN & FeliCa and GPS. A full technical description can be found in the manufacturer's documentation.

#### 1.4.2 Test Configuration

Configuration 1: Bluetooth with EDR

The EUT was configured in accordance with FCC CFR 47 Part 15C.

#### 1.4.3 Modes of Operation

Modes of operation of each EUT during testing were as follows:

Mode 1 – 2402 MHz Tx

Mode 2 – 2441 MHz Tx

Mode 3 – 2480 MHz Tx

Mode 4 - Hopping on all channels

Information on the specific test modes utilised are detailed in the test procedure for each individual test.



#### 1.5 TEST CONDITIONS

For all tests the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated in a shielded enclosure or test laboratories as appropriate.

The EUT was powered from a 3.7 V DC Supply.

FCC Accreditation 90987 Octagon House, Fareham Test Laboratory

#### 1.6 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standards or test plan were made during testing.

#### 1.7 MODIFICATION RECORD

No modifications were made to the EUT during testing.



## **SECTION 2**

## **TEST DETAILS**

FCC Testing of the Sharp CDMA SHI11
Tri Band CDMA (BC0/BC3, BC6) Cellular Phone with Bluetooth, WLAN & FeliCa and GPS In accordance with FCC CFR 47 Part 15C (Bluetooth)



#### 2.1 20dB BANDWIDTH

#### 2.1.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (a)(1)

#### 2.1.2 Equipment Under Test

CDMA SHI11, S/N: SSHFA001007

#### 2.1.3 Date of Test and Modification State

12 May 2011 - Modification State 0

#### 2.1.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.1.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15.

The EUT was transmitted at maximum power via a cable to the Spectrum Analyser. The Analyser settings were adjusted to display the resultant trace on screen. The peak point of the trace was measured and the markers positioned to give the -6dBc points of the displayed spectrum.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

- Mode 2

- Mode 3

#### 2.1.6 Environmental Conditions

12 May 2011

Ambient Temperature 21.1°C

Relative Humidity 49.8%

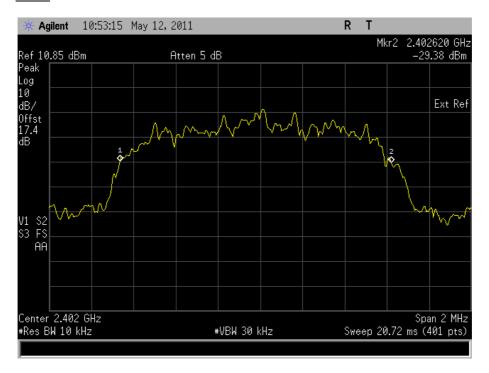


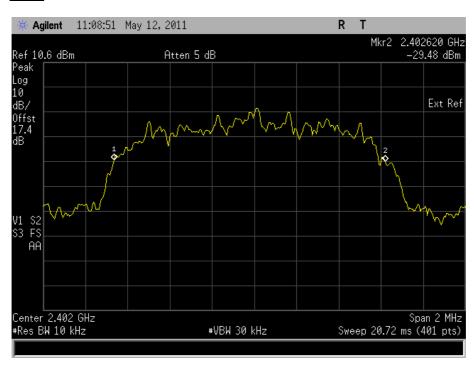
#### 2.1.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C for 20dB Bandwidth.

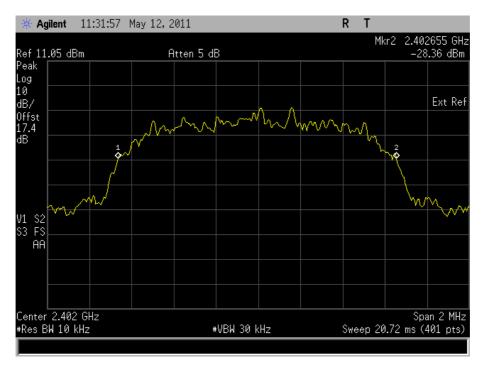
The test results are shown below.

4.0 V DC Supply


Configuration 1 - Modes 1, 2 and 3


| Frequency (MHz) | Data Rate (Mbps) | 20dB Bandwidth (kHz) |  |  |  |
|-----------------|------------------|----------------------|--|--|--|
|                 | 2DH1             | 1285                 |  |  |  |
| 2402            | 2DH3             | 1285                 |  |  |  |
|                 | 2DH5             | 1320                 |  |  |  |
|                 | 2DH1             | 1290                 |  |  |  |
| 2441            | 2DH3             | 1325                 |  |  |  |
|                 | 2DH5             | 1320                 |  |  |  |
|                 | 2DH1             | 1285                 |  |  |  |
| 2480            | 2DH3             | 1325                 |  |  |  |
|                 | 2DH5             | 1325                 |  |  |  |

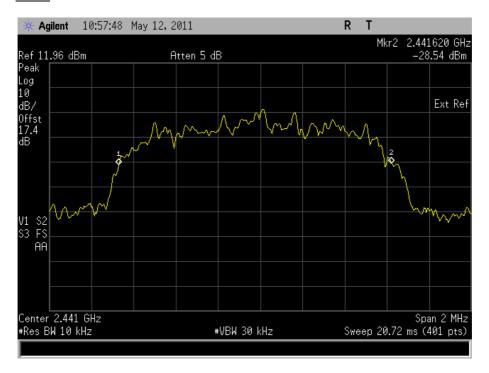


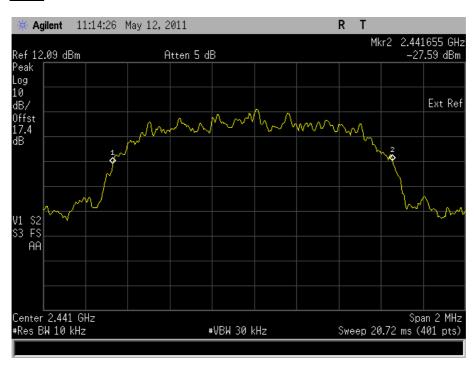

## 2402 MHz

## 2DH1

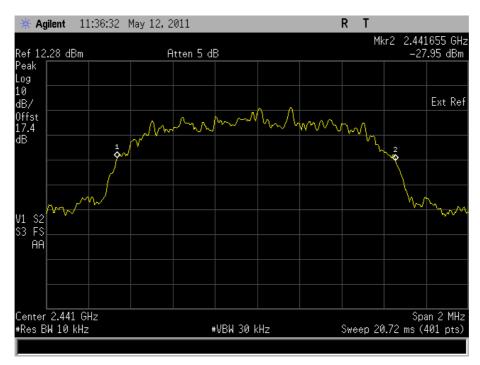






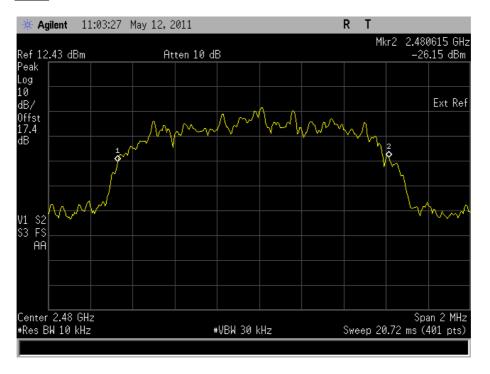


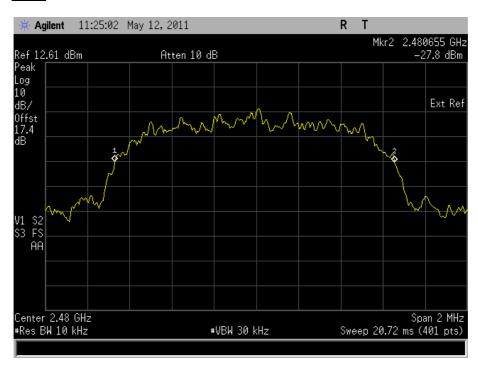


#### 2441 MHz

## 2DH1



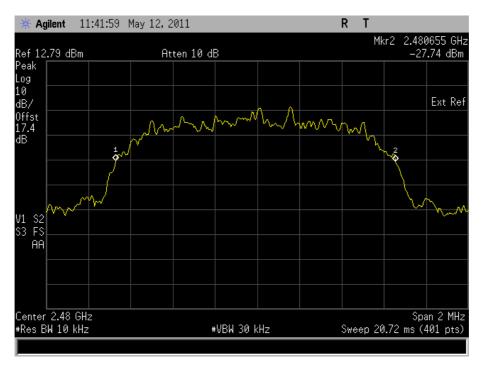







#### 2480 MHz


## 2DH1







## 2DH5



## Limit Clause

The minimum 6 dB Bandwidth shall be at least 500 kHz.



#### 2.2 CHANNEL SEPARATION

#### 2.2.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (a)(1)

#### 2.2.2 Equipment Under Test

CDMA SHI11, S/N: SSHFA001005

#### 2.2.3 Date of Test and Modification State

06 May 2011 - Modification State 0

#### 2.2.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.2.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15.

The EUT was transmitted at maximum power into a Spectrum Analyser. The trace was set to Max Hold to store several adjacent channels on screen. Using the marker delta function, the markers were positioned to show the separation between adjacent channels.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

- Mode 2

- Mode 3

### 2.2.6 Environmental Conditions

06 May 2011

Ambient Temperature 24.1°C

Relative Humidity 34.2%




#### 2.2.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C for Channel Separation.

The test results are shown below.

4.0 V DC Supply

Configuration 1 - Modes 1, 2 and 3



### Limit Clause

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125 W.

The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.



#### 2.3 CHANNEL DWELL TIME

#### 2.3.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (a)(1)(iii)

#### 2.3.2 Equipment Under Test

CDMA SHI11, S/N: SSHFA001005

#### 2.3.3 Date of Test and Modification State

06 May 2011 - Modification State 0

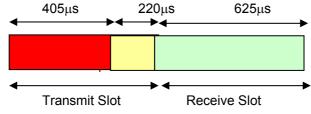
#### 2.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.3.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15.

#### DH1


The Bluetooth system hops at a rate of 1600 times per second. Thus, this equates to 1600 timeslots in 1 second.

The DH1 data rate operates on a Transmit on 1 timeslot and Receive on 1 timeslot basis. Thus, in 1 second, there are 800 Transmit timeslots and 800 Receive timeslots.

Thus:

1 Timeslot = 
$$\frac{1}{1600}$$
 =  $625\mu s$ 

In 1 transmit timeslot, the transmit on time is only  $405\mu s$ .  $220\mu s$  is reserved as off time for the synthesizer to re-tune ready for the next transmit frequency. The following timeslot is a receive slot. This process continues assuming the data rate remains the same.





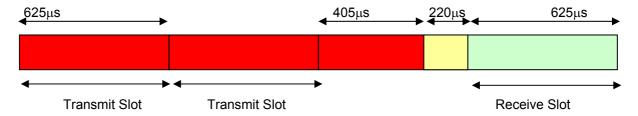
## DH1 Timeslot Arrangement Showing One Complete Transmit and Receive Cycle

So, with 800 Tx and 800 Rx timelsots, the transmitter is on for 800 x  $405\mu s = 0.324$  seconds.

So, in 32 seconds, the transmitter dwell time per channel is:

$$32 \times 4.05 \text{ms} = 0.1296 \text{ seconds}$$

#### DH3


With data rate DH3, the data payload is higher and can use up to 3 timeslots. When more than one timeslot is used, the frequency does not hop and transmission is continuous on all 3 slots, (ie. no receive slot in-between the 3 transmit slots). The  $220\mu s$  off time for synthesizer retuning at the end of a slot is only used on the final slot. Thus, for one cycle, there are 3 transmit timeslots. 2 are  $625\mu s$  long and the final slot is transmitting for  $405\mu s$ .

The DH3 data rate operates on a Transmit on 3 timeslots and Receives on 1 timeslot basis, (assuming maximum data payload). The frequency-hopping rate is the same. Thus, in 1 second, there are 1200 Transmit timeslots and 400 Receive timeslots.

Thus:

1 Timeslot = 
$$\frac{1}{1600}$$
 = 625 $\mu$ s

The first 2 Transmit timeslots are transmitting for the complete  $625\mu s$ . In the third transmit slot, the transmit on time is only  $405\mu s$ .  $220\mu s$  is reserved as off time for the synthesizer to re-tune ready for the next transmit frequency. The following timeslot is a receive slot. This process continues assuming the data rate remains the same.





## <u>DH3 Timeslot Arrangement Showing One Complete Transmit and Receive Cycle, (Maximum Payload)</u>

Thus, the transmitter for one complete transmit and receive cycle would be on for:

$$Tx$$
 (2 x 625µs) + (1 x 405µs) = 1.655ms

So:

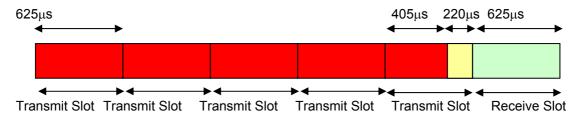
 $800 \times 625 \mu s = 0.5 \text{ seconds}$  $400 \times 405 \mu s = 0.162 \text{ seconds}$ 

Thus: 0.5 + 0.162 = 0.662 seconds

So, in 32 seconds, the transmitter dwell time per channel is:

$$32 \times 8.275 \text{ms} = 0.2648 \text{ seconds}$$

#### DH5


With data rate DH5, the data payload is higher and can use up to 5 timeslots. When more than one timeslot is used, the frequency does not hop and transmission is continuous on all 5 slots, (ie. no receive slot in-between the 5 transmit slots). The  $220\mu s$  off time for synthesizer retuning at the end of a slot is only used on the final slot. Thus, for one cycle, there are 5 transmit timeslots. 4 are  $625\mu s$  long and the final slot is transmitting for  $405\mu s$ .

The DH5 data rate operates on a Transmit on 5 timeslots and Receives on 1 timeslot basis, (assuming maximum data payload). The frequency-hopping rate is the same. Thus, in 1 second, there are 1333.3 Transmit timeslots and 266.7 Receive timeslots.

Thus:

1 Timeslot = 
$$\frac{1}{1600}$$
 = 625 $\mu$ s

The first 4 Transmit timeslots are transmitting for the complete  $625\mu s$ . In the fifth transmit slot, the transmit on time is only  $405\mu s$ .  $220\mu s$  is reserved as off time for the synthesizer to re-tune ready for the next transmit frequency. The following timeslot is a receive slot. This process continues assuming the data rate remains the same.





## <u>DH5 Timeslot Arrangement Showing One Complete Transmit and Receive Cycle, (Maximum Payload)</u>

Thus, the transmitter for one complete transmit and receive cycle would be on for:

$$Tx$$
 (2 x 625µs) + (1 x 405µs) = 2.905ms

So:

 $1066.7 \times 625 \mu s$  = 0.666 seconds  $266.7 \times 405 \mu s$  = 0.108 seconds

Thus: 0.666 + 0.108 = 0.774 seconds

So, in 32 seconds, the transmitter dwell time per channel is:

 $32 \times 9.675 \text{ms} = 0.31 \text{ seconds}$ 

The test was performed with the EUT in the following configurations and modes of operation:

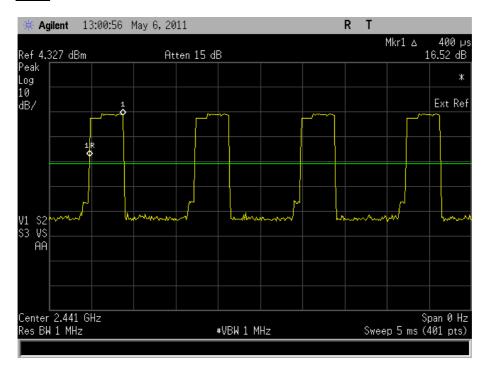
Configuration 1 - Mode 2

#### 2.3.6 Environmental Conditions

06 May2011

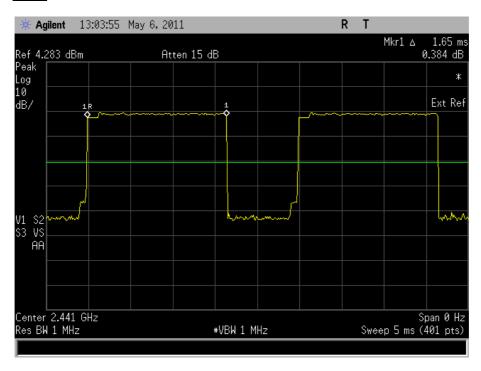
Ambient Temperature 24.1°C Relative Humidity 34.2%

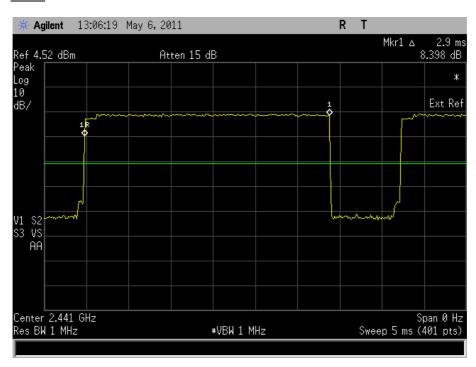



#### 2.3.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C for Channel Dwell Time.

The test results are shown below.


4.0 V DC Supply


Configuration 1 - Mode 2





## 2DH3







#### Limit Clause

Frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that a minimum of 15 hopping channels are used.



#### 2.4 NUMBER OF HOPPING CHANNELS

#### 2.4.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (a)(1)(iii)

#### 2.4.2 Equipment Under Test

CDMA SHI11, S/N: SSHFA001005

#### 2.4.3 Date of Test and Modification State

06 May 2011 - Modification State 0

#### 2.4.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.4.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15.

The EUT was connected to a Spectrum Analyser via a cable. The EUT was set to transmit on maximum power and hopping on all channels. The span was adjusted to show the individual channels. The display trace was set to Max Hold and the plots recorded.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

- Mode 2

- Mode 3

### 2.4.6 Environmental Conditions

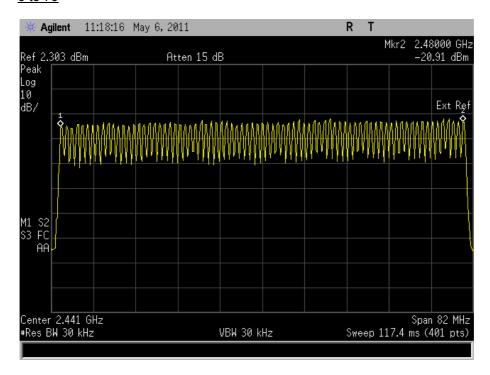
06 May 2011

Ambient Temperature 24.1°C

Relative Humidity 34.2%



#### 2.4.7 Test Results


For the period of test the EUT met the requirements of FCC CFR 47 Part 15C for Number of Hopping Channels.

The test results are shown below.

4.0 V DC Supply

Configuration 1 - Modes 1, 2 and 3

#### 0 to 79



<u>Limit</u>

≥ 15 channels



#### 2.5 RADIATED EMISSIONS (ENCLOSURE PORT)

#### 2.5.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (a)(2)

#### 2.5.2 Equipment Under Test

CDMA SHI11, S/N: SSHFA001004

#### 2.5.3 Date of Test and Modification State

31 May and 01 June 2011 - Modification State 0

#### 2.5.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.5.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of ANSI C63.4.

A preliminary profile of the Spurious Radiated Emissions was obtained by operating the EUT on a remotely controlled turntable within a semi-anechoic chamber. Measurements of emissions from the EUT were obtained with the Measurement Antenna in both Horizontal and Vertical Polarisations. The profiling produced a list of the worst-case emissions together with the EUT azimuth and antenna polarisation.

Using the information from the preliminary profiling of the EUT, the list of emissions was then confirmed or updated under Alternative Open Site conditions. Emission levels were maximised by adjusting the antenna height, antenna polarisation and turntable azimuth.

Emissions within the restricted bands defined in 15.205 were measured in accordance with 15.209. Emissions measured below 1GHz employed a quasi peak detector, in accordance with 15.35(a). Emissions measured above 1GHz employed an average detector as defined in 15.35(b). The peak level of the emission was also measured to ensure that a difference of 20dB from the average level was not exceeded, as defined in 15.35(b). Emissions identified within the range 30MHz – 1GHz were then formally measured using a CISPR Quasi-Peak detector. Other emissions from 30MHz to 25GHz excluding the restricted bands were measured using a peak detector.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

- Mode 2

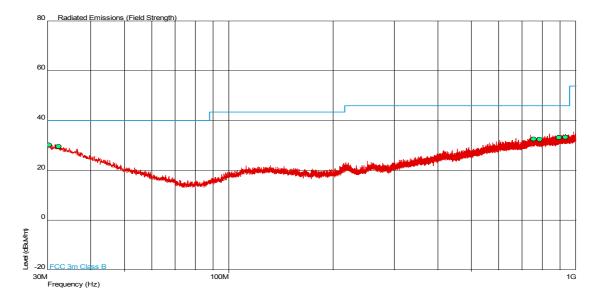
- Mode 3



#### 2.5.6 Environmental Conditions

31 May 2011 01 June 2011

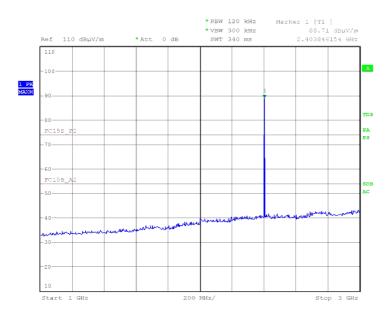
Ambient Temperature 19.5°C 19.6°C Relative Humidity 38.0% 43.0%


#### 2.5.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C for Radiated Emissions (Enclosure Port).

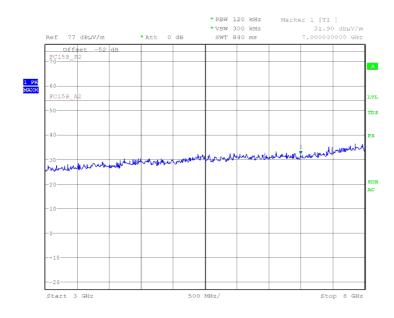
The test results are shown below.

Configuration 1 - Mode 1


## 30 MHz to 1 GHz



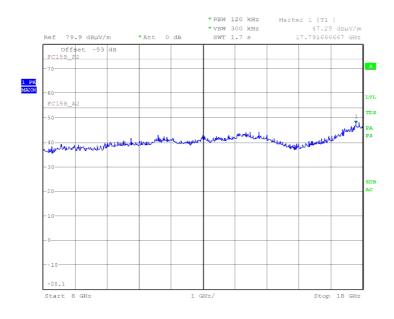
| Frequency<br>(MHz) | QP Level<br>(dBµV/m) | QP<br>Level<br>(µV/m) | QP Limit<br>(dBµV/m) | QP<br>Limit<br>(µV/m) | QP<br>Margin<br>(dBµV/m) | QP<br>Margin<br>(μV/m) | Angle<br>(Deg) | Height (m) | Polarity   |
|--------------------|----------------------|-----------------------|----------------------|-----------------------|--------------------------|------------------------|----------------|------------|------------|
| 30.388             | 30.2                 | 32.4                  | 40.0                 | 100                   | -9.8                     | 67.6                   | 225            | 1.00       | Vertical   |
| 32.328             | 29.6                 | 30.2                  | 40.0                 | 100                   | -10.4                    | 69.8                   | 180            | 1.00       | Horizontal |
| 755.027            | 32.6                 | 42.7                  | 46.0                 | 200                   | -13.4                    | 157.3                  | 45             | 1.00       | Vertical   |
| 786.164            | 32.4                 | 41.7                  | 46.0                 | 200                   | -13.6                    | 158.3                  | 180            | 1.00       | Vertical   |
| 893.591            | 33.2                 | 45.7                  | 46.0                 | 200                   | -12.8                    | 154.3                  | 90             | 1.00       | Vertical   |
| 933.458            | 33.4                 | 46.8                  | 46.0                 | 200                   | -12.6                    | 153.2                  | 0              | 1.00       | Vertical   |




## 1GHz to 3GHz

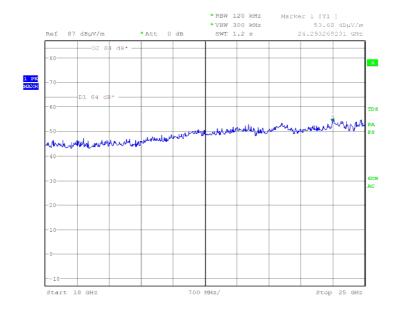


Date: 31.MAY.2011 17:58:53


## 3GHz to 8GHz



Date: 31.MAY.2011 19:49:31

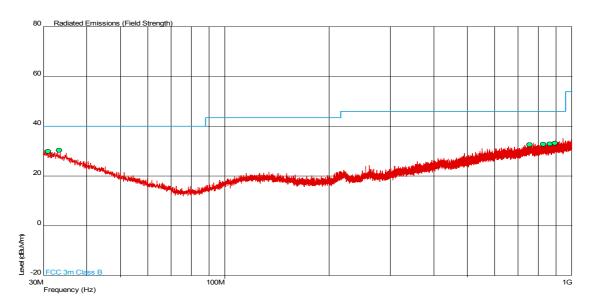



## 8GHz to 18GHz



Date: 31.MAY.2011 20:18:43

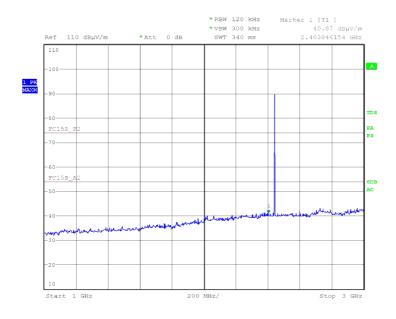
#### 18GHz to 25GHz




Date: 1.JUN.2011 21:28:37

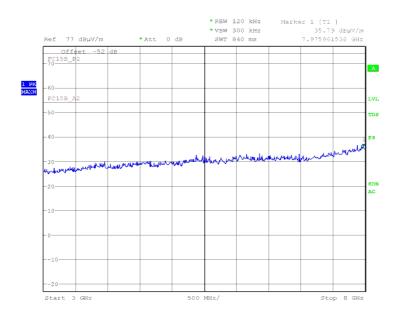


## Configuration 1 - Mode 2


## 30 MHz to 1 GHz



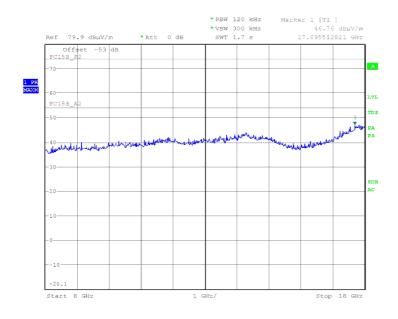
| Frequency<br>(MHz) | QP Level<br>(dBµV/m) | QP Level<br>(µV/m) | QP Limit<br>(dBµV/m) | QP Limit<br>(μV/m) | QP Margin<br>(dBµV/m) | QP Margin<br>(μV/m) | Angle (deg) | Height (m) | Polarity   |
|--------------------|----------------------|--------------------|----------------------|--------------------|-----------------------|---------------------|-------------|------------|------------|
| 30.922             | 29.9                 | 31.3               | 40.0                 | 100                | -10.1                 | 68.7                | 180         | 1.00       | Vertical   |
| 33.298             | 30.4                 | 33.1               | 40.0                 | 100                | -9.6                  | 66.9                | 180         | 1.00       | Horizontal |
| 754.978            | 32.6                 | 42.7               | 46.0                 | 200                | -13.4                 | 157.3               | 180         | 1.00       | Vertical   |
| 827.583            | 32.8                 | 43.7               | 46.0                 | 200                | -13.2                 | 156.3               | 0           | 1.00       | Vertical   |
| 865.025            | 32.9                 | 44.2               | 46.0                 | 200                | -13.1                 | 155.8               | 0           | 1.00       | Vertical   |
| 892.864            | 33.1                 | 45.2               | 46.0                 | 200                | -12.9                 | 154.8               | 180         | 1.00       | Horizontal |




## 1GHz to 3GHz

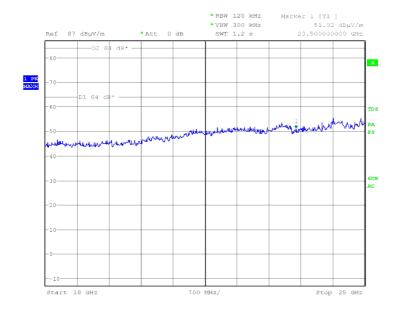


Date: 31.MAY.2011 18:02:26


#### 3GHz to 8GHz



Date: 31.MAY.2011 19:39:09

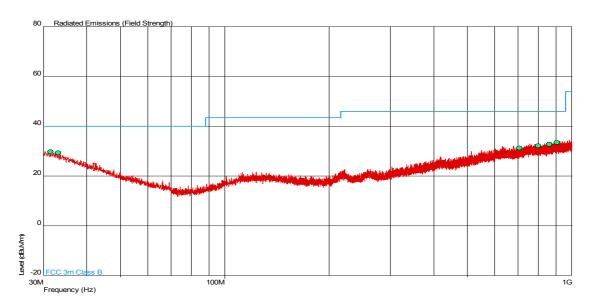



## 8GHz to 18GHz



Date: 31.MAY.2011 20:35:47

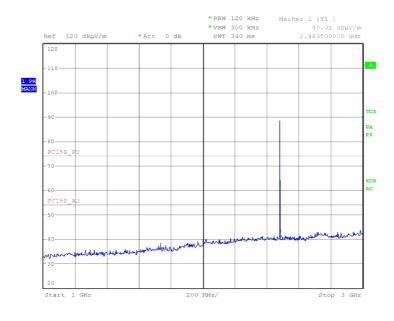
#### 18GHz to 25GHz




Date: 1.JUN.2011 21:41:48

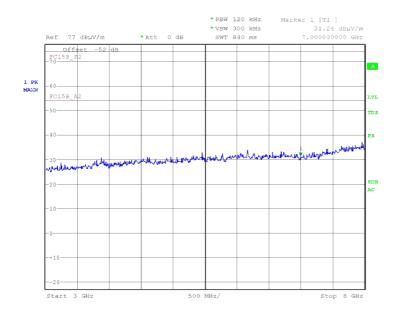


# Configuration 1 - Mode 3


# 30 MHz to 1 GHz



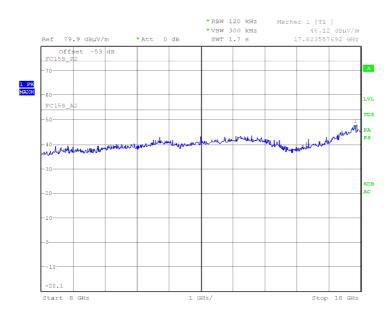
| Frequency<br>(MHz) | QP Level<br>(dBµV/m) | QP Level<br>(µV/m) | QP Limit<br>(dBµV/m) | QP Limit<br>(μV/m) | QP Margin<br>(dBµV/m) | QP Margin<br>(μV/m) | Angle (deg) | Height (m) | Polarity   |
|--------------------|----------------------|--------------------|----------------------|--------------------|-----------------------|---------------------|-------------|------------|------------|
| 31.504             | 29.7                 | 30.5               | 40.0                 | 100                | -10.3                 | 69.5                | 0           | 1.00       | Vertical   |
| 33.104             | 29.3                 | 29.2               | 40.0                 | 100                | -10.7                 | 70.8                | 180         | 1.00       | Horizontal |
| 706.624            | 31.3                 | 36.7               | 46.0                 | 200                | -14.7                 | 163.3               | 0           | 1.00       | Horizontal |
| 799.841            | 32.2                 | 40.7               | 46.0                 | 200                | -13.8                 | 159.3               | 180         | 1.00       | Horizontal |
| 862.066            | 32.7                 | 43.2               | 46.0                 | 200                | -13.3                 | 156.8               | 180         | 1.00       | Horizontal |
| 907.123            | 33.5                 | 47.3               | 46.0                 | 200                | -12.5                 | 152.7               | 0           | 1.00       | Horizontal |




# 1GHz to 3GHz

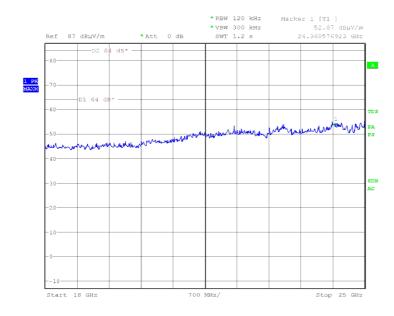


Date: 31.MAY.2011 18:57:15


# 3GHz to 8GHz



Date: 31.MAY.2011 19:33:35




# 8GHz to 18GHz



Date: 31.MAY.2011 20:57:23

# 18GHz to 25GHz



Date: 1.JUN.2011 21:56:01



#### 2.6 MAXIMUM PEAK CONDUCTED OUTPUT POWER

## 2.6.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (b)(3)

## 2.6.2 Equipment Under Test

CDMA SHI11, S/N: SSHFA001007

#### 2.6.3 Date of Test and Modification State

12 May 2011 - Modification State 0

#### 2.6.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

## 2.6.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15.

The EUT was transmitted at maximum power via a cable to the Peak Power Analyser. The Analyser settings were adjusted to display the resultant trace on screen and a reference level offset was entered to account for the measurement path loss. The measurement bandwidth was set according to the signal being measured and the peak and average levels were recorded.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

- Mode 2

- Mode 3

## 2.6.6 Environmental Conditions

12 May 2011

Ambient Temperature 21.1°C

Relative Humidity 49.8%



#### 2.6.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C for Maximum Peak Conducted Output Power.

The test results are shown below.

4.0 V DC Supply

Configuration 1 - Modes 1, 2 & 3

| Modulation Data<br>Rate (Mbps) | Maximum Peak Conducted Output Power |          |          |          |          |          |  |  |
|--------------------------------|-------------------------------------|----------|----------|----------|----------|----------|--|--|
|                                | mW                                  |          |          | dBm      |          |          |  |  |
|                                | 2402 MHz                            | 2441 MHz | 2480 MHz | 2402 MHz | 2441 MHz | 2480 MHz |  |  |
| 2DH1                           | 0.91                                | 2.26     | 2.99     | 1.23     | 1.68     | 1.99     |  |  |
| 2DH3                           | 0.91                                | 2.39     | 3.21     | 1.23     | 1.73     | 2.09     |  |  |
| 2DH5                           | 1.14                                | 2.36     | 3.08     | 1.30     | 1.72     | 2.03     |  |  |

## **Limit Clause**

The maximum peak conducted output power of the intentional radiator shall not exceed the folloing:

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt.

For all other frequency hopping systems int eh 2400-2483.5 MHz band: 0.125 watts.



#### 2.7 EIRP PEAK POWER

#### 2.7.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (b)(4)

## 2.7.2 Equipment Under Test

CDMA SHI11, S/N: SSHFA001004

#### 2.7.3 Date of Test and Modification State

31 May 2011 - Modification State 0

#### 2.7.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

## 2.7.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of ANSI C63.4.

The EUT was placed on a remotely controlled turntable within a semi-anechoic chamber. Measurements of the carrier frequency from the EUT were maximised by adjusting the antenna height, antenna polarisation and turntable azimuth.

The measurement was performed with a peak detector and the trace set to max hold using a Resolution and Video bandwidth of 1 MHz.

A substitution was then performed by replacing the EUT with a substitution antenna and signal generator. The signal generator level was increased to achieve the same raw result as the EUT. Cable loss and antenna gain was included to obtain the result.

A wideband power metre was then used to apply a correction factor to achieve the final result.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

- Mode 2

- Mode 3

#### 2.7.6 Environmental Conditions

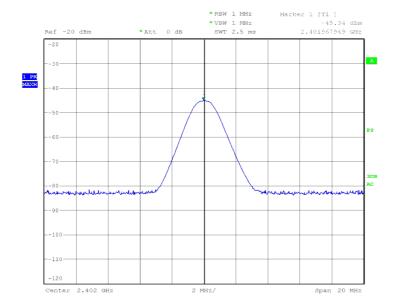
Relative Humidity

31 May 2011

38.0%

Ambient Temperature 19.5°C



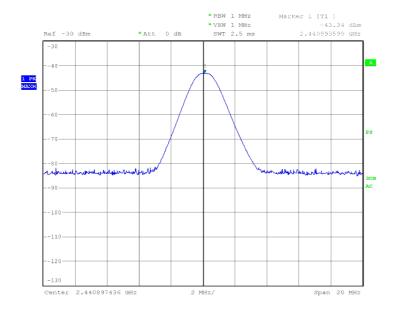

## 2.7.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C for EIRP Peak Power.

The test results are shown below.

# Configuration 1 - Mode 1

| Freq<br>GHz | Result<br>EIRP<br>dBm | Limit<br>EIRP<br>dBm | Result<br>EIRP<br>mW | Limit<br>EIRP<br>mW |
|-------------|-----------------------|----------------------|----------------------|---------------------|
| 2.402       | -3.1                  | 36.0                 | 0.490                | 4000                |

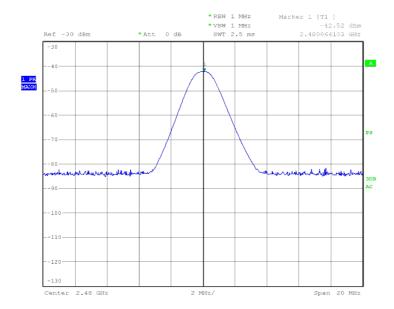



Date: 31.MAY.2011 17:41:52



# Configuration 1 - Mode 2

| Freq<br>GHz | Result<br>EIRP<br>dBm | Limit<br>EIRP<br>dBm | Result<br>EIRP<br>mW | Limit<br>EIRP<br>mW |
|-------------|-----------------------|----------------------|----------------------|---------------------|
| 2.441       | -1.4                  | 36.0                 | 0.724                | 4000                |




Date: 31.MAY.2011 18:13:59



# Configuration 1 - Mode 3

| Freq<br>GHz | Result<br>EIRP<br>dBm | Limit<br>EIRP<br>dBm | Result<br>EIRP<br>mW | Limit<br>EIRP<br>mW |
|-------------|-----------------------|----------------------|----------------------|---------------------|
| 2.480       | -0.9                  | 36.0                 | 0.813                | 4000                |



Date: 31.MAY.2011 18:41:46



#### 2.8 SPURIOUS EMISSIONS

#### 2.8.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (d)

## 2.8.2 Equipment Under Test

CDMA SHI11, S/N: SSHFA001007

#### 2.8.3 Date of Test and Modification State

10 June 2011 - Modification State 0

#### 2.8.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

## 2.8.5 Test Method and Operating Modes

The test was applied in accordance with FCC CFR 47 Part 15.

In accordance with Part 15.247(d), the Spurious Conducted Emissions from the antenna terminal were measured. The transmitter output power was attenuated using a combination of filters and attenuators and the frequency spectrum investigated from 9 kHz to 25 GHz. The EUT was set to transmit on full power. The resolution and video bandwidths were set to 100 kHz in accordance with Part 15.247. The spectrum analyser detector was set to Max Hold.

With the EUT transmitting at maximum power, the Spectrum Analyser was set to Max Hold and the fundamental peak measured in a RBW and VBW of 100 kHz. This level was used to determine the limit line as displayed on the plots of -20dBc.

The maximum path loss across each measurement band was used as the reference level offset to ensure worst case results.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 4

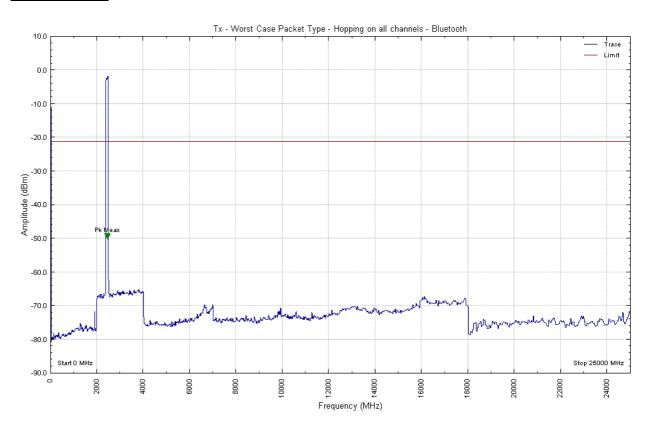
#### 2.8.6 Environmental Conditions

10 June 2011

Ambient Temperature 20.9°C Relative Humidity 40.1%



#### 2.8.7 Test Results


For the period of test the EUT met the requirements of FCC CFR 47 Part 15C for Spurious Emissions.

The test results are shown below.

4.0 V DC Supply

Configuration 1 - Modes 1, 2 and 3

#### 9 kHz to 25 GHz



## Limit Clause

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval the attenuation required shall be 30 dB instead of 20 dB.



#### 2.9 BAND EDGE EMISSIONS

## 2.9.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (d)

## 2.9.2 Equipment Under Test

CDMA SHI11, S/N: SSHFA001004

#### 2.9.3 Date of Test and Modification State

31 May 2011 - Modification State 0

#### 2.9.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

## 2.9.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of ANSI C63.4.

The band edge measurements were performed in accordance with ANSI C63.10, Clause 6.9.3. The results were analysed to ensure compliance with restricted bands. The EUT was set to the lowest and highest operating frequencies.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1 - Mode 3

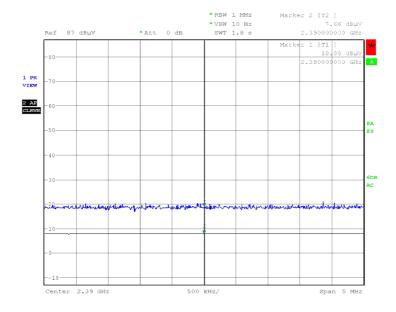
# Environmental Conditions

2.9.6

31 May 2011

Ambient Temperature 19.5°C Relative Humidity 38.0%



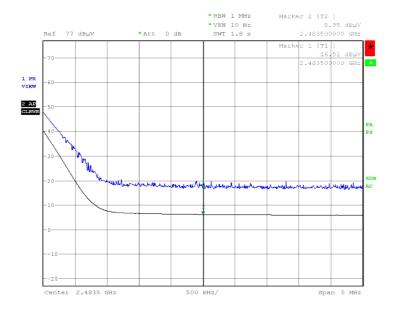

#### 2.9.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C for Band Edge Emissions.

The test results are shown below.

# Configuration 1 - Mode 1

| Freq in<br>GHz | Polarisation | Final Peak<br>dBµV/m | Peak Limit<br>dBµV/m | Final<br>Average<br>dBµV/m | Average<br>Limit<br>dBµV/m |
|----------------|--------------|----------------------|----------------------|----------------------------|----------------------------|
| 2.402          | Horizontal   | 45.6                 | 74.0                 | 33.3                       | 54.0                       |




Date: 31.MAY.2011 17:48:16



# Configuration 1 - Mode 3

| Freq in<br>GHz | Polarisation | Final Peak<br>dBµV/m | Peak Limit<br>dBµV/m | Final<br>Average<br>dBµV/m | Average<br>Limit<br>dBµV/m |
|----------------|--------------|----------------------|----------------------|----------------------------|----------------------------|
| 2.480          | Horizontal   | 45.8                 | 74.0                 | 33.5                       | 54.0                       |



Date: 31.MAY.2011 18:54:01



# **SECTION 3**

# **TEST EQUIPMENT USED**



## 3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

| Instrument                               | Manufacturer         | Type No.                   | TE No.       | Calibration<br>Period<br>(months) | Calibration<br>Due     |
|------------------------------------------|----------------------|----------------------------|--------------|-----------------------------------|------------------------|
| Section 2.1 - 20 dB Bandwidth            | 1                    |                            |              |                                   |                        |
| Multimeter                               | Iso-tech             | IDM-101                    | 466          | 12                                | 2-Mar-2012             |
| Attenuator (10dB, 10W)                   | Weinschel            | 23-10-34                   | 470          | 12                                | 23-Jun-2011            |
| Spectrum Analyser                        | Hewlett Packard      | E4407B                     | 1154         | 12                                | 17-Jun-2011            |
| Hygrometer                               | Rotronic             | A1                         | 1388         | 12                                | 10-Jul-2011            |
| Power Supply                             | Iso-tech             | IPS 2010                   | 2439         | -                                 | O/P Mon                |
| Power Meter                              | Rohde & Schwarz      | NRP                        | 3491         | 12                                | 19-Apr-2012            |
| Wideband Power Sensor,<br>50MHz - 18GHz  | Rohde & Schwarz      | NRP-Z81                    | 3492         | 12                                | 19-Apr-2012            |
| Vector Signal Generator                  | Rohde & Schwarz      | SMU 200A                   | 3493         | 12                                | 10-Aug-2011            |
| Combiner/Splitter                        | Weinschel            | 1506A                      | 3877         | 12                                | 22-Feb-2012            |
| Section 2.2 - Channel Separati           | ion                  |                            |              |                                   |                        |
| Climatic Chamber                         | Votsch               | VT4002                     | 161          | -                                 | O/P Mon                |
| Multimeter                               | Iso-tech             | IDM-101                    | 466          | 12                                | 2-Mar-2012             |
| Attenuator (10dB, 10W)                   | Weinschel            | 23-10-34                   | 470          | 12                                | 23-Jun-2011            |
| Spectrum Analyser                        | Hewlett Packard      | E4407B                     | 1154         | 12                                | 17-Jun-2011            |
| Power Supply                             | Iso-tech             | IPS 2010                   | 2439         | -                                 | O/P Mon                |
| Hygromer                                 | Rotronic             | A1                         | 2677         | 12                                | 20-Jan-2012            |
| Thermocouple Thermometer                 | Fluke                | 51                         | 3173         | 12                                | 12-Jul-2011            |
| Vector Signal Generator                  | Rohde & Schwarz      | SMU 200A                   | 3493         | 12                                | 10-Aug-2011            |
| Section 2.3 - Channel Dwell Ti           |                      |                            |              |                                   |                        |
| Climatic Chamber                         | Votsch               | VT4002                     | 161          | -                                 | O/P Mon                |
| Multimeter                               | Iso-tech             | IDM-101                    | 466          | 12                                | 2-Mar-2012             |
| Attenuator (10dB, 10W)                   | Weinschel            | 23-10-34                   | 470          | 12                                | 23-Jun-2011            |
| Spectrum Analyser                        | Hewlett Packard      | E4407B                     | 1154         | 12                                | 17-Jun-2011            |
| Power Supply                             | Iso-tech             | IPS 2010                   | 2439         | -                                 | O/P Mon                |
| Hygromer                                 | Rotronic             | A1                         | 2677         | 12                                | 20-Jan-2012            |
| Thermocouple Thermometer                 | Fluke                | 51                         | 3173         | 12                                | 12-Jul-2011            |
| Vector Signal Generator                  | Rohde & Schwarz      | SMU 200A                   | 3493         | 12                                | 10-Aug-2011            |
| Section 2.4 - Number of Hoppi            |                      | \/T4000                    | 104          |                                   | I 0/D 14               |
| Climatic Chamber                         | Votsch               | VT4002                     | 161          | -                                 | O/P Mon                |
| Multimeter                               | Iso-tech             | IDM-101                    | 466          | 12                                | 2-Mar-2012             |
| Attenuator (10dB, 10W)                   | Weinschel            | 23-10-34                   | 470          | 12                                | 23-Jun-2011            |
| Spectrum Analyser Power Supply           | Hewlett Packard      | E4407B<br>IPS 2010         | 1154<br>2439 | 12                                | 17-Jun-2011<br>O/P Mon |
| Hygromer                                 | Iso-tech<br>Rotronic | A1                         | 2677         | 12                                | 20-Jan-2012            |
| Thermocouple Thermometer                 | Fluke                | 51                         | 3173         | 12                                | 12-Jul-2011            |
| Vector Signal Generator                  | Rohde & Schwarz      | SMU 200A                   | 3493         | 12                                | 10-Aug-2011            |
| Section 2.5, 2.7 and 2.9 - Radia         |                      |                            |              |                                   |                        |
| Antenna (Double Ridge Guide, 1GHz-18GHz) | EMCO EMCO            | 3115                       | 235          | 12                                | 12-Nov-2011            |
| Antenna (Bilog)                          | Schaffner            | CBL6143                    | 287          | 24                                | 19-Jan-2012            |
| Antenna (Double Ridge<br>Guide)          | Q-Par Angus Ltd      | QSH 180K                   | 1511         | 24                                | 2-Aug-2012             |
| Pre-Amplifier                            | Phase One            | PS04-0086                  | 1533         | 12                                | 15-Sep-2011            |
| Pre-Amplifier                            | Phase One            | PSO4-0087                  | 1534         | 12                                | 22-Sep-2011            |
| Screened Room (5)                        | Rainford             | Rainford                   | 1545         | 24                                | 3-Feb-2014             |
| Mast Controller                          | Inn-Co GmbH          | CO 1000                    | 1606         | -                                 | TU                     |
| Signal Generator (10MHz to 40GHz)        | Rohde & Schwarz      | SMR40                      | 3171         | 12                                | 12-Aug-2011            |
| Amplifier (1 - 8GHz)                     | Phase One            | PS06-0060                  | 3175         | 12                                | 2-Jul-2011             |
| Amplifier (8 - 18GHz)                    | Phase One            | PS06-0061                  | 3176         | 12                                | 2-Jul-2011             |
| EMI Test Receiver                        | Rohde & Schwarz      | ESU40                      | 3506         | 12                                | 9-Sep-2011             |
| 3 GHz High Pass Filter                   | K&L Microwave        | 11SH10-<br>3000/X18000-O/O | 3552         | 12                                | 14-Apr-2012            |
| 9m RF Cable (N Type)                     | Rhophase             | NPS-2303-9000-<br>NPS      | 3791         | 12                                | 10-Aug-2011            |
| Tilt Antenna Mast                        | maturo Gmbh          | TAM 4.0-P                  | 3916         | -                                 | TU                     |



| Instrument                              | Manufacturer         | Type No.                   | TE No. | Calibration<br>Period<br>(months) | Calibration<br>Due |
|-----------------------------------------|----------------------|----------------------------|--------|-----------------------------------|--------------------|
| Mast Controller                         | maturo Gmbh          | NCD                        | 3917   | -                                 | TU                 |
| Section 2.6 - Maximum Peak C            | Conducted Output Pow | er                         |        |                                   |                    |
| Peak Power Analyser                     | Hewlett Packard      | 8990A                      | 107    | 12                                | 11-Feb-2012        |
| Climatic Chamber                        | Votsch               | VT4002                     | 161    | -                                 | O/P Mon            |
| Multimeter                              | Iso-tech             | IDM-101                    | 466    | 12                                | 2-Mar-2012         |
| Attenuator (10dB, 10W)                  | Weinschel            | 23-10-34                   | 470    | 12                                | 23-Jun-2011        |
| Signal Generator                        | Marconi              | 2031                       | 762    | 12                                | 28-Oct-2011        |
| Spectrum Analyser                       | Hewlett Packard      | E4407B                     | 1154   | 12                                | 17-Jun-2011        |
| GPS Frequency Standard                  | Rapco                | GPS-804/3                  | 1312   | 6                                 | 11-Sep-2011        |
| Hygrometer                              | Rotronic             | A1                         | 1388   | 12                                | 10-Jul-2011        |
| Hygromer                                | Rotronic             | A1                         | 2138   | 12                                | 14-Jun-2011        |
| Power Supply                            | Iso-tech             | IPS 2010                   | 2439   | -                                 | O/P Mon            |
| Hygromer                                | Rotronic             | A1                         | 2677   | 12                                | 20-Jan-2012        |
| Power Sensor                            | Hewlett Packard      | 84812A                     | 2743   | -                                 | TU                 |
| Attenuator (20dB, 20W)                  | Weinschel            | 1                          | 3032   | 12                                | 9-Jul-2011         |
| Thermocouple Thermometer                | Fluke                | 51                         | 3173   | 12                                | 12-Jul-2011        |
| Power Meter                             | Rohde & Schwarz      | NRP                        | 3491   | 12                                | 19-Apr-2012        |
| Wideband Power Sensor,<br>50MHz - 18GHz | Rohde & Schwarz      | NRP-Z81                    | 3492   | 12                                | 19-Apr-2012        |
| Vector Signal Generator                 | Rohde & Schwarz      | SMU 200A                   | 3493   | 12                                | 10-Aug-2011        |
| Signal Generator, 9kHz to 3GHz          | Rohde & Schwarz      | SMA 100A                   | 3494   | 12                                | 25-Jan-2012        |
| Combiner/Splitter                       | Weinschel            | 1506A                      | 3877   | 12                                | 22-Feb-2012        |
| Combiner/Splitter                       | Weinschel            | 1506A                      | 3880   | 12                                | 22-Feb-2012        |
| Section 2.8 - Radiated Spuriou          | s Emissions          |                            |        |                                   |                    |
| Standard Gain Horn Antenna (20dB)       | Flann                | 1624-20                    | 28     | 12                                | 27-Apr-2012        |
| Antenna (Double Ridge Guide)            | EMCO                 | 3115                       | 34     | 12                                | 17-Jul-2011        |
| Spectrum Analyser                       | Rohde & Schwarz      | FSEM                       | 37     | 12                                | 18-Apr-2012        |
| Screened Room (8)                       | Rainford             | Rainford                   | 1548   | -                                 | TU                 |
| Programmable Power Supply               | Iso-tech             | IPS 2010                   | 2435   | -                                 | O/P Mon            |
| Hygrometer                              | Rotronic             | I-1000                     | 2882   | 12                                | 10-Jul-2011        |
| Antenna (Biconnical)                    | Schaffner            | VBA6106A                   | 3107   | 12                                | 23-Aug-2011        |
| Antenna (Log Periodic)                  | Schaffner            | UPA6108                    | 3109   | 12                                | 30-Mar-2012        |
| Amplifier (1 - 8GHz)                    | Phase One            | PS06-0060                  | 3175   | 12                                | 2-Jul-2011         |
| Amplifier (8 - 18GHz)                   | Phase One            | PS06-0061                  | 3176   | 12                                | 2-Jul-2011         |
| 3 GHz High Pass Filter                  | K&L Microwave        | 11SH10-<br>3000/X18000-O/O | 3552   | 12                                | 14-Apr-2012        |
| Low Noise Pre Amplifier                 | Mini-Circuits        | ZHL-1042J                  | 3602   | 12                                | 6-Dec-2011         |

TU – Traceability Unscheduled O/P Mon – Output monitored using calibrated equipment.



## 3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

| Radiated Emissions, Bilog Antenna, AOATS 3 |                                                       | MU     |
|--------------------------------------------|-------------------------------------------------------|--------|
|                                            | 30MHz to 1GHz Amplitude                               | 5.1dB* |
| Radiated Emissions, Horn Antenna, AOATS 1  | 1GHz to 40GHz Amplitude                               | 6.3dB* |
| Conducted Emissions, LISN 1                | 150kHz to 30MHz Amplitude                             | 3.2dB* |
| Conducted Emissions, ISN 1                 | 150kHz to 30MHz Amplitude                             | 2.1dB  |
| Substitution Antenna, Radiated Field 3     | 30MHz to 18GHz Amplitude                              | 2.6dB  |
| Discontinuous Interference 1               | 150kHz to 30MHz Amplitude                             | 3.0dB* |
| Interference Power 3                       | 30MHz to 300MHz Amplitude                             | 3.0dB* |
| Radiated E-Field Susceptibility 1          | 10MHz to 6GHz Test Amplitude                          | 2.0dB† |
|                                            | 50kHz to 1000MHz Amplitude                            |        |
| E                                          | EM Clamp Method of Test                               | 3.1dB• |
| Conducted Susceptibility RF                | CDN Method of Test                                    | 1.2dB• |
| E                                          | BCI Clamp Method of Test                              | 1.1dB• |
|                                            | Direct Injection Method of Test                       | 1.2dB• |
|                                            | DC to 150kHz                                          | 1.0%†  |
| Power Frequency Magnetic Field 5           | 50Hz/60Hz Amplitude                                   | 0.45%  |
| Magnetic Emissions 9                       | 9kHz to 30MHz Amplitude                               | 3.4dB* |
| Magnetic Field/Flux iaw EN 50366 1         | 10Hz to 400kHz                                        | 2.64%  |
| 1                                          | The test was applied using proprietary equipment that |        |
| Harmonics and Flicker                      | meets the requirements of EN 61000-3-2 and EN         | _      |
|                                            | 61000-3-3                                             |        |
| I Maine Voltage Variations and interrible  | The test was applied using proprietary equipment that |        |
| mains voltage variations and interrupts    | meets the requirements of EN 61000-4-11               |        |
| i Fast Transient Burst                     | The test was applied using proprietary equipment that | _      |
| n                                          | meets the requirements of EN 61000-4-4                |        |
| I FIACTIOSTATIC I IISCNAIGA                | The test was applied using proprietary equipment that | _      |
| n                                          | meets the requirements of EN 61000-4-2                |        |
| I SIIrae                                   | The test was applied using proprietary equipment that | _      |
|                                            | meets the requirements of EN 61000-4-5                |        |
|                                            | The test was applied using proprietary equipment that | _      |
| n                                          | meets the requirements of ISO 7637-1 and 2            |        |
| Compass Safe Distance                      | Azimuth Accuracy                                      | 0.10°  |
| Channel Occupancy/Separation 1             | 19.1kHz                                               | N/A    |
| Maximum Output Power                       | Not Applicable                                        | ±0.5dB |
| Number of Channels                         | Not Applicable                                        | N/A    |
| 20dB Bandwidth 1                           | 19.1kHz                                               | ±0.5dB |

Worst case error for both Time and Frequency measurement 12 parts in 10<sup>6</sup>.

- \* In accordance with CISPR 16-4-2
- † In accordance with UKAS Lab 34
- In accordance with EN61000-4-6



# **SECTION 4**

ACCREDITATION, DISCLAIMERS AND COPYRIGHT



## 4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT



This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service Limited

© 2011 TÜV SÜD Product Service Limited