

Attachment 4 – System Validation Dipole – D1800V2, S/N: 2d038 Calibration Data

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerisch
Service suisse
Servizio svizze
S Swiss Calibrat

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

JQA (PTT)

Accreditation No.: SCS 10

Certificate No: D1800V2-2

CALIBRATION CERTIFICATE

Object

D1800V2 - SN: 2d038

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

November 12, 2008

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements.

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the cert

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled C
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	01-Jul-08 (No. 217-00864)	Jul-09
Type-N mismatch combination	SN: 5047.2 / 06327	01-Jul-08 (No. 217-00867)	Jul-09
Reference Probe ES3DV2	SN: 3025	28-Apr-08 (No. ES3-3025_Apr08)	Apr-09
DAE4	SN: 601	14-Mar-08 (No. DAE4-601_Mar08)	Mar-09
Secondary Standards	ID#	Check Date (in house)	Scheduled C
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house che
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house che
	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house che

Calibrated by:

Claudio Leubler

Name

Function Laboratory Technician Signature

Approved by:

Katja Pokovic

Technical Manager

Issued: Nover

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1800V2-2d038_Nov08

Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY5	V5.0
Advanced Extrapolation	
Modular Flat Phantom V5.0	
10 mm	with Spacer
dx, dy, dz = 5 mm	
1800 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom V5.0 10 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature during test	(22.3 ± 0.2) °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.39 mW /g
SAR normalized	normalized to 1W	37.6 mW /g
SAR for nominal Head TSL parameters 1	normalized to 1W	37.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.92 mW /g
SAR normalized	normalized to 1W	19.7 mW /g
SAR for nominal Head TSL parameters 1	normalized to 1W	19.6 mW / g ± 16.5 % (k=2)

Certificate No: D1800V2-2d038_Nov08

Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

6,000 (40)	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.54 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	9.60 mW /g
SAR normalized	normalized to 1W	38.4 mW /g
SAR for nominal Body TSL parameters ²	normalized to 1W	38.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.06 mW /g
SAR normalized	normalized to 1W	20.2 mW /g
SAR for nominal Body TSL parameters ²	normalized to 1W	20.1 mW/g ± 16.5 % (k=2)

Certificate No: D1800V2-2d038_Nov08

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9 Ω - 4.5 jΩ	
Return Loss	- 26.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.3 Ω - 4.4 jΩ	
Return Loss	- 22.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.195 ns
Electrical Delay (one direction)	11100 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	February 28, 2002

Certificate No: D1800V2-2d038_Nov08

DASY5 Validation Report for Head TSL

Date/Time: 04.11.2008 11:23:57

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: SN:2d038

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB

Medium parameters used: f = 1800 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.96, 4.96, 4.96); Calibrated: 28.04.2008

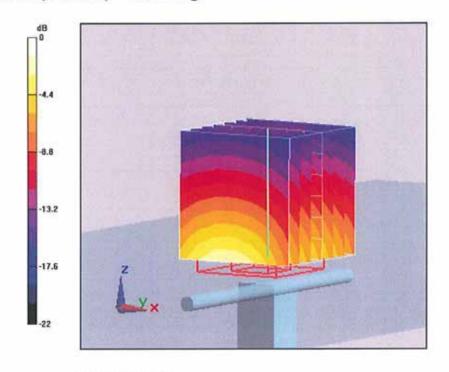
Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

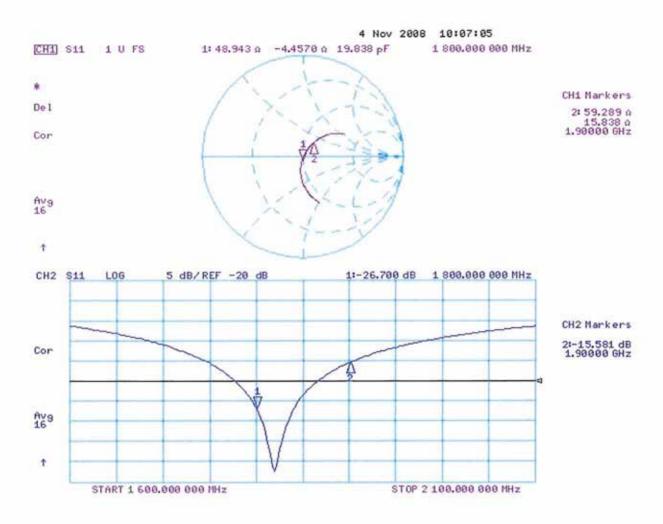
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm, scan at 3.4mm/Zoom Scan (dist=3.4mm, probe 0deg)


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.2 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 17.3 W/kg


SAR(1 g) = 9.39 mW/g; SAR(10 g) = 4.92 mW/g

Maximum value of SAR (measured) = 11.1 mW/g

0 dB = 11.1 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 12.11.2008 12:13:19

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: SN:2d038

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 1800 MHz; $\sigma = 1.54 \text{ mho/m}$; $\epsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.64, 4.64, 4.64); Calibrated: 28.04.2008

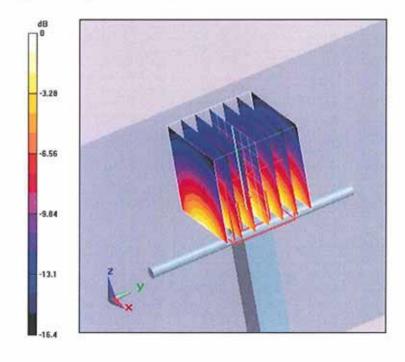
Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

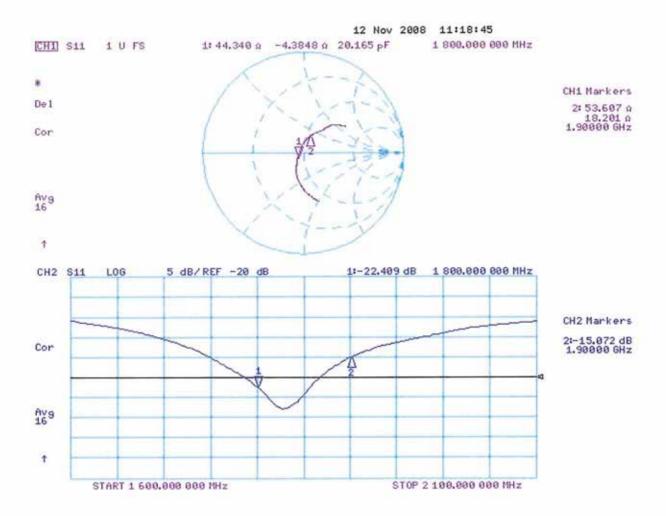
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm, scan at 3.4mm/Zoom Scan (dist=3.4mm, probe 0deg)


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.9 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 16.9 W/kg


SAR(1 g) = 9.6 mW/g; SAR(10 g) = 5.06 mW/g

Maximum value of SAR (measured) = 11.7 mW/g

0 dB = 11.7 mW/g

Impedance Measurement Plot for Body TSL

