

Page 1 of 71

JQA File No.: KL80100243 Issue Date: October 4, 2010

TEST REPORT

APPLICANT : Sharp Corporation, Communication Systems Group

ADDRESS : 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, JAPAN

PRODUCTS : Cellular Phone

MODEL NO. : 002SH

SERIAL NO. : 004401/11/288014/7

004401/11/288018/8

FCC ID : APYHRO00135

TEST STANDARD : CFR 47 FCC Rules and Regulations Part 15

TESTING LOCATION: Japan Quality Assurance Organization

KITA-KANSAI Testing Center

1-7-7, Ishimaru, Minoh-shi, Osaka 562-0027, Japan

TEST RESULTS : Passed

DATE OF TEST : September 13, 2009 ~ September 28, 2010

This report must not used by the client to claim product endorsement by NVLAP or NIST or any agency of the U.S. Government.

Kousei Shibata

Manager

Japan Quality Assurance Organization

KITA-KANSAI Testing Center Testing Dept. EMC Division

1-7-7, Ishimaru, Minoh-shi, Osaka 562-0027, Japan

- The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and National Institute of Information and Communications Technology (NICT) of Japan.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.

JQA File No. : KL80100243 Model No. : 002SH

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 2 of 71

Page

Issue Date : October 4, 2010

: APYHRO00135

FCC ID

TABLE OF CONTENTS

T	est Regulation			
	est Location.			
	ecognition of Test Laboratory			
	escription of the Equipment Under Test			
	est Condition			
	reliminary Test and Test Setup			
	quipment Under Test Modification			
	esponsible Party			
	eviation from Standard			
	est Results			
. St	ummary			
	perating Condition			
. То	est Configuration			
B E	est Configuration quipment Under Test Arrangement (Drawings) A: Test Data			
endix a	quipment Under Test Arrangement (Drawings)			•••••
endix a	quipment Under Test Arrangement (Drawings) A: Test Data B: Test Arrangement (Photographs)			•••••
B E endix dendix	quipment Under Test Arrangement (Drawings) A: Test Data B: Test Arrangement (Photographs) C: Test Instruments			
B E endix dendix	quipment Under Test Arrangement (Drawings) A: Test Data B: Test Arrangement (Photographs)			
B E endix dendix	quipment Under Test Arrangement (Drawings) A: Test Data B: Test Arrangement (Photographs) C: Test Instruments DEFINITIONS FOR ABBREVIATION AND S	MBOLS USE		
B E endix cendix	quipment Under Test Arrangement (Drawings) A: Test Data B: Test Arrangement (Photographs) C: Test Instruments DEFINITIONS FOR ABBREVIATION AND S : Equipment Under Test EM	MBOLS USE	D IN THIS TEST REPO	
B E endix dendix	quipment Under Test Arrangement (Drawings) A: Test Data B: Test Arrangement (Photographs) C: Test Instruments DEFINITIONS FOR ABBREVIATION AND S : Equipment Under Test EM	MBOLS USE C : Electron [: Electron	D IN THIS TEST REPO	

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 3 of 71

Documentation

1 Test Regulation

Applied Standard : CFR 47 FCC Rules and Regulations Part 15

Subpart C – Intentional Radiators

Test Requirements : §15.247, §15.207 and §15.209

Test Procedure : ANSI C63.4–2003

The tests were performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000.

The test set-up was made in accordance to the general provisions of ANSI C63.4-2003.

2 Test Location

KITA-KANSAI Testing Center

1-7-7, Ishimaru, Minoh-shi, Osaka 562-0027, Japan

KAMEOKA EMC Branch

9-1, Ozaki, Inukanno, Nishibetsuin-cho, Kameoka-shi, Kyoto 621-0126, Japan

3 Recognition of Test Laboratory

VLAC Code : VLAC-001-2 (Effective through : March 30, 2012) NVLAP Lab Code : 200191-0 (Effective through : June 30, 2011) BSMI Recognition No. : SL2-IS-E-6006, SL2-IN-E-6006, SL2-AI-E-6006

(Effective through: September 14, 2013)

VCCI Registration No. : R-008, C-006, C-007, C-1674, C-2143, C-3685, T-1418, T-1419, T-1819, T-1820,

T-1821, G-172, G-173

(Effective through: March 30, 2012)

IC Registration No. : 2079E-1, 2079E-2 (Effective through: January 6, 2011)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Effective through: February 22, 2012)

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 4 of 71

4 Description of the Equipment Under Test

4.1 General Information

1. Manufacturer : Sharp Corporation, Communication Systems Group

2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, JAPAN

2. Products : Cellular Phone

3. Model No. : 002SH

4. Serial No. : 004401/11/288014/7

: 004401/11/288018/8

5. Product Type : Pre-production6. Date of Manufacture : August, 2010

7. Transmitting Frequency : 2412.0 MHz(01CH) –2462.0MHz(11CH)

8. Receiving Frequency : 2412.0 MHz(01CH) –2462.0MHz(11CH)

9. Max. RF Output Power : 15.63dBm(Measure Value of IEEE802.11b)

19.60dBm(Measure Value of IEEE802.11g)

10. Power Rating : 4.0VDC (Lithium-ion Battery Pack SHBDK1 800mAh)

11. EUT Grounding : None

12. EUT Authorization : Certification

13. Receive Date of EUT : September 10, 2010

4.2 Channel Plan

The carrier spacing is 5 MHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN).

The carrier frequency is expressed in the equation shown as follows:

Transmitting Frequency (in MHz) = 2407.0 + 5*nReceiving Frequency (in MHz) = 2407.0 + 5*n

where, n : channel number $(1 \le n \le 11)$

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 5 of 71

5.1 Cha	anne	l Separation					
The rec	The requirements are \square - Applicable $[\square$ - Tested. \square - Not tested by applicant request.] \boxtimes - Not Applicable						
Test sit	te:	KITA-KANSAI KAMEOKA	☐ - Shielded room ☐ - Shielded room	[- 2 nd Shielded room - Conducted emission facility		
Test in	stru	ments : Refer to App	oendix C.				
5.2 Miı	nimu	m Hopping Channe	1				
The rec	quir€		plicable [- Tested. t Applicable	<u> </u>	Not tested by applicant request.]		
Test sin	te:	KITA-KANSAI KAMEOKA	☐ - Shielded room ☐ - Shielded room	[☐ - 2 nd Shielded room ☐ - Conducted emission facility		
Test in	stru	ments : Refer to App	pendix C.				
5.3 Occu	pied	Bandwidth					
The red	quire		plicable [🛛 - Tested. t Applicable	<u> </u>	Not tested by applicant request.]		
Test sit	te:	KITA-KANSAI KAMEOKA	☑ - Shielded room☑ - Shielded room	[☐ - 2 nd Shielded room ☐ - Conducted emission facility		
Test in	stru	ments : Refer to App	oendix C.				
5.4 Dwe	ll Tiı	ne					
The red	quire		plicable [- Tested. t Applicable	<u> </u>	Not tested by applicant request.]		
Test si	te:	KITA-KANSAI KAMEOKA	☐ - Shielded room☐ - Shielded room	[☐ - 2 nd Shielded room ☐ - Conducted emission facility		

Test instruments: Refer to Appendix C.

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 6 of 71

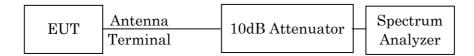
5.5 Peak Output Power and Density (Conduction)					
The requir		pplicable [⊠ - Tested. ot Applicable	☐ - Not tested by applicant request.]		
Test site:	KITA-KANSAI KAMEOKA	☐ - Shielded room☐ - Shielded room	\square - 2 nd Shielded room \square - Conducted emission facility		
Test instru	uments : Refer to Ap	pendix C.			
5.6 Spurious	s Emission (Conduct	ion)			
The requir		pplicable [⊠ - Tested. ot Applicable	☐ - Not tested by applicant request.]		
Test site:	KITA-KANSAI KAMEOKA	☐ - Shielded room☐ - Shielded room	\square - 2 nd Shielded room \square - Conducted emission facility		
Test instru	uments : Refer to Ap	pendix C.			
5.7 AC Pow	erline Conducted En	nission			
The requir		pplicable [⊠ - Tested. ot Applicable	☐ - Not tested by applicant request.]		
Test site:	KITA-KANSAI KAMEOKA	☐ - Shielded room☐ - Shielded room☐ - 1st open site	☐ - Anechoic chamber ☐ - Conducted emission facility		
Test instru	uments : Refer to Ap	pendix C.			
5.8 Field St	rength of Spurious F	adiation			
The requir		pplicable [⊠ - Tested. ot Applicable	☐ - Not tested by applicant request.]		
Test site:	□ - KAMEOKA 1□ - KAMEOKA 2	=			
Test instru	uments : Refer to Ap	pendix C.			

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 7 of 71

6 Preliminary Test and Test Setup

6.1 Channel Separation


Not Applicable

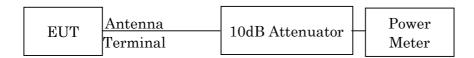
6.2 Minimum Hopping Channel

Not Applicable

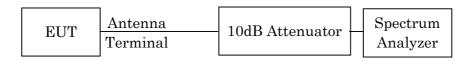
6.3 Occupied Bandwidth

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:


Res. Bandwidth	100 kHz
Video Bandwidth	100 kHz
Span	30 MHz
Sweep Time	AUTO
Trace	Maxhold

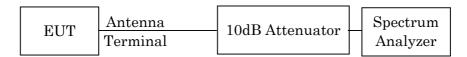
6.4 Dwell Time


Not Applicable

6.5 Peak Output Power and Peak Power Density

The Conducted RF Power Output was measured with a power meter, one 10dB attenuator and a short, low loss cable.

The Peak Power Density was measured with a power meter, one 10dB attenuator and a short, low loss cable.



Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 8 of 71

6.6 Spurious Emission(Conduction)

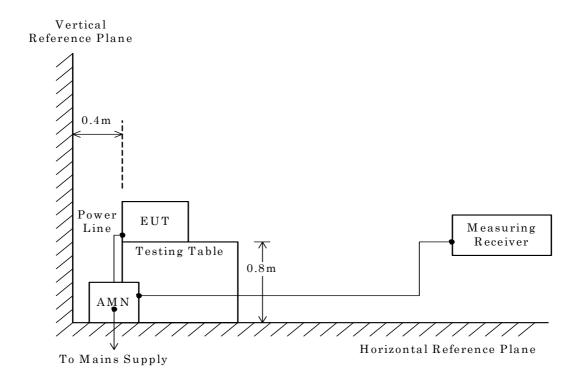
The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Frequency Range	30 MHz - 25 GHz	Band-Edge
Res. Bandwidth	$100~\mathrm{kHz}$	$100~\mathrm{kHz}$
Video Bandwidth	100 kHz	100 kHz
Sweep Time	AUTO	AUTO
Trace	Maxhold	Maxhold

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 9 of 71


6.7 AC Powerline Conducted Emission

The preliminary tests were performed using the scan mode of test receiver or spectrum analyzer to observe the emissions characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for final tests.

- Side View -

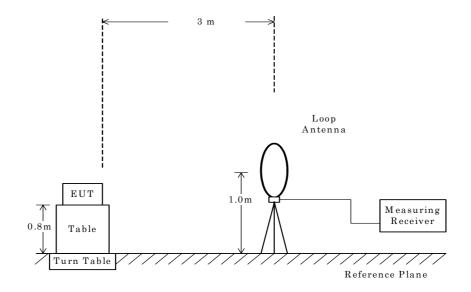
NOTE

AMN : Artificial Mains Network

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 10 of 71

6.8 Field Strength of Spurious Emission


6.8.1 Field Strength of Spurious Emission 9 kHz - 30 MHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

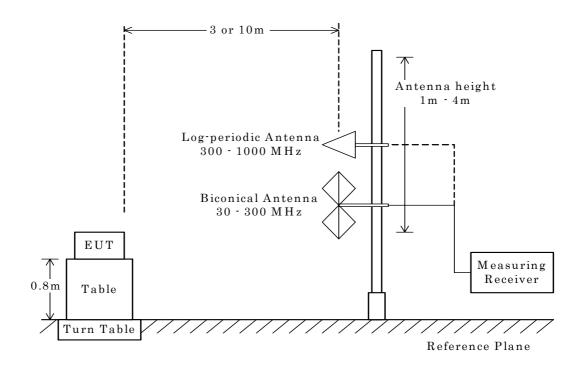
The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

- Side View -

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 11 of 71


6.8.2 Field Strength of Spurious Emission 30 MHz - 1000 MHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

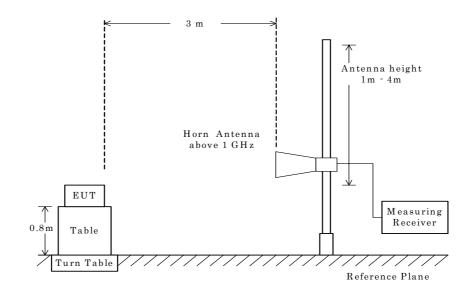
The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

- Side View -

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 12 of 71


6.8.3 Field Strength of Spurious Emission above 1 GHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

- Side View -

NOTE

The antenna height is scanned depending on the EUT's size and mounting height.

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 13 of 71

7	Equipment Under Test Modification						
	☐ - To achie			pliance to the limitations. changes were made by JQA during			
	The modificat	cions will be implemented	d in all production mode	els of this equipment.			
	Applicant Date Typed Name Position	: Not Applicable: Not Applicable: Not Applicable: Not Applicable	Signatory:	Not Applicable			
8 Responsible Party Responsible Party of Test Item (Product)							
	Responsible	e Party :					
	Contact Per	rson :	Signatory				
9	Deviation from	m Standard					
		ations from the standard wing deviations were empl		escribed in clause 1.			

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 14 of 71

10 Test Results		
10.1 RF Power Output (§2.1046)		
10.1.1 Channel Separation		
The requirements are \square - Applicable $[\square$ - Tested. \boxtimes - Not Applicable	Not tested by	y applicant request.]
🗌 - Passed 🔲 - Failed 🗌] - Not judged	
	MHz MHz	
Uncertainty of Measurement Results		<u>+/-0.9</u> %(2 σ)
Remarks:		
10.1.2 Minimum Hopping Channel		
The requirements are \square - Applicable $[\square$ - Tested. \boxtimes - Not Applicable	Not tested by	y applicant request.]
Number of Channel is Number of Channel (Inquiry) is		
Remarks:		
10.1.3 Occupied Bandwidth		
The requirements are \boxtimes - Applicable $[\Box$ - Tested. \Box - Not Applicable	☐ - Not tested by	y applicant request.]
igtimes - Passed $igcap$ - Failed $igcap$	☐ - Not judged	
The 99% Bandwidth of IEEE802.11b is The 99% Bandwidth of IEEE802.11g is	14.863 MHz 16.486 MHz	at <u>2462.0</u> MHz at <u>2412.0</u> MHz
The 6dB Bandwidth of IEEE802.11b is The 6dB Bandwidth of IEEE802.11g is	9.968 MHz 16.565 MHz	at 2437.0 MHz at 2412.0 MHz
Uncertainty of Measurement Results		<u>+/-0.9</u> %(2 ₀)
Remarks:		

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 15 of 71

10.1.4 Dwell Time				
The requirements are \square - Applicable $[\square$ - Tested. \boxtimes - Not Applicable	☐ - Not tes	ted by app	licant reque	est.]
🗌 - Passed 🔲 - Failed 🗌] - Not judge	ŀ		
Dwell Time is Dwell Time (Inquiry) is		nsec nsec		
Uncertainty of Measurement Results			+/-0.6	_ %(20)
Remarks:				
10.1.5 Peak Output Power(Conduction)				
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not Applicable	☐ - Not tes	ted by app	licant reque	est.]
Peak Output Power of IEEE802.11b is Peak Output Power of IEEE802.11g is	15.63 19.60		$\frac{2437.0}{2437.0}$	MHz MHz
Uncertainty of Measurement Results at Amplitude			+/-1.2	_ dB(2σ)
Remarks:				
10.1.6 Peak Power Density(Conduction)				
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not Applicable	☐ - Not tes	ted by app	licant reque	est.]
Peak Power Density of IEEE802.11b is Peak Power Density of IEEE802.11g is		lBm at lBm at	2412.0 2437.0	MHz MHz
Uncertainty of Measurement Results at Amplitude			+/-0.8	_ dB(2σ)
Remarks:				

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 16 of 71

10.2 Spurious Emissions(Conduction)		
The requirements are \square - Applicable $[\square$ - Tes \square - Not Applicable	sted. - Not tested by ap	plicant request.]
oxtimes - Passed $oxtimes$ - Failed	l 🗌 - Not judged	
Uncertainty of Measurement Results	$9 \mathrm{kHz} - 1\mathrm{GHz}$ $1\mathrm{GHz} - 18\mathrm{GHz}$ $18\mathrm{GHz} - 40\mathrm{GHz}$	
Remarks:		
10.3 AC Powerline Conducted Emission		
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tes	sted. - Not tested by ap	plicant request.]
oxtimes - Passed $oxtimes$ - Failed	l 🗌 - Not judged	
Min. Limit Margin (Quasi-Peak)	18.1 dB at	1.70 MHz
Max. Limit Exceeding (Quasi-Peak)	dB at	MHz
Uncertainty of Measurement Results		<u>+/-2.5</u> dB(2 σ)
Remarks:		
10.4 Field Strength of Spurious Emission		
The requirements are \square - Applicable $[\square$ - Tes	sted. 🔲 - Not tested by ap	plicant request.]
igtimes - Passed $igcap$ - Failed	l 🗌 - Not judged	
Min. Limit Margin (Average)	>4.0 dB at	22158.0 MHz
Max. Limit Exceeding (Average)	dB at	MHz
Uncertainty of Measurement Results	9 kHz – 30 MHz 30 MHz – 300 MHz 300 MHz – 1000 MHz 1 GHz – 18 GHz 18 GHz – 40 GHz	+/-1.7 dB(2o) +/-4.3 dB(2o) +/-4.5 dB(2o) +/-4.0 dB(2o) +/-4.7 dB(2o)
Remarks:		

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 17 of 71

11 Summary

General Remarks:

The EUT was tested according to the requirements of the following standard.

CFR 47 FCC Rules and Regulations Part 15

The test configuration is shown in clause 12 to 14.

The conclusion for the test items of which are required by the applied regulation is indicated under the test results.

Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

Test Results:

The "as received" sample;

□ fulfill the test requirements of the regulation mentioned on clause 1.

odoesn't fulfill the test requirements of the regulation mentioned on clause 1.

Reviewed by:

Shigeru Kinoshita

Deputy Manager

Testing Dept. EMC Div.

JQA KITA-KANSAI Testing Center

Tested by:

Akio Hosoda

Advisor

Testing Dept. EMC Div.

JQA KITA-KANSAI Testing Center

JQA File No. : KL80100243 Issue Date : October 4, 2010 Model No. : 002SH FCC ID : APYHRO00135

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 18 of 71

12 Operating Condition

Transmitting/Receiving

 $\begin{array}{ll} \mbox{Transmitting frequency} & : 2412.0 \mbox{ MHz}(1\mbox{CH}) - 2462.0 \mbox{ MHz}(11\mbox{CH}) \\ \mbox{Receiver frequency} & : 2412.0 \mbox{ MHz}(1\mbox{CH}) - 2462.0 \mbox{ MHz}(11\mbox{CH}) \end{array}$

Modulation Type 1.802.11b: DSSS 2.802.11g: OFDM

Other Clock Frequency

RTC : 32.768 kHz
Reference : 26.0 MHz
WLAN : 40.0 MHz

11 Test Configuration

The equipment under test (EUT) consists of:

	Item	Manufacturer	Model No.	Serial No.	FCC ID	
A	Cellular Phone	Sharp	002SH	004401/11/288	APYHRO00135	
				014/7*1)		
				004401/11/288		
				018/8*2)		
В	Lithium-ion Battery	SANYO	SHBDK1		N/A	
С	AC Charger	KYUSHU MITSUMI	ZTDAA1		N/A	
D	Stereo Handsfree	HOSIDEN	RPHOHA0 18AF		N/A	

The auxiliary equipment used for testing:

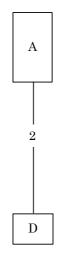
None

Type of Cable:

No.	Description	Identification	Connector	Cable	Ferrite	Length
	Description	(Manu. etc.)	Shielded	Shielded	Core	(m)
1	DC Power Cord		NO		NO	1.5
2	Headset Cable		NO		NO	1.7

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 19 of 71


13 Equipment Under Test Arrangement (Drawings)

1) AC Charger used

 $120\mathrm{VAC}\ 60\,\mathrm{Hz}$

2) Headset used

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 20 of 71

Appendix A: Test Data

A.1 Channel Separation

Not Applicable

A.2 Minimum Hopping Channel

Not Applicable

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 21 of 71

A.3 Occupied Bandwidth

Test Date: September 21, 2010 Temp.:27°C, Humi:49%

The resolution bandwidth was set to about 1% of emission bandwidth, -6dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

A) IEEE 802.11b

1)Data Rate: 1Mbps

Channel	Frequency (MHz)	99% Bandwidth	-6dBc Bandwidth
01	2412.0	(MHz) 14.831	(MHz) 9.552
06	2437.0	14.845	9.571
11	2462.0	14.863	9.562

2)Data Rate: 2Mbps

Channel	Frequency	99% Bandwidth	-6dBc Bandwidth
	(MHz)	(MHz)	(MHz)
01	2412.0	14.827	9.728
06	2437.0	14.839	9.968
11	2462.0	14.798	9.860

3)Data Rate: 5.5Mbps

o/Data Nate · 0.0Mbps						
Channel	Frequency 99% Bandwidth (MHz) (MHz)		-6dBc Bandwidth (MHz)			
01	2412.0	14.180	9.073			
06	2437.0	14.188	9.856			
11	2462.0	14.205	9.806			

4)Data Rate: 11Mbps

Bata trate 11115pt						
Channel	Frequency 99% Bandwidth (MHz) (MHz)		-6dBc Bandwidth (MHz)			
01	2412.0	14.444	9.281			
06	2437.0	14.468	9.848			
11	2462.0	14.416	8.916			

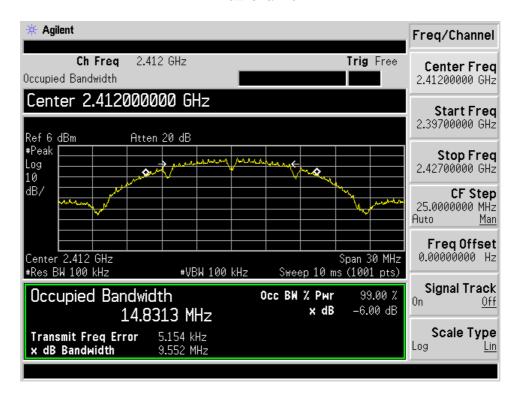
Regulation : CFR 47 FCC Rules and Regulations Part 15

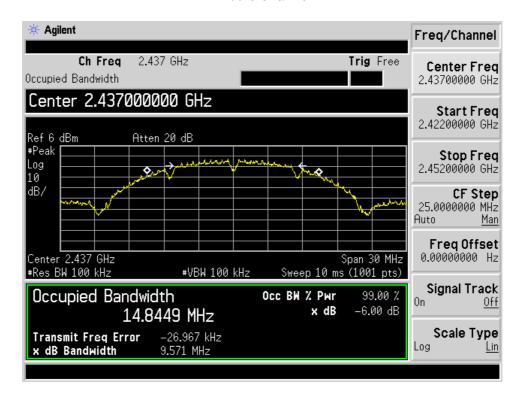
Page 22 of 71

B) IEEE 802.11g 1)Data Rate: 6Mbps

Channel	Frequency (MHz)	99% Bandwidth (MHz)	-6dBe Bandwidth (MHz)
01	2412.0	16.486	16.565
06	2437.0	16.473	16.554
11	2462.0	16.468	16.557

2)Data Rate: 54Mbps

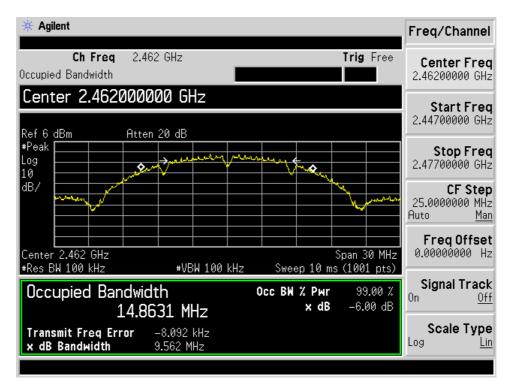

Channel	Frequency (MHz)	99% Bandwidth (MHz)	-6dBe Bandwidth (MHz)
01	2412.0	16.431	16.494
06	2437.0	16.450	16.549
11	2462.0	16.438	16.498

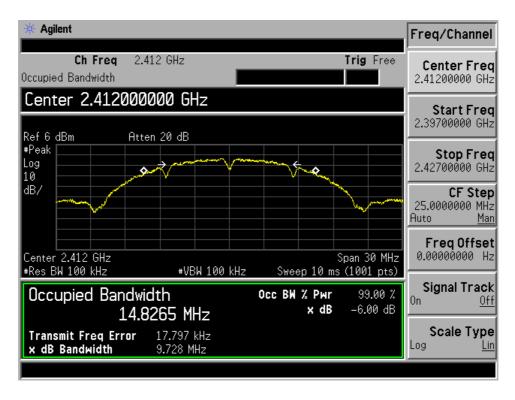

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 23 of 71

1)Data Rate : 1Mbps(IEEE 802.11b) Low Channel

Middle Channel

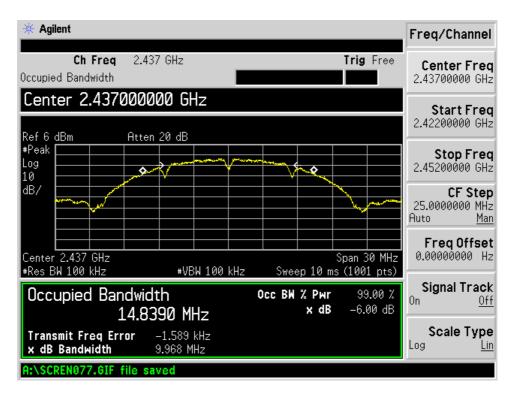


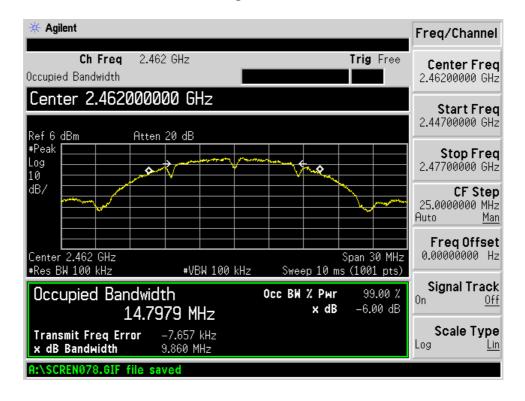

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 24 of 71

High Channel

2)Data Rate : 2Mbps(IEEE 802.11b) Low Channel

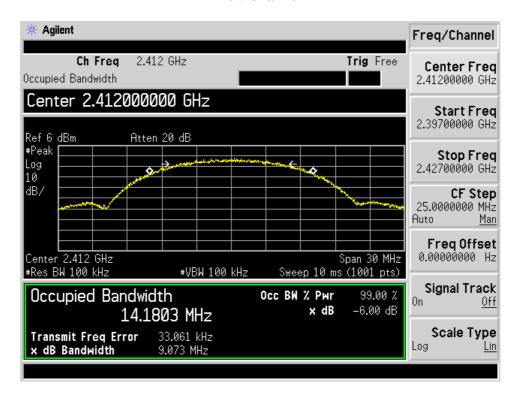


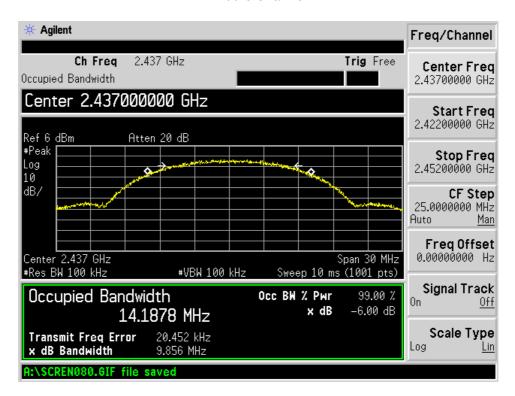

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 25 of 71

Middle Channel

High Channel

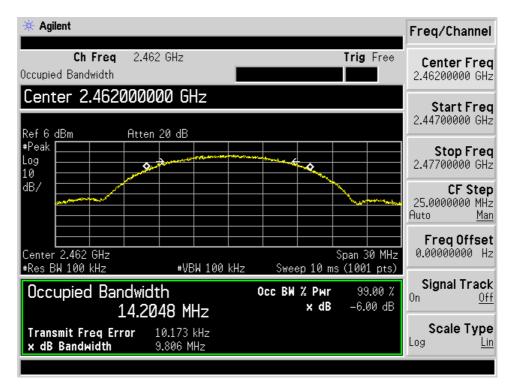


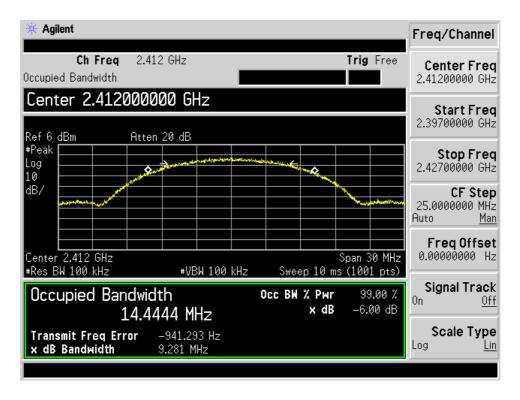

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 26 of 71

3)Data Rate : 5.5Mbps(IEEE 802.11b) Low Channel

Middle Channel

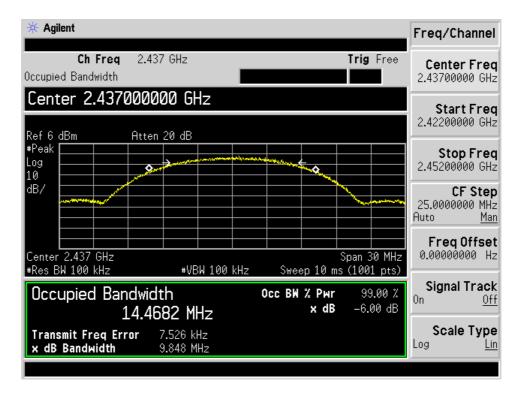


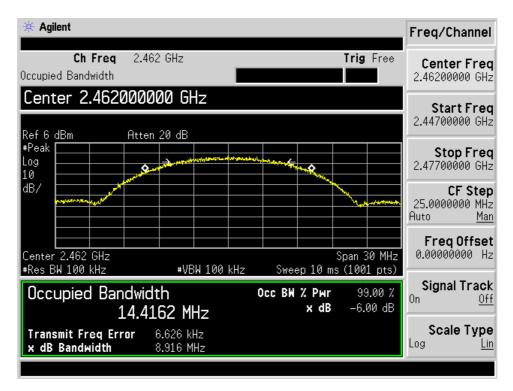

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 27 of 71

High Channel

4)Data Rate : 11Mbps(IEEE 802.11b) Low Channel

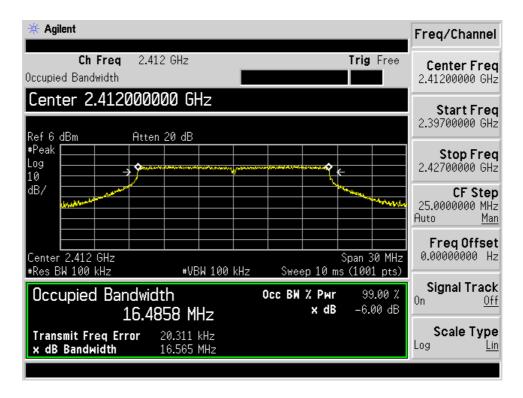


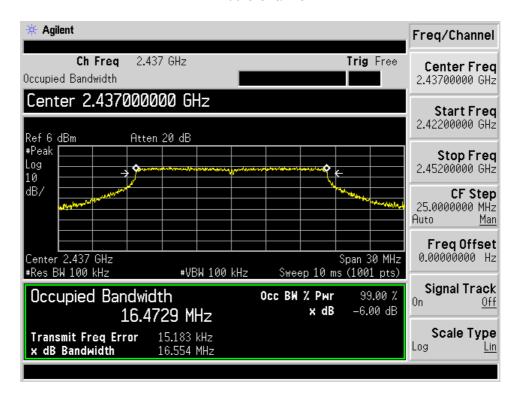

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 28 of 71

Middle Channel

High Channel

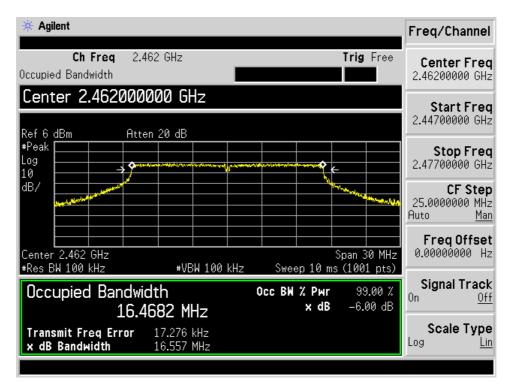


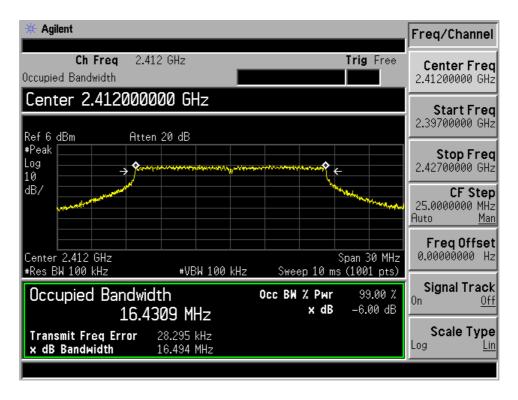

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 29 of 71

5)Data Rate : 6Mbps(IEEE 802.11g) Low Channel

Middle Channel

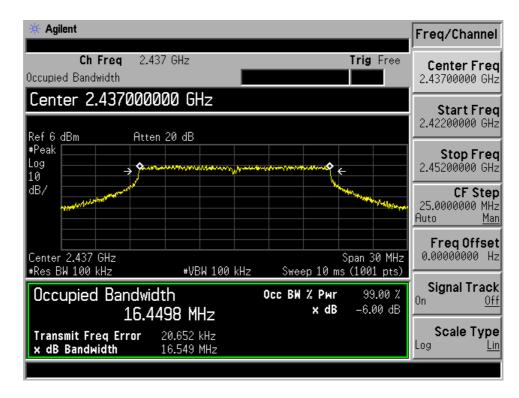


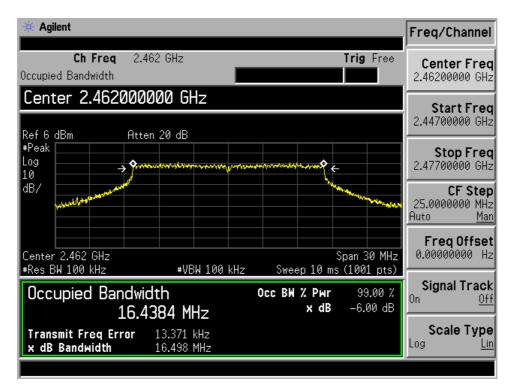

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 30 of 71

High Channel

6)Data Rate: 54Mbps(IEEE 802.11g)
Low Channel




Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 31 of 71

Middle Channel

High Channel

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 32 of 71

A.4 Dwell Time

Not Applicable

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 33 of 71

A.5 Peak Output Power(Conduction)

1)Data Rate: 1Mbps(IEEE 802.11b)

 Data Rate : 1Mbps
 Test Date: September 18, 2010

 Temp.: 27 °C, Humi: 52 %

Transmitting Frequency		Correction Factor	Meter Reading	Conducted Limits Peak Output Power		Margin	
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.03	5.56	15.59	36.22	30.00	+14.41
05	2437	10.03	5.60	15.63	36.56	30.00	+14.37
11	2462	10.03	5.47	15.50	35.48	30.00	+14.50

Calculated result at 2437.000 MHz, as the worst point shown on underline:

Correction Factor = 10.03 dB +) Meter Reading = 5.60 dBm

Result = 15.63 dBm = 36.56 mW

Minimum Margin: 30.00 - 15.63 = 14.37 (dB)

NOTES

- 1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	5 MHz

2)Data Rate: 2Mbps(IEEE 802.11b)

 Data Rate : 2Mbps
 Test Date: September 18, 2010

 Temp.: 27 °C, Humi: 52 %

	Transmi	itting Frequency	Correction Factor	Meter Reading		lucted put Power	Limits	Margin
	СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
	01	2412	10.03	5.56	15.59	36.22	30.00	+14.41
-	05	2437	10.03	5.56	15.59	36.22	30.00	+14.41
_	11	2462	10.03	5.40	15.43	34.91	30.00	+14.57

Calculated result at 2412.000 MHz, as the worst point shown on underline:

Correction Factor = 10.03 dB +) Meter Reading = 5.56 dBm

Result = 15.59 dBm = 36.22 mW

Minimum Margin: 30.00 - 15.59 = 14.41 (dB)

NOTES

- 1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	5 MHz

JQA File No. : KL80100243 Issue Date: October 4, 2010 Model No. :002SH FCC ID : APYHRO00135

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 34 of 71

3)Data Rate: 5.5Mbps(IEEE 802.11b)

<u>Test Date: September 18, 2010</u> <u>Temp.: 27 °C, Humi: 52 %</u> Data Rate: 5.5Mbps

Transmi	itting Frequency	Correction Factor	Meter Reading		lucted put Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.03	5.26	15.29	33.81	30.00	+14.71
0.5	2437	10.03	5.22	15.25	33.50	30.00	+14.75
11	2462	10.03	5.14	15.17	32.89	30.00	+14.83

Calculated result at 2412.000 MHz, as the worst point shown on underline:

10.03 dB Correction Factor = +) Meter Reading 5.26 dBm

Result 15.29 dBm = 33.81 mW

Minimum Margin: 30.00 - 15.29 = 14.71 (dB)

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	5 MHz

4)Data Rate: 11Mbps(IEEE 802.11b)

Test Date: September 18, 2010 Data Rate: 11Mbps Temp.: 27 °C, Humi: 52 %

Transmi	tting Frequency	Correction Factor	Meter Reading		ucted put Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.03	5.46	15.49	35.40	30.00	+14.51
05	2437	10.03	5.50	15.53	35.73	30.00	+14.47
11	2462	10.03	5.39	15.42	34.83	30.00	+14.58

Calculated result at 2437.000 MHz, as the worst point shown on underline:

Correction Factor = $10.03~\mathrm{dB}$

+) Meter Reading 5.50 dBm $15.\overline{53} \text{ dBm} = 35.73 \text{ mW}$ = Result

Minimum Margin: 30.00 - 15.53 = 14.47 (dB)

- $1. \ The \ correction \ factor \ shows \ the \ attenuation \ pad \ loss \ including \ the \ short, \ low \ loss \ cable \ or \ adapter.$
- 2. Setting of measuring instrument(s):

Detector Function	Video B.W.		
Peak	5 MHz		

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 35 of 71

5)Data Rate: 6Mbps(IEEE 802.11g)

 Data Rate : 6Mbps
 Test Date: September 18, 2010

 Temp.: 27 °C, Humi: 52 %

Transmi	itting Frequency	Correction Factor	Meter Reading		ucted put Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.03	9.52	19.55	90.16	30.00	+10.45
05	2437	10.03	9.57	19.60	91.20	30.00	+10.40
11	2462	10.03	9.18	19.21	83.37	30.00	+10.79

Calculated result at 2437.000 MHz, as the worst point shown on underline:

Correction Factor = 10.03 dB

+) Meter Reading = 9.57 dBm

Result = 19.60 dBm = 91.20 mW

Minimum Margin: 30.00 - 19.60 = 10.40 (dB)

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	5 MHz

6)Data Rate: 54Mbps(IEEE 802.11g)

 Data Rate : 54Mbps
 Test Date: September 18, 2010

 Temp.: 27 °C, Humi: 52 %

Transmi	tting Frequency	Correction Factor	Meter Reading		lucted put Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.03	9.34	19.37	86.50	30.00	+10.63
0.5	2437	10.03	9.26	19.29	84.92	30.00	+10.71
11	2462	10.03	8.96	18.99	79.25	30.00	+11.01

Calculated result at 2412.000 MHz, as the worst point shown on underline:

Correction Factor = 10.03 dB Meter Reading = 9.34 dBm

+) Meter Reading = 9.34 dBm Result = 19.37 dBm = 86.50 mW

Minimum Margin: 30.00 - 19.37 = 10.63 (dB)

NOTES

- 1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 2. Setting of measuring instrument(s):

Detector Function	Video B.W.
Peak	5 MHz

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 36 of 71

A.6 Peak Power Density(Conduction)

1)Data Rate: 1Mbps(IEEE 802.11b)

 Data Rate : 1Mbps
 Test Date: September 21, 2010

 Temp.: 27 °C, Humi: 49 %

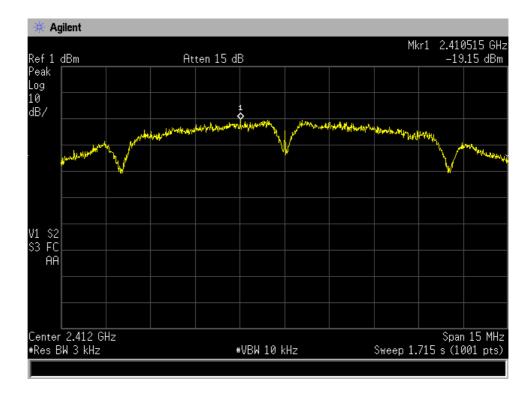
	Transm	itting Frequency	Correction Factor	Meter Reading	eter Reading Conducted Peak Output Power		Limits	Margin
	СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
	01	2412	10.03	-19.15	-9.12	0.12	8.00	+17.12
	05	2437	10.03	-18.45	-8.42	0.14	8.00	+16.42
_	11	2462	10 03	-19 86	-9 83	0.10	8 00	+17 83

Calculated result at 2437.000 MHz, as the worst point shown on underline:

Correction Factor = 10.03 dB

+) Meter Reading = -18.45 dBm

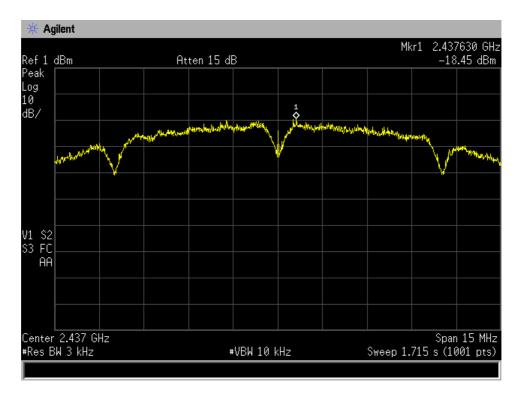
Result = -8.42 dBm = 0.14 mW

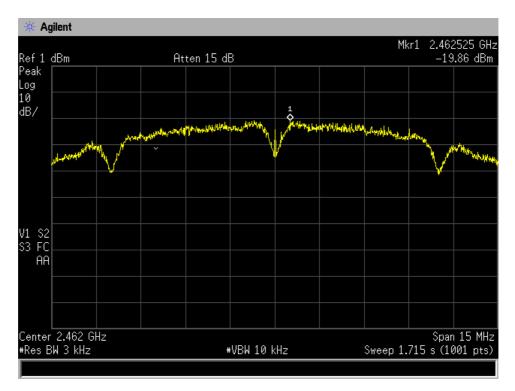

Minimum Margin: 8.00 - -8.42 = 16.42 (dB)

NOTES

- 1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 2. Setting of measuring instrument(s):

Detector Function	RES B.W.	Video B.W.
Peak	3kHz	10kHz


Low Channel



Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 37 of 71

High Channel

JQA File No. : KL80100243 Issue Date: October 4, 2010 Model No. :002SH FCC ID : APYHRO00135

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 38 of 71

2)Data Rate: 2Mbps(IEEE 802.11b)

Test Date: September 21, 2010 Data Rate: 2Mbps Temp.: 27 °C, Humi: 49 %

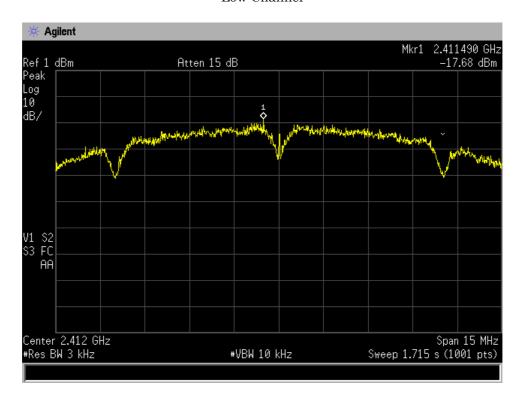
Transmitting Frequency		Correction Factor	Meter Reading	Cond Peak Out	ucted put Power	Limits	Margin	
СН	[MHz]	[dB]	[dBm]	[dBm] [mW]		[dBm]	[dB]	
01	2412	10.03	-17.68	-7.65	0.17	8.00	+15.65	
0.5	2437	10.03	-18.96	-8.93	0.13	8.00	+16.93	
11	2462	10.03	-19.53	-9.50	0.11	8.00	+17.50	

Calculated result at 2412.000 MHz, as the worst point shown on underline: 10.03 dB

Correction Factor

+) Meter Reading -17.68 dBm

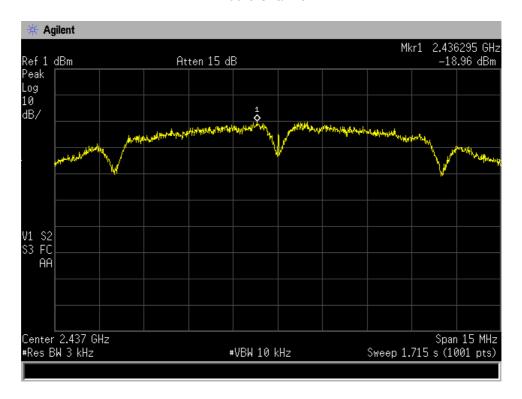
Result -7.65 dBm = 0.17 mW

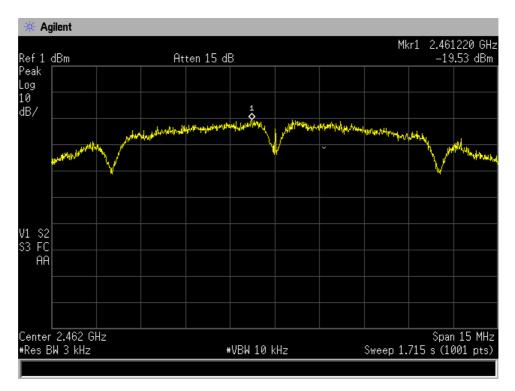

Minimum Margin: 8.00 - -7.65 = 15.65 (dB)

NOTES

- 1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 2. Setting of measuring instrument(s):

Detector Function	RES B.W.	Video B.W.
Peak	3kHz	10kHz


Low Channel



Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 39 of 71

High Channel

JQA File No. : KL80100243 Issue Date : October 4, 2010 Model No. : 002SH FCC ID : APYHRO00135

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 40 of 71

3)Data Rate: 5.5Mbps(IEEE 802.11b)

 Data Rate: 5.5Mbps
 Test Date: September 21, 2010

 Temp.: 27 °C, Humi: 49 %

Transmi	Transmitting Frequency		Meter Reading	Cond Peak Out	ucted out Power	Limits	Margin
СН	[MHz]	Factor [dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.03	-18.36	-8.33	0.15	8.00	+16.33
05	2437	10.03	-19.02	-8.99	0.13	8.00	+16.99
11	2462	10.03	-19.12	-9.09	0.12	8.00	+17.09

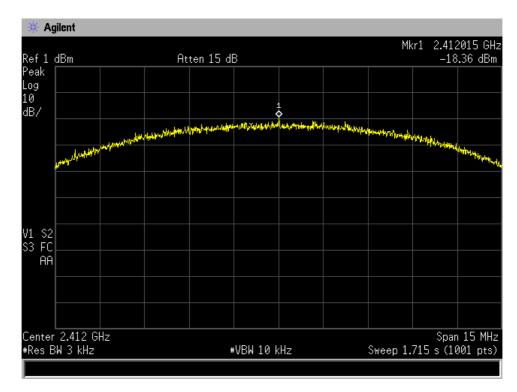
Calculated result at 2412.000 MHz, as the worst point shown on underline:

Correction Factor =

10.03 dB

+) Meter Reading = Result =

-18.36 dBm -8.33 dBm = 0.15 mW

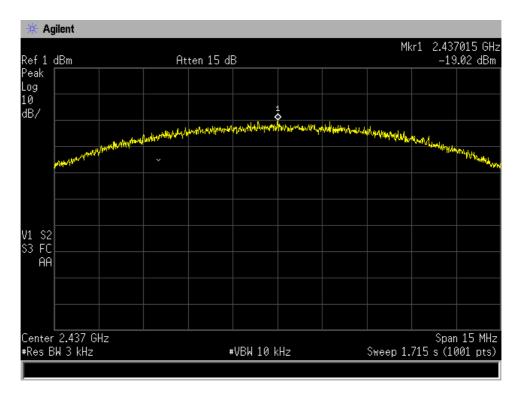

Minimum Margin: 8.00 - -8.33 = 16.33 (dB)

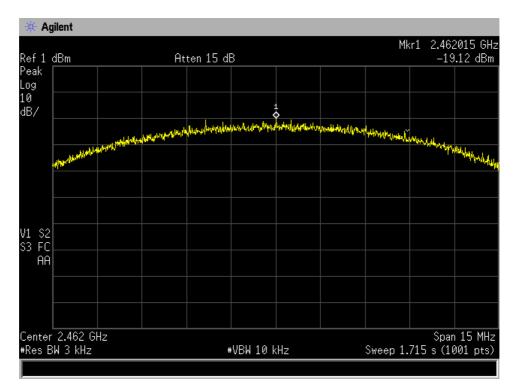
NOTES

- 1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 2. Setting of measuring instrument(s):

Detector Function	RES B.W.	Video B.W.
Peak	3kHz	10kHz

Low Channel




JQA File No. : KL80100243 Issue Date : October 4, 2010 Model No. : 002SH FCC ID : APYHRO00135

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 41 of 71

High Channel

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 42 of 71

4)Data Rate: 11Mbps(IEEE 802.11b)

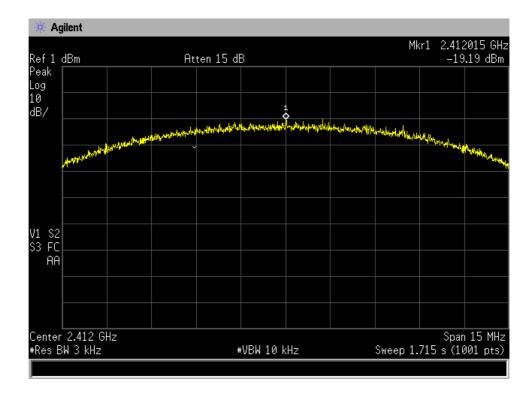
 Data Rate: 11Mbps
 Test Date: September 21, 2010

 Temp.: 27 °C, Humi: 49 %

Transmitting Frequency		Correction Factor	Meter Reading	Cond Peak Out	ucted out Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
01	2412	10.03	-19.19	-9.16	0.12	8.00	+17.16
05	2437	10.03	-19.19	-9.16	0.12	8.00	+17.16
11	2462	10.03	-19.47	-9.44	0.11	8.00	+17.44

Calculated result at 2412.000 MHz, as the worst point shown on underline:

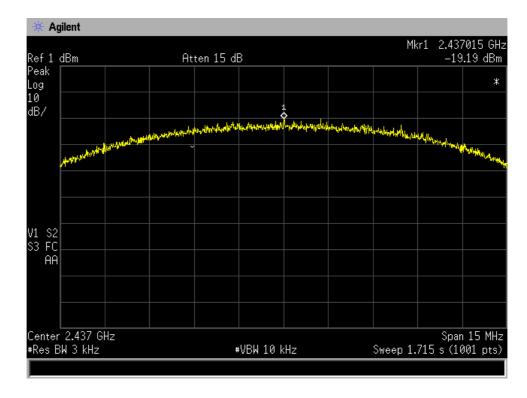
Correction Factor = 10.03 dB +) Meter Reading = -19.19 dBm Result = -9.16 dBm = 0.12 mW

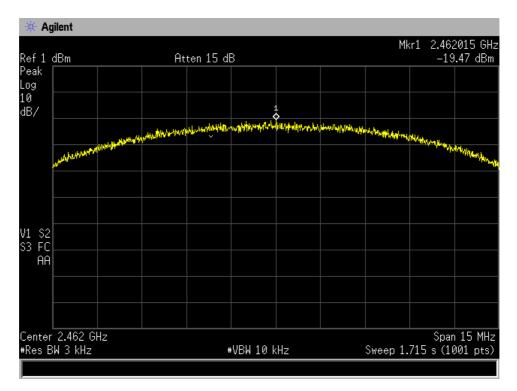

Minimum Margin: 8.00 - -9.16 = 17.16 (dB)

NOTES

- $1. \ The \ correction \ factor \ shows \ the \ attenuation \ pad \ loss \ including \ the \ short, \ low \ loss \ cable \ or \ adapter.$
- 2. Setting of measuring instrument(s):

Detector Function	RES B.W.	Video B.W.
Peak	3kHz	10kHz


Low Channel



Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 43 of 71

High Channel

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 44 of 71

5)Data Rate: 6Mbps(IEEE 802.11g)

 Data Rate : 6Mbps
 Test Date: September 21, 2010

 Temp.: 27 °C, Humi: 49 %

Transmitting Frequency		Correction Factor	Meter Reading	Condu Peak Outp		Limits	Margin	
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]	
01	2412	10.03	-20.32	-10.29	0.09	8.00	+18.29	
05	2437	10.03	-19.34	-9.31	0.12	8.00	+17.31	
11	2462	10.03	-20.09	-10.06	0.10	8.00	+18.06	

Calculated result at 2437.000 MHz, as the worst point shown on underline:

Correction Factor = 10.03 dB

+) Meter Reading = -19.34 dBm

Result = -9.31 dBm = 0.12 mW

Minimum Margin: 8.00 - -9.31 = 17.31 (dB)

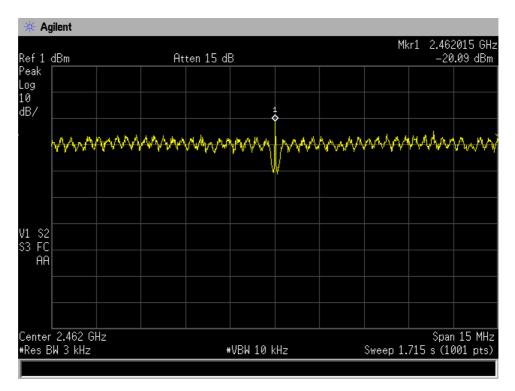
NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s):

Detector Function	RES B.W.	Video B.W.
Peak	3kHz	10kHz

Low Channel



Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 45 of 71

High Channel

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 46 of 71

6)Data Rate: 54Mbps(IEEE 802.11g)

Transmitting Frequency		Correction Meter Reading Factor		Condu Peak Outp		Limits	Margin	
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]	
01	2412	10.03	-20.15	-10.12	0.10	8.00	+18.12	
05	2437	10.03	-20.13	-10.10	0.10	8.00	+18.10	
11	2462	10.03	-19.69	-9.66	0.11	8.00	+17.66	

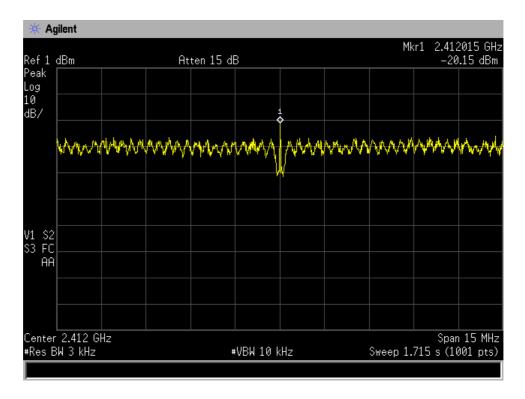
Calculated result at 2462.000 MHz, as the worst point shown on underline:

Correction Factor = 10.03 dB

+) Meter Reading = -19.69 dBm

Result = -9.66 dBm = 0.11 mW

Minimum Margin: 8.00 - 9.66 = 17.66 (dB)

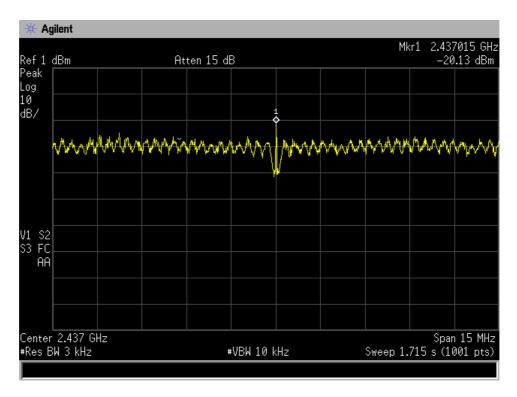

NOTES

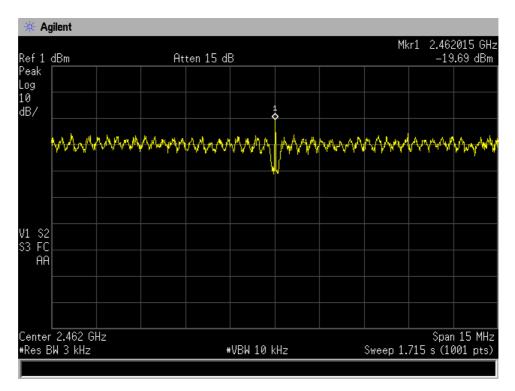
1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s):

Detector Function	RES B.W.	Video B.W.
Peak	3kHz	10kHz

Low Channel



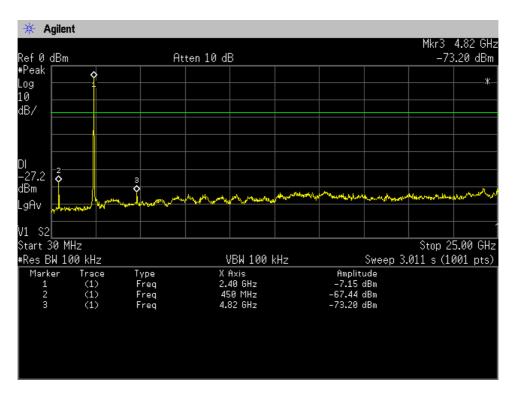

JQA File No. : KL80100243 Issue Date : October 4, 2010 Model No. : 002SH FCC ID : APYHRO00135

Regulation : CFR 47 FCC Rules and Regulations Part 15

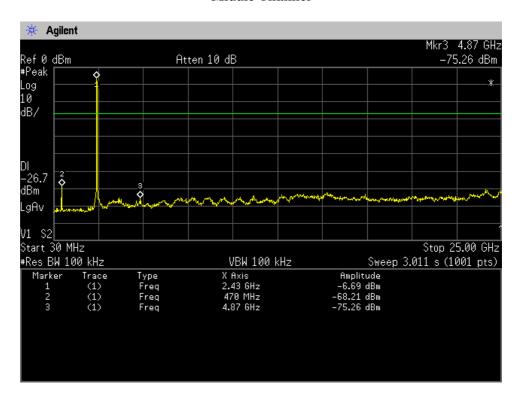
Page 47 of 71

High Channel

Regulation : CFR 47 FCC Rules and Regulations Part 15


Page 48 of 71

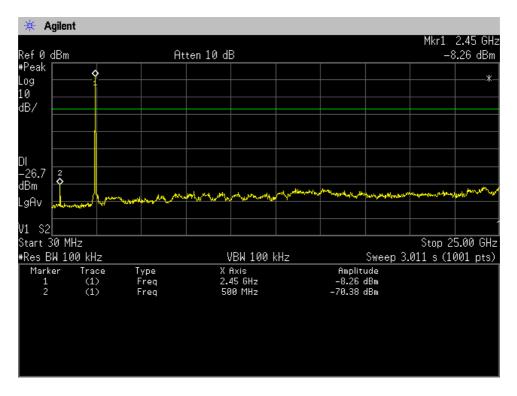
A.7 Spurious Emission(Conduction)

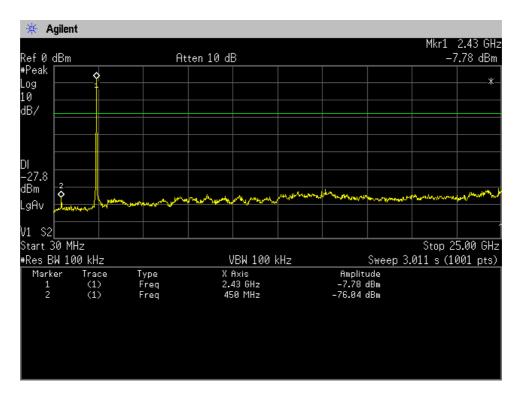

Test Date: September 28, 2010 Temp.:27C, Humi:49%

1)Data Rate: 1Mbps(IEEE 802.11b)

Low Channel

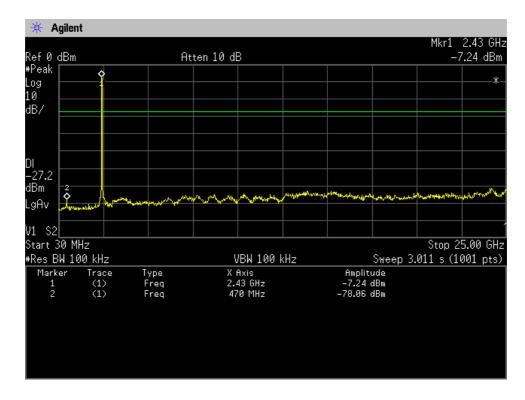
Middle Channel

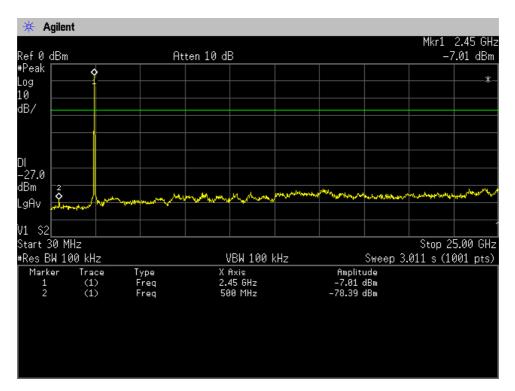



Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 49 of 71

High Channel

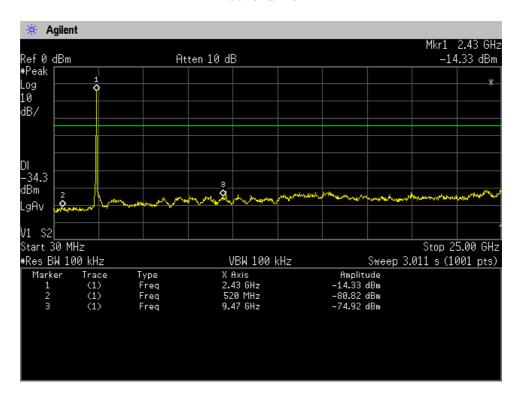

2)Data Rate: 11Mbps(IEEE 802.11b) Low Channel

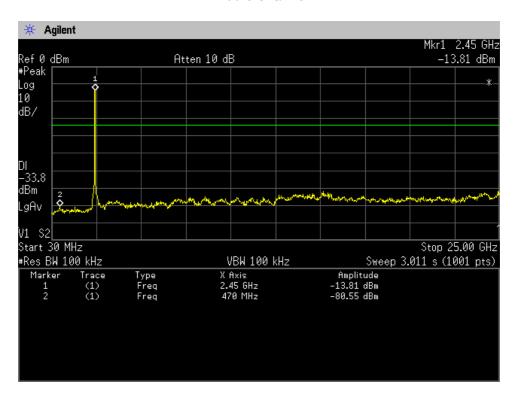


Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 50 of 71

High Channel

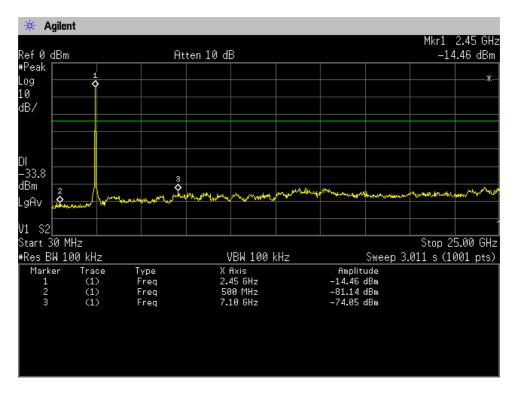


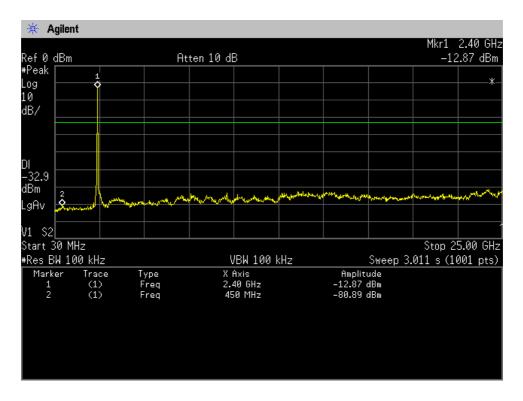


Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 51 of 71

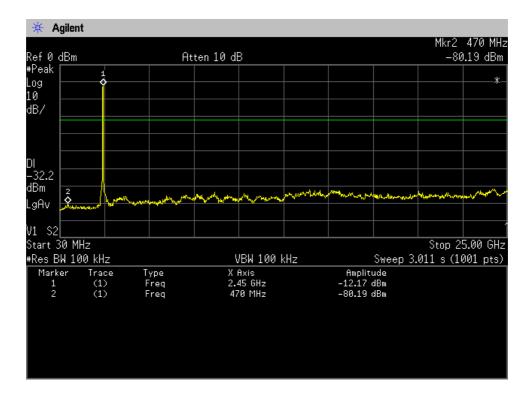
3)Data Rate : 6Mbps(IEEE 802.11g) Low Channel

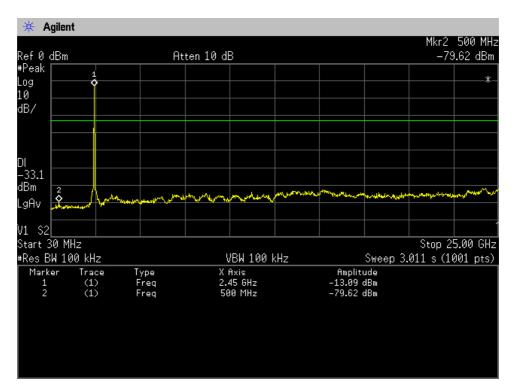



Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 52 of 71

High Channel

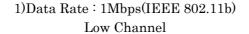

4)Data Rate : 54Mbps(IEEE 802.11g) Low Channel

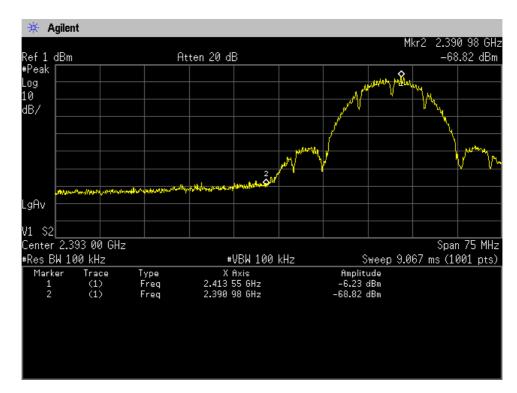


Regulation : CFR 47 FCC Rules and Regulations Part 15

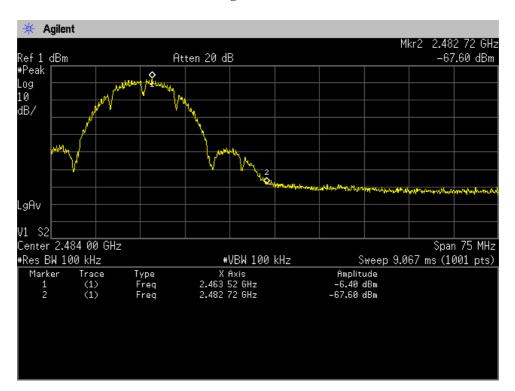
Page 53 of 71

High Channel

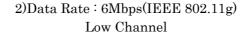


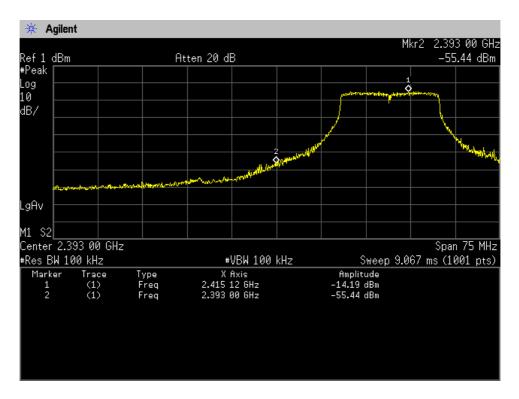


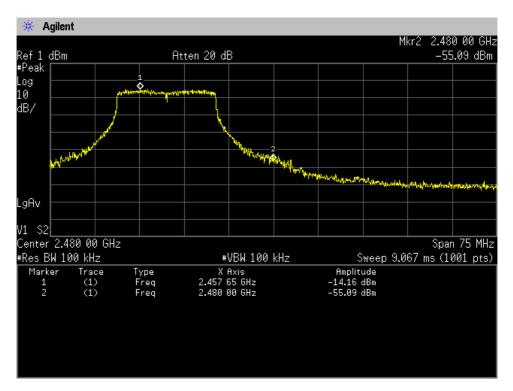
Regulation : CFR 47 FCC Rules and Regulations Part 15


Page 54 of 71

Band-Edge Emission


High Channel



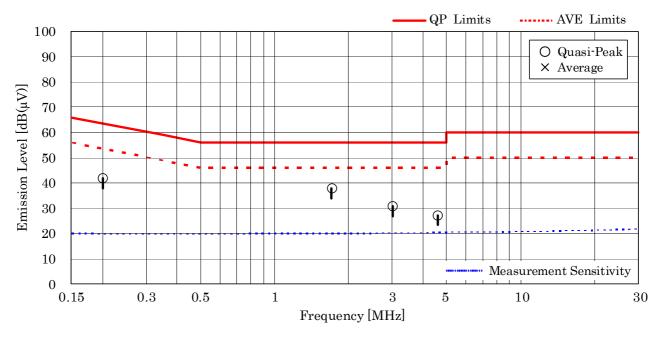

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 55 of 71

High Channel

JQA File No. : KL80100243 Issue Date: October 4, 2010 Model No. :002SH FCC ID : APYHRO00135

Regulation : CFR 47 FCC Rules and Regulations Part 15


Page 56 of 71

A.8 AC Powerline Conducted Emission

Mode of EUT: All modes have been investigated and the worst case mode for channel (06ch: 2437MHz / IEEE 802.11b and IEEE 802.11g) has been listed.

> Test Date: September 16, 2010 Temp.: 25 °C, Humi: 53 %

Frequency	Corr. Factor	Me V		lings [dB(µV) VI	-	Lin [dB(Resı [dB(į		Margin [dB]	Remarks
[MHz]	[dB]	QP	AVE	QP	AVE	QP	AVE	QP	AVE		
0.20	10.0	31.5		31.9		63.6	53.6	41.9		+21.7	-
1.70	10.1	26.3		27.8		56.0	46.0	37.9		+18.1	
3.02	10.2	20.7		17.5		56.0	46.0	30.9		+25.1	-
4.60	10.3	15.6		17.0		56.0	46.0	27.3		+28.7	-
29.98	11.8	< 10.0		< 10.0		60.0	50.0	< 21.8		> +38.2	-

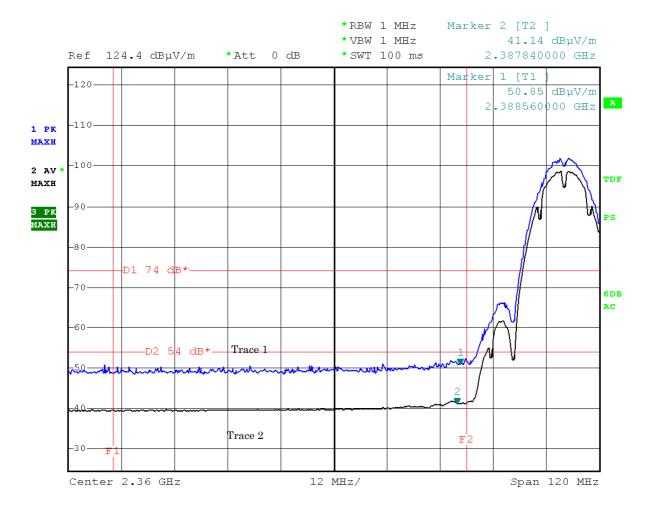
NOTES

- 1. The spectrum was checked from 0.15 MHz to 30 MHz.
- 2. The correction factor includes the AMN insertion loss and the cable loss.

- 3. The symbol of "<" means "or less".
 4. The symbol of ">" means "more than".
 5. The symbol of "--" means "not applicable".
- 6. Calculated result at 1.70 MHz, as the worst point shown on underline: Correction Factor + Meter Reading = $10.1 + 27.8 = 37.9 \text{ dB}(\mu\text{V})$
- 7. QP : Quasi-Peak Detector / AVE : Average Detector
- 8. Test receiver setting(s): CISPR QP 9 kHz / Average 9 kHz

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 57 of 71

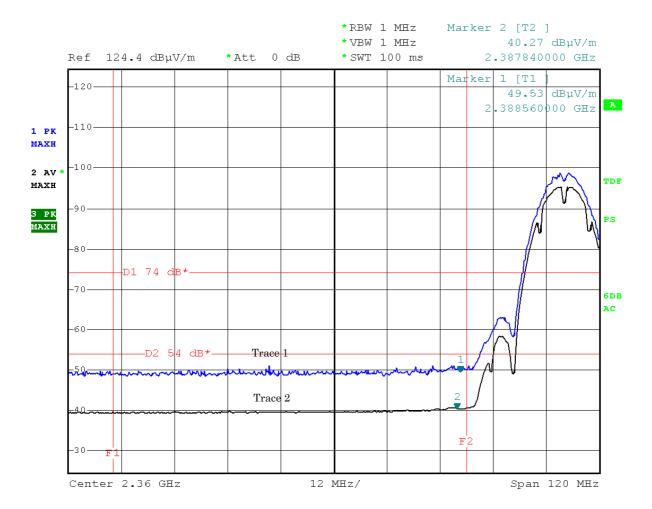

A.9 Field Strength of Spurious Radiation

A.9.1 Band-edge Compliance

Test Date: September 13, 2010 Temp.:26°C, Humi:55%

Mode of EUT: TX(1ch: 2412 MHz, data rate : 1Mbps(IEEE 802.11b))

 $Antenna\ Polarization: Horizontal$

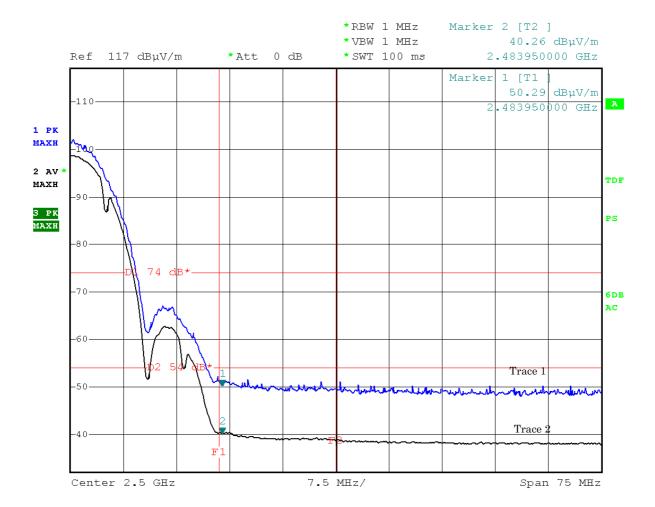


Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 58 of 71

Mode of EUT: TX(1ch: 2412 MHz, data rate : 1Mbps(IEEE 802.11b))

Antenna Polarization: Vertical

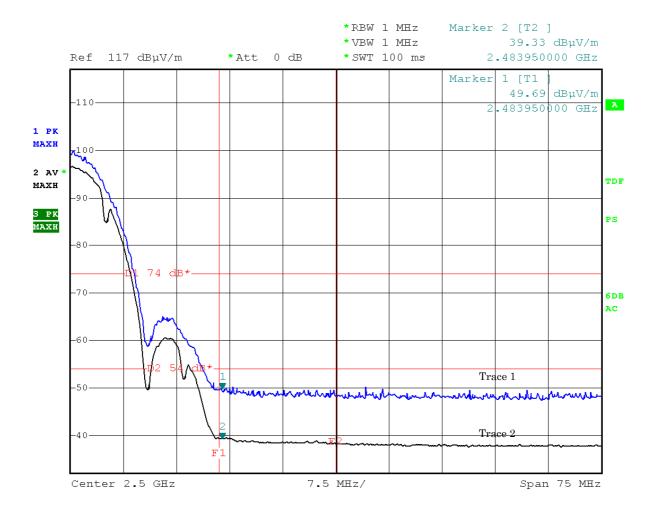


Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 59 of 71

Mode of EUT: TX(11ch: 2462 MHz, data rate : 1Mbps(IEEE 802.11b))

Antenna Polarization: Horizontal

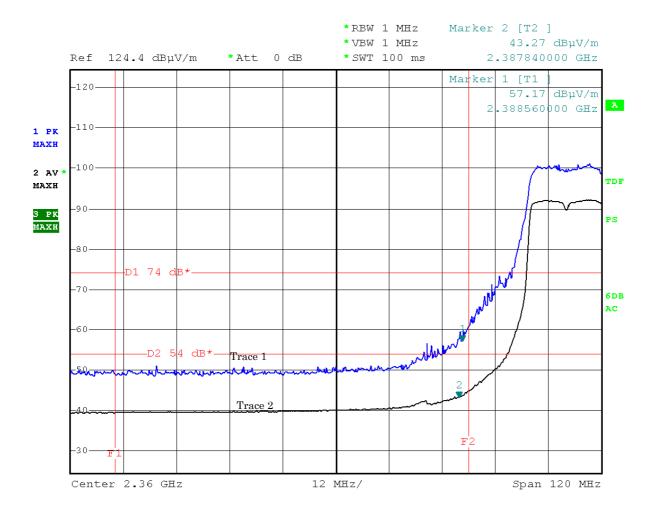


Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 60 of 71

Mode of EUT: TX(11ch: 2462 MHz, data rate : 1Mbps(IEEE 802.11b))

Antenna Polarization: Vertical

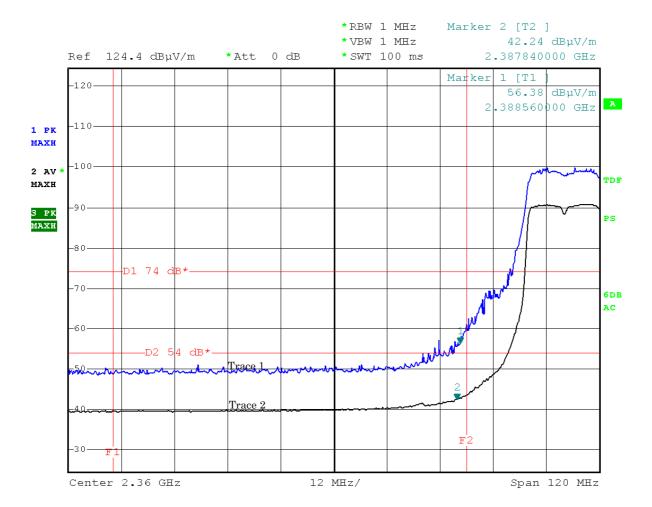


Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 61 of 71

Mode of EUT: TX(1ch: 2412 MHz, data rate : 6Mbps(IEEE 802.11g))

Antenna Polarization: Horizontal

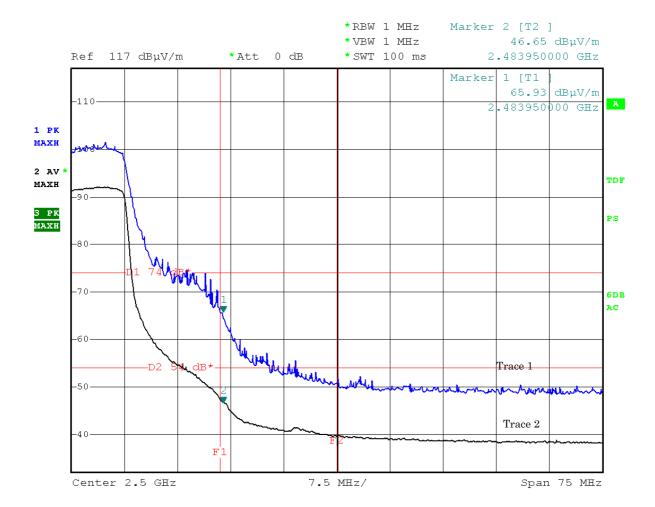


Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 62 of 71

Mode of EUT: TX(1ch: 2412 MHz, data rate : 6Mbps(IEEE 802.11g))

Antenna Polarization: Vertical

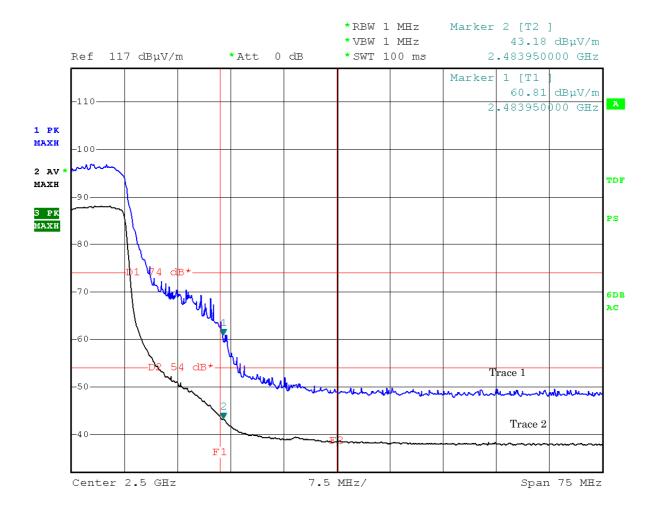


Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 63 of 71

Mode of EUT: TX(11ch: 2462 MHz, data rate : 6Mbps(IEEE 802.11g))

Antenna Polarization: Horizontal



Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 64 of 71

Mode of EUT: TX(11ch: 2462 MHz, data rate : 6Mbps(IEEE 802.11g))

Antenna Polarization: Vertical

Regulation : CFR 47 FCC Rules and Regulations Part 15

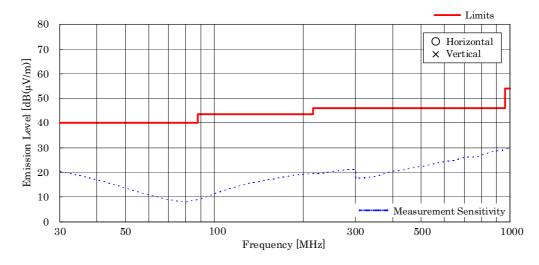
Page 65 of 71

A.9.2 Other Spurious Emission

A.9.2.1 Other Spurious Emission(9kHz - 30MHz)

Test Date: September 13, 2010 Temp.:27°C, Humi:50%

Mode of EUT: All modes have been investigated and the worst case mode for channel (06ch: 2437MHz / IEEE802.11b and IEEE802.11g) has been listed.


Results: No spurious emissions in the range 20dB below the limit.

A.9.2.2 Other Spurious Emission(30MHz – 1000MHz)

Mode of EUT: All modes have been investigated and the worst case mode for channel (06ch: 2437MHz / IEEE802.11b and IEEE802.11g) has been listed.

Test Date: September 13, 2010 Temp.: 27 °C, Humi: 50 %

Frequency	Antenna Factor	Cable Loss		Meter 1 [dB	Readin (μV)]	ıgs	Limits [dB(µV/m)]	Results [dB(μV/m)]		Margin [dB]	Remarks	
[MHz]	[dB(1/m)]	[dB]]	Hori.	7	ert.	-	Hori.	Vert.			
31.1	19.1	1.0	<	0.0	<	0.0	40.0	< 20.1	< 20.1	> +19.9	-	
32.0	18.8	1.0	<	0.0	<	0.0	40.0	< 19.8	< 19.8	> +20.2	-	
44.6	14.2	1.2	<	0.0	<	0.0	40.0	< 15.4	< 15.4	> +24.6	-	
49.6	12.5	1.2	<	0.0	<	0.0	40.0	< 13.7	< 13.7	> +26.3	-	
132.0	13.5	2.1	<	0.0	<	0.0	43.5	< 15.6	< 15.6	> +27.9	-	
148.0	14.5	2.3	<	0.0	<	0.0	43.5	< 16.8	< 16.8	> +26.7	-	
300.0	14.1	3.4	<	0.0	<	0.0	46.0	< 17.5	< 17.5	> +28.5	-	
302.6	14.1	3.4	<	0.0	<	0.0	46.0	< 17.5	< 17.5	> +28.5	-	
311.0	14.1	3.5	<	0.0	<	0.0	46.0	< 17.6	< 17.6	> +28.4	-	
325.3	14.2	3.6	<	0.0	<	0.0	46.0	< 17.8	< 17.8	> +28.2	-	
432.9	16.6	4.3	<	0.0	<	0.0	46.0	< 20.9	< 20.9	> +25.1	-	
440.8	16.7	4.4	<	0.0	<	0.0	46.0	< 21.1	< 21.1	> +24.9	_	

NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from $30~\mathrm{MHz}$ to $1000~\mathrm{MHz}$.
- 3. The symbol of "<" means "or less".
- 4. The symbol of ">" means "more than".
- 5. Calculated result at 31.1 MHz, as the worst point shown on underline: Antenna Factor + Cable Loss + Meter Reading = $19.1 + 1.0 + <0.0 = <20.1 \ dB(\mu V/m)$
- 6. Test receiver setting(s) : CISPR QP 120 kHz (QP : Quasi-Peak)

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 66 of 71

A.9.2.3 Other Spurious Emission(Above 1000MHz)

Mode of EUT: TX(IEEEE802.11b / IEEEE 802.11g)

Test Date: September 19, 2010 Temp.: 27 °C, Humi: 47 %

Frequency	Antenna Factor	Corr. Factor		Meter Read izontal	lings [dΒ(μV	/)] rtical		nits V/m)]		sults ıV/m)]	Margin [dB]	Remarks
[MHz]	[dB(1/m)]	[dB]	PK	AVE	PK	AVE	PK	AVE	PK	AVE	լա	
	m • o	_										
Test condition												
4824.0	27.4	-20.8	< 40.0	< 30.0	< 40.0	< 30.0	74.0	54.0	< 46.6	< 36.6	> +17.4	A/B
12060.0	33.7	-25.5	< 40.0	< 30.0	< 40.0	< 30.0	74.0	54.0	< 48.2	< 38.2	> +15.8	A/B
19296.0	40.4	-21.5	< 40.0	< 30.0	< 40.0	< 30.0	74.0	54.0	< 58.9	< 48.9	> + 5.1	A/B
Test condition	: TX Middle	Ch										
4874.0	27.3	-20.7	< 40.0	< 30.0	< 40.0	< 30.0	74.0	54.0	< 46.6	< 36.6	> +17.4	A/B
7311.0	29.8	-19.0	< 40.0	< 30.0	< 40.0	< 30.0	74.0	54.0	< 50.8	< 40.8	> +13.2	A/B
12185.0	33.6	-25.4	< 40.0	< 30.0	< 40.0	< 30.0	74.0	54.0	< 48.2	< 38.2	> +15.8	A/B
19496.0	40.4	-21.5	< 40.0	< 30.0	< 40.0	< 30.0	74.0	54.0	< 58.9	< 48.9	> + 5.1	A/B
Test condition	: TX High C	Ch										
4924.0	27.3	-20.8	< 40.0	< 30.0	< 40.0	< 30.0	74.0	54.0	< 46.5	< 36.5	> +17.5	A/B
7386.0	29.8	-18.8	< 40.0	< 30.0	< 40.0	< 30.0	74.0	54.0	< 51.0	< 41.0	> +13.0	A/B
12310.0	33.6	-25.4	< 40.0	< 30.0	< 40.0	< 30.0	74.0	54.0	< 48.2	< 38.2	> +15.8	A/B
19696.0	40.4	-21.4	< 40.0	< 30.0	< 40.0	< 30.0	74.0	54.0	< 59.0	< 49.0	> + 5.0	A/B
22158.0	40.6	-20.6	< 40.0	< 30.0	< 40.0	< 30.0	74.0	54.0	< 60.0	< 50.0	> + 4.0	A/B

Calculated result at 19696.0 MHz, as the worst point shown on underline:

 $\begin{array}{ccccc} Antenna \ Factor & = & 40.4 \ dB(1/m) \\ Corr. \ Factor & = & -21.4 \ dB \\ +) \ \underline{Meter \ Reading} & = & <30.0 \ dB(\mu V) \\ \hline Result & = & <49.0 \ dB(\mu V/m) \end{array}$

Minimum Margin: 54.0 - <49.0 = >4.0 (dB)

NOTES

- 1. Test Distance: 3 m
- $2. \ The \ spectrum \ was \ checked \ from \ 1 \ GHz \ to \ 25 \ GHz \ (10th \ harmonic \ of \ the \ highest \ fundamental \ frequency).$
- 3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. - Pre-Amp. Gain [dB] (7.6 - 18.0GHz)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)

- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK: Peak Detector / AVE: Average Detector
- 7. Setting of measuring instrument(s):

	Detector Function	Resolution B.W.	Video B.W.	Sweep Time
A	Peak	1 MHz	1 MHz	AUTO
В	Peak	1 MHz	10 Hz	AUTO

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 67 of 71

Mode of EUT: RX(IEEEE802.11b / IEEEE 802.11g)

Test Date: September 19, 2010 Temp.: 27 °C, Humi: 47 %

Frequency	Antenna	Corr.]	Meter Read	ings [dΒ(μ\	V)]	Lin	nits	Res	sults	Margin	Remarks
	Factor	Factor	Hori	zontal	Vei	rtical	[dB(µ	V/m)]	[dB(µ	ιV/m)]	[dB]	
[MHz]	[dB(1/m)]	[dB]	PK	AVE	PK	AVE	PK	AVE	PK	AVE		
Test condition	on: RX Mid	dle Ch										
2437.0	21.5	-21.8	< 40.0	< 30.0	< 40.0	< 30.0	74.0	54.0	< 39.7	< 29.7	> +24.3	A/B
4874.0	27.3	-21.0	< 40.0	< 30.0	< 40.0	< 30.0	74.0	54.0	< 46.3	< 36.3	> +17.7	A/B
7311.0	29.8	-19.3	< 40.0	< 30.0	< 40.0	< 30.0	74.0	54.0	< 50.5	< 40.5	> +13.5	A/B

Calculated result at 4874.0 MHz, as the worst point shown on underline:

 $\begin{array}{cccc} Antenna \ Factor & = & 27.3 \ dB(1/m) \\ Corr. \ Factor & = & -21.0 \ dB \\ +) \ \underline{Meter \ Reading} & = & <30.0 \ dB(\mu V) \\ \hline Result & = & <36.3 \ dB(\mu V/m) \end{array}$

Minimum Margin: 54.0 - <36.3 = >13.5 (dB)

NOTES

- 1. Test Distance: 3 m
- 2. The spectrum was checked from $1~\mathrm{GHz}$ to $25~\mathrm{GHz}$ ($10\mathrm{th}$ harmonic of the highest fundamental frequency).
- 3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. PK: Peak Detector / AVE: Average Detector
- 7. Setting of measuring instrument(s) :

	Detector Function	Resolution B.W.	Video B.W.	Sweep Time
A	Peak	1 MHz	1 MHz	AUTO
В	Peak	1 MHz	10 Hz	AUTO

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 68 of 71

Appendix B: Test Arrangement (Photographs)

B.1 AC Powerline Conducted Emission

This page is CONFIDENTIAL.

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 69 of 71

B.2 Radiated Emission

This page is CONFIDENTIAL.

JQA File No. : KL80100243 Issue Date : October 4, 2010 Model No. : 002SH FCC ID : APYHRO00135

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 70 of 71

Appendix C: Test Instruments

C.1 Channel Separation

Not Applicable

C.2 Minimum Hopping Channel

Not Applicable

C.3 Occupied Bandwidth

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4407B (S/N:MY45113101)	Agilent		2010/5	1 Year
Attenuator	54A-10	Weinschel	D-29	2009/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2010/6	1 Year

C.4 Dwell Time

Not Applicable

C.5.1 Peak Output Power (Conduction)

					_
Type	Model	Manufacturer	ID No.	Last Cal.	Interval
Power Meter	N1911A	Agilent	B-63	2010/6	1 Year
Power Sensor	N1921A	Agilent	B-64	2010/6	1 Year
Attenuator	54A-10	Weinschel	D-29	2009/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2010/6	1 Year

C.5.2 Peak Output Power Density (Conduction)

	J .				
Type	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4407B (S/N:MY45113101)	Agilent		2010/5	1 Year
Attenuator	54A-10	Weinschel	D-29	2009/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2010/6	1 Year

C.6 Spurious Emission (Conduction)

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2010/9	1 Year
Attenuator	54A-10	Weinschel	D-29	2009/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2010/6	1 Year

C.7 AC Power Conducted Emission

Type	Model	Manufacturer	ID No.	Last Cal.	Interval
Test Receiver	ESCS 30	Rohde & Schwarz	A-9	2010/1	1 Year
AMN (main)	KNW-407FR	Kyoritsu	D-103	2009/9	1 Year
Attenuator	MP721C	Anritsu	D-66	2009/9	1 Year
RF Cable	5D-2W	FUJIKURA	H-33	2010/5	1 Year

C.8 Radiated Emission

C.8.1 Radiated Emission 9 kHz - 30 MHz

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Test Receiver	ESCI	Rohde & Schwarz	A-42	2009/11	1 Year
Loop Antenna	HFH2-Z2	Rohde & Schwarz	C-3	2010/8	1 Year
RF Cable	RG213/U	Rohde & Schwarz	H-29	2010/8	1 Year

Regulation : CFR 47 FCC Rules and Regulations Part 15

Page 71 of 71

C.8.2 Radiated Emission 30MHz - 1000 MHz

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Test Receiver	ESVS 10	Rohde & Schwarz	A-5	2009/10	1 Year
Biconical Antenna	VHA9103/FBAB9177	Schwarzbeck	C-25	2010/5	1 Year
Log-periodic Antenna	UHALP9108-A1	Schwarzbeck	C-28	2010/5	1 Year
RF Cable			H-1	2010/5	1 Year
Site Attenuation			H-11	2009/11	1 Year

C.8.3 Radiated Emission Above 1000 MHz

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Test Receiver	ESU26 (S/N: 100170)	Rohde & Schwarz		2010/4	1 Year
Test Receiver	ESCI	Rohde & Schwarz	A-42	2009/11	1 Year
RF Cable	SUCOFLEX104	SUHNER	C-40-11	2010/1	1 Year
RF Cable	SUCOFLEX104	SUHNER	C-40-14	2010/1	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-54	2010/1	1 Year
RF Cable	SUCOFLEX102EA	SUHNER	C-69	2010/1	1 Year
Attenuator	2-10	Weinschel	D-79	2009/9	1 Year
Attenuator	54-10	Weinschel	D-82	2010/6	1 Year
Pre-Amplifier	WJ-6611-513	Watkins Johnson	A-23	2010/1	1 Year
Pre-Amplifier	WJ-6882-824	Watkins Johnson	A-21	2010/1	1 Year
Pre-Amplifier	DBL-0618N515	DBS Microwave	A-33	2010/1	1 Year
Pre-Amplifier	BZ1804LD1	B&T Technologies	A-29	2010/1	1 Year
Band Rejection Filter	BRM50701	MICRO-TRONICS	D-93	2010/2	1 Year
Horn Antenna	91888-2	EATON	C-41-1	2010/6	1 Year
Horn Antenna	91889-2	EATON	C-41-2	2010/8	1 Year
Horn Antenna	3160-05	EMCO	C-55	2009/6	2 Years
Horn Antenna	3160-06	EMCO	C-57	2009/6	2 Years
Horn Antenna	3160-07	EMCO	C-58	2009/6	2 Years
Horn Antenna	3160-08	EMCO	C-59	2009/6	2 Years
Horn Antenna	3160-09	EMCO	C-48	2009/6	2 Years