

TEST REPORT

Report No.: E201508117208-3 Application No.: E201508117208

Client: Harman International Industries, Incorporated

Address: 8500 Balboa Blvd, Northridge, CA 91329, United States

Sample

Description: Bluetooth headset

Model: V100BT

Adding Model: /

FCC ID APIJBLV100BT

Test Specification: FCC Part 15, Subpart C:2014

Test Date: 2015-08-11 to 2015-08-27

Issue Date: 2015-08-27

Test Result: Pass.

Prepared By: Reviewed By: Approved By:

Bruce Li / Test Engineer Lynn Xiao / Technical Manager Yong Dai / Technical Manager

mein

bruce Li

Date:2015-08-27 Date:2015-08-27

Date:2015-08-27
Other Aspects:

Abbreviations: ok / P = passed; fail / F = failed; n.a. / N = not applicable

The test result in this test report refers exclusively to the presented test sample. This report shall not be reproduced except in full, without the written approval of GRGT.

GRG Metrology and Test Co., Ltd.

Address: 163, Pingyun Road, West of Huangpu Avenue, Guangzhou, Guangdong, P.R. China

Tel:+86-20-38699960 Fax:+86-20-38695185 Email: <u>cert-center@grg.net.cn</u> <u>http://www.grgtest.com</u> Ver.:2.0 / 01.Jan.2012

Report No.: E201508117208-3 Application No.: E201508117208 Page 2 of 49

DIRECTIONS OF TEST

- 1. This station carries out test task according to the national regulation of verifications which can be traced to National Primary Standards and BIPM.
- 2. The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.
- 3. If there is any objection concerning the test, the client should inform the laboratory within 15 days from the date of receiving the test report.

Table of Contents

1. TEST RESULT SUMMARY	4
2. GENERAL DESCRIPTION OF EUT	5
2.1 APPLICANT	
2.2 MANUFACTURER	
2.3 BASIC DESCRIPTION OF EQUIPMENT UNDER TEST	
3. LABORATORY AND ACCREDITATIONS	
3.1 LABORATORY	
3.2 ACCREDITATIONS	
3.3 MEASUREMENT UNCERTAINTY	
3.4 LIST OF USED TEST EQUIPMENT AT GRGT	
4. TEST RESULTS	
4.1 E.U.T. TEST CONDITIONS	
4.2 ANTENNA REQUIREMENT	
4.3 OCCUPIED BANDWIDTH	
4.3.1 LIMITS	
4.3.2 TEST PROCEDURES	
4.3.3 TEST SETUP	
4.3.4 TEST RESULTS	
4.4 CARRIER FREQUENCIES SEPARATED	
4.4.1 LIMITS4.4.2 TEST PROCEDURES	
4.4.3 TEST SETUP	
4.4.4 TEST RESULTS	
4.5 HOPPING CHANNEL NUMBER	,
4.5.1 LIMITS	
4.5.2 TEST PROCEDURES	
4.5.3 TEST SETUP	
4.5.4 TEST RESULTS	21
4.6 DWELL TIME	23
4.6.1 LIMITS	
4.6.2 TEST PROCEDURES	
4.6.3 TEST SETUP	
4.6.4 TEST RESULTS	
4.7 CONDUCTED EMISSION MEASUREMENT	
4.7.1 LIMITS	
4.7.2 TEST PROCEDURES	
4.7.3 TEST SETUP	
4.8 MAXIMUM PEAK OUTPUT POWER	
4.8.1 LIMITS	
4.8.2 TEST PROCEDURES.	
4.8.3 TEST SETUP	
4.8.4 TEST RESULTS	
FUNDAMENTAL FREQUENCY (GHZ)	32
4.9 RADIATED SPURIOUS EMISSIONS	37
4.9.1 LIMITS	
4.9.2 TEST PROCEDURES.	
4.9.3 TEST SETUP	
4.9.4 TEST RESULTS	
4.10 BAND EDGES REQUIREMENT	
4.10.1 LIMITS	44
4.10.2 TEST PROCEDURES	
4.10.3 TEST SETUP	
4.10.4 TEST RESULTS	
4.10.5 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	48

Application No.: E201508117208 Page 4 of 49

1. TEST RESULT SUMMARY

Report No.: E201508117208-3

FCC Part 15.247:2014				
Standard	Item	Limit / Severity	Result	
	Antenna Requirement	Section 15.247 (c)	PASS	
	Occupied Bandwidth	Section 15.247 (a1)	PASS	
	Carrier Frequencies Separated	Section 15.247(a)(1)	PASS	
	Hopping Channel Number	Section 15.247(a)(1)(iii)	PASS	
FCC Part 15,Subpart C	Dwell Time	Section 15.247(a)(1)(iii)	PASS	
(15.247)	Maximum Peak Output Power	Section 15.247(b)(1)	PASS	
	Conducted Emission	Section 15.207	PASS	
	Conducted Spurious Emission (30MHz to 25GHz)	Section 15.209 &15.247(d)	PASS	
	Radiated Spurious Emission (30MHz to 25GHz)	Section 15.209 &15.247(d)	PASS	
	Band Edges Measurement	Section 15.247 (d) &15.205	PASS	

Report No.: E201508117208-3 Application No.: E201508117208 Page 5 of 49

2. GENERAL DESCRIPTION OF EUT

2.1 APPLICANT

Name: Harman International Industries, Incorporated

Address: 8500 Balboa Blvd, Northridge, CA 91329, United States

2.2 MANUFACTURER

Name: Harman International Industries, Incorporated

Address: 8500 Balboa Blvd, Northridge, CA 91329, United States

2.3 BASIC DESCRIPTION OF EQUIPMENT UNDER TEST

Equipment: Bluetooth headset

Model No.: V100BT

Trade Name: harman

Power supply DC USB 5V

Model:ICR10120

Battery: 3.7V/60mAh*2

Frequency Range 2402MHz~2480MHz

Type of

Modulation GFSK, 8DPSK, Pi/4 QPSK

Channels: Channels with 1MHz step

Antenna Gain: -2.6dBi

Antenna Type Internal antenna

Report No.: E201508117208-3 Application No.: E201508117208 Page 6 of 49

3. LABORATORY AND ACCREDITATIONS

3.1 LABORATORY

The tests and measurements refer to this report were performed by Guangzhou GRG Metrology and Test CO., LTD.

Add. : 163 Pingyun Rd, West of Huangpu Ave, Guangzhou, 510656, P. R. China

Telephone: +86-20-38699959, 38699960, 38699961

Fax : +86-20-38695185

3.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies.

USA	FCC Listed Lab (No. 688188)
Canada	Registration No.:8355A-1

3.3 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement		Frequency	Uncertainty
	Horizontal	30MHz~1000MHz	4.2dB
Radiated	Horizontai	1GHz∼26.5GHz	4.2dB
Emission	Vertical	30MHz~1000MHz	4.4dB
	verticai	1GHz∼26.5GHz	4.4dB
Conducted Emission		9kHz~30MHz	3.1 dB

This uncertainty represents an expanded uncertainty factor of k=2.

Report No.: E201508117208-3 Application No.: E201508117208 Page 7 of 49

3.4 LIST OF USED TEST EQUIPMENT AT GRGT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Conducted Emissions							
EMI Receiver	R&S	ESCI	100529	2016-03-24			
L.I.S.N	SCHWARZBECK	NSLK 8127	8127450	2016-07-20			
Spurious Emissions/R	estricted Bands						
Receiver	R&S	ESU26	100526	2016-03-08			
Signal Generator	Agilent	N5183A-540	MY50142096	2015-09-28			
Biconical Log-periodic Antenna	ETS.LINDGREN	3142C	00075971	2016-04-17			
Horn antenna	SCHWARZBECK	BBHA9120D	D752	2015-11-25			
Horn antenna	ETS.LINDGREN	3117C	00075824	2017-05-05			
Per-Amplifier (0.1-26.5GHz)	Compliance Directions systems Inc.	PAP-0126	25002	2016-01-02			
Semi-anechoic chamber	ETS	966(RFD-F/ A-100)	3730	2016-02-25			
Occupied Bandwidth/ Dwell Time							
Signal Analyzer	R&S	FSV30	103246	2016-03-09			
Carrier Frequency/ Hopping Channel Number/Maximum Peak Output Power/100kHz Bandwidth of Frequency Band Edge							
EMI Receiver	R&S	ESCI	100529	2016-03-24			

Report No.: E201508117208-3 Application No.: E201508117208 Page 8 of 49

4. TEST RESULTS

4.1 E.U.T. TEST CONDITIONS

Type of antenna: Internal
Temperature: 22.7 °C
Humidity: 59% RH
Atmospheric Pressure: 1011 mbar

Test frequencies: According to the 15.31(m) Measurements on intentional

radiators or receivers, other than TV broadcast receivers, shall be performed and. if required. reported for each band in which the device can be operated with the device operating at

the number of frequencies in each band specified in the

following table:

Frequency range over which device operates

Number of Location in the range of operation

1 MHz or less 1 Middle
1 to 10 MHz 2 1 near top and 1 near bottom

More than 10 MHz 3 1 near top. 1 near middle and 1 near bottom

EUT channels and frequencies list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	14	2416	28	2430
1	2403	15	2417	29	2431
2	2404	16	2418	30	2432
3	2405	17	2419	31	2433
4	2406	18	2420	32	2434
5	2407	19	2421	33	2435
6	2408	20	2422	34	2436
7	2409	21	2423	35	2437
8	2410	22	2424	36	2438
9	2411	23	2425	37	2439
10	2412	24	2426	38	2440
11	2413	25	2427	39	2441
12	2414	26	2428	40	2442
13	2415	27	2429	41	2443

Application No.: E201508117208 Page 9 of 49

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
42	2444	55	2457	68	2470
43	2445	56	2458	69	2471
44	2446	57	2459	70	2472
45	2447	58	2460	71	2473
46	2448	59	2461	72	2474
47	2449	60	2462	73	2475
48	2450	61	2463	74	2476
49	2451	62	2464	75	2477
50	2452	63	2465	76	2478
51	2453	64	2466	77	2479
52	2454	65	2467	78	2480
53	2455	66	2468		
54	2456	67	2469		

Test frequency is the lowest channel: 0 channel(2402MHz), middle channel: 39 channel(2441MHz) and highest channel: 78 channel(2480MHz)

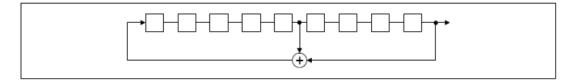
Report No.: E201508117208-3

Report No.: E201508117208-3 Application No.: E201508117208 Page 10 of 49

Frequency Hopping System Requirement

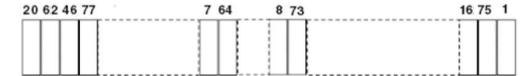
Test Requirement: Section 15.247 (a)(1), (g), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a) (1)


According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift registers stages: 9
- Length of pseudo-random sequence: 29 1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence
An example of Pseudorandom Frequency Hopping Sequence as follow:

Report No.: E201508117208-3 Application No.: E201508117208 Page 11 of 49

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinate with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

Reference document: BlueMod+B20-The Official Bluetooth SIG Member Website.

Report No.: E201508117208-3 Application No.: E201508117208 Page 12 of 49

4.2 ANTENNA REQUIREMENT

The EUT antenna is internal antenna. Antenna gain is -2.6dBi .which accordance 15.203.is considered sufficient to comply with the provisions of this section.

detail refer to internal photo

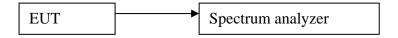
FCC ID: APIJBLV100BT

Report No.: E201508117208-3 Application No.: E201508117208 Page 13 of 49

4.3 OCCUPIED BANDWIDTH

4.3.1 LIMITS

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


4.3.2 TEST PROCEDURES

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer: Span = approximately 2 to 3 times the 20dB bandwidth, centre on a hopping channel;
- 3. Set the spectrum analyzer: RBW >= 1% of the 20dB bandwidth (set 100 kHz). VBW >= RBW. Sweep = auto; Detector Function = Peak. Trace = Max Hold.
- 4. Mark the peak frequency and -20dB bandwidth.
- 5. Bandwidth value is OBW value.

Remark:

Pre-test the 3 modulation to find GFSK and 8DPSK is worse case, so only record GFSK and 8DPSK test data.

4.3.3 TEST SETUP

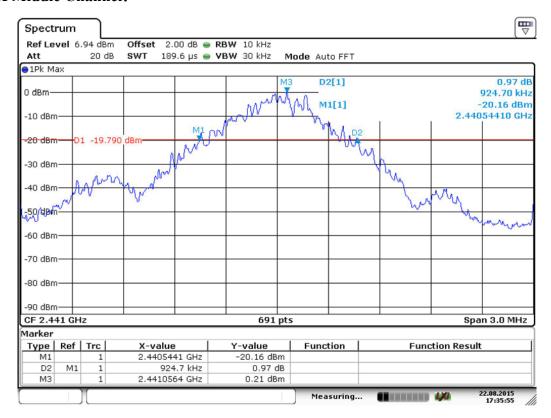
4.3.4 TEST RESULTS

For GFSK

Frequency (GHz)	Test Channel	bandwidth
2.402	Lowest	0.92MHz
2.441	Middle	0.92MHz
2.480	Highest	0.93MHz

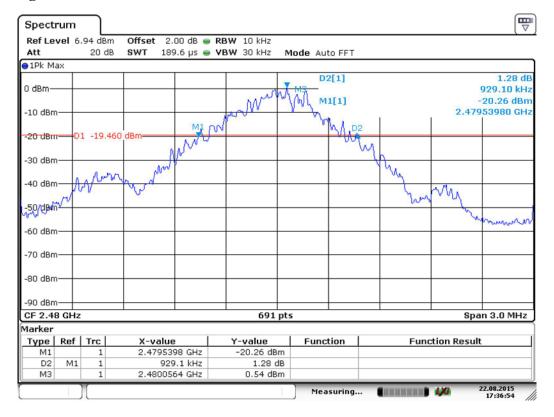
For 8DPSK

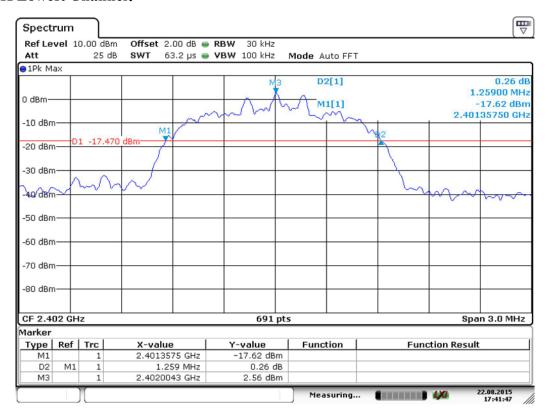
Frequency (GHz)	Test Channel	bandwidth
2.402	Lowest	1.26MHz
2.441	Middle	1.26MHz
2.480	Highest	1.26MHz


Result plot as follows:

Report No.: E201508117208-3 Application No.: E201508117208 Page 14 of 49

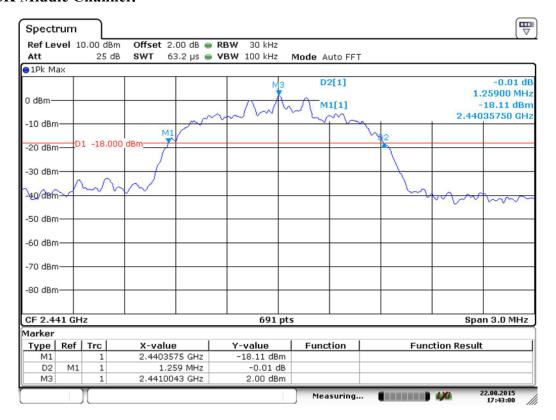
GFSK Lowest Channel:


GFSK Middle Channel:

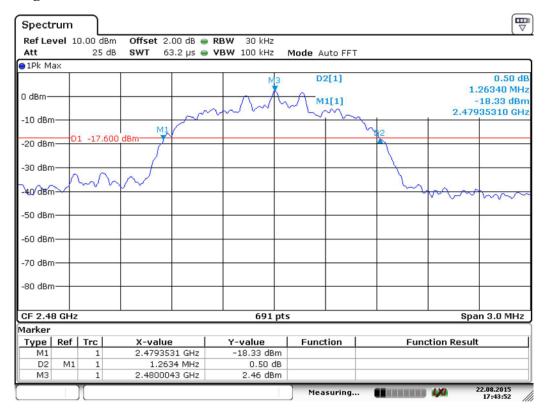

Application No.: E201508117208 Page 15 of 49

GFSK Highest Channel:

Report No.: E201508117208-3



8DPSK Lowest Channel:



Report No.: E201508117208-3 Application No.: E201508117208 Page 16 of 49

8DPSK Middle Channel:

8DPSK Highest Channel:

Report No.: E201508117208-3 Application No.: E201508117208 Page 17 of 49

4.4 CARRIER FREQUENCIES SEPARATED

4.4.1 LIMITS

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

4.4.2 TEST PROCEDURES

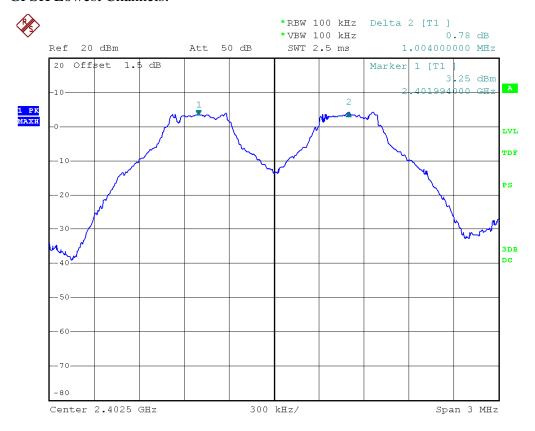
- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW >= 1% of the span (set 100 kHz). VBW >= RBW, Span = 3MHz. Sweep = auto; Detector Function = Peak. Trace = Max, hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

Remark:

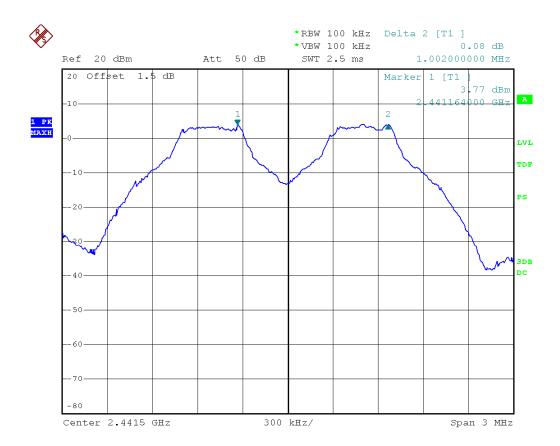
Pre-test the 3 modulation to find GFSK and 8DPSK is worse case, so only record GFSK and 8DPSK test data.

4.4.3 TEST SETUP

4.4.4 TEST RESULTS

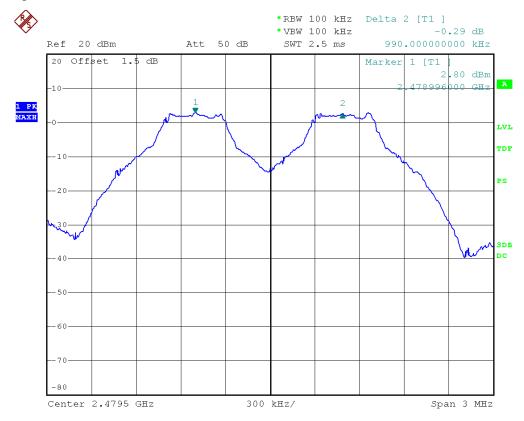

Mode	Test Channel	Carrier Frequencies Separated	2/3 20 dB bandwidth	PASS/FAIL
	Lower Channels (channel 0 and channel 1)	1.004MHz	0.613 MHz	Pass
GFSK	Middle Channels (channel 39 and channel 40)	1.002MHz	0.613 MHz	Pass
	Upper Channels (channel 77 and channel 78)	0.990MHz	0.620 MHz	Pass
	Lower Channels (channel 0 and channel 1)	0.996MHz	0.840 MHz	Pass
8DPSK	Middle Channels (channel 39 and channel 40)	0.996MHz	0.840 MHz	Pass
SDPSK	Upper Channels (channel 77 and channel 78)	0.984MHz	0.840 MHz	Pass

Note: The two-thirds of the 20 dB bandwidth is greater than 25 kHz,so the limit for the two-thirds of the 20 dB bandwidth is applied.

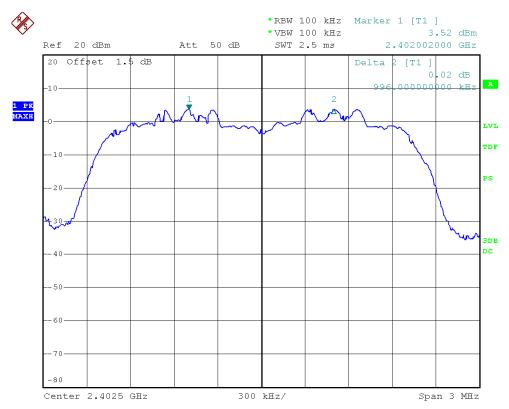

Report No.: E201508117208-3 Application No.: E201508117208 Page 18 of 49

Result plot as follows:

GFSK Lowest Channels:

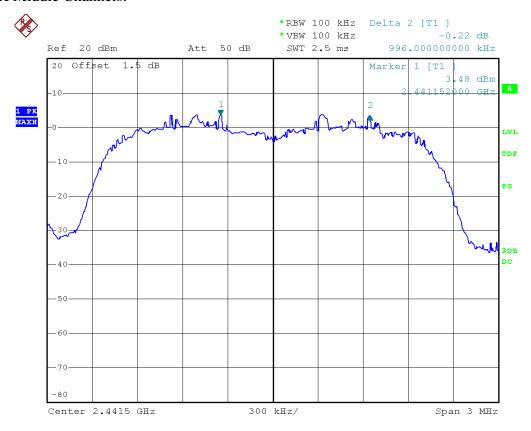


GFSK Middle Channels:

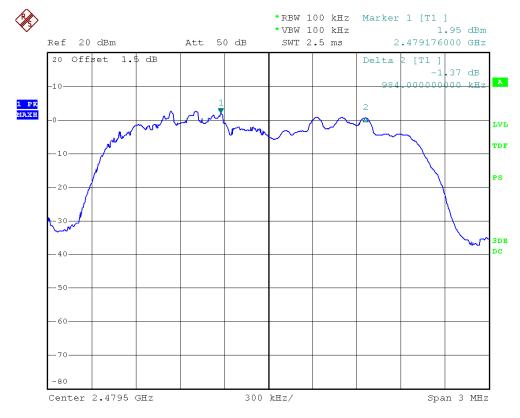


FCC ID: APIJBLV100BT

GFSK Highest Channels:



8DPSK Lowest Channels:



Report No.: E201508117208-3 Application No.: E201508117208 Page 20 of 49

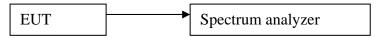
8DPSK Middle Channels:

8DPSK Highest Channels:

Test result: The unit does meet the FCC requirements.

Report No.: E201508117208-3 Application No.: E201508117208 Page 21 of 49

4.5 HOPPING CHANNEL NUMBER

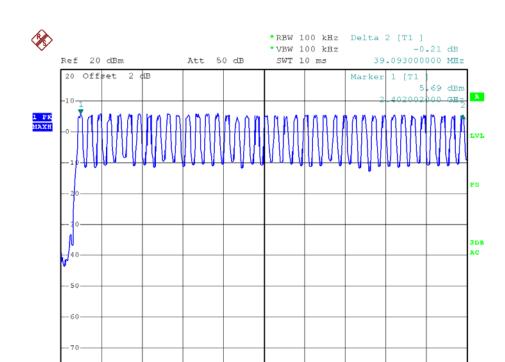

4.5.1 LIMITS

Regulation 15.247 (a) (1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

4.5.2 TEST PROCEDURES

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 100 kHz. VBW = 100 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: start frequency = 2400MHz. stop frequency = 2483.5MHz. Submit the test result graph.

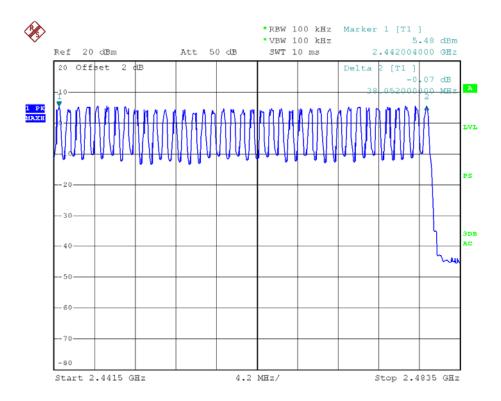
4.5.3 TEST SETUP



4.5.4 TEST RESULTS

Test result: Total channels are 79 channels.

Result plot as follows:


Stop 2.4415 GHz

4.15 MHz/

Report No.: E201508117208-3

Start 2.4 GHz

Test result: The unit does meet the FCC requirements.

Report No.: E201508117208-3 Application No.: E201508117208 Page 23 of 49

4.6 DWELL TIME

4.6.1 LIMITS

Regulation 15.247(a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

4.6.2 TEST PROCEDURES

1. Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.

The analyzer shall be set as follows:

Centre Frequency: Equal to the hopping frequency being investigated

Frequency Span: 0 Hz

RBW: ~ 50 % of the Occupied Channel Bandwidth

VBW: ≥ RBW

Detector Mode: RMS

Sweep time: Equal to the Dwell Time × Minimum number of hopping frequencies (N)

Number of sweep points: 30 000

Trace mode: Clear / Write

Trigger: Free Run

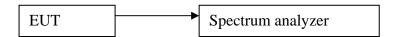
- 2. Save the trace data to a file for further analysis by a computing device using an appropriate software application or program.
- 3. Indentify the data points related to the frequency being investigated by applying a threshold. The data points resulting from transmissions on the hopping frequency being investigated are assumed to have much higher levels compared to data points resulting from transmissions on adjacent hopping frequencies. If a clear determination between these transmissions is not possible, the RBW in step 1 shall be further reduced. In addition, a channel filter may be used. Count the number of data points identified as resulting from transmissions on the frequency being investigated and multiply this number by the time difference between two consecutive data points.
- 4. The result in step 3 is the accumulated Dwell Time which shall comply with the limit and which shall be recorded in the test report.
- 5. Make the following changes on the analyzer and repeat steps 2 and 3. Sweep time: $4 \times Dwell$ Time \times Actual numbers of hopping frequencies in use
- 6. The hopping frequencies occupied by the system without having transmissions during the dwell time (blacklisted frequencies) should be taken into account in the actual number of hopping frequencies in use. If this number cannot be determined (number of blacklisted frequencies unknown) it shall be assumed that the equipment uses the minimum number of hopping frequencies. The result shall be compared to the limit for the Minimum Frequency Occupation Time. This value shall be recorded in the test report.

7. Make the following changes on the analyzer:

Start Frequency: 2 400 MHz Stop Frequency: 2 483,5 MHz

RBW: ~ 50 % of the Occupied Channel Bandwidth (single hop)

Report No.: E201508117208-3 Application No.: E201508117208 Page 24 of 49


VBW: ≥ RBW

Detector Mode: RMS Sweep time: Auto Trace Mode: Max Hold Trigger: Free Run

When the trace has completed, indentify the number of hopping frequencies used by the hopping sequence. The result shall be compared to the limit (value N). This value shall be recorded in the test report. For equipment with blacklisted frequencies, it might not be possible to verify the number of hopping frequencies in use. However they shall comply with the requirement for accumulated Dwell time and Minimum Frequency Occupation Time assuming the minimum number of hopping frequencies is in use.

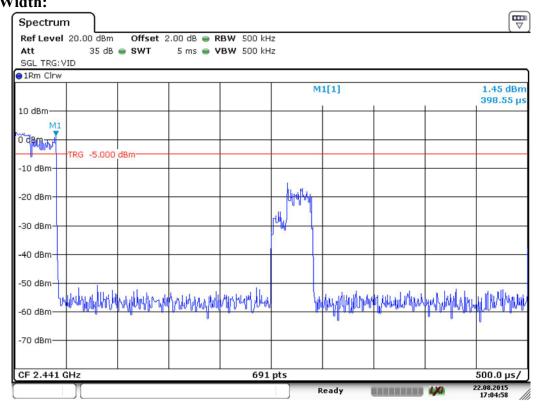
- 8. For adaptive systems, using the lowest and highest -20 dB points from the total spectrum envelope obtained in step 6, it shall be verified whether the system uses 70 % of the band specified in clause 1. The result shall be recorded in the test report.
- 9. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.). Repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s). An oscilloscope may be used instead of a spectrum analyzer.

4.6.3 TEST SETUP

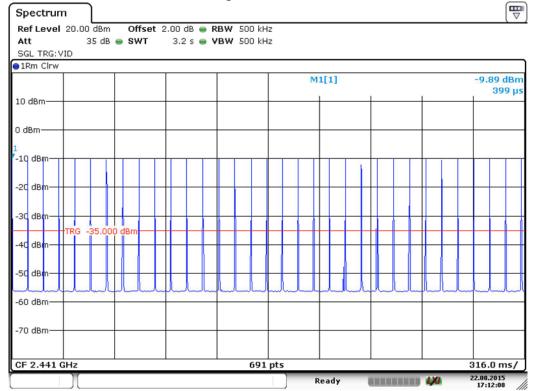
4.6.4 TEST RESULTS

Frequency (MHz)	Modulation	Packet	Dwell Time Per Hop(ms)	Number of Hopping Channel in 31.6s	Maxinum Accumulated Dwell Time (s)	Limit (s)	Result
		3DH1	0.399	330	0.132	0.4	Pass
2441	8DPSK	3DH3	1.645	170	0.280	0.4	Pass
		3DH5	2.884	110	0.317	0.4	Pass

Remark: The average time of occupancy in the specified 31.6 second period is equal to pulse width*(time of pulse in observation period)*(test period / observation period)

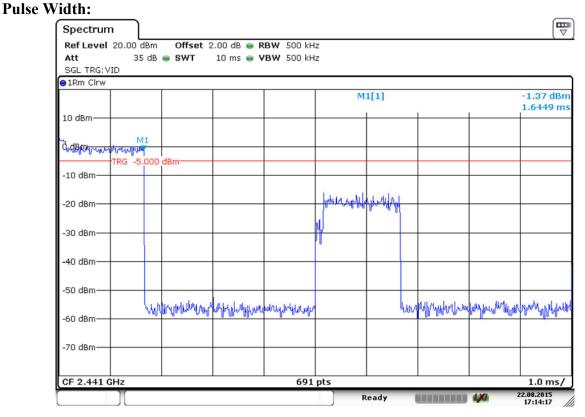

The results are not greater than 0.4 seconds. The unit does meet the requirements.

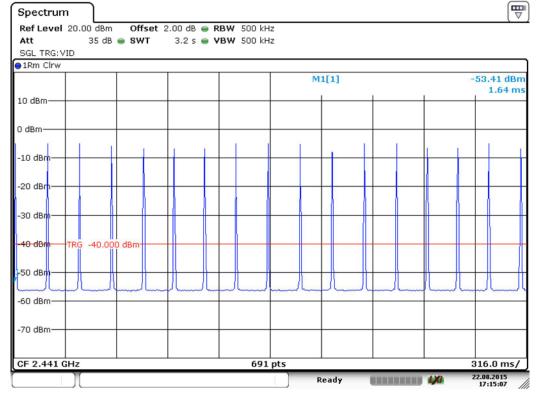
Please refer the graph as below:


Application No.: E201508117208 Page 25 of 49

For 3DH1: Pulse Width:

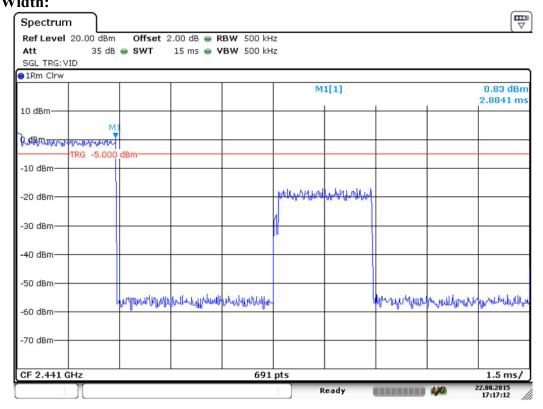
Report No.: E201508117208-3

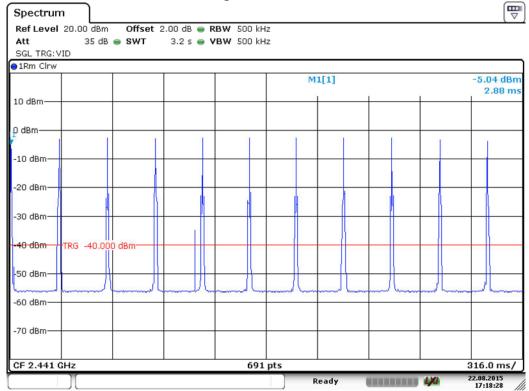

Number of Pulses in 3.16 S observation periods:


Application No.: E201508117208 Page 26 of 49

For 3DH3:

Report No.: E201508117208-3





Report No.: E201508117208-3 Application No.: E201508117208 Page 27 of 49

For 3DH5: Pulse Width:

Number of Pulses in 3.16 S observation periods:

Application No.: E201508117208 Page 28 of 49

4.7 CONDUCTED EMISSION MEASUREMENT

4.7.1 LIMITS

Гиодионом кондо	Limits (dBµV)		
Frequency range	Quasi-peak	Average	
$150 \mathrm{kHz} \sim 0.5 \mathrm{MHz}$	66~56	56~46	
$0.5~\mathrm{MHz}\sim5~\mathrm{MHz}$	56	46	
5 MHz \sim 30 MHz	60	50	

4.7.2 TEST PROCEDURES

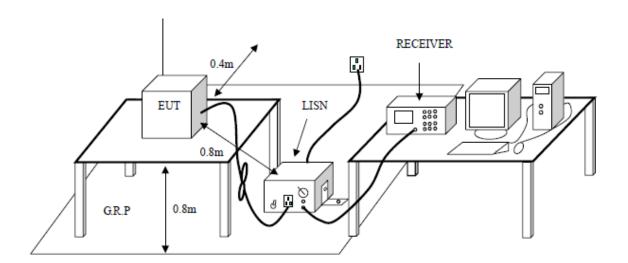
Report No.: E201508117208-3

Procedure of Preliminary Test

For measurement of the disturbance voltage the equipment under test (EUT) is connected to the power supply mains and any other extended network via one or more artificial network(s). An EUT, whether intended to be grounded or not, and which is to be used on a table is configured as follows:

- Either the bottom or the rear of the EUT shall be at a controlled distance of 40 cm from a reference ground plane. This ground plane is normally the wall or floor of a shielded room. It may also be a grounded metal plane of at least 2 m by 2 m. This is physically accomplished as follows:
- 1) Place the EUT on a table of non-conducting material which is at least 80 cm high. Place the EUT so that it is 40 cm from the wall of the shielded room, or
- 2) place the EUT on a table of non-conducting material which is 40 cm high so that the bottom of the EUT is 40 cm above the ground plane;
- All other conductive surfaces of the EUT shall be at least 80 cm from the reference ground plane;
- The EUT are placed on the floor that one side of the housings is 40 cm from the vertical reference ground plane and other metallic parts;
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth forming a bundle 30 cm to 40 cm long, hanging approximately in the middle between the ground plane and the table.
- I/O cables that are connected to a peripheral shall be bundled in the centre. The end of the cable may be terminated if required using correct terminating impedance. The total length shall not exceed 1 m.

The test mode(s) described in Item 2.4 were scanned during the preliminary test. After the preliminary scan, we found the test mode described in Item 2.4 producing the highest emission level. The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.


Procedure of Final Test

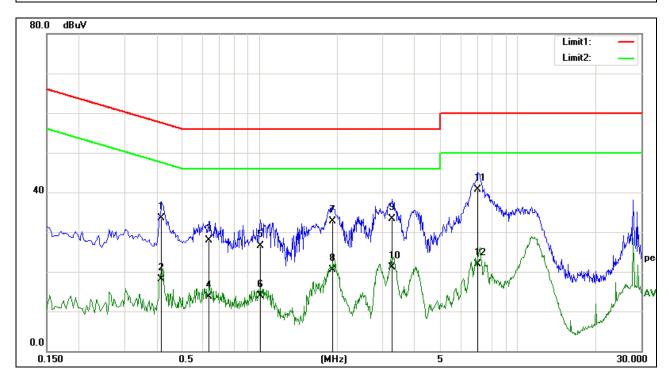
EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test. A scan was taken on both power lines, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. The test data of the worst-case condition(s) was recorded.

Application No.: E201508117208 Page 29 of 49

4.7.3 TEST SETUP

Report No.: E201508117208-3

4.7.4 TEST RESULTS


Project No.: E201508117208 Probe: L1

Standard:(CE)FCC PART 15 class B_QPPower Source:AC 120V/60HzTest item:Conduction TestDate:2015-8-24Temp./Hum.(%RH):23.3/61.1%RHTime:10:25:12

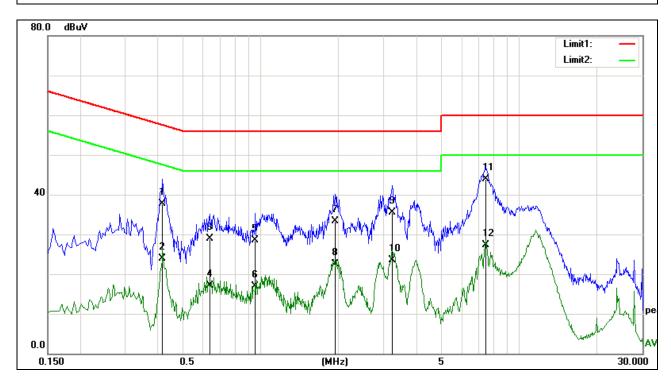
EUT: Bluetooth headset

Model: V100BT Test Result: Pass

Note:

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.4180	26.99	6.51	33.50	57.49	-23.99	QP
2	0.4180	11.69	6.51	18.20	47.49	-29.29	AVG
3	0.6340	21.41	6.49	27.90	56.00	-28.10	QP
4	0.6340	7.31	6.49	13.80	46.00	-32.20	AVG
5	1.0100	20.14	6.46	26.60	56.00	-29.40	QP
6	1.0100	7.44	6.46	13.90	46.00	-32.10	AVG
7	1.9220	26.21	6.59	32.80	56.00	-23.20	QP
8	1.9220	14.01	6.59	20.60	46.00	-25.40	AVG
9	3.2659	26.76	6.64	33.40	56.00	-22.60	QP
10	3.2659	14.56	6.64	21.20	46.00	-24.80	AVG
11	7.0180	33.93	6.87	40.80	60.00	-19.20	QP
12	7.0180	15.13	6.87	22.00	50.00	-28.00	AVG

Report No.: E201508117208-3 Application No.: E201508117208 Page 31 of 49


Project No.: E201508117208 Probe: N

Standard:(CE)FCC PART 15 class B_QPPower Source:AC 120V/60HzTest item:Conduction TestDate:2015-8-24Temp./Hum.(%RH):23.3/61.1%RHTime:10:29:40

EUT: Bluetooth headset

Model: V100BT Test Result: Pass

Note:

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.4180	31.29	6.51	37.80	57.49	-19.69	QP
2	0.4180	17.49	6.51	24.00	47.49	-23.49	AVG
3	0.6340	22.51	6.49	29.00	56.00	-27.00	QP
4	0.6340	10.71	6.49	17.20	46.00	-28.80	AVG
5	0.9540	22.14	6.46	28.60	56.00	-27.40	QP
6	0.9540	10.54	6.46	17.00	46.00	-29.00	AVG
7	1.9460	26.71	6.59	33.30	56.00	-22.70	QP
8	1.9460	16.01	6.59	22.60	46.00	-23.40	AVG
9	3.2340	28.88	6.62	35.50	56.00	-20.50	QP
10	3.2340	16.98	6.62	23.60	46.00	-22.40	AVG
11	7.4500	37.04	6.85	43.89	60.00	-16.11	QP
12	7.4500	20.45	6.85	27.30	50.00	-22.70	AVG

Report No.: E201508117208-3 Application No.: E201508117208 Page 32 of 49

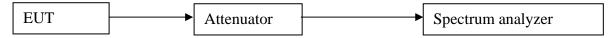
4.8 MAXIMUM PEAK OUTPUT POWER

4.8.1 LIMITS

Regulation 15.247 (b)(1)For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. Refer to the result "Hopping channel number" of this document.

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

The 125 mW limit applies.


4.8.2 TEST PROCEDURES

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

Remark:

- 1. Pre-test the 3 modulation to find GFSK and 8DPSK is worse case, so only record GFSK and 8DPSK test data.
- 2. Cable loss = 2dB, the receiver offset loss 2dB

4.8.3 TEST SETUP

4.8.4 TEST RESULTS

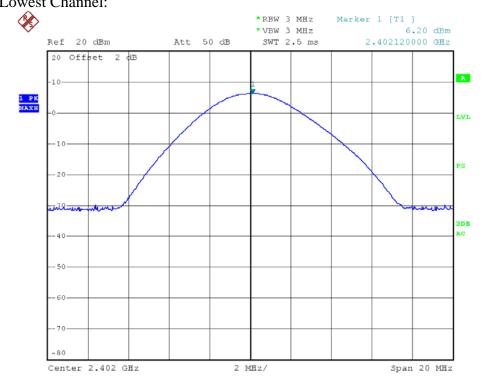
For GFSK:

Test Channel	Fundamental Frequency (GHz)	Max Output Power(dBm)	Limit (dBm)	Pass/Fail
Lowest	2.402	6.20	20.97	Pass
Middle	2.441	6.03	20.97	Pass
Highest	2.480	5.86	20.97	Pass

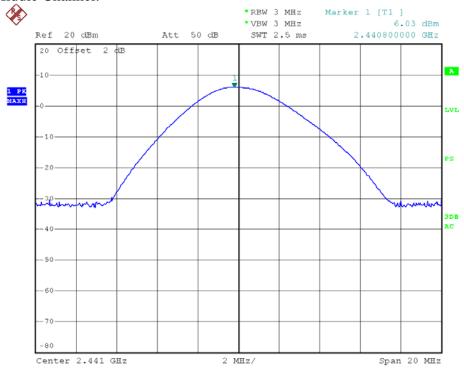
For 8DPSK:

Test Channel	Fundamental Frequency (GHz)	Max Output Power(dBm)	Limit (dBm)	Pass/Fail
Lowest	2.402	6.26	20.97	Pass
Middle	2.441	6.02	20.97	Pass

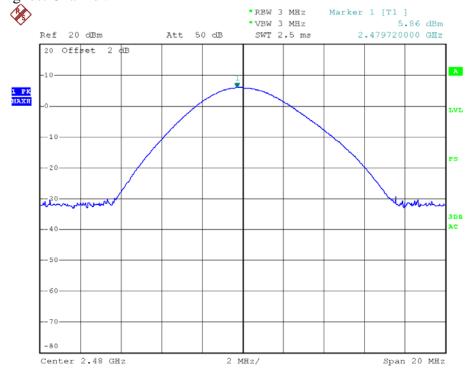
FCC ID: APIJBLV100BT

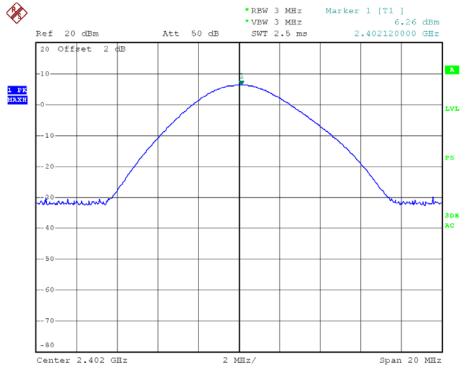

Page 33 of 49 Report No.: E201508117208-3 Application No.: E201508117208

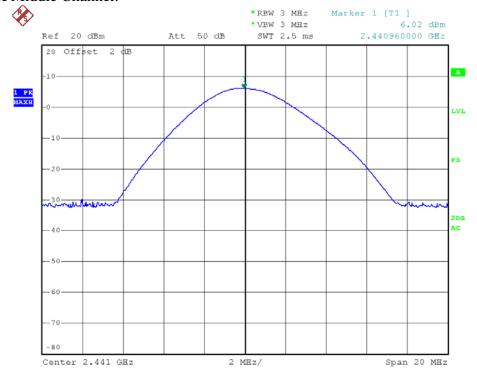
Highest 2.480	5.90	20.97	Pass
---------------	------	-------	------

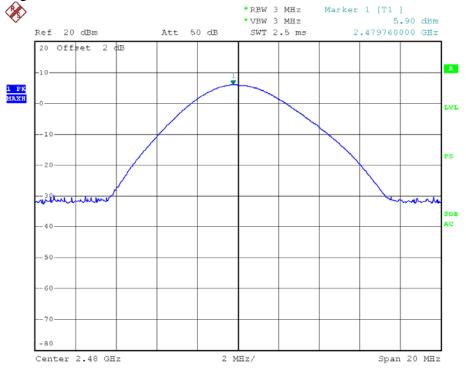

Test result: The unit does meet the FCC requirements.
Test result plot as follows:

GFSK Lowest Channel:


Report No.: E201508117208-3


GFSK Middle Channel:


GFSK Highest Channel:


8DPSK Lowest Channel:

8DPSK Middle Channel:

8DPSK Highest Channel:

Report No.: E201508117208-3 Application No.: E201508117208 Page 37 of 49

4.9 RADIATED SPURIOUS EMISSIONS

4.9.1 LIMITS

Frequency (MHz)	Quasi-peak(μV/m)	Measurement distance(m)	Quasi-peak(dBμV/m)@distance 3m
0.009-0.490	2400/F(kHz)	300	53.8~88.5
0.490-1.705	24000/F(kHz)	30	43~53.8
1.705-30.0	30	30	49.5
30 ~ 88	100	3	40
88~216	150	3	43.5
216 ~ 960	200	3	46
Above 960	500	3	54

NOTE: (1) The lower limit shall apply at the transition frequencies.

Frequency (GHz)	Quasi-peak(dBμV/m)
1 ~ 26.5	74
1~ 26.5	54

4.9.2 TEST PROCEDURES

Procedure of Preliminary Test

According to ANSI C63.10:2009, a calibrated, linearly polarized antenna shall be positioned at the specified distance from the periphery of the EUT. The specified distance is the distance between the horizontal projection onto the ground plane of the closest periphery of the EUT and the projection onto the ground plane of the center of the axis of the elements of the receiving antenna.

Measurements shall be made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna shall be varied in height above the reference ground plane to obtain the maximum signal strength. Unless otherwise specified, the measurement distance shall be 3 m. At any measurement distance, the antenna height shall be varied from 1 m to 4 m. These height scans apply for both horizontal and vertical polarizations, except that for vertical polarization, the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the lowest antenna element clears the site reference ground plane by at least 25 cm. For a tuned dipole, the minimum heights as measured from the center of the antenna are those specified in the NSA measurement requirements.

For tabletop systems, cables or wires should be manipulated within the range of likely arrangements. For floor-standing equipment, the cables or wires should be located in the same manner as the user would install them and no further manipulation is made. For combination EUTs, the tabletop and floor-standing portions of the EUT shall follow the procedures for their respective setups and cable manipulation.

Table-top equipment is placed on a non-conductive set-up table with height 0, 8 m \pm 0, 01 m, ANSI C63.10:2009 specifies the method to determine the impact of the non-conductive set-up table on test results. If the manner of cable installation is not known, or if it changes with each installation, cables or wires for floor-standing equipment shall be manipulated to the extent possible to produce the maximum level of emissions. For each mode of operation required to be tested, the frequency spectrum shall be monitored. Variations in antenna height between 1 m and 4 m, antenna polarization, EUT azimuth, and cable or wire placement shall be explored to produce the emission that has the highest amplitude relative to the limit.

Procedure of Final Test

EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test. The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level. Record at least six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only QP reading is presented. The test data of the worst-case condition(s) was recorded.

Procedure of Final Test

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test. A scan was taken on both power lines, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. The test data of the worst-case condition(s) was recorded.

Below 1GHz Set the spectrum analyzer: RBW =100KHz VBW >= RBW , Span = enough to captch the trace. Sweep = auto; Detector Function = Peak. Trace = Max,hold.

Above 1GHz Set the spectrum analyzer: $RBW = 1MHz \ VBW >= RBW$, Span = enough to captch the trace. Sweep = auto; Detector Function = Peak. Trace = Max,hold.

Pre-test for normal mode and EDR mode, to find the packet type DH5 for the normal mode is the worst case.

Pre-test the EUT in X,Y,Z axis, found the X axis it the worst case.

The worst case emissions were reported.

4.9.3 TEST SETUP

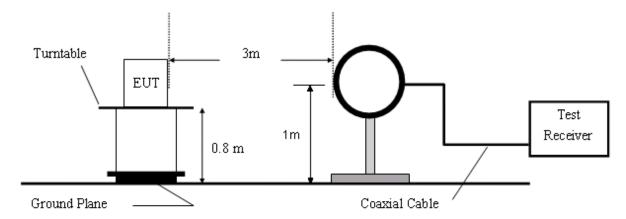
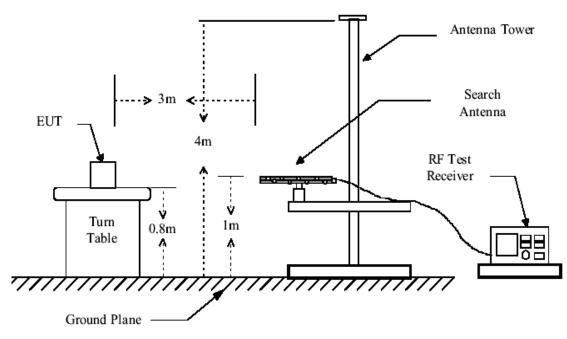



Figure 1. 9 KHz to 30MHz radiated emissions test configuration

Report No.: E201508117208-3

Figure 2. 30MHz to 1GHz radiated emissions test configuration

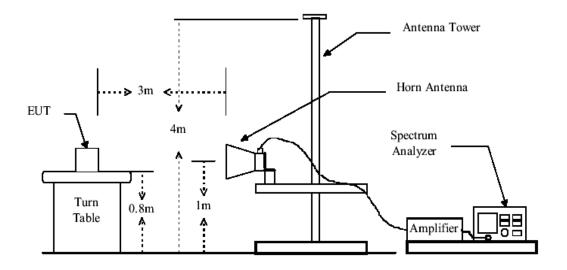


Figure 3. Above 1GHz radiated emissions test configuration

Report No.: E201508117208-3 Application No.: E201508117208 Page 40 of 49

4.9.4 TEST RESULTS

1. Low Frequency 2402MHz

30MHz~1GHz Spurious Emissions .Quasi-Peak Measurement

No.	Frequency	Reading	Correct	Result	Limit	Over Limit	Antenna
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	polarization
1	64.4213	12.92	7.85	20.77	40.00	-19.23	Vertical
2	82.4923	17.79	8.82	26.61	40.00	-13.39	Vertical
3	101.5575	15.32	9.91	25.23	43.50	-18.27	Vertical
4	145.5140	24.12	9.70	33.82	43.50	-9.68	Vertical
5	160.1007	26.03	10.69	36.72	43.50	-6.78	Vertical
6	174.1809	25.56	10.73	36.29	43.50	-7.21	Vertical
7	99.8598	7.50	10.00	17.50	43.50	-26.00	Horizontal
8	145.5140	21.80	9.70	31.50	43.50	-12.00	Horizontal
9	158.3114	27.20	10.60	37.80	43.50	-5.70	Horizontal
10	212.0406	16.45	12.05	28.50	43.50	-15.00	Horizontal
11	332.3990	11.75	16.75	28.50	46.00	-17.50	Horizontal
12	353.5944	14.35	17.35	31.70	46.00	-14.30	Horizontal

$1{\sim}25~\text{GHz}$ Harmonics & Spurious Emissions. Peak & Average Measurement

Peak Measurement:

No.	Frequency	Reading	Correct	Result	Limit	Over Limit	Antenna
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	polarization
1	1399.050	27.29	0.96	28.25	74.00	-45.75	Vertical
2	4816.065	32.73	5.12	37.85	74.00	-36.15	Vertical
3	9566.856	26.73	15.86	42.59	74.00	-31.41	Vertical
4	13413.585	26.58	20.21	46.79	74.00	-27.21	Vertical
5	16841.941	27.07	17.79	44.86	74.00	-29.14	Vertical
6	24134.295	27.72	23.31	51.03	74.00	-22.97	Vertical
7	1473.226	28.21	0.01	28.22	74.00	-45.78	Horizontal
8	4816.065	30.85	5.12	35.97	74.00	-38.03	Horizontal
9	8345.923	26.52	14.82	41.34	74.00	-32.66	Horizontal
10	13006.267	26.87	19.78	46.65	74.00	-27.35	Horizontal
11	19649.577	28.15	18.78	46.93	74.00	-27.07	Horizontal
12	24098.882	27.53	23.28	50.81	74.00	-23.19	Horizontal

NOTE:

Above 1GHz, the tested values of Peak are lower than the correspondingly limited values of AVG.So don't read the values of AVG.

The field strength is calculated by adding the Antenna Factor. Correct Factor.

The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Correct Factor

Report No.: E201508117208-3 Application No.: E201508117208 Page 41 of 49

2. Middle Frequency 2441MHz

30MHz~1GHz Spurious Emissions .Quasi-Peak Measurement

No.	Frequency	Reading	Correct	Result	Limit	Over Limit	Antenna
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	polarization
1	83.4245	18.87	8.93	27.80	40.00	-14.30	Vertical
2	107.4278	22.08	9.62	31.70	43.50	-18.90	Vertical
3	145.5140	24.80	9.70	34.50	43.50	-12.00	Vertical
4	153.9252	25.14	10.36	35.50	43.50	-12.90	Vertical
5	180.1540	21.62	11.08	32.70	43.50	-15.40	Vertical
6	367.7807	6.22	17.58	23.80	46.00	-17.30	Vertical
7	86.7716	15.41	9.29	24.70	40.00	-15.30	Horizontal
8	107.4278	17.48	9.62	27.10	43.50	-16.40	Horizontal
9	152.2050	25.54	10.26	35.80	43.50	-7.70	Horizontal
10	161.9103	26.14	10.66	36.80	43.50	-6.70	Horizontal
11	216.8608	18.38	12.32	30.70	46.00	-15.30	Horizontal
12	367.7807	16.22	17.58	33.80	46.00	-12.20	Horizontal

1~25 GHz Harmonics & Spurious Emissions. Peak & Average Measurement

Peak Measurement:

No.	Frequency	Reading	Correct	Result	Limit	Over Limit	Antenna
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	polarization
1	1522.973	27.67	-0.31	27.36	74.00	-46.64	Vertical
2	4887.678	34.07	5.20	39.27	74.00	-34.73	Vertical
3	8376.776	28.05	14.89	42.94	74.00	-31.06	Vertical
4	13335.029	26.33	20.13	46.46	74.00	-27.54	Vertical
5	18420.158	26.92	18.91	45.83	74.00	-28.17	Vertical
6	24205.278	27.29	23.36	50.65	74.00	-23.35	Vertical
7	1517.364	28.13	-0.31	27.82	74.00	-46.18	Horizontal
8	4693.257	29.52	5.00	34.52	74.00	-39.48	Horizontal
9	9637.721	27.44	15.88	43.32	74.00	-30.68	Horizontal
10	11197.080	27.61	17.13	44.74	74.00	-29.26	Horizontal
11	16941.156	27.00	17.66	44.66	74.00	-29.34	Horizontal
12	24134.295	28.06	23.31	51.37	74.00	-22.63	Horizontal

NOTE:

Above 1GHz, the tested values of Peak are lower than the correspondingly limited values of AV.So don't read the values of AVG.

The field strength is calculated by adding the Antenna Factor. Correct Factor.

The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Correct Factor

Report No.: E201508117208-3 Application No.: E201508117208 Page 42 of 49

3. High Frequency 2480MHz

30MHz~1GHz Spurious Emissions .Quasi-Peak Measurement

No.	Frequency (MHz)	Reading (dBuV/m)	Correct Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Antenna polarization
1	46.7651	8.61	10.89	19.50	40.00	-20.50	Vertical
2	72.0843	14.97	7.83	22.80	40.00	-17.20	Vertical
3	93.3479	17.86	9.74	27.60	43.50	-15.90	Vertical
4	107.4279	21.88	9.62	31.50	43.50	-12.00	Vertical
5	152.2050	24.54	10.26	34.80	43.50	-8.70	Vertical
6	176.1498	21.86	10.84	32.70	43.50	-10.80	Vertical
7	11230.012	28.05	17.16	45.21	74.00	-28.79	Horizontal
8	13453.037	26.62	20.26	46.88	74.00	-27.12	Horizontal
9	22824.491	27.22	22.04	49.26	74.00	-24.74	Horizontal

$1\hbox{--}25~\mathrm{GHz}$ Harmonics & Spurious Emissions. Peak & Average Measurement Peak Measurement:

No.	Frequency (MHz)	Reading (dBuV/m)	Correct Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Antenna polarization
1	1467.799	27.86	0.09	27.95	74.00	-46.05	Vertical
2	4960.356	33.38	5.25	38.63	74.00	-35.37	Vertical
3	8376.776	27.89	14.89	42.78	74.00	-31.22	Vertical
4	11147.862	27.40	17.08	44.48	74.00	-29.52	Vertical
5	13354.625	26.50	20.15	46.65	74.00	-27.35	Vertical
6	24563.334	27.43	23.65	51.08	74.00	-22.92	Vertical
7	1348.366	26.93	0.70	27.63	74.00	-46.37	Horizontal
8	4506.570	29.88	4.81	34.69	74.00	-39.31	Horizontal
9	8470.023	27.28	15.12	42.40	74.00	-31.60	Horizontal
10	11230.012	28.05	17.16	45.21	74.00	-28.79	Horizontal
11	13453.037	26.62	20.26	46.88	74.00	-27.12	Horizontal
12	22824.491	27.22	22.04	49.26	74.00	-24.74	Horizontal

NOTE:

Above 1GHz, the tested values of Peak are lower than the correspondingly limited values of AVG.So don't read the values of AVG.

The field strength is calculated by adding the Antenna Factor. Correct Factor.

The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Correct Factor

Report No.: E201508117208-3 Application No.: E201508117208 Page 43 of 49

Remark:

1). No any other emissions level which are attenuated less than 20dB below the limit. According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part. Hence there no other emissions have been reported.

- 2). As shown in Section, for frequencies above 1000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
- 3). The test only perform the EUT in transmitting status since the test frequencies were over 1GHz only required transmitting status.

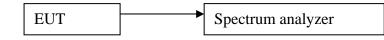
Test result: The unit does meet the requirements.

FCC ID: APIJBLV100BT

Report No.: E201508117208-3 Application No.: E201508117208 Page 44 of 49

4.10 BAND EDGES REQUIREMENT

4.10.1 LIMITS


Section 15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

4.10.2 TEST PROCEDURES

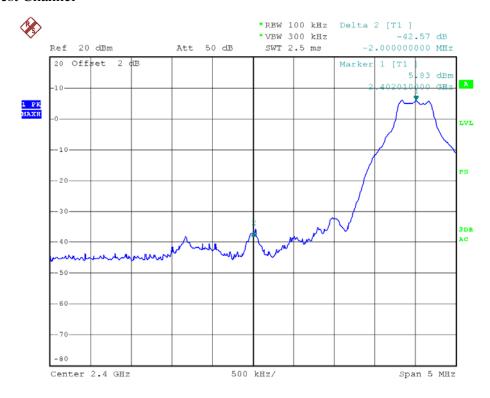
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Fixing frequency mode:
- 4. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency. Repeat above procedures until all measured frequencies were complete.
- 5. Frequency Hopping mode:
- 6. Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.
- 7. RBW ≥1 % of spectrum analyzer display span(set 100kHz), VBW ≥RBW(set 100kHz), Sweep = auto, Detector function = peak, Trace = max hold.

Allow the trace to stabilize. Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge.

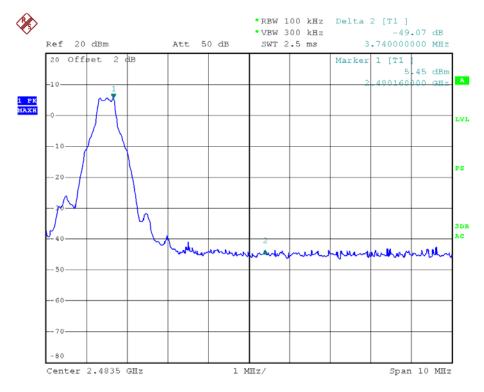
4.10.3 TEST SETUP

4.10.4 TEST RESULTS

The unit does meet the FCC requirements.

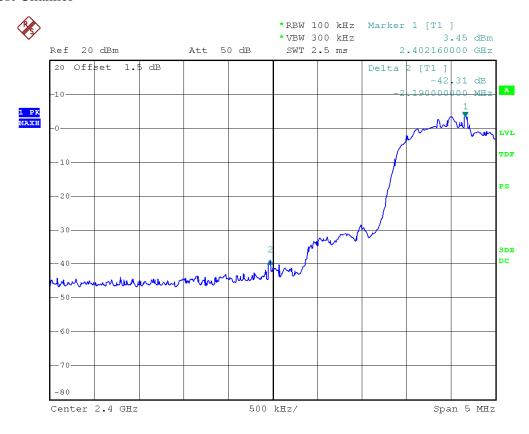

Test result plot as follows:

Fixing frequency mode:

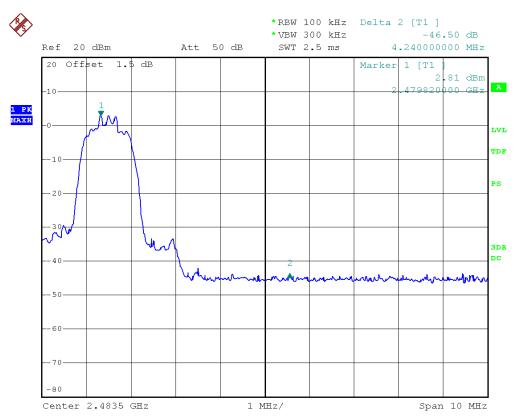

Report No.: E201508117208-3

For GFSK

Lowest Channel

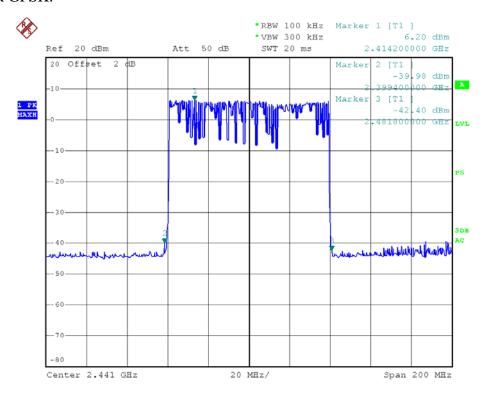


Highest Channel

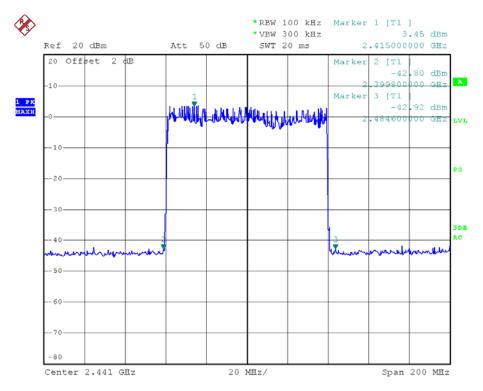


For 8DPSK

Lowest Channel



Highest Channel



Frequency Hopping mode:

FOR GFSK:

FOR 8DPSK

Report No.: E201508117208-3 Application No.: E201508117208 Page 48 of 49

4.10.5 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Section 15.247(d) In addition, radiated emissions which fall in the

Test Requirement: restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see

Section 15.205(c)).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section. Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 -	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.69525	960 - 1240	7.25 - 7.75
4.125 - 4.128	16.80425 -	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	16.80475	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	25.5 - 25.67	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	37.5 - 38.25	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	73 - 74.6	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	74.8 - 75.2	2200 - 2300	14.47 - 14.5
8.291 - 8.294	108 - 121.94	2310 - 2390	15.35 - 16.2
8.362 - 8.366	123 - 138	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	149.9 - 150.05	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.52475 -	3260 - 3267	23.6 - 24.0
12.29 - 12.293	156.52525	3332 - 3339	31.2 - 31.8
12.51975 -	156.7 - 156.9	3345.8 - 3358	36.43 - 36.5
12.52025	162.0125 - 167.17	3600 - 4400	
12.57675 -	167.72 - 173.2		
12.57725	240 - 285		
13.36 - 13.41	322 - 335.4		

Pretest the Bluetooth normal mode and EDR mode, to find the packet type DH5 for the normal mode is the worst case, so only record the worst case.

The field strength was measured with an EMI measuring receiver and 1 MHz RBW / VBW for peak and with 1MHz RBW / 10Hz VBW for average at a distance of 3m.

Report No.: E201508117208-3 Application No.: E201508117208 Page 49 of 49

Test Result:

Channel Low

No.	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	2310.000	23.33	16.03	39.36	74.00	-34.64	peak	VERTICAL
2	2390.000	24.22	16.39	40.61	74.00	-33.39	peak	VERTICAL
3	2310.000	11.66	16.03	27.69	54.00	-26.31	AVG	VERTICAL
4	2390.000	12.05	16.39	28.44	54.00	-25.56	AVG	VERTICAL
1	2310.000	25.26	16.03	41.29	74.00	-32.71	peak	HORIZONTAL
2	2390.000	22.41	16.39	38.80	74.00	-35.20	peak	HORIZONTAL
3	2310.000	11.75	16.03	27.78	54.00	-26.22	AVG	HORIZONTAL
4	2390.000	11.97	16.39	28.36	54.00	-25.64	AVG	HORIZONTAL

Channel High

No.	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	2483.500	25.84	16.82	42.66	74.00	-31.34	peak	VERTICAL
2	2500.000	24.34	16.90	41.24	74.00	-32.76	peak	VERTICAL
3	2483.500	13.39	16.82	30.21	54.00	-23.79	AVG	VERTICAL
4	2500.000	12.75	16.90	29.65	54.00	-24.35	AVG	VERTICAL
1	2483.500	24.82	16.82	41.64	74.00	-32.36	peak	HORIZONTAL
2	2500.000	23.84	16.90	40.74	74.00	-33.26	peak	HORIZONTAL
3	2483.500	12.95	16.82	29.77	54.00	-24.23	AVG	HORIZONTAL
4	2500.000	12.65	16.90	29.55	54.00	-24.45	AVG	HORIZONTAL

Remark: Max field strength in 3m distance. No any other emission which falls in restricted bands can be detected and be reported.

This is th	e last page of the report.	
------------	----------------------------	--