

Page 1 of 44

JQA File No.: KL80100119 **Issue Date**: July 14, 2010

TEST REPORT

APPLICANT : Sharp Corporation

ADDRESS : 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, JAPAN

PRODUCTS : Cellular Phone

MODEL NO. : 843SH

SERIAL NO. : 004401/11/2666504/3

FCC ID : APYHRO00126

TEST STANDARD : CFR 47 FCC Rules and Regulations Part 24

TESTING LOCATION: Japan Quality Assurance Organization

KITA-KANSAI Testing Center

1-7-7, Ishimaru, Minoh-shi, Osaka 562-0027, Japan

TEST RESULTS : Passed

DATE OF TEST : June 28, 2010 ~ July 8, 2010

This report must not used by the client to claim product endorsement by NVLAP or NIST or any agency of the U.S. Government.

Kousei Shibata

Manager

Japan Quality Assurance Organization

KITA-KANSAI Testing Center Testing Dept. EMC Division

1-7-7, Ishimaru, Minoh-shi, Osaka 562-0027, Japan

- The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and National Institute of Information and Communications Technology (NICT) of Japan.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 2 of 44

TABLE OF CONTENTS

				Pag
Docume	entation	•••••		3
1	Test Regulation			3
2	Test Location			3
3	Recognition of Test Laboratory			3
4	Description of the Equipment Under Test			4
5	Test Condition			5
6	Preliminary Test and Test Setup			7
7	Equipment Under Test Modification			.16
8	Responsible Party			.16
9	Deviation from Standard			
10	Test Results			.17
11	Summary			.20
12	Operating Condition			.21
13	Test Configuration			.21
14	Equipment Under Test Arrangement (Dra	wings)		.22
	ix B: Test Arrangement (Photographs)			
	DEFINITIONS FOR ABBREVIATION A	AND SYM	BOLS USED IN THIS TEST REPORT	
ाज	JT : Equipment Under Test	EMC	: Electromagnetic Compatibility	
AF	1 1	EMI	: Electromagnetic Interference	
N/		EMS	: Electromagnetic Susceptibility	
N/		TATAL O	Diceromagnosic Susceptionity	
	<u> </u>	-	uipment is applicable for this report. uipment is not applicable for this report.	

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 3 of 44

Documentation

1 Test Regulation

Applied Standard : CFR 47 FCC Rules and Regulations Part 24

Subpart E - Broadband PCS

Test Requirements : CFR 47 FCC Rules and Regulations Part 2

 $\S 2.1046,\ \S 2.1047,\ \S 2.1049,\ \S 2.1051,\ \S 2.1053,\ \S 2.1055$ and $\S 2.1057$

Test Procedure : ANSI C63.4–2003, TIA/EIA–603-C-2004

2 Test Location

KITA-KANSAI Testing Center

1-7-7, Ishimaru, Minoh-shi, Osaka 562-0027, Japan

KAMEOKA EMC Branch

9-1, Ozaki, Inukanno, Nishibetsuin-cho, Kameoka-shi, Kyoto 621-0126, Japan

3 Recognition of Test Laboratory

VLAC Code : VLAC-001-2 (Effective through : March 30, 2012) NVLAP Lab Code : 200191-0 (Effective through : June 30, 2011) BSMI Recognition No. : SL2-IS-E-6006, SL2-IN-E-6006, SL2-AI-E-6006

(Effective through: September 14, 2010)

VCCI Registration No. : R-008, C-006, C-007, C-1674, C-2143, C-3685, T-1418, T-1419, T-1819, T-1820,

T-1821, G-172, G-173

(Effective through: March 30, 2012)

IC Registration No. : 2079E-1, 2079E-2 (Effective through: January 6, 2011)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Effective through: February 22, 2012)

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 4 of 44

4 Description of the Equipment Under Test

4.1 General Information

1. Manufacturer : Sharp Corporation

2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, JAPAN

2. Products : Cellular Phone

3. Model No. : 843SH

4. Serial No. : 004401/11/2666504/3

5. Product Type : Pre-production

6. Date of Manufacture : June, 2010

7. Transmitting Frequency : 1850.2 MHz(512CH) – 1909.8MHz(810CH)

8. Receiving Frequency : 1930.2 MHz(512CH) – 1989.8MHz(810CH)

9. Emission Designations : 243KGXW

10. Max. RF Output Power : 1.905W (EIRP)

11. Power Rating : 4.0VDC (Lithium-ion Battery Pack SHBCU1 770mAh)

12. EUT Grounding : None

13. Category : Broadband PCS
14. EUT Authorization : Certification
15. Receive Date of EUT : June 28, 2010

4.2 Channel Plan

The carrier spacing is 200 kHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN).

The carrier frequency is expressed in the equation shown as follows:

Transmitting Frequency (in MHz) = $1850.2 + 0.2 \times (n - 512)$ Receiving Frequency (in MHz) = $1930.2 + 0.2 \times (n - 512)$

where, n: channel number ($512 \le n \le 810$)

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 5 of 44

5 Test Condition					
5.1 RF Power Output (§2.1046)					
5.1.1 Conducted RF Power Output					
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not tested by applicant request.] \square - Not Applicable					
Test site : KITA-KANSAI \boxtimes - Shielded room \square - 2 nd Shielded room \square - Conducted emission facility					
Test instruments : Refer to Appendix C.					
5.1.2 ERP / EIRP RF Power Output					
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not tested by applicant request.] \square - Not Applicable					
Test site: S - KAMEOKA 1st open site S - 3 m S - 10 m S - KAMEOKA 2nd open site S - 3 m S - 10 m					
Test instruments : Refer to Appendix C.					
5.2 Modulation Characteristics (§2.1047)					
The requirements are \square - Applicable $[\square$ - Tested. \square - Not tested by applicant request.] \boxtimes - Not Applicable					
Test site: KITA-KANSAI					
Test instruments : Refer to Appendix C.					
5.3 Occupied Bandwidth (§2.1049)					
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not tested by applicant request.] \square - Not Applicable					
Test site : KITA-KANSAI \boxtimes - Shielded room \square - 2nd Shielded room KAMEOKA \square - Shielded room \square - Conducted emission facility					
Test instruments : Refer to Appendix C.					

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 6 of 44

5.4 Spurious Emissions at Antenna Terminals (§2.1051)
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not tested by applicant request.] \square - Not Applicable
Test site : KITA-KANSAI \square - Shielded room \square - 2nd Shielded room KAMEOKA \square - Shielded room \square - Conducted emission facility
Test instruments : Refer to Appendix C.
5.5 Band-Edge Emission (§2.1051)
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not tested by applicant request.] \square - Not Applicable
Test site : KITA-KANSAI \square - Shielded room \square - 2nd Shielded room \square - Conducted emission facility
Test instruments : Refer to Appendix C.
5.6 Field Strength of Spurious Radiation (§2.1053)
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not tested by applicant request.] \square - Not Applicable
Test site: S - KAMEOKA 1st open site S - 3 m S - 10 m S - KAMEOKA 2nd open site S - 3 m S - 10 m
Test instruments : Refer to Appendix C.
5.7 Frequency Stability (§2.1055)
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not tested by applicant request.] \square - Not Applicable
Test site: KITA-KANSAI Environment Testing Room
Test instruments : Refer to Appendix C.

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 7 of 44

6 Preliminary Test and Test Setup

6.1 RF Power Output (§2.1046)

6.1.1 Conducted RF Power Output

The Conducted RF Power Output was measured with a power meter, one 10dB attenuator and a short, low loss cable.

6.1.2 ERP / EIRP RF Power Output

Step 1:

In order to obtain the maximum emission, the EUT was placed at the height 1.8 m on the non-conducted support and was varying at three orthogonal axes (Refer to clause 15), at the distance 3 m from the receiving antenna and rotated around 360 degrees.

The receiving antenna height was varied from 1 m to 4 m.

The EUT on the table was placed to be maximum emission against at the receiving antenna polarized (vertical and horizontal).

Then the meter reading of the spectrum analyzer at the maximum emission was A $dB(\mu V)$.

Step 2:

The EUT was replaced to substitution antenna at the same polarized under the same condition as step 1.

The RF power was fed to the transmitting antenna through the RF amplifier from the signal generator.

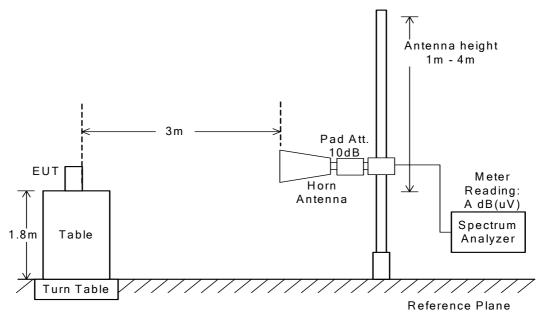
In order to obtain the maximum emission level, the height of the receiving antenna was varied from 1 m to 4 m

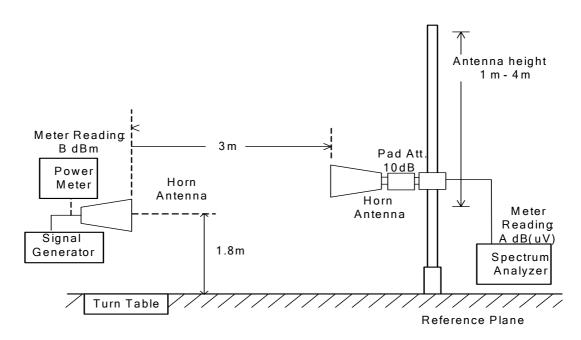
The level of maximum emission was A $dB(\mu V)$, same as the recorded level in the step 1.

Then the RF power into the substitution horn antenna was P (dBm).

The ERP/EIRP output power was calculated in the following equation.

ERP (dBm) = P (dBm) - Balun loss of the half-wave dipole antenna (dB) + Cable loss (dB)EIRP (dBm) = P (dBm) + Gh (dBi)


where, Gh (dBi): Gain of the substitution horn antenna.


Regulation : CFR 47 FCC Rules and Regulations Part 24

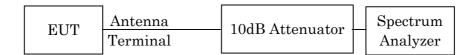
Page 8 of 44

- Side View -

(a)EUT

(b) Substitution Horn Antenna

Regulation : CFR 47 FCC Rules and Regulations Part 24


Page 9 of 44

6.2 Modulation Characteristics (§2.1047)

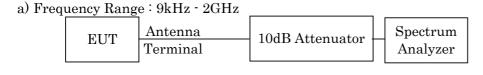
Not Applicable

6.3 Occupied Bandwidth (§2.1049)

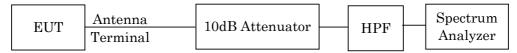
The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Res. Bandwidth	10 kHz
Video Bandwidth	$30~\mathrm{kHz}$
Span	1 MHz
Sweep Time	AUTO
Trace	Maxhold



Regulation : CFR 47 FCC Rules and Regulations Part 24


Page 10 of 44

6.4 Spurious Emissions at Antenna Terminals (§2.1051)

The Antenna Conducted Emission was with a spectrum analyzer. The test system is shown as follows:

b) Frequency Range : 2GHz - 20GHz

The setting of the spectrum analyzer are shown as follows:

Frequency Range	9 kHz - 150 kHz	150 kHz - 30 MHz	30 MHz - 20 GHz	
Res. Bandwidth	Res. Bandwidth 200 Hz		$1~\mathrm{MHz}$	
Video Bandwidth	1 kHz	30 kHz	$3~\mathrm{MHz}$	
Sweep Time	AUTO	AUTO	AUTO	
Trace	Maxhold	Maxhold	Maxhold	

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 11 of 44

6.5 Band-Edge Emission (§2.1051)

The test system is shown as follows:

EUT	Antenna Terminal	10dB Attenuator		Spectrum Analyzer
-----	---------------------	-----------------	--	----------------------

The setting of the spectrum analyzer are shown as follows:

TX Frequency	1850.20 MHz / 1909.80 MHz			
Band-Edge Frequency	1850.00 MHz / 1910.00 MHz			
Res. Bandwidth	3 kHz			
Video Bandwidth	10 kHz			
Span	$2\mathrm{MHz}$			
Sweep Time	AUTO			
Trace	Maxhold			

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 12 of 44

6.6 Field Strength of Spurious Radiation (§2.1053)

Step 1) The spurious radiation for transmitter were measured at the distance 3 m away from the EUT which was placed on a non-conducted support 1.0 m in height and was varying at three orthogonal axes (Refer to clause 15). The receiving antenna was oriented for vertical polarization and varied from 1 m to 4 m until the maximum emission level was detected on the measuring instrument. The EUT was rotated 360 degrees until the maximum emission was received. The measurement was also repeated with the receiving antenna in the horizontal polarization.

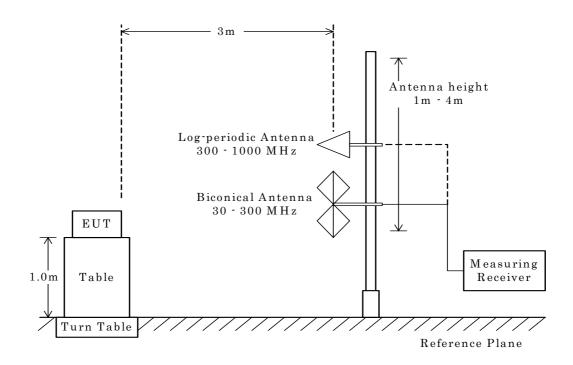
This test was carried out using the half-wave dipole antenna for up to 1GHz and using the horn antenna for above 1 GHz.

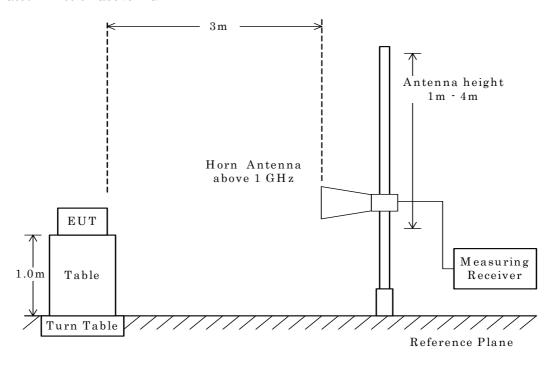
Step 2) The ERP measurement was carried out with according to Step 2 in page 8. Then the RF power in the substitution antenna half-wave dipole antenna for up to 1 GHz and the substitution horn antenna for above 1 GHz.

The ERP is calculated in the following equation.

```
A) Up to 1 GHz
ERP(dBm) = P (dBm) - (Balun Loss of the half-wave dipole Ant. (dB)) + Cable Loss (dB)
B) Above 1 GHz
ERP(dBm) = P (dBm) + Gh(dBi) - Gd(dBi)
Where, Gh(dBi): Gain of the substitution horn antenna
```

The respective calculated ERP of the spurious and harmonics were compared with the ERP of fundamental frequency by specified attenuation limits, 43+10log₁₀ (TP in watt)[dB]. Where, TP = Transmitter power at the ANT OUT under test configuration as the hands free unit used.


Gd(dBi): Gain of the substitution half-wave dipole antenna

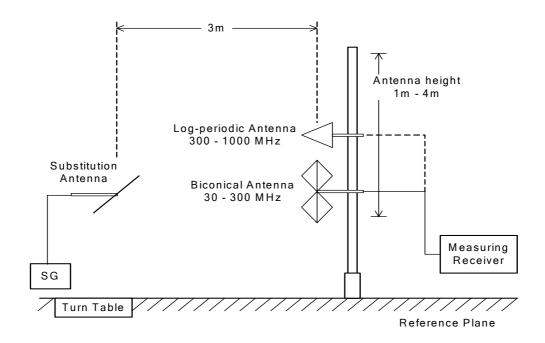

Regulation : CFR 47 FCC Rules and Regulations Part 24

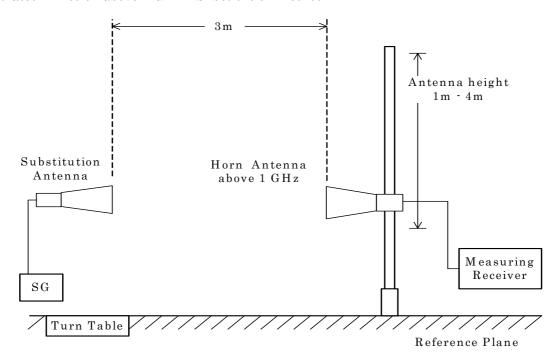
Page 13 of 44

Radiated Emission 30 MHz to 1000 MHz

Radiated Emission above 1 GHz

NOTE


The antenna height is scanned depending on the EUT's size and mounting height.


Regulation : CFR 47 FCC Rules and Regulations Part 24

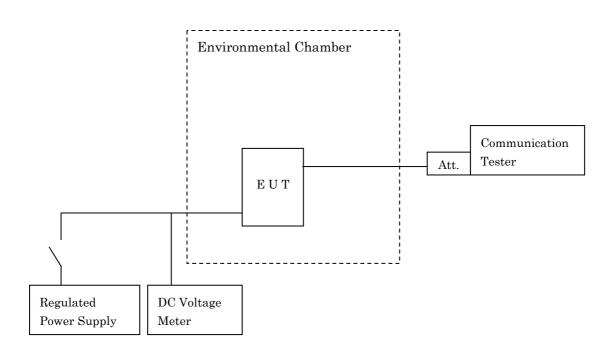
Page 14 of 44

Radiated Emission 30 to 1000 MHz - Substitution Method

Radiated Emission above 1 GHz - Substitution Method

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 15 of 44


6.7 Frequency Stability (§2.1055)

Frequency Stability versus Temperature

The EUT was placed in an environmental chamber and was tested in the range from -30 to +50 degrees Celsius. The EUT was stabilized at each temperature. The power (4.0VDC) supplied was applied to the transmitter and allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup. This procedure was repeated from -30 to +50 degrees Celsius at the interval of 10 degrees.

Frequency Stability versus Power Supply Voltage

The EUT was placed in an environmental chamber and was tested at the temperature of +20 degrees Celsius. The EUT was stabilized at the temperature. The power (4.0VDC) and the power (3.7VDC, the ending voltage) was applied to the EUT allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup.

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 16 of 44

7	Equipment Under Test Modification						
	 □ - No modifications were conducted by JQA to achieve compliance to the limitations. □ - To achieve compliance to the limitations, the following changes were made by JQA during the compliance test. 						
	The modifications will be implemented in all production models of this equipment.						
Applicant : Not Applicable Date : Not Applicable Typed Name : Not Applicable Position : Not Applicable Signatory : Not Applicable							
8	Responsible Party Responsible Party of Test Item (Product)						
	Responsible						
	Contact Per	rson :		Signatory			
9		m Standard ations from the standard wing deviations were empl		scribed in clause 1.			

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 17 of 44

10 Test Results				
10.1 RF Power Output (§2.1046)				
10.1.1 Conducted RF Power Output				
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not Applicable	☐ - Not tested	by applic	cant reques	st.]
Transmitter Power is	778.0 mW	at _	1850.200	MHz
Uncertainty of Measurement Results at Amplitude		_	+/-0.19	dB(2o)
Remarks:				
10.1.2 ERP / EIRP RF Power Output				
The requirements are \square - Applicable $[\square]$ - Tested. \square - Not Applicable	☐ - Not tested	by applic	eant reques	st.]
oxtimes - Passed $oxtimes$ - Failed $oxtimes$] - Not judged			
Min. Limit Margin	0.2 dB	at _	1880.000	MHz
Max. Limit Exceeding	dB	at _		MHz
Uncertainty of Measurement Results at Amplitude		_	+/-1.3	dB(2σ)
Remarks: The maximum EIRP is 1.905 W at 1880.0 the range of measurement uncertainty.	00 MHz. The me	asureme	nt result is	s within
10.2 Modulation Characteristics (§2.1047)				
The requirements are \square - Applicable $[\square$ - Tested. \boxtimes - Not Applicable	☐ - Not tested	by applic	eant reques	st.]
☐ - Passed ☐ - Failed ☐] - Not judged			
Remarks:				

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 18 of 44

10.3 Occupied Bandwidth (§2.1049)		
The requirements are 🔀 - Applicable 🔲 - Tested 🔲 - Not Applicable	d. - Not tested b	y applicant request.]
igtimes - Passed $igcap$ - Failed	☐ - Not judged	
The 99% Bandwidth is The 26dB Bandwidth is	242.8 kHz 318.0 kHz	at <u>1909.800</u> MHz at <u>1880.000</u> MHz
Uncertainty of Measurement Results at Frequency Uncertainty of Measurement Results at Amplitude		+/-1.7 kHz(2σ) +/-0.24 dB(2σ)
Remarks:		
10.4 Spurious Emissions at Antenna Terminals (§2.10	51)	
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested \square - Not Applicable	d. - Not tested b	y applicant request.]
igtimes - Passed $igcap$ - Failed	☐ - Not judged	
Min. Limit Margin	dB	at <u>5550.600</u> MHz
Max. Limit Exceeding	dB	at MHz
Uncertainty of Measurement Results at Amplitude		<u>+/-0.24</u> dB(2 σ)
Remarks:		

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 19 of 44

10.5 Band-Edge Emission (§2.1051)		
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not Applicable		applicant request.]
🛛 - Passed 🗌 - Failed [☐ - Not judged	
The Band-Edge level is	38.8 dBc	at <u>1850.000</u> MHz
Uncertainty of Measurement Results at Frequency Uncertainty of Measurement Results at Amplitude		+/-1.7 kHz(2σ) +/-0.24 dB(2σ)
Remarks:		
10.6 Field Strength of Spurious Radiation (§2.1053)		
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not Applicable		applicant request.]
igttizendown - Passed $igthicksim$ - Failed $igl[$	Not judged	
Min. Limit Margin	23.4 dB	at <u>11280.000</u> MHz
Max. Limit Exceeding	dB	at MHz
Uncertainty of Measurement Results	30 MHz – 1000 MH above 1 GH	
Remarks:		
10.7 Frequency Stability(§2.1055)		
The requirements are \square - Applicable \square - Tested. \square - Not Applicable		applicant request.]
The Frequency Stability level is	ppm	at <u>1880.000</u> MHz
Uncertainty of Measurement Results		<u>+/-10</u> Hz(2σ)
Remarks:		

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 20 of 44

11 Summary

General Remarks:

The EUT was tested according to the requirements of the following standard.

CFR 47 FCC Rules and Regulations Part 24

The test configuration is shown in clause 12 to 14.

The conclusion for the test items of which are required by the applied regulation is indicated under the test results.

Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

Test Results:

The "as received" sample;

□ fulfill the test requirements of the regulation mentioned on clause 1.

odoesn't fulfill the test requirements of the regulation mentioned on clause 1.

Reviewed by:

Shigeru Kinoshita

Deputy Manager Testing Dept. EMC Div.

JQA KITA-KANSAI Testing Center

Tested by:

Akio Hosoda

Advisor

Testing Dept. EMC Div.

JQA KITA-KANSAI Testing Center

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 21 of 44

12 Operating Condition

The test were carried under one modulation type shown as follows: Modulation Burst Signal: DATA TSC 5 in accordance with GSM 05.02.

The Radiated Emission test were carried under 3 test configurations shown in clause 14. In all tests, the fully charged battery is used for the EUT.

Detailed Transmitter portion:

 $\label{eq:Transmitter frequency: 1850.2 MHz(512CH) - 1909.8 MHz(810CH)} \\ \text{Local frequency} \qquad : 1850.2 \text{ MHz(512CH)} - 1909.8 \text{ MHz(810CH)} \\$

Detailed Transmitter portion:

Receiver frequency : 1930.2 MHz(512CH) – 1989.8 MHz(810CH) Local frequency : 3860.4 MHz(512CH) – 3979.6 MHz(810CH)

Other Clock Frequency

RTC : 32.768 kHzReference : 26.0 MHz

13 Test Configuration

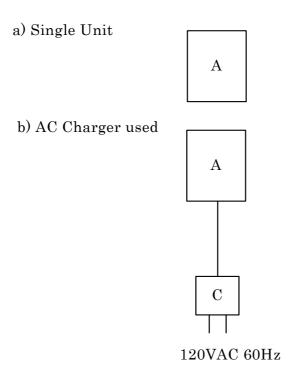
The equipment under test (EUT) consists of:

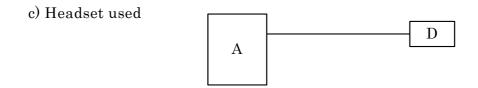
	Item	Manufacturer	Model No.	Serial No.	FCC ID
A	Cellular Phone	Sharp	843SH	004401/11/266 6504/3	APYHRO00126
В	Lithium-ion Battery	SANYO	SHBCU1		N/A
C	AC Charger	KYUSHU MITSUMI	ZTDAA1		N/A
D	Stereo Handsfree	HOSIDEN	RPHOHA0 18AF		N/A

The auxiliary equipment used for testing:

None

Type of Cable:


<u> </u>	or easie					
No.	Description	Identification	Connector	Cable	Ferrite	Length
	Description	(Manu. etc.)	Shielded	Shielded	Core	(m)
1	DC Power Cord		NO		NO	1.5
2	Headset Cable		NO		NO	1.7



Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 22 of 44

14 Equipment Under Test Arrangement (Drawings)

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 23 of 44

Appendix A: Test Data

A.1 RF Power Output (§2.1046)

A.1.1 Conducted RF Power Output

(GSM-PCS1900)

Test Date: July 6, 2010 Temp.: 26 °C, Humi: 67 %

Transn	nitting Frequency	Correction Factor	Meter Reading (Peak)	Results	(Peak)
CH	[MHz]	[dB]	[dBm]	[dBm]	[mW]
F10	1050 000	0.06	10.05	00.01	550 A
512	1850.200	9.86	19.05	28.91	778.0
661	1880.000	9.86	18.87	28.73	746.4
810	1909.800	9.86	18.73	28.59	722.8

Calculated result at 1850.200 MHz, as the maximum level point shown on underline:

NOTE: The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 24 of 44

A.1.2 ERP /EIRP Power Output

(GSM-PCS1900)

<u>Test Date: June 28, 2010</u> <u>Temp.: 28 °C, Humi: 48 %</u>

1. Measurement Results

Transmitting Frequency			Measurement Substitution Measurer [dB(uV)]		[dB(uV)] Substitution An		[dB(uV)] Substitution Antenn		Gain of Substitution Antenna
СН	[MHz]	Hori. (Mh)	Vert. (Mv)	Hori. (Msh)	Vert. (Msv)	[dBm]	[dB]		
512	1850.200	95.6	92.4	74.0	74.2	- 3.2	14.2		
661	1880.000	96.0	92.3	74.3	74.5	- 3.2	14.3		
810	1909.800	95.6	92.3	74.5	74.5	- 3.2	14.5		

2. Calculation Results

Transmitting Frequency		Peak E	RP [dBm] Maximum Peak EIRP		Limits	Margin
СН	[MHz]	(EIRPh)	Vert. (EIRPv)	[W]	[dBm]	[dB]
512	1850.200	32.6	29.2	1.820	33.0	+ 0.4
661	1880.000	32.8	28.9	1.905	33.0	+ 0.2
810	1909.800	32.4	29.1	1.738	33.0	+ 0.6

Calculated result at 1880.000 MHz, as the worst point shown on underline:

Minimum Margin: 33.0 - 32.8 = 0.2 (dB)

NOTE: Setting of measuring instrument(s):

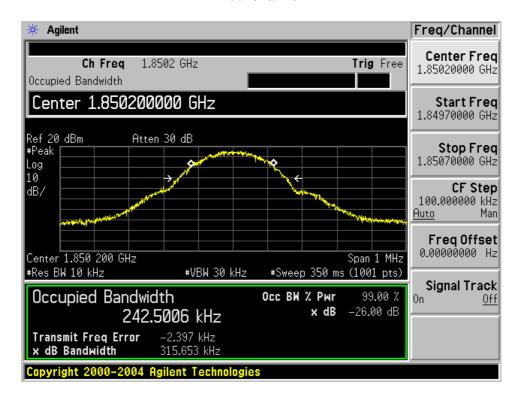
Detector Function	Resolution B.W.	V.B.W.	Sweep Time
Peak	1 MHz	1 MHz	20 msec.

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 25 of 44

A.2 Modulation Characteristics (§2.1047)

Not Applicable

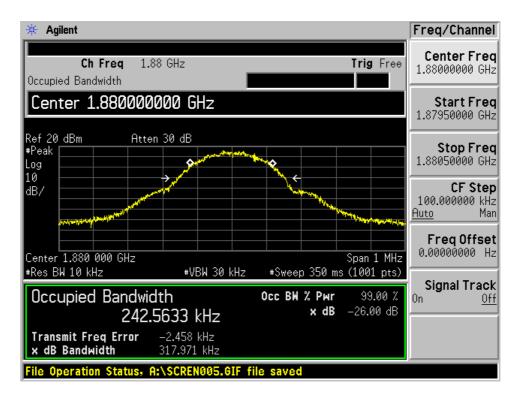

A.3 Occupied Bandwidth (§2.1049)

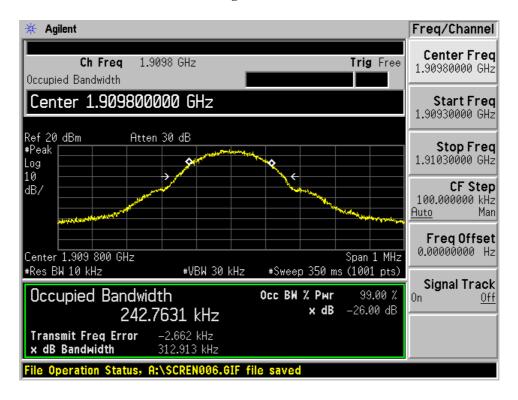
The resolution bandwidth was set to about 1% of emission bandwidth, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

Test Date: July 6, 2010 Temp.:26°C, Humi:67%

Channel	Frequency (MHz)	99% Bandwidth (kHz)	-26dBc Bandwidth (kHz)
512	1850.200	242.5	315.7
661	1880.000	242.6	318.0
810	1909.800	242.8	312.9

Low Channel




Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 26 of 44

Middle Channel

High Channel

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 27 of 44

A.4 Spurious Emissions at Antenna Terminals (§2.1051)

(GSM-PCS1900)

Test Date: July 6, 2010 Temp.: 26 °C, Humi: 67 %

Transmitting Frequency CH [MHz]		Measured Frequency [MHz]	Corr. Factor [dB]	Meter Readings [dBm]	Limits [dBm]	Results [dBm]	Margin [dB]	Remarks
CII	[MIIIZ]	[MIIIZ]	լահյ					
512	1850.200	3700.400	10.9	-61.1	-13.0	-50.2	+37.2	С
		5550.600	11.0	-51.9	-13.0	-40.9	+27.9	C
		7400.800	10.9	< -63.0	-13.0	< -52.1	> +39.1	С
		9251.000	11.0	< -63.0	-13.0	< -52.0	> +39.0	С
		11101.200	11.2	< -63.0	-13.0	< -51.8	> +38.8	С
		12951.400	11.5	< -63.0	-13.0	< -51.5	> +38.5	С
		14801.600	11.6	< -63.0	-13.0	< -51.4	> +38.4	С
		16651.800	12.0	< -63.0	-13.0	< -51.0	> +38.0	С
		18502.000	12.3	< -63.0	-13.0	< -50.7	> +37.7	С
661	1880.000	3760.000	10.9	< -63.0	-13.0	< -52.1	> +39.1	C
		5640.000	11.0	-55.8	-13.0	-44.8	+31.8	C
		7520.000	10.9	< -63.0	-13.0	< -52.1	> +39.1	C
		9400.000	11.0	< -63.0	-13.0	< -52.0	> +39.0	С
		11280.000	11.2	< -63.0	-13.0	< -51.8	> +38.8	C
		13160.000	11.5	< -63.0	-13.0	< -51.5	> +38.5	C
		15040.000	11.7	< -63.0	-13.0	< -51.3	> +38.3	С
		16920.000	12.0	< -63.0	-13.0	< -51.0	> +38.0	С
		18800.000	12.3	< -63.0	-13.0	< -50.7	> +37.7	C
810	1909.800	3819.600	10.9	< -63.0	-13.0	< -52.1	> +39.1	С
010	1909.800	5729.400	10.9	< -63.0	-13.0	< -52.1	> +39.1	C
		7639.200	10.9	< -63.0	-13.0	< -52.1	> +39.1	C
		9549.000	11.0	< -63.0	-13.0	< -52.1	> +39.1	C
		11458.800	11.0	< -63.0	-13.0	< -52.0	> +39.0	C
		13368.600	11.5	< -63.0	-13.0 -13.0	< -51.8 < -51.5	> +38.8 > +38.5	C
		15278.400	11.5	< -63.0	-13.0	< -51.5 < -51.3	> +38.3	C
		17188.200	12.0	< -63.0	-13.0 -13.0	< -51.3 < -51.0	> +38.3	C
		19098.000	12.4	< -63.0	-13.0	< -50.6	> +37.6	C

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 28 of 44

Calculated result at 5550.6 MHz, as the worst point shown on underline:

 $\begin{array}{ccccc} \text{Corr. Factor} & = & 11.0 \text{ dB} \\ +) & \underline{\text{Meter Reading}} & = & -51.9 \text{ dBm} \\ \hline \text{Result} & = & -40.9 \text{ dBm} \end{array}$

Minimum Margin: -13.0 - (-40.9) = 27.9 (dB)

NOTES

1. The spectrum was checked from 9 kHz to 20 GHz.

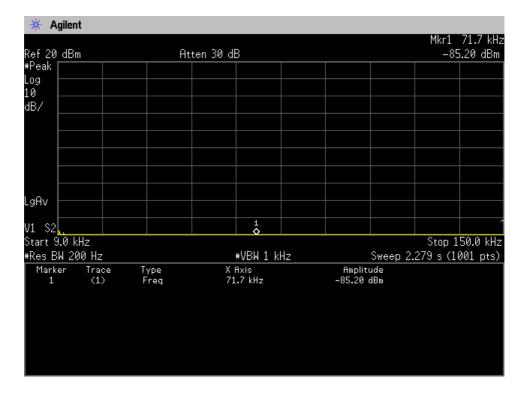
2. Applied limits : -13.0 [dBm] = $10\log(\text{TP[mW]})$ - $(43 + 10\log(\text{tp[W]}))$ = $10\log(\text{TP[mW]})$ - $(43 + (10\log(\text{TP[mW]}) - 30))$ where, tp[W] = TP[mW] / 1000: Transmitter power at anttena terminal

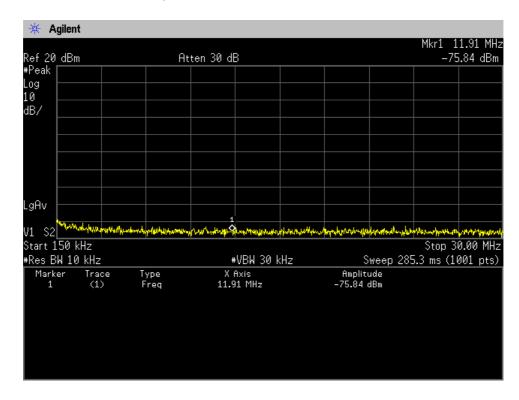
3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. [dB] (9 kHz - 2 GHz)

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. + High Pass Filter Loss (D-96) [dB] (over 2 GHz)

- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Setting of measuring instrument(s):

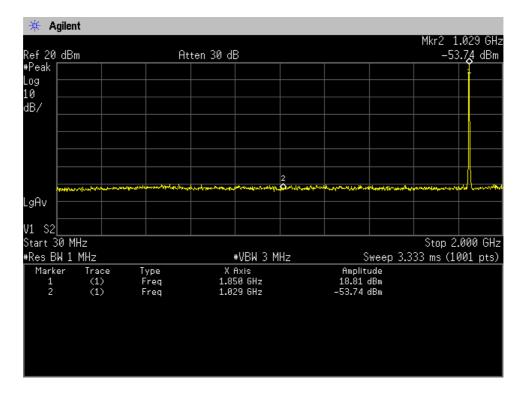

	Detector Function	RES B.W.	V.B.W.	Sweep Time
A	Peak	200 Hz	1 kHz	AUTO
В	Peak	10 kHz	30 kHz	AUTO
С	Peak	1 MHz	3 MHz	AUTO

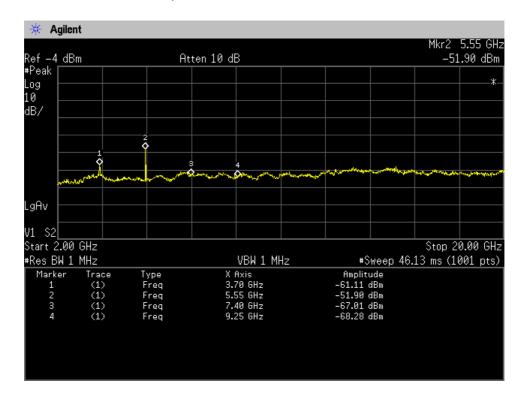

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 29 of 44

Low Channel, Out-Of-Band Emissions (9 kHz - 150 kHz)

Low Channel, Out-Of-Band Emissions (150 kHz – 30 MHz)

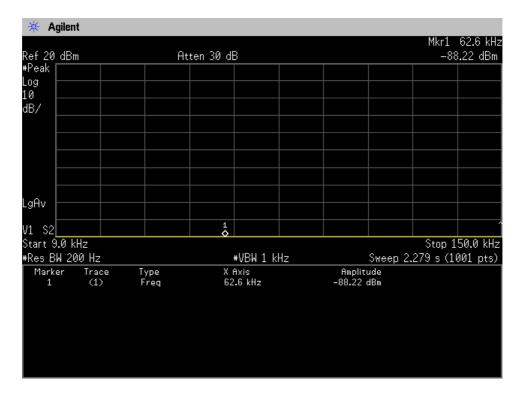


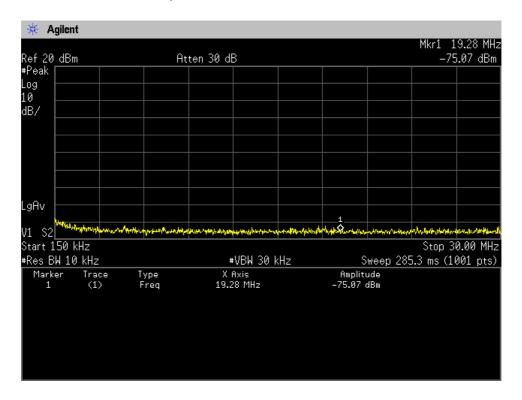

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 30 of 44

Low Channel, Out-Of-Band Emissions (30 MHz – 2 GHz)

Low Channel, Out-Of-Band Emissions (2 GHz - 20 GHz)

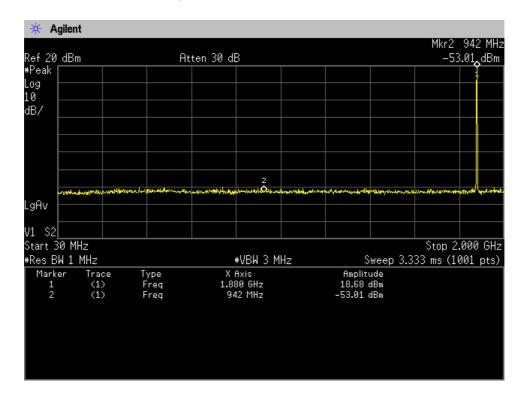


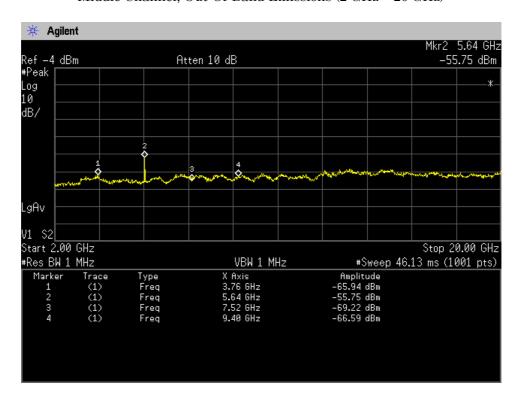

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 31 of 44

Middle Channel, Out-Of-Band Emissions (9 kHz - 150 kHz)

Middle Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)

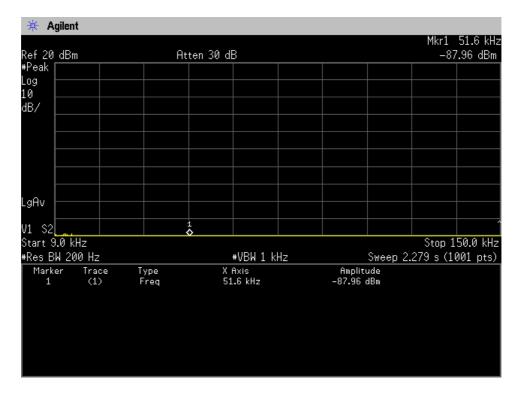


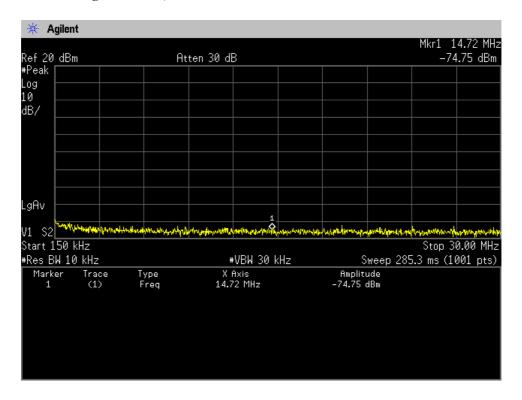

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 32 of 44

Middle Channel, Out-Of-Band Emissions (30 MHz – 2 GHz)

Middle Channel, Out-Of-Band Emissions (2 GHz - 20 GHz)

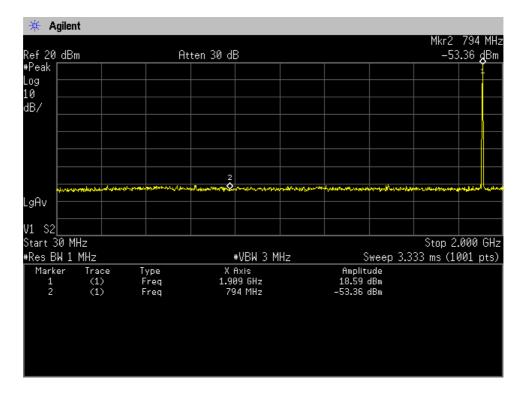


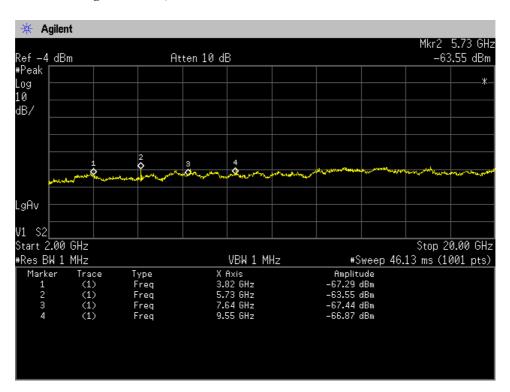

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 33 of 44

High Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)

High Channel, Out-Of-Band Emissions (150 kHz – 30 MHz)




Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 34 of 44

High Channel, Out-Of-Band Emissions (30 MHz – 2 GHz)

High Channel, Out-Of-Band Emissions (2 GHz – 20 GHz)

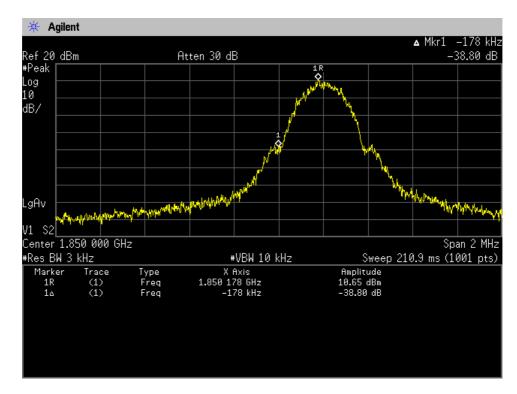
Regulation : CFR 47 FCC Rules and Regulations Part 24

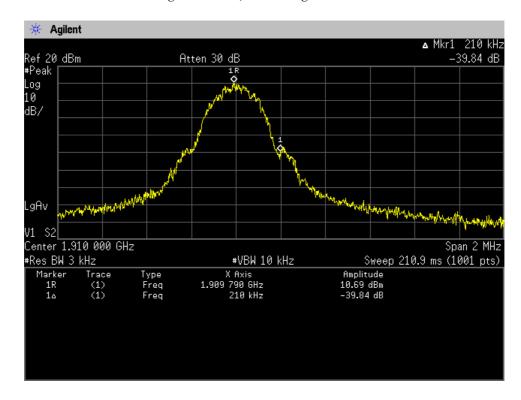
Page 35 of 44

A.5 Band-Edge Emission(§2.1051)

Test Date: July 6, 2010 Temp.:26°C, Humi:67%

(GSM-PCS1900)


Channel	Frequency (MHz)	Band-Edge Frequency (MHz)	Band-Edge Level (dBc)
512	1850.200	1850.00	-38.8
810	1909.800	1910.00	-39.8


Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 36 of 44

Low Channel, Band-Edge Emission

High Channel, Band-Edge Emission

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 37 of 44

A.6 Field Strength of Spurious Radiation (§2.1053)

(GSM-PCS1900)

 $\frac{\text{Test Date: June 28, 2010}}{\text{Test Configuration: Single Unit}}$ $\frac{\text{Test Date: June 28, 2010}}{\text{Temp.: 28 °C, Humi: 48 \%}}$

ransmitting Frequency	Measured Frequency			Limits [dBm]		
[MHz]	[MHz]	Hori.	Vert.			
1850.200	3700.400	-46.9	-47.9	-13.0	+33.9	С
	5550.600	-47.6	-45.7	-13.0	+32.7	С
	7400.800	< -51.0	< -51.0	-13.0	> +38.0	С
	9251.000	-37.0	< -45.3	-13.0	+24.0	C
	11101.200	-38.6	-36.7	-13.0	+23.7	C
	12951.400	-38.5	-37.5	-13.0	+24.5	C
	14801.600	< -39.8	< -39.8	-13.0	> +26.8	C
	16651.800	< -50.0	< -50.0	-13.0	> +37.0	C
	18502.000	< -43.7	< -43.7	-13.0	> +30.7	C
1880.000						С
						C
						C
						С
						С
						С
						C
						С
	18800.000	< -43.6	< -43.6	-13.0	> +30.6	С
1909.800	3819.600	-51.9	-50.7	-13.0	+37.7	С
	5729.400		-52.4	-13.0	+39.4	C
	7639.200		< -48.9	-13.0	> +35.9	C
	9549.000					C
	11458.800		-39.9			C
	13368.600	< -39.7	< -39.7	-13.0	> +26.7	C
	15278.400	< -39.6	< -39.6	-13.0	> +26.6	C
	17188.200	< -49.8	< -49.8	-13.0	> +36.8	C
	19098.000	< -43.5	< -43.5	-13.0	> +30.5	C
	Frequency [MHz]	Frequency [MHz] 1850.200 3700.400 5550.600 7400.800 9251.000 11101.200 12951.400 14801.600 16651.800 18502.000 1880.000 3760.000 5640.000 7520.000 9400.000 11280.000 13160.000 15040.000 16920.000 18800.000 1909.800 3819.600 5729.400 7639.200 9549.000 11458.800 13368.600 15278.400 17188.200	Frequency [MHz] Frequency [MHz] Hori. 1850.200 3700.400 -46.9 5550.600 -47.6 7400.800 <-51.0 9251.000 -37.0 11101.200 -38.6 12951.400 -38.5 14801.600 <-39.8 16651.800 <-50.0 18502.000 <-43.7 1880.000 3760.000 -50.3 5640.000 -49.3 7520.000 <-45.0 9400.000 <-45.0 11280.000 <-39.8 16920.000 <-40.0 15040.000 <-39.8 16920.000 <-49.9 18800.000 <-43.6 1909.800 3819.600 -51.9 5729.400 -52.4 7639.200 <-48.9 9549.000 -44.2 11458.800 -40.1 13368.600 <-39.7 15278.400 <-39.6 17188.200 <-49.8	Frequency [MHz] Frequency [MHz] Hori. Vert. 1850.200 3700.400 -46.9 -47.9 -45.7 7400.800 -47.6 -45.7 7400.800 -37.0 <-45.3 11101.200 -38.6 -36.7 12951.400 -38.5 -37.5 14801.600 <-39.8 <-39.8 16651.800 <-50.0 <-50.0 18502.000 <-43.7 <-43.7 <-43.7 <-43.7 <-43.7 <-43.7 <-43.7 <-43.7 <-44.0 <-20.0	Frequency [MHz]	Frequency [MHz] Hori. Vert. 1850.200 3700.400 -46.9 -47.9 -13.0 +33.9 5550.600 -47.6 -45.7 -13.0 +32.7 7400.800 < -51.0 < -51.0 -13.0 +24.0 1101.200 -38.6 -36.7 -13.0 +24.0 1101.200 -38.6 -36.7 -13.0 +24.5 14801.600 < -50.0 < -50.0 -13.0 >+30.7 12951.400 -38.5 -37.5 -13.0 +24.5 14801.600 < -39.8 < -39.8 -13.0 >+26.8 16651.800 < -50.0 < -50.0 -13.0 >+30.7 18502.000 < -43.7 < -43.7 -13.0 >+30.7 18502.000 < -43.7 < -43.7 -13.0 >+30.7 18502.000 < -50.0 < -50.0 -13.0 >+30.7 18502.000 < -50.0 < -50.0 -13.0 >+30.7 18502.000 < -50.0 < -50.0 -13.0 >+30.7 18502.000 < -50.0 < -50.0 -13.0 >+30.7 18502.000 < -50.0 < -50.0 -13.0 >+30.7 18502.000 < -48.0 < -45.0 -13.0 >+32.0 1280.000 < -40.0 < -45.0 -13.0 >+32.0 1280.000 < -40.0 < -40.0 -13.0 >+32.0 1280.000 < -40.0 < -40.0 -13.0 >+27.0 15040.000 < -39.8 < -39.8 -13.0 >+26.8 16920.000 < -40.0 < -40.0 -13.0 >+27.0 15040.000 < -39.8 < -39.8 -13.0 >+26.8 16920.000 < -40.0 < -40.0 -13.0 >+27.0 15040.000 < -39.8 < -39.8 -13.0 >+26.8 16920.000 < -40.0 < -40.0 -13.0 >+30.6 16920.000 < -40.0 < -40.0 -13.0 >+30.0 >+36.9 18800.000 < -40.0 < -40.0 -13.0 >+30.0 >+36.9 18800.000 < -40.0 < -40.0 -13.0 >+30.0 >+30.6 1909.800 18800.000 < -48.9 < -49.9 < -13.0 >+30.0 +30.6 1909.800 18800.000 < -48.9 < -48.9 < -13.0 >+35.9 9549.000 -44.2 < -45.0 -13.0 -13.0 +35.9 9549.000 -44.2 < -45.0 -13.0 -13.0 >+35.9 9549.000 -44.2 < -45.0 -13.0 -13.0 >+35.9 9549.000 -44.2 < -45.0 -13.0 -13.0 >+35.9 9549.000 -44.2 < -45.0 -13.0 -13.0 >+35.9 9549.000 -44.2 < -45.0 -13.0 >+35.9 9549.000 -44.2 < -45.0 -13.0 >+35.9 9549.000 -44.2 < -45.0 -13.0 >+35.9 9549.000 -44.2 < -45.0 -13.0 >+36.6 -45.6

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 38 of 44

Calculated result at 11280.0 MHz, as the worst point shown on underline: Minimum Margin: -13.0 - (-36.4) = 23.4 (dB)

NOTES

- 1. Test Distance: 3 m
- 2. The spectrum was checked from $30\,\mathrm{MHz}$ to $20\,\mathrm{GHz}.$
- 3. All emissions not reported were more than $20~\mathrm{dB}$ below the applied limits.
- 4. Applied limits : -13.0 [dBm] = $10\log(\text{TP[mW]})$ $(43 + 10\log(\text{tp[W]}))$ = $10\log(\text{TP[mW]})$ $(43 + (10\log(\text{TP[mW]}) 30))$ where, tp[W] = TP[mW] / 1000 : Transmitter power at anttena terminal
- 5. The symbol of "<" means "or less".
- 6. The symbol of ">" means "more than".
- 7. Setting of measuring instrument(s):

	Detector Function	RES B.W.	V.B.W.	Sweep Time
A	Peak	$10~\mathrm{kHz}$	$30\mathrm{kHz}$	20 msec.
В	Peak	$100 \mathrm{kHz}$	$300 \mathrm{\ kHz}$	20 msec.
C	Peak	1 MHz	3 MHz	20 msec.

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 39 of 44

A.7 Frequency Stability (§2.1055)

(GSM-PCS1900)

<u>Test Date: July 7, 2010</u> - July 8, 2010

1. Frequency Stability Measurement versus Temperature

Transmitting Frequency : 1880.000 MHz (661 ch)

DC Supply Voltage : 4.0 VDC

Ambient		Deviat		Limits	Margin	
Temperature [°C]	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
-30	+ 0.03	- 0.02	- 0.03	- 0.01	N/A	N/A
-20	+ 0.00	- 0.01	- 0.03	- 0.02	N/A	N/A
-10	- 0.03	- 0.03	+ 0.00	- 0.02	N/A	N/A
0	- 0.02	- 0.03	- 0.03	- 0.03	N/A	N/A
10	- 0.04	- 0.04	- 0.04	- 0.01	N/A	N/A
20	- 0.02	- 0.02	- 0.01	- 0.02	N/A	N/A
30	- 0.02	- 0.01	- 0.01	+ 0.00	N/A	N/A
40	- 0.03	- 0.01	+ 0.00	+ 0.00	N/A	N/A
50	+ 0.00	- 0.02	- 0.01	+ 0.00	N/A	N/A

2. Frequency Stability Measurement versus Power Supply Voltage

Transmitting Frequency : 1880.000 MHz (661 ch)

Ambient Temperature: : 20 °C

DC Supply	Deviation [ppm]				Limits	Margin
Voltage [V]	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
4.0	- 0.02	- 0.02	- 0.01	- 0.02	N/A	N/A
3.7(Ending)	- 0.02	- 0.01	+ 0.00	- 0.01	N/A	N/A

Test condition example as the maximum deviation point shown on underline:

Ambient Temperature $: 10 \, ^{\circ}\text{C} / \text{Startup}$

DC Supply Voltage : 4 VDC

NOTE: The measurement were made after all of components of the oscillator sufficiently stabilized at each temperature.

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 40 of 44

Appendix B: Test Arrangement (Photographs)

Radiated Emission

This page is CONFIDENTIAL.

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 41 of 44

This page is CONFIDENTIAL.

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 42 of 44

Appendix C: Test Instruments

C.1 RF Power Output

C.1.1 Conducted RF Power Output

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Power Meter	N1911A	Agilent	B-63	2010/6	1 Year
Power Sensor	N1921A	Agilent	B-64	2010/6	1 Year
Attenuator	54A-10	Weinschel	D-29	2009/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2009/6	1 Year

C.1.2 ERP /EIRP Power Output

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2010/1	1 Year
Signal Generator	E8257D	Agilent	B-39	2009/8	1 Year
Power Meter	N1911A	Agilent	B-63	2010/6	1 Year
Power Sensor	N1921A	Agilent	B-64	2010/6	1 Year
Attenuator(RX)	2-10	Weinschel	D-79	2009/9	1 Year
Attenuator(TX)	2-10	Weinschel	D-80	2009/9	1 Year
RF Cable(RX)	SUCOFLEX104	SUHNER	C-40-11	2010/1	1 Year
RF Cable(TX)	SUCOFLEX 102/E	SUHNER	C-70	2009/11	1 Year
Horn Antenna(RX)	91889-2	EATON	C-40-2	2009/6	2 Years
Horn Antenna(TX)	91889-2	EATON	C-41-2	2009/6	1 Year

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 43 of 44

C.2 Modulation Characteristics

Not Applicable

C.3 Occupied Bandwidth

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2010/1	1 Year
Attenuator	54A-10	Weinschel	D-29	2009/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2010/6	1 Year

C.4 Spurious Emissions at Antenna Terminals

Type	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2010/1	1 Year
Attenuator	54A-10	Weinschel	D-29	2009/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2010/6	1 Year

C.5 Band-Edge Emission

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2010/1	1 Year
Attenuator	54A-10	Weinschel	D-29	2009/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2010/6	1 Year

Regulation : CFR 47 FCC Rules and Regulations Part 24

Page 44 of 44

C.6 Field Strength of Spurious Radiation

Type	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2010/1	1 Year
Signal Generator	E8257A	Agilent	B-39	2009/8	1 Year
Power Meter	N1911A	Aginent	B-63	2010/6	1 Year
Power Sensor	N1921A	Aginent	B-64	2010/6	1 Year
Horn Antenna(TX)	91888-2	EATON	C-40-1	2009/6	2 Years
Horn Antenna(TX)	91889-2	EATON	C-40-2	2009/6	2 Years
Horn Antenna(TX)	94613-1	EATON	C-41-3	2009/6	1 Year
Horn Antenna(TX)	91891-2	EATON	C-41-4	2009/6	1 Year
Horn Antenna(TX)	94614-1	EATON	C-41-5	2009/6	1 Year
Horn Antenna(RX)	91888-2	EATON	C-41-1	2009/6	1 Year
Horn Antenna(RX)	91889-2	EATON	C-41-2	2009/6	1 Year
Horn Antenna(RX)	3160-04	EATON	C-55	2009/6	2 Years
Horn Antenna(RX)	3160-05	EATON	C-56	2009/6	2 Years
Horn Antenna(RX)	3160-06	EATON	C-57	2009/6	2 Years
Horn Antenna(RX)	3160-07	EATON	C-58	2009/6	2 Years
Horn Antenna(RX)	3160-08	EATON	C-59	2009/6	2 Years
Horn Antenna(RX)	3160-09	EATON	C-48	2009/6	2 Years
RF Cable(TX)	SUCOFLEX E102E	SUHNER	C-70	2009/11	1 Year
RF Cable(RX)	SUCOFLEX104	SUHNER	C-40-11	2010/1	1 Year
RF Cable(RX)	SUCOFLEX104	SUHNER	C-40-14	2010/1	1 Year
Attenuator(TX)	2-10	Weinschel	D-40	2009/8	1 Year
Attenuator(RX)	2-10	Weinschel	D-79	2009/9	1 Year
Attenuator(RX)	54-10	Weinschel	D-82	2009/6	1 Year
Pre-Amplifier	WJ-6611-513	Watkins Johnson	A-23	2010/1	1 Year
Pre-Amplifier	WJ-6882-824	Watkins Johnson	A-21	2010/1	1 Year
Pre-Amplifier	DBL-0618N515	DBS Microwave	A-33	2010/1	1 Year

C.7 Frequency Stability

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Universal					
Telecommunication	CMU200	Rohde&Schwarz	B-21	2010/4	1 Year
Tester					
DC Voltage Meter	2011-39	YEW	B-33	2010/4	1 Year
Environmental Chamber	PL-4KPH	TADAL ECDEC		N/A	N/A
	(S/N:14007470)	TABAI ESPEC			
Temperature Recorder	SRF106AS00000M11	MADAI ECDEC		0000/0	1 37
	(S/N:01400909)	TABAI ESPEC		2009/8	1 Year
DC Power Supply	NL035-10	TAKASAGO	F-4	N/A	N/A