

Page 1 of 43

JQA File No. : KL80080504

Issue Date: December 17, 2008

TEST REPORT

APPLICANT : Sharp Corporation, Communication Systems Group

ADDRESS : 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, JAPAN

PRODUCTS : Cellular Phone

 MODEL NO.
 : CDMA SH001

 SERIAL NO.
 : SSHCC001089

 FCC ID
 : APYHRO00089

TEST STANDARD : CFR 47 FCC Rules and Regulations Part 22

TESTING LOCATION: Japan Quality Assurance Organization

KITA-KANSAI Testing Center

1-7-7, Ishimaru, Minoh-shi, Osaka 562-0027, Japan

TEST RESULTS : Passed

DATE OF TEST : November 27, 2008 - December 4, 2008

This report must not used by the client to claim product endorsement by NVLAP or NIST or any agency of the U.S. Government.

Yuichi Fukumoto

Manager

Japan Quality Assurance Organization

KITA-KANSAI Testing Center Testing Dept. EMC Division

1-7-7, Ishimaru, Minoh-shi, Osaka 562-0027, Japan

- The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and National Institute of Information and Communications Technology (NICT) of Japan.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 2 of 43

TABLE OF CONTENTS

			Pag
Docume	entation	•••••	3
1	Test Regulation		3
2	Test Location		3
3	Recognition of Test Laboratory		3
4	Description of the Equipment Under Te	est	4
5	Test Condition		5
6	Preliminary Test and Test Setup		7
7	Equipment Under Test Modification		16
8	Responsible Party		16
9	Deviation from Standard		16
10	Test Results		17
11	Summary		20
12	Operating Condition		21
13	Test Configuration		21
14	Equipment Under Test Arrangement (1	Drawings)	22
	DEFINITIONS FOR ABBREVIATIO	N AND SYM	BOLS USED IN THIS TEST REPORT
ΕU	JT : Equipment Under Test	EMC	: Electromagnetic Compatibility
AF		EMI	: Electromagnetic Interference
N/	A : Not Applicable	EMS	: Electromagnetic Susceptibility
N/			2
	- indicates that the listed condition, s - indicates that the listed condition, s	-	uipment is applicable for this report. uipment is not applicable for this report.

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 3 of 43

Documentation

1 Test Regulation

Applied Standard : CFR 47 FCC Rules and Regulations Part 22

 $Subpart \ H-Cellular \ Radiotelephone \ Service$

Test Requirements : CFR 47 FCC Rules and Regulations Part 2

§2.1046, §2.1047, §2.1049, §2.1051, §2.1053, §2.1055 and §2.1057

Test Procedure : ANSI C63.4–2003, TIA/EIA–603-C-2004

2 Test Location

KITA-KANSAI Testing Center

1-7-7, Ishimaru, Minoh-shi, Osaka 562-0027, Japan

KAMEOKA EMC Branch

9-1, Ozaki, Inukanno, Nishibetsuin-cho, Kameoka-shi, Kyoto 621-0126, Japan

3 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center Testing Department EMC Division is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility of Testing Division is registered by the following bodies.

VLAC Code : VLAC-001-2 (Effective through : April 3, 2010) NVLAP Lab Code : 200191-0 (Effective through : June 30, 2009) BSMI Recognition No. : SL2-IS-E-6006, SL2-IN-E-6006, SL2-AI-E-6006

(Effective through: September 14, 2010)

VCCI Registration No. : R-008, R-1117, C-006, C-007, C-1674, C-2143, T-1418, T-1419

(Effective through: April 3, 2010)

IC Registration No. : IC 4125-1, IC 6217-1, IC 6217-2 (Effective through: November 16, 2010)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Effective through: February 22, 2010)

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 4 of 43

4 Description of the Equipment Under Test

4.1 General Information

1. Manufacturer : Sharp Corporation, Communication Systems Group

2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, JAPAN

2. Products : Cellular Phone

Model No.
 CDMA SH001
 Serial No.
 SSHCC001089
 Product Type
 Pre-production
 Date of Manufacture
 November, 2008

7. Transmitting Frequency : 824.70MHz(1013CH) – 848.37MHz(779CH)

8. Receiving Frequency : 869.70MHz(4357CH) – 893.37MHz(779CH)

9. Emission Designations : 1M29F9W

10. Max. RF Output Power : 0.355W (ERP)

11. Power Rating : 4.0VDC (Lithium-ion Battery Pack SH001UAA 800mAh)

12. EUT Grounding : None

13. Category : CDMA200014. EUT Authorization : Certification

15. Receive Date of EUT : November 25, 2008

4.2 Channel Plan

The carrier spacing is 30 kHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN).

The carrier frequency is expressed in the equation shown as follows:

Transmitting Frequency (in MHz) = $824.70 + 0.03 \times (n - 1013)$

where, n : channel number $(1013 \le n \le 1023)$

Transmitting Frequency (in MHz) = $825.03 + 0.03 \times (n-1)$

where, n : channel number $(1 \le n \le 311)$

Transmitting Frequency (in MHz) = $835.68 + 0.03 \times (n - 356)$

where, n: channel number $(356 \le n \le 644)$

Transmitting Frequency (in MHz) = $845.67 + 0.03 \times (n - 689)$

where, n : channel number $(689 \le n \le 779)$

Receiving Frequency (in MHz) = $869.70 + 0.03 \times (n - 1013)$

where, n : channel number $(1013 \le n \le 1023)$

Receiving Frequency (in MHz) = $870.03 + 0.03 \times (n-1)$

where, n : channel number $(1 \le n \le 311)$

Receiving Frequency (in MHz) = $880.68 + 0.03 \times (n - 356)$

where, n: channel number $(356 \le n \le 644)$

Receiving Frequency (in MHz) = $890.67 + 0.03 \times (n - 689)$

where, n : channel number $(689 \le n \le 779)$

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 5 of 43

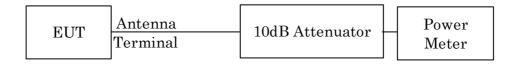
5	Test (Con	dition			
5.1	5.1 RF Power Output (§2.1046)					
5.1	1 Co	ndu	cted RF Power Ou	tput		
,	The req	uire		pplicable [🛛 - Tested. ot Applicable	☐ - Not tested by applicant request.]	
,	Test site	e:	KITA-KANSAI KAMEOKA	☐ - Shielded room☐ - Shielded room	\square - 2 nd Shielded room \square - Conducted emission facility	
,	Test ins	stru	ments : Refer to A _l	opendix C.		
5.1	2 EF	RP/	EIRP RF Power O	utput		
,	The req	uire		pplicable [🔀 - Tested. fot Applicable	☐ - Not tested by applicant request.]	
,	Test site	e:	□ - KAMEOKA□ - KAMEOKA	1st open site		
,	Test ins	stru	ments : Refer to A _l	opendix C.		
5.2	Modu	lati	on Characteristics	(§2.1047)		
,	The req	uire		pplicable [- Tested. ot Applicable	☐ - Not tested by applicant request.]	
,	Test site	e:	KITA-KANSAI KAMEOKA	☐ - Shielded room☐ - Shielded room	Anechoic chamber	
,	Test ins	stru	ments : Refer to A _l	opendix B.		
5.3	3 Occur	pied	Bandwidth (§2.10	49)		
,	The req	uire		pplicable [\(\sime\) - Tested. ot Applicable	\square - Not tested by applicant request.]	
,	Test site	e:	KITA-KANSAI KAMEOKA	☐ - Shielded room☐ - Shielded room	 □ - 2nd Shielded room □ - Conducted emission facility 	
,	Test ins	stru	ments : Refer to A	opendix C.		

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 6 of 43

5.4 Spurious Emissions at Antenna Terminals (§2.1051)
The requirements are ☐ - Applicable ☐ - Tested. ☐ - Not tested by applicant request.] ☐ - Not Applicable
Test site : KITA-KANSAI \square - Shielded room \square - 2 nd Shielded room \square - Conducted emission facility
Test instruments : Refer to Appendix C.
5.5 Band-Edge Emission (§2.1051)
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not tested by applicant request.] \square - Not Applicable
Test site : KITA-KANSAI \boxtimes - Shielded room \square - 2 nd Shielded room \square - Conducted emission facility
Test instruments : Refer to Appendix C.
5.6 Field Strength of Spurious Radiation (§2.1053)
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not tested by applicant request.] \square - Not Applicable
Test site: Signature - KAMEOKA 1st open site - 3 m - 10 m - 10 m - KAMEOKA 2nd open site - 3 m - 10 m
Test instruments : Refer to Appendix C.
5.7 Frequency Stability (§2.1055)
The requirements are 🖂 - Applicable [🖂 - Tested. 🔲 - Not tested by applicant request.] ☐ - Not Applicable
Test site: KITA-KANSAI Environment Testing Room
Test instruments: Refer to Annendix C

Regulation : CFR 47 FCC Rules and Regulations Part 22


Page 7 of 43

6 Preliminary Test and Test Setup

6.1 RF Power Output (§2.1046)

6.1.1 Conducted RF Power Output

The Conducted RF Power Output was measured with a power meter, one 10dB attenuator and a short, low loss cable.

6.1.2 ERP / EIRP RF Power Output

Step 1:

In order to obtain the maximum emission, the EUT was placed at the height 1.8 m on the non-conducted support and was varying at three orthogonal axes (Refer to clause 15), at the distance 3 m from the receiving antenna and rotated around 360 degrees.

The receiving antenna height was varied from 1 m to 4 m.

The EUT on the table was placed to be maximum emission against at the receiving antenna polarized (vertical and horizontal).

Then the meter reading of the spectrum analyzer at the maximum emission was A $dB(\mu V)$.

Step 2:

The EUT was replaced to substitution antenna at the same polarized under the same condition as step 1.

The RF power was fed to the transmitting antenna through the RF amplifier from the signal generator.

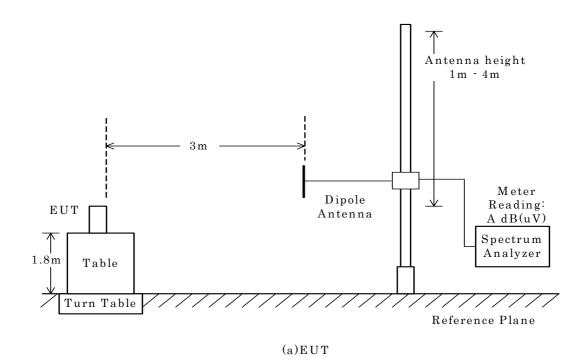
In order to obtain the maximum emission level, the height of the receiving antenna was varied from 1 m to 4 m.

The level of maximum emission was A $dB(\mu V)$, same as the recorded level in the step 1.

Then the RF power into the substitution horn antenna was P (dBm).

The ERP/EIRP output power was calculated in the following equation.

ERP (dBm) = P (dBm) - Balun loss of the tuned dipole antenna (dB) + Cable loss (dB)EIRP (dBm) = P (dBm) + Gh (dBi)


where, Gh (dBi): Gain of the substitution horn antenna.

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 8 of 43

- Side View -

Antenna height Meter Reading: B dBm 1m - 4m Power Signal Generator Meter 3 m Meter Dipole Reading: Antenna Tuned Dipole Antenna A dB(uV) Spectrum Analyzer 1.8 m Turn Table Reference Plane

(b) Substitution Half-wave Dipole Antenna

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 9 of 43

6.2 Modulation Characteristics (§2.1047)

Not Applicable

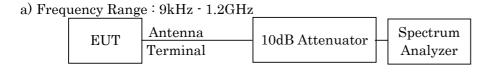
6.3 Occupied Bandwidth (§2.1049)

The test system is shown as follows:

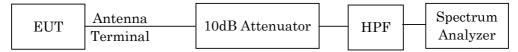
EUT	Antenna	10dB Attenuator	Spectrum
	Terminal		

The setting of the spectrum analyzer are shown as follows:

Res. Bandwidth	$30~\mathrm{kHz}$
Video Bandwidth	$30~\mathrm{kHz}$
Span	$5~\mathrm{MHz}$
Sweep Time	AUTO
Trace	Maxhold



Regulation : CFR 47 FCC Rules and Regulations Part 22


Page 10 of 43

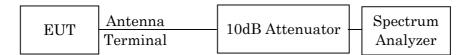
6.4 Spurious Emissions at Antenna Terminals (§2.1051)

The Antenna Conducted Emission was measured with a spectrum analyzer. The test system is shown as follows:

b) Frequency Range: 1.2GHz - 10GHz

The setting of the spectrum analyzer are shown as follows:

Frequency Range	9 kHz - 150 kHz	150 kHz - 30 MHz	30 MHz - 10 GHz
Res. Bandwidth	200 Hz	10 kHz	1 MHz
Video Bandwidth	1 kHz	$30~\mathrm{kHz}$	3 MHz
Sweep Time	AUTO	AUTO	AUTO
Trace	Maxhold	Maxhold	Maxhold



Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 11 of 43

6.5 Band-Edge Emission (§2.1051)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

TX Frequency	824.70 MHz / 848.37 MHz
Band-Edge Frequency	824.00 MHz / 849.00 MHz
Res. Bandwidth	51 kHz
Video Bandwidth	51 kHz
Span	5 MHz
Sweep Time	AUTO
Trace	Maxhold

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 12 of 43

6.6 Field Strength of Spurious Radiation (§2.1053)

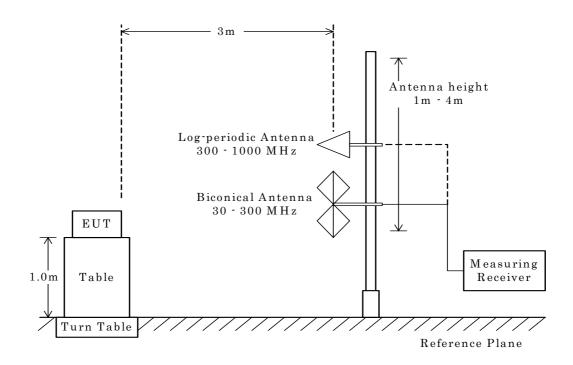
Step 1) The spurious radiation for transmitter were measured at the distance 3 m away from the EUT which was placed on a non-conducted support 1.0 m in height and was varying at three orthogonal axes (Refer to clause 15). The receiving antenna was oriented for vertical polarization and varied from 1 m to 4 m until the maximum emission level was detected on the measuring instrument. The EUT was rotated 360 degrees until the maximum emission was received. The measurement was also repeated with the receiving antenna in the horizontal polarization.

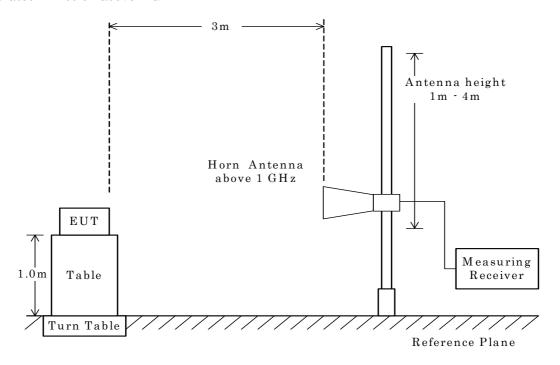
This test was carried out using the half-wave dipole antenna for up to 1GHz and using the horn antenna for above 1 GHz.

Step 2) The ERP measurement was carried out with according to Step 2 in page 8. Then the RF power in the substitution antenna half-wave dipole antenna for up to 1 GHz and the substitution horn antenna for above 1 GHz.

The ERP is calculated in the following equation.

```
A) Up to 1 GHz  ERP(dBm) = P \ (dBm) - (Balun Loss of the half-wave dipole Ant. \ (dB) ) + Cable Loss (dB)  B) Above 1 GHz  ERP(dBm) = P \ (dBm) + Gh(dBi) - Gd(dBi)  Where,  Gh(dBi) : Gain \ of \ the \ substitution \ half-wave \ dipole \ antenna   Gd(dBi) : Gain \ of \ the \ substitution \ half-wave \ dipole \ antenna
```


The respective calculated ERP of the spurious and harmonics were compared with the ERP of fundamental frequency by specified attenuation limits, 43+10log₁₀ (TP in watt)[dB]. Where, TP = Transmitter power at the ANT OUT under test configuration as the hands free unit used.

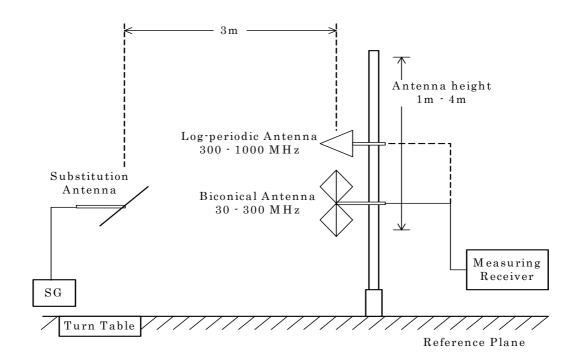

Regulation : CFR 47 FCC Rules and Regulations Part 22

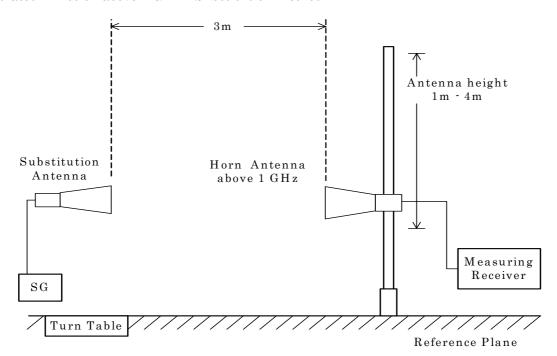
Page 13 of 43

Radiated Emission 30 MHz to 1000 MHz

Radiated Emission above 1 GHz

NOTE


The antenna height is scanned depending on the EUT's size and mounting height.


Regulation : CFR 47 FCC Rules and Regulations Part 22

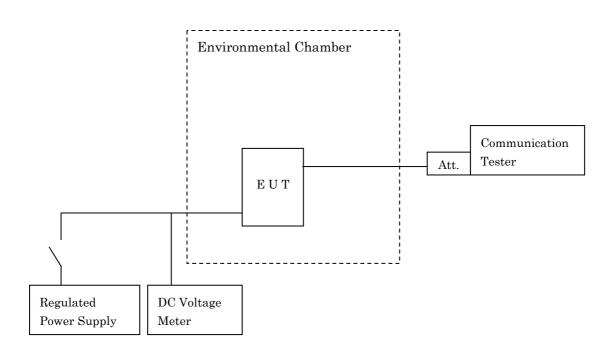
Page 14 of 43

Radiated Emission 30 to 1000 MHz - Substitution Method

Radiated Emission above 1 GHz - Substitution Method

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 15 of 43


6.7 Frequency Stability (§2.1055)

Frequency Stability versus Temperature

The EUT was placed in an environmental chamber and was tested in the range from -30 to +50 degrees Celsius. The EUT was stabilized at each temperature. The power (4.0VDC) supplied was applied to the transmitter and allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup. This procedure was repeated from -30 to +50 degrees Celsius at the interval of 10 degrees.

Frequency Stability versus Power Supply Voltage

The EUT was placed in an environmental chamber and was tested at the temperature of +20 degrees Celsius. The EUT was stabilized at the temperature. The power (4.0VDC) and the power (3.7VDC, the ending voltage) was applied to the EUT allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup.

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 16 of 43

7	Equipment U	nder Test Modification					
	 ☑ - No modifications were conducted by JQA to achieve compliance to the limitations. ☐ To achieve compliance to the limitations, the following changes were made by JQA during the compliance test. 						
	The modifications will be implemented in all production models of this equipment.						
	Applicant Date Typed Name Position	: Not Applicable: Not Applicable: Not Applicable: Not Applicable	Signatory:	Not Applicable			
8	Responsible P		ole Party of Test Item (P	roduct)			
	Responsible						
	Contact Per	rson :		Signatory			
9		m Standard ations from the standard wing deviations were empl		scribed in clause 1.			

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 17 of 43

10 Test Results			
10.1 RF Power Output (§2.1046)			
10.1.1 Conducted RF Power Output			
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tes \square - Not Applicable	eted. - Not tested l	oy applicant reques	st.]
Transmitter Power is	1025.7 mW 293.8 mW	at <u>836.520</u> MH at <u>836.520</u> MH	
Uncertainty of Measurement Results at Amplitud	e	+/-0.19	dB(2σ)
Remarks:			
10.1.2 ERP / EIRP RF Power Output The requirements are		oy applicant reques	st.]
Min. Limit Margin	13.0 dB	at <u>848.370</u>	MHz
Max. Limit Exceeding	dB	at	MHz
Uncertainty of Measurement Results at Amplitud	e	+1.4/-1.3	dB(2σ)
Remarks: The maximum ERP is 0.355 W at 848	.370 MHz.		
10.2 Modulation Characteristics (§2.1047)			
The requirements are \square - Applicable $[\square$ - Tes \boxtimes - Not Applicable	eted. - Not tested l	oy applicant reques	st.]
🗌 - Passed 🔲 - Failed	☐ - Not judged		
Remarks:			

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 18 of 43

10.3 Occupied Bandwidth (§2.1049)		
The requirements are \boxtimes - Applicable $[\square$ - Tester \square - Not Applicable	d. 🗌 - Not tested b	y applicant request.]
igtimes - Passed $igcap$ - Failed	☐ - Not judged	
The 99% Bandwidth is The 26dB Bandwidth is	1.29 MHz 1.43 MHz	at <u>836.520</u> MHz at <u>824.700</u> MHz
Uncertainty of Measurement Results at Frequency Uncertainty of Measurement Results at Amplitude		kHz(2σ) dB(2σ)
Remarks:		
10.4 Spurious Emissions at Antenna Terminals (§2.10	051)	
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tester \square - Not Applicable	d. 🗌 - Not tested b	y applicant request.]
oxtimes - Passed $oxtimes$ - Failed	☐ - Not judged	
Min. Limit Margin	>24.3 dB	at <u>8365.200</u> MHz
Max. Limit Exceeding	dB	at MHz
Uncertainty of Measurement Results at Amplitude		<u>+/-0.24</u> dB(2o)
Remarks:		

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 19 of 43

10.5 Band-Edge Emission (§2.1051)		
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not Applicable	\[\cdot \] Not tested by a	applicant request.]
igtimes - Passed $igcap$ - Failed $igcap$	☐ - Not judged	
The Band-Edge level is	N/A dBc a	at <u>N/A</u> MHz
Uncertainty of Measurement Results at Frequency Uncertainty of Measurement Results at Amplitude		kHz(2σ) dB(2σ)
Remarks:		
10.6 Field Strength of Spurious Radiation (§2.1053)		
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not Applicable	\[\cdot \] - Not tested by a	applicant request.]
oxtimes - Passed $oxtimes$ - Failed $oxtimes$	☐ - Not judged	
Min. Limit Margin	>21.0 dB a	at <u>7528.680</u> MHz
Max. Limit Exceeding	dB 8	at MHz
Uncertainty of Measurement Results	30 MHz – 1000 MHz above 1 GHz	
Remarks:		
10.7 Frequency Stability(§2.1055)		
The requirements are \boxtimes - Applicable $[\boxtimes$ - Tested. \square - Not Applicable	☐ - Not tested by a	applicant request.]
The Frequency Stability level is	0.07 ppm a	at <u>836.400</u> MHz
Uncertainty of Measurement Results		<u>+/-10</u> Hz(2σ)
Remarks:		

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 20 of 43

11 Summary

General Remarks:

The EUT was tested according to the requirements of the following standard.

CFR 47 FCC Rules and Regulations Part 22

The test configuration is shown in clause 12 to 14.

The conclusion for the test items of which are required by the applied regulation is indicated under the test results.

Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

Test Results:

The "as received" sample;

- fulfill the test requirements of the regulation mentioned on clause 1.

odoesn't fulfill the test requirements of the regulation mentioned on clause 1.

Reviewed by:

Shigeru Kinoshita Deputy Manager

Testing Dept. EMC Div.

JQA KITA-KANSAI Testing Center

Tested by:

Yuichi Fukumoto

Manager

Testing Dept. EMC Div.

JQA KITA-KANSAI Testing Center

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 21 of 43

12 Operating Condition

The test were carried under one modulation type shown as follows:

Modulation Data: BPSK Spreading: HPSK

The Radiated Emission test were carried under 3 test configurations shown in clause 14. In all tests, the fully charged battery is used for the EUT.

Detailed Transmitter portion:

Transmitter frequency: 824.700 MHz(1013CH) – 848.370 MHz(779CH) Local frequency: 3298.800 MHz(1013CH) – 3393.480 MHz(779CH)

Detailed Receiver portion:

Receiver frequency : 869.700 MHz(1013CH) – 893.370MHz(779CH) Local frequency : 3478.800 MHz(1013CH) – 3573.480MHz(779CH)

Other Clock Frequency 19.2 MHz, 32.768 kHz

13 Test Configuration

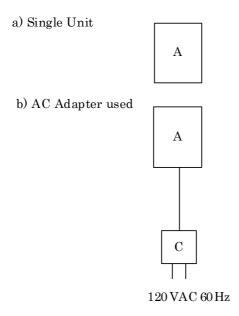
The equipment under test (EUT) consists of:

	The equipment under test (Le 1) consists of						
	Item	Manufacturer	Model No.	Serial No.	FCC ID		
A	Cellular Phone	Sharp	CDMA SH001	SSHCC00 1089	APYHRO00089		
В	Lithium-ion Battery	Sharp	SH001UAA		N/A		
С	AC Adapter	MITSUMI	0203PQA		N/A		
D	Stereo Earphone	SONY	MDR-E0921LP/B C		N/A		
E	Arib Connector Adaptor	SMK			N/A		

The auxiliary equipment used for testing:

None

Type of Cable:


-y p v = - con-v						
No.	Description	Identification	Connector	Cable	Ferrite	Length
NO.	Description	(Manu. etc.)	Shielded	Shielded	Core	(m)
1	DC Power Cord			NO	NO	1.4
2	Stereo Earphone Cable			NO	NO	1.5
3	Arib Connector Cable			NO	NO	0.1

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 22 of 43

14 Equipment Under Test Arrangement (Drawings)

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 23 of 43

Appendix A: Test Data

A.1 RF Power Output (§2.1046)

A.1.1 Conducted RF Power Output

(CDMA2000)

Test Date: November 28, 2008 Temp.: 24 °C, Humi: 41 %

Transmi	tting Frequency	Correction Factor	Meter Reading (Peak)	Result	s (Peak)
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]
1013	824.700	12.10	17.85	29.95	988.6
384	836.520	12.10	18.01	30.11	1025.7
779	848.370	12.10	17.89	29.99	997.7

Transmitting Frequency		Correction Factor	Meter Reading (Average)	Results (Average)
CH	[MHz]	[dB]	[dBm]	[dBm]	[mW]
1013	824.700	12.10	12.70	24.80	302.0
384	836.520	12.10	12.58	24.68	293.8
779	848.370	12.10	12.74	24.84	304.8

Correction Factor	=	12.10 dBm	
+) Meter Reading	=	18.01 dB	
Result	=	30.11 dBm = 1025.7 mW	

 $Note: \quad \text{The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.}$

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 24 of 43

A.1.2 ERP /EIRP Power Output

(CDMA2000)

Test Date: November 27, 2008 Temp.: 22 °C, Humi: 55 %

1. Measurement Results

	nnsmitting equency		easurement uV)]	[dB(uV)] Substitution Antenna Subst		Balun Loss of Substitution Antenna	
CH	[MHz]	Hori. (Mh)	Vert. (Mv)	Hori. (Msh)	Vert. (Msv)	[dBm]	[dB]
1013	824.700	91.9	89.2	61.3	60.0	- 3.8	1.4
384	836.520	90.3	88.3	60.7	59.9	- 3.8	1.4
779	848.370	91.0	89.2	60.3	59.0	- 3.8	1.4

2. Calculation Results

Transmi	tting Frequency	Peak EI	RP [dBm]	Maximum Peak ERP Limit		Margin
CH	[MHz]	Hori. (ERPh)	Vert. (ERPv)	[W]	[dBm]	[dB]
1013	824.700	25.4	24.0	0.347	38.5	+13.1
384	836.520	24.4	23.2	0.275	38.5	+14.1
779	848.370	25.5	25.0	0.355	38.5	+13.0

Sample of calculated result at $848.370\ \text{MHz}$, as the Minimum Margin point:

Emission Measurment Mh = 91.0 dB(\neg V) Substitution Measurement Msh = -60.3 dB(\neg V) Supplied Power to Substitution Antenna = -3.8 dBm +) Balun Loss of Substitution Antenna = -1.4 dB

Result = 25.5 dBm = 0.355 W

ERPh = Mh - Msh + Ps + GsERPv = Mv - Msv + Ps + Gs

Minimum Margin: 38.5 - 25.5 = 13.0 (dB)

The point shown on " is the Minimum Margin Point.

Remarks:

Detector Function	Resolution B.W.	V.B.W.	Sweep Time
Peak	5 MHz	5 MHz	AUTO

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 25 of 43

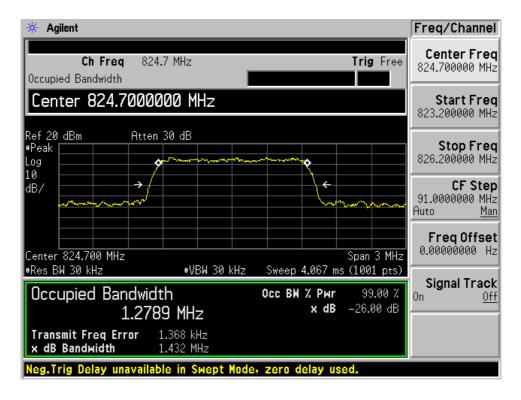
A.2 Modulation Characteristics (§2.1047)

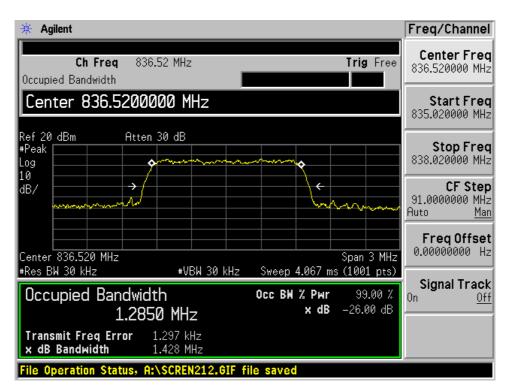
Not Applicable

A.3 Occupied Bandwidth (§2.1049)

The resolution bandwidth was set to about 1% of emission bandwidth, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

<u>Test Date : November 28, 2008</u> <u>Temp.:24°C, Humi:41%</u>

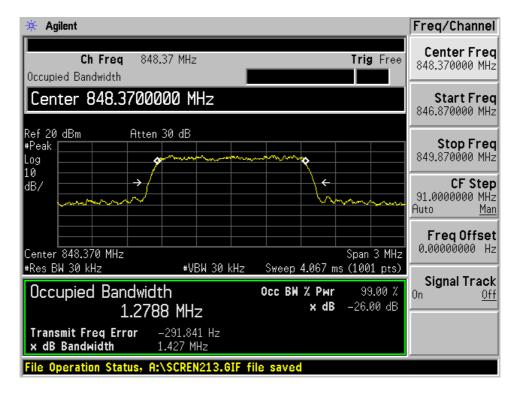

Channel	Frequency (MHz)	99% Bandwidth (MHz)	-26dBc Bandwidth (MHz)
1013	824.70	1.28	1.43
384	836.52	1.29	1.43
779	848.37	1.28	1.43


Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 26 of 43

Low Channel

Middle Channel



Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 27 of 43

High Channel

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 28 of 43

A.4 Spurious Emissions at Antenna Terminals (§2.1051)

(CDMA2000)

Test Date: November 27, 2008 Temp.: 22 °C, Humi: 55 %

	ansmitting requency	Measured Frequency	Corr. Factor	Meter Readings [dBm]	Limi ts [dBm]	Results [dBm]	Margin [dB]	Remarks
СН	[MHz]	[MHz]	[dB]	[abm]	[abm]	[авт]	[ав]	
1013	824.700	1649.400	13.4	< -63.0	-13.0	< -49.6	> +36.6	С
		2474.100	18.0	-58.6	-13.0	-40.6	+27.6	С
		3298.800	16.1	< -63.0	-13.0	< -46.9	> +33.9	С
		4123.500	17.7	< -63.0	-13.0	< -45.3	> +32.3	C
		4948.200	20.1	< -63.0	-13.0	< -42.9	> +29.9	С
		5772.900	21.6	< -63.0	-13.0	< -41.4	> +28.4	С
		6597.600	21.9	< -63.0	-13.0	< -41.1	> +28.1	С
		7422.300	23.4	< -63.0	-13.0	< -39.6	> +26.6	С
		8247.000	25.6	< -63.0	-13.0	< -37.4	> +24.4	C
384	836.520	1673.040	13.5	< -63.0	-13.0	< -49.5	> +36.5	С
		2509.560	15.4	-59.0	-13.0	-43.6	+30.6	C
		3346.080	16.2	< -63.0	-13.0	< -46.8	> +33.8	С
		4182.600	17.9	< -63.0	-13.0	< -45.1	> +32.1	C
		5019.120	20.3	< -63.0	-13.0	< -42.7	> +29.7	С
		5855.640	21.7	< -63.0	-13.0	< -41.3	> +28.3	C
		6692.160	21.9	< -63.0	-13.0	< -41.1	> +28.1	С
		7528.680	23.8	< -63.0	-13.0	< -39.2	> +26.2	C
		8365.200	25.7	< -63.0	-13.0	< -37.3	> +24.3	С
779	848.370	1696.740	13.5	< -63.0	-13.0	< -49.5	> +36.5	C
		2545.110	15.4	-60.5	-13.0	-45.1	+32.1	C
		3393.480	16.3	< -63.0	-13.0	< -46.7	> +33.7	C
		4241.850	18.0	< -63.0	-13.0	< -45.0	> +32.0	C
		5090.220	20.4	< -63.0	-13.0	< -42.6	> +29.6	C
		5938.590	21.9	< -63.0	-13.0	< -41.1	> +28.1	C
		6786.960	21.9	< -63.0	-13.0	< -41.1	> +28.1	C
		7635.330	24.2	< -63.0	-13.0	< -38.8	> +25.8	C
		8483.700	25.6	< -63.0	-13.0	< -37.4	> +24.4	С

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 29 of 43

Sample of calculated result at 8365.2 MHz, as the Minimum Margin point:

Minimum Margin: -13.0 - (<-37.3) = >24.3 (dB)

The point shown on "_____" is the Minimum Margin Point.

Applied Limits:

 $\begin{array}{l} -13.0 \; [dBm] = 10 log(TP[mW]) - (43 + 10 log(tp[W])) = 10 log(TP[mW]) - (43 + (10 \; log(TP[mW]) - 30)) \\ where \; tp[W] = TP[mW] \; / \; 1000 : Transmitter power at anttena terminal \\ 10 log(tp[W]) = 10 log(TP[mW]) - 30 \end{array}$

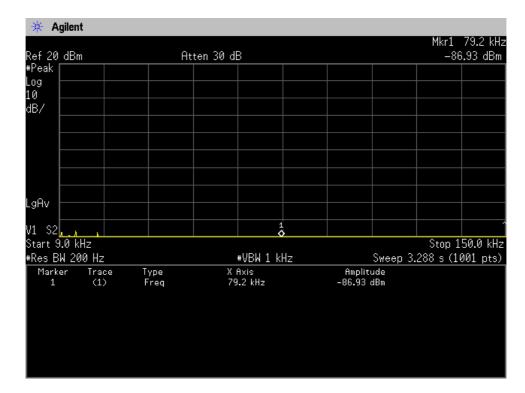
Correction factor details:

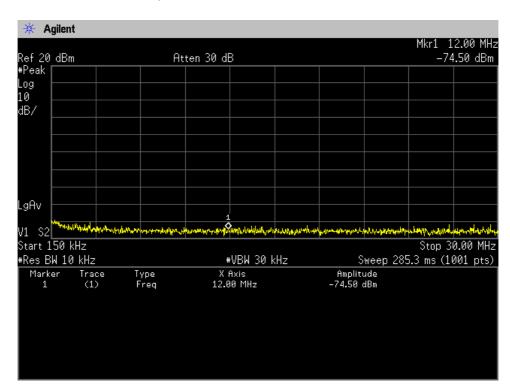
Cable Loss + 10dB Pad Att. [dB] (9 kHz - 1.2 GHz)

Cable Loss + 10dB Pad Att. + High Pass Filter Loss (D-94) [dB] (1.2 GHz - 10 GHz)

Note: 1) The spectrum was scanned 9 kHz to 10 GHz and all emissions not reported were more than 20 dB below the applied limits.

Remarks:

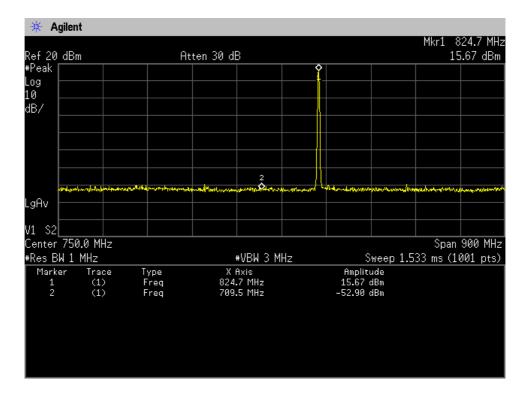

	Detector Function	RES B.W.	V.B.W.	Sweep Time
A	Peak	200 Hz	1 kHz	AUTO
В	Peak	10 kHz	30 kHz	AUTO
С	Peak	1 MHz	3 MHz	AUTO

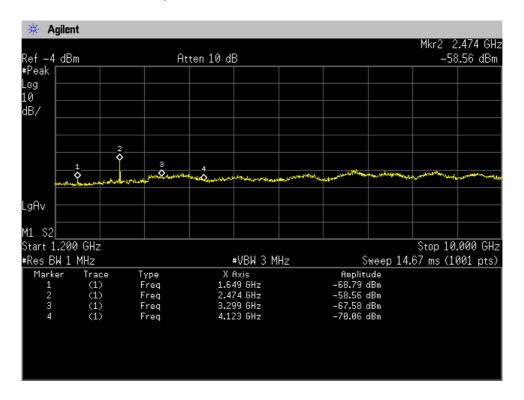

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 30 of 43

Low Channel, Out-Of-Band Emissions (9 kHz - 150 kHz)

Low Channel, Out-Of-Band Emissions (150 kHz – 30 MHz)

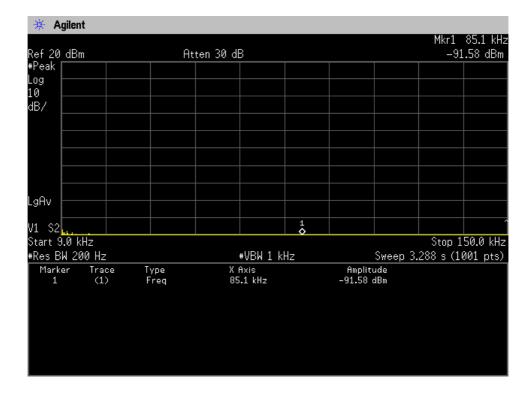


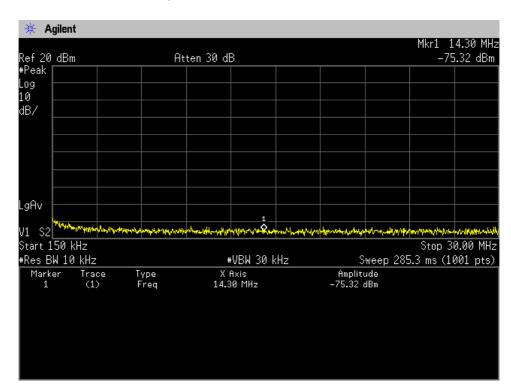

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 31 of 43

Low Channel, Out-Of-Band Emissions (30 MHz - 1.2 GHz)

Low Channel, Out-Of-Band Emissions (1.2 GHz – 10 GHz)

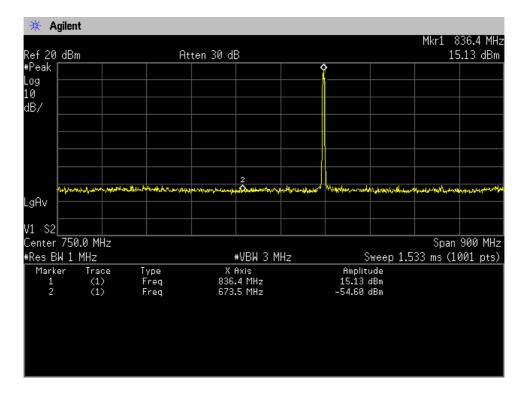


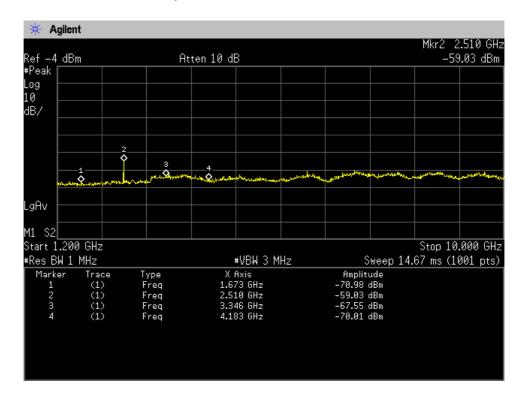

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 32 of 43

Middle Channel, Out-Of-Band Emissions (9 kHz - 150 kHz)

Middle Channel, Out-Of-Band Emissions (150 kHz – 30 MHz)

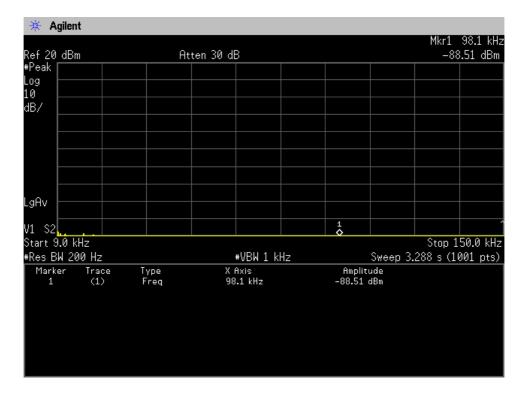


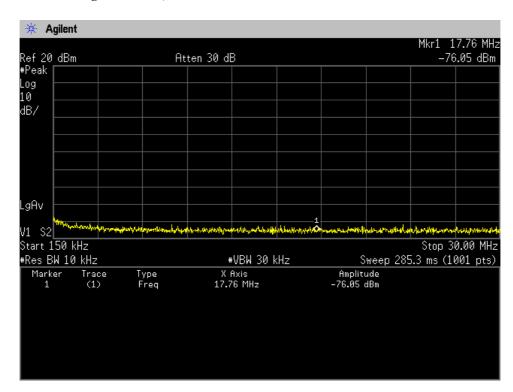

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 33 of 43

Middle Channel, Out-Of-Band Emissions (30 MHz – 1.2 GHz)

Middle Channel, Out-Of-Band Emissions (1.2 GHz – 10 GHz)

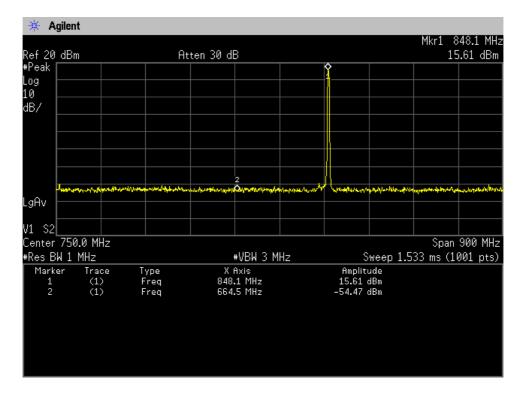


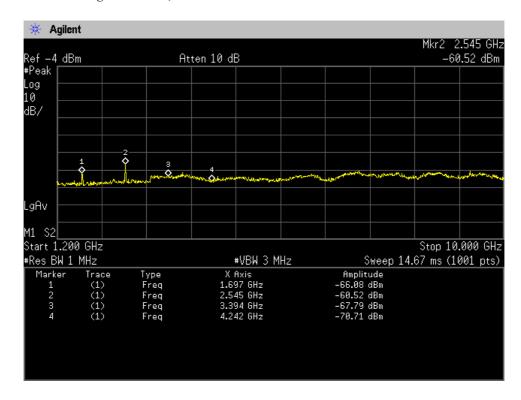

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 34 of 43

High Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)

High Channel, Out-Of-Band Emissions (150 kHz – 30 MHz)

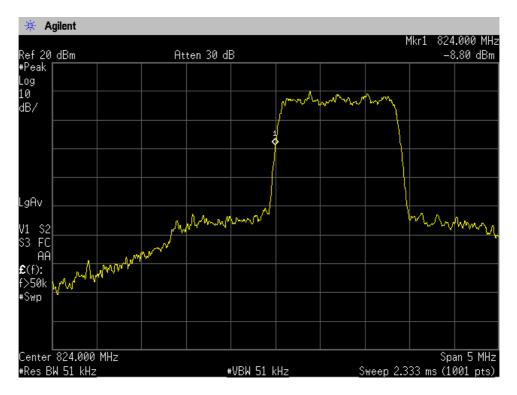



Regulation : CFR 47 FCC Rules and Regulations Part 22

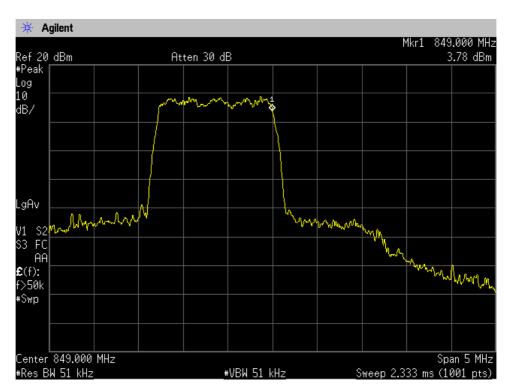
Page 35 of 43

High Channel, Out-Of-Band Emissions (30 MHz – 1.2 GHz)

High Channel, Out-Of-Band Emissions (1.2 GHz – 10 GHz)


Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 36 of 43


A.5 Band-Edge Emission(§2.1051)

Test Date: November 28, 2008 Temp.:24°C, Humi:41%

Low Channel, Band-Edge Emission

High Channel, Band-Edge Emission

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 37 of 43

Test Date: November 27, 2008 Temp.: 22 °C, Humi: 55 %

A.6 Field Strength of Spurious Radiation (§2.1053)

(CDMA2000)

Test Configuration: Single Unit

uradon . Sriigic Ci	ш			1011	p 22 0, 110	ann. 00 70
ansmitting	Measured			Limits	Margin	Remarks
		-	•	[dBm]	[dB]	
[MHz]	[MHz]	Hori.	Vert.			
824.700	1649.400	-45.7	-45.6	-13.0	+32.6	С
	2474.100	-45.7	-45.3	-13.0	+32.3	С
	3298.800	-41.5	-45.1	-13.0	+28.5	С
	4123.500	< -37.6	< -37.6	-13.0	> +24.6	C
	4948.200	< -36.8	< -36.8	-13.0	> +23.8	С
	5772.900	< -35.3	< -35.3	-13.0	> +22.3	C
	6597.600	< -35.7	< -35.7	-13.0	> +22.7	С
	7422.300	< -34.6	< -34.6	-13.0	> +21.6	C
	8247.000	< -37.7	< -37.7	-13.0	> +24.7	C
836.520	1673.040	-44.6	-42.6	-13.0	+29.6	С
	2509.560	-44.5	-44.3	-13.0	+31.3	С
	3346.080	-38.7	-41.9	-13.0	+25.7	C
	4182.600	< -37.4	< -37.4	-13.0	> +24.4	С
	5019.120	< -36.6	< -36.6	-13.0	> +23.6	С
	5855.640	< -35.2	< -35.2	-13.0	> +22.2	С
	6692.160	< -35.6	< -35.6	-13.0	> +22.6	C
	7528.680	< -34.0	< -34.0	-13.0	> +21.0	C
	8365.200	< -37.7	< -37.7	-13.0	> +24.7	С
848.370	1696.740	-45.9	-43.0	-13.0	+30.0	С
	2545.110	-42.5	-43.9	-13.0	+29.5	С
	3393.480	-38.7	-42.1	-13.0	+25.7	С
	4241.850	< -37.1	< -37.1	-13.0	> +24.1	С
	5090.220	< -36.4	< -36.4	-13.0	> +23.4	С
	5938.590	< -35.0	< -35.0	-13.0	> +22.0	C
	6786.960	< -35.4	< -35.4	-13.0	> +22.4	С
	7635.330	< -38.5	< -38.5	-13.0	> +25.5	С
	ansmitting frequency [MHz] 824.700	requency [MHz]	ansmitting Measured Frequency [IMHz] Mori 824.700 1649.400 -45.7 2474.100 -45.7 3298.800 -41.5 4123.500 <-37.6 4948.200 <-36.8 5772.900 <-35.3 6597.600 <-35.7 7422.300 <-34.6 8247.000 <-37.7 836.520 1673.040 -44.6 2509.560 -44.5 3346.080 -38.7 4182.600 <-37.4 5019.120 <-36.6 5855.640 <-35.2 6692.160 <-35.2 6692.160 <-35.6 7528.680 <-34.0 8365.200 <-37.7 848.370 1696.740 -45.9 2545.110 -42.5 3393.480 -38.7 4241.850 <-37.1 5090.220 <-36.4 5938.590 <-35.0 6786.960 <-35.4	Measured Frequency [dBm]	ansmitting requency [dBm] [dBm] [dBm] [MHz] [MHz] Hori Vert. 824.700	ansmitting requency [dBm] [dBm

< -37.7

< -37.7

-13.0

> +24.7

C

8483.700

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 38 of 43

Sample of calculated result at 7528.7 MHz, as the Minimum Margin point:

Minimum Margin: -13.0 - (< -34.0) = >21.0 (dB)

The point shown on " _____ " is the Minimum Margin Point.

Applied Limits:

 $-13.0 \ [dBm] = 10log(TP[mW]) - (43 + 10log(tp[W])) = 10log(TP[mW]) - (43 + (10 \log(TP[mW]) - 30))$

where $\ \ tp[W]$ = TP[mW] / 1000 : Transmitter power at anttena terminal

 $10\log(tp[W]) = 10\log(TP[mW]) - 30$

Test system connection setup:

Cable (9 kHz - 1 GHz)

Cable + 20dB Pad Att. + High Pass Filter (D-94) - Pre-Amplifier (1.0 GHz - 3.6 GHz)

 $Cable + 10 dB \ Pad \ Att. + High \ Pass \ Filter \ (D-94) - Pre-Amplifier \ (7.6 \ GHz \ - \ 10 \ GHz)$

Note: The spectrum was scanned 9 kHz to 10 GHz and all emissions not reported were more than 20 dB below the applied limits.

Remarks:

	Detector Function	RES B.W.	V.B.W.	Sweep Time
A	Peak	10 kHz	30 kHz	AU TO
В	Peak	100 kHz	300 kHz	AUTO
С	Peak	1 MHz	3 MHz	AUTO

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 39 of 43

A.7 Frequency Stability (§2.1055)

(CDMA2000)

Test Date: December 4, 2008

1. Frequency Stability Measurement versus Temperature

Transmitting Frequency DC Supply Voltage : 836.520 MHz (384 ch)

: 4.0 VDC

Ambient	Devi ation [ppm]				Limits	Margin
Temperature [°C]	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
-30	- 0.07	- 0.02	- 0.02	- 0.02	2.50	+ 2.43
-20	+ 0.05	- 0.02	- 0.02	- 0.03	2.50	+ 2.45
-10	+ 0.03	- 0.02	- 0.01	- 0.02	2.50	+ 2.47
0	+ 0.03	- 0.01	- 0.01	- 0.02	2.50	+ 2.47
10	+ 0.04	- 0.02	- 0.02	- 0.02	2.50	+ 2.46
20	- 0.03	- 0.02	- 0.02	+ 0.01	2.50	+ 2.47
30	- 0.04	- 0.02	- 0.02	- 0.02	2.50	+ 2.46
40	- 0.05	- 0.03	- 0.03	- 0.02	2.50	+ 2.45
50	- 0.05	- 0.02	- 0.02	- 0.02	2.50	+ 2.45

2 Frequency Stability Measurement vers us Power Supply Voltage

Transmitting Frequency : 836.520 MHz (384 ch)

DC Supply Voltage : 20 ℃

Ambient		Devi ation [ppm]				Margin
Temperature [°C]	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
4.0	- 0.03	- 0.02	- 0.02	+ 0.01	2.50	+ 2.47
3.7(Ending)	- 0.03	- 0.02	+ 0.04	- 0.01	2.50	+ 2.46

Sample of calculated result at 836.520 MHz, as the Minimum Margin point: Ambient Temperature : -30 $^{\circ}$ C / Startup

DC Supply Voltage : 4 VDC Minimum Margin: 2.50 - 0.07 = 2.43 (ppm)

The point shown on "_____" is the Minimum Margin Point. The Maximum Deviation Point is shown on a thick letter.

Note: The measurement were made after all of components of the oscillator sufficiently stabilized at each temperature.

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 40 of 43

Appendix B: Test Arrangement (Photographs)

Radiated Emission

This page is CONFIDENTIAL.

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 41 of 43

This page is CONFIDENTIAL.

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 42 of 43

Appendix C: Test Instruments

C.1 RF Power Output

C.1.1 Conducted RF Power Output

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Power Meter	N1911A	Agilent	B-63	2008/6	1 Year
Power Sensor	N1921A	Agilent	B-64	2008/6	1 Year
Attenuator	54-10	Weinschel	D-82	2008/6	1 Year

C.1.2 ERP /EIRP Power Output

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2007/12	1 Year
Signal Generator	E8257D	Agilent	B-39	2008/7	2 Years
Power Meter	N1911A	Agilent	B-63	2008/6	1 Year
Power Sensor	N1921A	Agilent	B-64	2008/6	1 Year
Attenuator(TX)	2-10	Weinschel	D-79	2008/9	1 Year
Dipole Antenna(RX)	KBA-611	Kyoritsu	C-18	2007/8	2 Years
Dipole Antenna(TX)	KBA-611	Kyoritsu	C-20	2007/8	2 Years

C.2 Modulation Characteristics

Not Applicable

C.3 Occupied Bandwidth

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2007/12	1 Year
Attenuator	54-10	Weinschel	D-82	2008/6	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-51	2008/6	1 Year

C.4 Spurious Emissions at Antenna Terminals

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2007/12	1 Year
Attenuator	54-10	Weinschel	D-82	2008/6	1 Year
HPF	HPM5010S	MICRO-TRONICS	D-94	2008/2	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-51	2008/6	1 Year

Regulation : CFR 47 FCC Rules and Regulations Part 22

Page 43 of 43

C.5 Band-Edge Emission

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2007/12	1 Year
Attenuator	54-10	Weinschel	D-82	2008/6	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-51	2008/6	1 Year

C.6 Field Strength of Spurious Radiation

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2007/12	1 Year
Signal Generator	E8257D	Agilent	B-39	2008/7	2 Years
Power Meter	ML2437A	Anritsu	B-10	2008/2	1 Year
Power Sensor	ML2444A	Anritsu	B-11	2008/2	1 Year
Attenuator	54-10	Weinschel	D-82	2007/11	1 Year
Attenuator	54-10	Weinschel	D-83	2007/11	1 Year
Pre-Amplifier	WJ-6611-513	Watkins Johnson	A-23	2007/11	1 Year
Pre-Amplifier	WJ-6882-824	Watkins Johnson	A-21	2007/11	1 Year
Pre-Amplifier	DBL-0618N515	DBS Microwave	A-33	2007/11	1 Year
RF Cable	SUCOFLEX102/E	SUHNER	C-70	2008/3	1 Year
RF Cable	SUCOFLEX104	SUHNER	C-40-14	2007/11	1 Year
Horn Antenna	91888-2	EATON	C-40-1	2008/6	1 Year
Horn Antenna	91888-2	EATON	C-41-1	2008/6	1 Year
Horn Antenna	91889-2	EATON	C-40-2	2008/6	1 Year
Horn Antenna	91889-2	EATON	C-41-2	2008/6	1 Year
Horn Antenna	94613-1	EATON	C-40-3	2008/6	1 Year
Horn Antenna	94613-1	EATON	C-41-3	2008/6	1 Year
Horn Antenna	91891-2	EATON	C-40-4	2008/6	1 Year
Horn Antenna	91891-2	EATON	C-41-4	2008/6	1 Year

C.7 Frequency Stability

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Universal Telecommunication Tester	CMU200	Rohde&Schwarz	B-21	2008/4	1 Year
DC Voltage Meter	2011-39	YEW	B-33	2008/4	1 Year
Environmental Chamber	PL-4KPH (S/N:14007470)	TABAI ESPEC		N/A	N/A
Temperature Recorder	SRF106AS00000M11 (S/N:01400909)	TABAI ESPEC		2008/8	1 Year
DC Power Supply	NL035-10	TAKASAGO	F-4	N/A	N/A