SAR TEST REPORT

For

AUDIO GLASSES

Model Number: SOUNDGEAR FRAMES

FCC ID: APIJBLSGF

IC ID: 6132A-JBLSGF

Report Number: WT248001908

Test Laboratory : Shenzhen Academy of Metrology and Quality

Inspection

Site Location : No.4 Tongfa Road, Xili Town, Nanshan District,

Shenzhen, Guangdong, China

Tel : 0086-755-86928965

Fax : 0086-755-86009898-31396

Web : www.smq.com.cn Email : emcrf@smq.com.cn

The "important statement" on the back of report's homepage is an element of the report, and any copy that does not contain the "important statement" is incomplete.

Report No.: WT248001908 Page 1 of 59

Test report declaration

Applicant : Harman International Industries, Incorporated

Address : 8500 Balboa Blvd, Northridge, Califoria, 91329, United States

Manufacturer : Harman International Industries, Incorporated

Address : 8500 Balboa Blvd, Northridge, Califoria, 91329, United States

EUT Description : AUDIO GLASSES

Model No. : SOUNDGEAR FRAMES

Brand : JBL

Test Standards:

FCC 47CFR Part 2(2.1093) IEC/IEEE 62209-1528 KDB 447498 D04v01 KDB 865664 D01v01r04 KDB 865664 D02v01r02 KDB 690783 D01v01r04 RSS-102

The EUT described above is tested by Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory to determine the compliance of the applicable standards stated above. Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory is assumed full responsibility for the accuracy of the test results.

The results documented in this report only apply to the tested sample, under the conditions and modes of operation as described herein.

The test report shall not be reproduced in part without written approval of the laboratory.

Project Engineer:	马长 强	Date:	Oct.21, 2024
Checked by:	(Zhang Qiang) る成構	Date:	Oct.21, 2024
	(Wan Xiao Jing)		
Approved by:	杯叭	Date:	Oct.21, 2024
_	(Lin Bin)		

Report No.: WT248001908 Page 2 of 59

TABLE OF CONTENTS

1. R	REPORTED SAR SUMMARY	5
	1.1. Statement of Compliance	5
	1.2. RF exposure limits (ICNIRP Guidelines)	6
	1.3. Ratings and System Details	6
	1.4.Test specification(s)	7
	1.5.List of Test and Measurement Instruments	8
2. G	GENERAL INFORMATION	9
	2.1. Report information	9
	2.2. Laboratory Accreditation and Relationship to Customer	9
3. S	SAR MEASUREMENT SYSTEM CONFIGURATION	10
	3.1. SAR Measurement Set-up	10
	3.2. Probe description	11
	3.3. Phantom description	12
	3.4. Device holder description	13
4. S	SAR MEASUREMENT PROCEDURE	14
	4.1. Scanning procedure	14
7. S	SYSTEM VERIFICATION PROCEDURE	20
	7.1. Tissue Verification	20
8. S	SAR MEASUREMENT VARIABILITY AND UNCERTAINTY	23
	8.1. SAR measurement variability	23
	8.2. SAR measurement uncertainty	23
9. N	MEASUREMENT UNCERTAINTY	25
	9.1. Uncertainty for Sar Test	25
10.	POWER AND TUNE-UP LIMIT	26
	10.1. Tune-up Limit	26
11.	MEASUREMENT RESULTS	28
	11.1. SAR measurement Results	29
	11.2. BT SAR results	30
	11.3. Repeated SAR results	31

12. EXPOSURE POSITIONS CONSIDERATION	. 32
12.1. Multiple Transmitter Evaluation	.32
12.2. Simultaneous Transmission Possibilities	3:

Report No.: WT248001908

1. REPORTED SAR SUMMARY

1.1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

		Highest SAR Summary
		Head SAR
Ва	nd	(Gap 0mm)
		1g SAR (W/kg)
2.4GHz	Plustooth	0.45
Band	Bluetooth	0.45

Highest Simultaneous SAR	0.77	Lineit/M/line), 4 C M/line
1g(W/kg)	0.77	Limit(W/kg): 1.6 W/kg

Note:

- 1. This device is in compliance with Specific Absorption Rate (SAR) for general population or uncontrolled exposure limits (1.6W/kg as averaged over any 1 gram of tissue; specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992), and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.
- 2. When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% risk level.

Report No.: WT248001908 Page 5 of 59

1.2. RF exposure limits (ICNIRP Guidelines)

Human Evnagura	Uncontrolled Environment	Controlled Environment	
Human Exposure	General Population	Occupational	
Spatial Peak SAR*(Brain/Body)	1.60mW/g	8.00mW/g	
Spatial Average SAR**	0.00 - 14//	0.40mW/g	
(Whole Body)	0.08mW/g		
Spatial Peak SAR***(Limbs)	4.00mW/g	20.00mW/g	

Table 2: RF exposure limits

The limit applied in this test report is shown in bold letters

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Peak value of the SAR averaged over any 1 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result if employment or occupation.)

1.3. Ratings and System Details

EUT Description	AUDIO GLASSES
Model No.	SOUNDGEAR FRAMES
Brand	JBL
EUT Supports Radios application:	BT:2402MHz~2483.5MHz
Modulation Mode	GFSK.π/4-DQPSK.8DPSK.LE
Battery Specification	420932PF3
Battery Applicant	Rated:110mAh Typical: 114mAh
Hardware version:	V0.2
Software version:	V2.8.0

Report No.: WT248001908 Page 6 of 59

1.4.Test specification(s)

FCC 47CFR Part 2(2.1093)	Radiofrequency Radiation Exposure Evaluation: Portable Devices
IEC/IEEE 62209-1528	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)
KDB 447498 D04v01	General RF Exposure Guidance No deviation
RSS-102	Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
KDB 690783 D01v01r04	SAR Listings on Grants
KDB 865664 D01v01r04	SAR Measurement 100 MHz to 6 GHz
KDB 865664 D02v01r02	RF Exposure Reporting

Note 1: The test item is not applicable.

Note 2: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

Report No.: WT248001908 Page 7 of 59

1.5.List of Test and Measurement Instruments

	Equipment	Model No.	Serial No.	Manufacturer	Last Calibration Date	Period
\boxtimes	SAR test system	TX60L	F08/5AY8A1/A/01+F08/	SPEAG	NCR	NCR
\boxtimes	Electronic Data Transmitter	DAE4	1636	SPEAG	2024.01.23	1year
\boxtimes	SAR Probe	EX3DV4	3881	SPEAG	2024.01.29	1year
\boxtimes	Software	85070		Agilent		
\boxtimes	Software	DASY5		SPEAG		
\boxtimes	System Validation Dipole,2450MHz	D2450V2	818	SPEAG	2024.09.05	3year
\boxtimes	Dielectric Probe Kit	85070E	MY44300455	Agilent	NCR	NCR
\boxtimes	Dual-directional coupler,0.10-2.0GHz	778D	MY48220198	Agilent	NCR	NCR
\boxtimes	Dual-directional coupler,2.00-18GHz	772D	MY46151160	Agilent	NCR	NCR
\boxtimes	Power Amplifier	ZVE-8G	SC280800926	MINI-CIRCUITS	NCR	NCR
\boxtimes	Power Amplifier	ZHL42W	81709	MINI-CIRCUITS	NCR	NCR
\boxtimes	Signal Generator	SMR20	MY51111531	R&S	2024.04.22	1year
\boxtimes	Power Sensor	NRP-Z21	102626	R&S	2024.04.22	1year
\boxtimes	Power Sensor	NRP-Z21	105057-XP	R&S	2024.04.22	1year
\boxtimes	Network Analyzer	E5071C	MY46109550	Agilent	2024.04.22	1Year
	Flat Phantom	ELI4.0	TP-1904	SPEAG	NCR	NCR
	Twin Phantom	SAM	TP-1504	SPEAG	NCR	NCR
\boxtimes	Precision Thermometer				2024.03.28	1Year

Table 3: List of Test and Measurement Equipment

Note: All the test equipments are calibrated once a year, except the dipoles, which are calibrated every three years. Moreover, we have self-calibration every year to the dipoles.

Report No.: WT248001908 Page 8 of 59

2. GENERAL INFORMATION

2.1. Report information

This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that SMQ approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that SMQ in any way guarantees the later performance of the product/equipment.

The sample/s mentioned in this report is/are supplied by Applicant, SMQ therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.

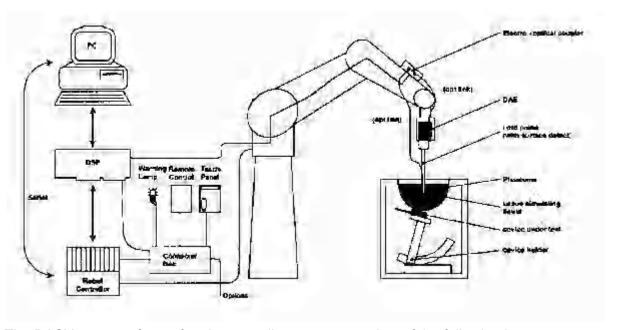
Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through SMQ, unless the applicant has authorized SMQ in writing to do so.

The lab will not be liable for any loss or damage resulting from false, inaccurate, ina ppropriate or incomplete product information provided by the applicant/manufacture r.

2.2. Laboratory Accreditation and Relationship to Customer

The testing report were performed by the Shenzhen Academy of Metrology and quality Inspection EMC Laboratory (Guangdong EMC compliance testing center), in the ir facilities located at NETC Building, No.4 Tongfa Rd., Xili, Nanshan, Shenzhen, China. At the time of testing, Laboratory is accredited by the following organizations: China National Accreditation Service for Conformity Assessment (CNAS) accredits the Laboratory for conformance to FCC standards, EMC international standards and EN standards. The Registration Number is CNAS L0579. The Laboratory is Accredited Testing Laboratory of FCC with Designation number

CN1165 and Site registration number 582918. The Laboratory is registered to perfor m emission tests with Innovation, Science and


Report No.: WT248001908 Page 9 of 59

Economic Development (ISED), and the registration number is 11177A. The Laborat ory is registered to perform emission tests with VCCI, and the registration number a re C-20048, G20076, R-20077, R-20078, and T-20047.

The Laboratory is Accredited Testing Laboratory of American Association for Laboratory Accreditation (A2LA) and certificate number is 3292.01.

3. SAR MEASUREMENT SYSTEM CONFIGURATION

3.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing,
- AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.

Report No.: WT248001908 Page 10 of 59

- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation.
 A computer operating Windows XP.
- DASY5 software and SEMCAD data evaluation software.

Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System checks dipoles allowing validating the proper functioning of the system.
- Test environment
- The DASY5 measurement system is placed at the head end of a room with dimensions:

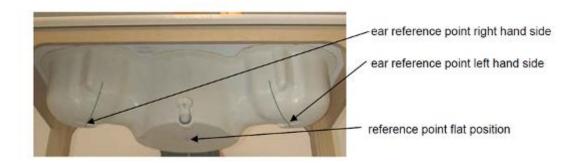
4.5 x 4 x 3 m³, the SAM phantom is placed in a distance of 1.3 m from the side walls and 1.1m from the rear wall.

Picture 1 of the photo documentation shows a complete view of the test environment.

3.2. Probe description

Isotropic E-Field Probe EX3DV4 for Dosimetric Measurements

	Symmetrical design with triangular core	
	Interleaved sensors	
Construction	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic	
	solvents, e.g., DGBE)	
Calibration	ISO/IEC 17025 calibration service available.	
	10 MHz to >6 GHz (dosimetry); Linearity: ± 0.2 dB (30	
Frequency	MHz to 6 GHz)	
	± 0.3 dB in HSL (rotation around probe axis)	
Directivity	± 0.5 dB in tissue material (rotation normal to probe	
	axis)	
Dynamic range	10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB (noise:	


Report No.: WT248001908 Page 11 of 59

	typically<1 μW/g)	
	Overall length: 337 mm (Tip: 20mm)	
Dimensions	Tip length: 2.5 mm (Body: 12mm)	
Dimensions	Typical distance from probe tip to dipole centers:	
	1mm	
	High precision dosimetric measurements in any	
Application	exposure scenario (e.g., very strong gradient fields).	
Application	Only probe which enables compliance testing for	All
	frequencies up to 6 GHz with precision of better 30%.	

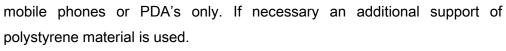
3.3. Phantom description

The used SAM Phantom meets the requirements specified in Edition 01-01 of Supplement C to OET Bulletin 65 for Specific Absorption Rate (SAR) measurements.

The phantom consists of a fibreglass shell integrated in a wooden table. It allows left-hand and right-hand head as well as body-worn measurements with a maximum liquid depth of 18 cm in head position and 22 cm in planar position (body measurements). The thickness of the Phantom shell is 2 mm +/- 0.1 mm.

Report No.: WT248001908 Page 12 of 59

ELI4 Phantom


Shell Thickness	2mm+/- 0.2mm
Filling Volume	Approximately 30 liters
Measurement Areas	Flat phantom

The ELI4 phantom is in intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6GHz. ELI4 is fully compatible with the lastest draft of the standard IEC 62209-2 and all known tissue simulating liquids.

The phantom shell material is resistant to all ingredients used in the tissue-equivalent liquid recipes. The shell of the phantom including ear spacers is constructed from low permittivity and low loss material, with a relative permittivity≤5 and a loss tangent ≤0.05.

3.4. Device holder description

The DASY5 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Report No.: WT248001908

Therefore those devices are normally only tested at the flat part of the SAM.

4. SAR MEASUREMENT PROCEDURE

4.1. Scanning procedure

- The DASY5 installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.
- The reference and drift measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The surface check measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- The area scan measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strenth is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension(≤ 2GHz), 12 mm in x- and y- dimension(2-4 GHz) and 10mm in x- and y- dimension(4-6GHz). If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no

Report No.: WT248001908 Page 14 of 59

influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation.

Results of this coarse scan are shown in Appendix B.

- A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. This is a fine grid with maximum scan spatial resolution: $\Delta xzoom$, $\Delta yzoom \leq 2GHZ \leq 8$ mm, 2-4GHz ≤ 5 mm and 4-6 GHz- ≤ 4 mm; $\Delta zzoom \leq 3GHz$ ≤ 5 mm, 3-4 GHz- ≤ 4 mm and 4-6GHz- ≤ 2 mm where the robot additionally moves the probe along the z-axis away from the bottom of the Phantom. DASY5 is also able to perform repeated zoom scans if more than 1 peak is found during area scan. Test results relevant for the specified standard (see chapter 1.5.) are shown in table form in chapter 3.2.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2mm steps. This measurement shows the continuity of the liquid and can depending in the field strength- also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in Appendix B.

The following table summarizes the area scan and zoom scan resolutions per FCC KDB 865664D01:

Frequency	Maximum	Maximum	Maximum	spatial resolution	Minimum	
	Area Scan	Zoom Scan		I		zoom
	resolution	spatial	Uniform	Graded G	rad	scan
	(Δxarea, Δ	resolution(Δ	Grid			volume
	yarea)	xzoom Δ	Δ	Δ	Δzzoom(n>1)	(x,y,z)
		yzoom)	zzoom(n)	zzoom(1)		
≤2GHz	≤15mm	≤8mm	≤5mm	≤4mm	≤1.5*Δzzoom(n-1)	≥30mm
2-3GHz	≤12mm	≤5mm	≤5mm	≤4mm	≤	≥30mm
					1.5*∆zzoom(n-1)	
3-4GHz	≤10mm	≤5mm	≤4mm	≤3mm	≤	≥28mm
					1.5*∆zzoom(n-1)	
4-5GHz	≤10mm	≤4mm	≤3mm	≤2.5mm	≤	≥25mm
					1.5*∆zzoom(n-1)	

Report No.: WT248001908 Page 15 of 59

5-6GHz	≤10mm	≤4mm	≤2mm	≤2mm	≤	≥22mm
					1.5*∆zzoom(n-1)	

Spatial Peak SAR Evaluation

- The spatial peak SAR value for 1 and 10 g is evaluated after the Cube measurements have been done. The bases of the evaluation are the SAR values measured at the points of the fine cube grid consisting of 5 x 5 x 7 points (with 8mm horizontal resolution) or 7 x 7 x 7 points (with 5mm horizontal resolution).
- The algorithm that finds the maximal averaged volume is separated into three different stages.
- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighboring volumes are evaluated until no neigh boring volume with a higher average value is found.
- Extrapolation
- The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other. Interpolation
- The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].
- Volume Averaging
- At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal

Report No.: WT248001908 Page 16 of 59

algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY5 uses the advanced extrapolation option which is able to compansate boundary effects

on E-field probes.

6.1.1. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension DAE4. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi

- Diode compression point Dcpi

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

with Vi = compensated signal of channel i (i = x, y, z)Ui = input signal of channel i (i = x, y, z)cf = crest factor of exciting field (DASY parameter) dcpi = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: Ei = (Vi / Normi • ConvF)1/2

H-field probes: Hi = $(Vi)1/2 \cdot (ai0 + ai1f + ai2f2)/f$

with Vi = compensated signal of channel i (i = x, y, z)

Normi = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

Report No.: WT248001908 Page 18 of 59

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

Etot = (Ex2 + EY2 + Ez2)1/2

The primary field data are used to calculate the derived field units.

SAR = (Etot2 • σ) / (ρ • 1000)

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

Ppwe = Etot2 / 3770 or Ppwe = Htot2 \bullet 37.7

with Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

7. SYSTEM VERIFICATION PROCEDURE

7.1. Tissue Verification

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within ±5% of the target values.

The following materials are used for producing the tissue-equivalent materials

Ingredient	Head Tissue
(% by weight)	2450
Water	62.7
Salt(NaCl)	0.5
Sugar	0.0
HEC	0.0
Bactericide	0.0
Triton X-100	0.0
DGBE	36.8

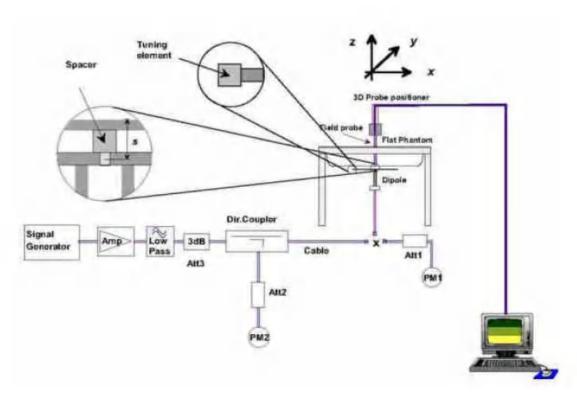
Table 4: Tissue Dielectric Properties

Salt: 99+% Pure Sodium Chloride; Sugar"98+% Pure Sucrose; Water: De-ionized, $16M\Omega$ + resistivity HEC: Hydroxyethyl Cellulose; DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol] Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl]ether

Report No.: WT248001908 Page 20 of 59

Tissue-equivalent liquid measurements:

f/MHz	Date Tested	Dielectric Parameters	Target	Tolerance (%)	Temp (°C)
2450	0004.40.40	εr =38.84	39.2 (37.24~41.16)	15	20
2450	2024.10.18	σ=1.75	1.80 (1.71~1.89)	±5	20


System check, Tissue-equivalent liquid:

f/MH z	Date Tested	power (mW)	SAR(W/k g), 1g	SAR(W /kg), 10g	Target 1g	Target 10g	Tolera nce (%)	Tem p (°C)
2450	2024.10.1 8	250	52.40	24.68	52.60 (47.34 ~57.86)	23.70 (21.33 ~26.07)	±10	20

System Checking

The manufacturer calibrates the probes annually. A system check measurement was made following the determination of the dielectric parameters of the tissue-equivalent liquid, using the dipole validation kit. A power level was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom.

Report No.: WT248001908 Page 21 of 59

The system checking results (dielectric parameters and SAR values) are given in the table below.

The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system check is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows system check results for all frequency bands and tissue liquids used during the tests (Graphic Plot(s)see Appendix A).

Report No.: WT248001908 Page 22 of 59

8. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY

8.1. SAR measurement variability

Per KDB865664 D01 SAR measurement 100MHz to 6GHz v01r04, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurement requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <0.80 W/kg; step2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥0.8 W/kg , repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/kg(~10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is >1.20.

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

8.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100MHz to 6GHz v01r03, when the highest measured 1-g SAR within a frequency band is <1.5W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2003 is not required in SAR reports submitted for equipment approval. The equivalent ratio(1.5/1.6) is applied to

Report No.: WT248001908 Page 23 of 59

extremity and occupational exposure conditions.

Report No.: WT248001908 Page 24 of 59

9. MEASUREMENT UNCERTAINTY

9.1. Uncertainty for Sar Test

Uncertainty Component	Tol.	Prob	Div	ci	ci.ui(%)	vi
	(%)	Dist.		(10g)	(10g)	
Measurement System						
Probe Calibration	±5.9	N	1	1	±5.9	∞
Axial Isotropy	±4.7	R	$\sqrt{3}$	0.7	±1.9	∞ o
Hemispherical Isotropy	±9.6	R	$\sqrt{3}$	0.7	±3.9	∞ o
Boundary Effect	±1.0	R	$\sqrt{3}$	1	±0.6	∞ o
Linearity	±4.7	R	$\sqrt{3}$	1	±2.7	∞ o
System Detection Limits	±1.0	R	$\sqrt{3}$	1	±0.6	∞ o
Readout Electronics	±0.3	N	1	1	±0.3	∞ o
Response Time	±0.8	R	$\sqrt{3}$	1	±0.5	∞ o
Integration Time	±2.6	R	$\sqrt{3}$	1	±1.5	∞ o
RF Ambient Conditions - Noise	±3.0	R	$\sqrt{3}$	1	±1.7	∞ o
RF Ambient Conditions - Reflections	±3.0	R	$\sqrt{3}$	1	±1.7	∞ o
Probe Positioner Mechanical Tolerance	±0.4	R	$\sqrt{3}$	1	±0.2	∞ o
Probe Positioning with respect toPhantom Shell	±2.9	R	$\sqrt{3}$	1	±1.7	∞ o
Extrapolation, interpolation and Integration Algorithms	±1.0	R	$\sqrt{3}$	1	±0.6	∞ o
for Max. SAREvaluation						
Test Sample Related						
Test Sample Positioning	±2.9	N	1	1	±2.9	145
Device Holder Uncertainty	±3.6	N	1	1	±3.6	5
Output Power Variation - SAR driftmeasurement	±5.0	R	$\sqrt{3}$	1	±2.9	∞ o
Phantom and Tissue Parameters						
Phantom Uncertainty (shape andthickness	±4.0	R	$\sqrt{3}$	1	±2.3	∞ o
tolerances)						
Conductivity Target - tolerance	±5.0	R	$\sqrt{3}$	0.43	±1.2	∞ o
Conductivity - measurement uncertainty	±2.5	N	1	0.43	±1.1	∞ o
Permittivity Target - tolerance	±5.0	R	$\sqrt{3}$	0.49	±1.4	∞ o
Permittivity - measurement uncertainty	±2.5	N	1	0.49	±1.2	5
Combined Standard Uncertainty					±10.7	387
Expanded STD Uncertainty					±21.4	

Report No.: WT248001908 Page 25 of 59

10. POWER AND TUNE-UP LIMIT

10.1. Tune-up Limit

Left Earphone: BT5.2(BR/EDR)

Modulation	Channel	Frequency(M Hz)	Average Conducted Power (dBm)	Tune-up
	CH 0	2,402	11.95	12.5
GFSK	CH 39	2,441	12.18	12.5
	CH 78	2,480	12.14	12.5
	CH 0	2,402	8.56	9.0
8DPSK	CH 39	2,441	8.82	9.0
	CH 78	2,480	8.76	9.0

Left Earphone: BT5.2(BLE)

Modulation	Channel	Frequency(M Hz)	Average Conducted Power (dBm)	Tune-up
	CH 0	2,402	2.93	4.0
GFSK	CH 19	2,440	3.26	4.0
	CH 39	2,480	3.48	4.0

Report No.: WT248001908 Page 26 of 59

Right Earphone:BT5.2(BR/EDR)

Modulation	Channel	Frequency(M Hz)	Average Conducted Power (dBm)	Tune-up
	CH 0	2,402	10.65	11.0
GFSK	CH 39	2,441	10.86	11.0
	CH 78	2,480	10.83	11.0
	CH 0	2,402	8.11	8.5
8DPSK	CH 39	2,441	8.31	8.5
021 011	CH 78	2,480	8.25	8.5

Right Earphone: BT5.2(BLE)

Modulation	Channel Frequency(M Hz)		Average Conducted Power (dBm)	Tune-up
	CH 0	2,402	2.57	3.5
GFSK	CH 19	2,440	2.80	3.5
	CH 39	2,480	2.94	3.5

Report No.: WT248001908 Page 27 of 59

11. MEASUREMENT RESULTS

Result: Passed

Date of testing : 2024.10.18~2024.10.18;

Ambient temperature : $20^{\circ}\text{C} \sim 22^{\circ}\text{C}$ Relative humidity : $50 \sim 68\%$

Report No.: WT248001908 Page 28 of 59

11.1. SAR measurement Results

General Notes:

- 1) Per KDB447498 D04v01, all measurement SAR results are scaled to the maximum tune-up tolerance limit to demonstrate compliant.
- 2) Per KDB447498 D01v06, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is :≤0.8 W/kg or 2.0W/kg, for 1-g or 10-g respectively, when the transmission band is ≤100MHz. When the maximum output power variation across the required test channels is >1/2 dB, instead of the middle channel, the highest output power channel must be used.
- 3) Per KDB865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measure SAR is ≥0.8W/kg; if the deviation among the repeated measurement is ≤20%, and the measured SAR<1.45W/kg, only one repeated measurement is required.
- 4) Per KDB 941225 D06 Hotspot Mode SAR v02:r01, the DUT dimension is bigger than 9cm*5cm, so 10mm is chosen as the test separation distance for Hotspot mode. When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.
- 5) Per KDB648474 D04v01r03, SAR is evaluated without a headset connected to the device. When the standalone reported body-worn SAR is ≤1.2W/kg, no additional SAR evaluations using a headset are required.
- 6) Per KDB865664 D02v01r02, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; plots are also required when the measured SAR is >1.5W/kg, or >7.0W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan plots-processing (refer to appendix B for details).

Report No.: WT248001908 Page 29 of 59

11.2. BT SAR results

Left

Config	Mode	Power Level	Position	Dist. (mm)	Ch.	Freq. (MHz)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	1g Meas SAR (W/kg)	1g Scaled SAR (W/kg)
	ВТ	original Power	Inside	0	39	2441	12.18	12.5	1.076	0.312	0.34
	ВТ	original Power	Outside	0	39	2441	12.18	12.5	1.076	0.257	0.28
Ant32	ВТ	original Power	Front	0	39	2441	12.18	12.5	1.076	0.068	0.07
	ВТ	original Power	Тор	0	39	2441	12.18	12.5	1.076	0.419	0.45
	ВТ	original Power	Bottom	0	39	2441	12.18	12.5	1.076	0.133	0.14

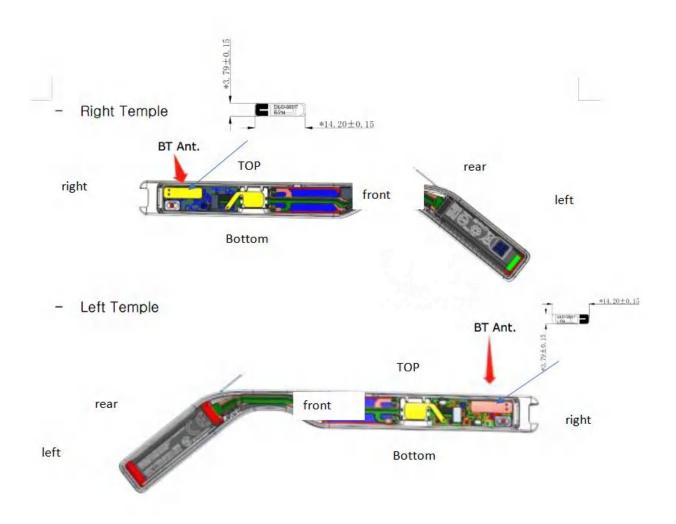
Right

Config	Mode	Power Level	Position	Dist. (mm)	Ch.	Freq. (MHz)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	1g Meas SAR (W/kg)	1g Scaled SAR (W/kg)
	ВТ	original Power	Inside	0	39	2441	10.86	11.0	1.033	0.225	0.23
	ВТ	original Power	Outside	0	39	2441	10.86	11.0	1.033	0.244	0.25
Ant32	ВТ	original Power	Front	0	39	2441	10.86	11.0	1.033	0.007	0.01
	ВТ	original Power	Тор	0	39	2441	10.86	11.0	1.033	0.307	0.32
	ВТ	original Power	Bottom	0	39	2441	10.86	11.0	1.033	0.169	0.18

Report No.: WT248001908 Page 30 of 59

11.3. Repeated SAR results

Remark:


- 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is \geq 0.8W/kg.
- 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR<1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

Band	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Measured SAR (W/kg)	Reported SAR (W/kg)
1	1	1	/	1	1	1	/	1	1

Report No.: WT248001908 Page 31 of 59

12. EXPOSURE POSITIONS CONSIDERATION

12.1. Multiple Transmitter Evaluation

The reference plane is the front side

	Distance of the Antenna to the EUT sufaceledge							
Antennas	Front	Back	Left	Right	Тор	Bottom		
ANT	≤25mm	≤25mm	>25mm	≤25mm	≤25mm	≤25mm		

Report No.: WT248001908 Page 32 of 59

12.2. Simultaneous Transmission Possibilities

The Simultaneous Transmission Possibilities of this device are as below:

1) Because the left and right ears are the same product that contains two TX parts, under normal use, they can be used and transmitted simultaneously on the head.

Test Position		Inside Side 0mm	Outside Side 0mm	Front Side 0mm	Top Side 0mm	Bottom Side 0mm
	BT(Left ear)	0.34	0.28	0.07	0.45	0.14
	BT((Right ear))	0.23	0.25	0.01	0.32	0.18
Σ1g SAR(W/kg)		0.57	0.53	0.08	0.77	0.32

Conclusion:

- 1) Simultaneous Transmission SAR evaluation is not required for BT, because the sum of the 1g SAR is 0.77W/kg <1.6 W/kg.
- 2) One way of determining the threshold power level available to the secondary transmitter(Pavailable) is to calculate it from the measured peak spatial-average SAR of the primarytransmitter (SAR1) according to the equation:

Report No.: WT248001908 Page 33 of 59

Appendix A. System Check Plots

Report No.: WT248001908 Page 34 of 59

Date/Time: 2024/10/18

Dipole2450V2

Communication System: UID 0, CW; Communication System Band: D2450 (2450.0 MHz);

Frequency: 2450 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2450 MHz; σ = 1.75 S/m; ϵ_r = 38.84; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• Probe: EX3DV4 - SN3881; ConvF(7.51, 7.51, 7.51) @ 2441 MHz; Calibrated: 2024-01-29

Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn1636; Calibrated: 2023-01-11

Phantom: SAM 3; Type: QD 000 P41 AA;

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Head/Dipole 2450/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

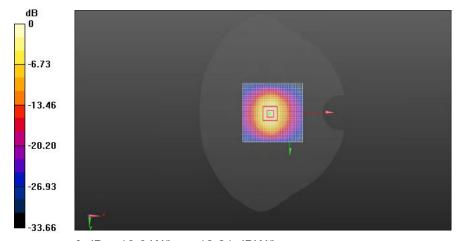
Reference Value = 104.1 V/m; Power Drift = 0.17 dB

Fast SAR: SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.21 W/kg

Maximum value of SAR (interpolated) = 16.6 W/kg

Head/Dipole 2450/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 104.1 V/m; Power Drift =0.17 dB


Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.17 W/kg

Smallest distance from peaks to all points 3 dB below = 8.9 mm

Ratio of SAR at M2 to SAR at M1 = 45.4%

Maximum value of SAR (measured) = 16.6 W/kg

0 dB = 16.6 W/kg = 12.21 dBW/kg

Report No.: WT248001908 Page 35 of 59

Appendix B. MEASUREMENT SCANS

Report No.: WT248001908 Page 36 of 59

Date/Time: 2024-10-18

BT Body Top Mid Left

Communication System: UID 0, BT (0); Communication System Band: BT; Frequency: 2441 MHz; Communication System

PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.772$ S/m; $\epsilon_r = 39.219$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

Probe: EX3DV4 - SN3881; ConvF(7.51, 7.51, 7.51) @ 2441 MHz; Calibrated: 2024-01-29

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1636; Calibrated: 2024-01-23

• Phantom: SAM 3; Type: QD 000 P41 AA;

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

BT Flat/Top Mid Left/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Reference Value = 8.340 V/m; Power Drift = -0.04 dB

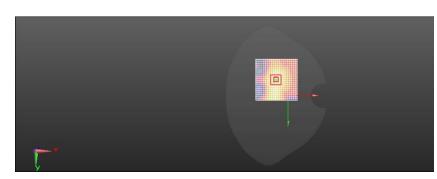
Fast SAR: SAR(1 g) = 0.415 W/kg; SAR(10 g) = 0.168 W/kg

Maximum value of SAR (interpolated) = 0.514 W/kg

BT Flat/Top Mid Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.340 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.15 W/kg


SAR(1 g) = 0.419 W/kg; SAR(10 g) = 0.164 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 39.9%

Maximum value of SAR (measured) = 0.485 W/kg

0 dB = 0.514 W/kg = -2.89 dBW/kg

Report No.: WT248001908 Page 37 of 59

Date/Time: 2024-10-18

BT Body Top Mid Right

Communication System: UID 0, BT (0); Communication System Band: BT; Frequency: 2441 MHz; Communication System

PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.772 \text{ S/m}$; $\varepsilon_r = 39.219$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• Probe: EX3DV4 - SN3881; ConvF(7.51, 7.51, 7.51) @ 2441 MHz; Calibrated: 2024-01-29

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1636; Calibrated: 2024-01-23

• Phantom: SAM 3; Type: QD 000 P41 AA;

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

BT Flat/Top Mid Right/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

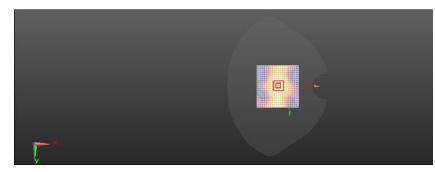
Reference Value = 14.06 V/m; Power Drift = -0.13 dB

Fast SAR: SAR(1 g) = 0.293 W/kg; SAR(10 g) = 0.119 W/kg

Maximum value of SAR (interpolated) = 0.360 W/kg

BT Flat/Top Mid Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.06 V/m; Power Drift = -0.13 dB


Peak SAR (extrapolated) = 0.853 W/kg

SAR(1 g) = 0.307 W/kg; SAR(10 g) = 0.122 W/kg

Smallest distance from peaks to all points 3 dB below = 9.3 mm

Ratio of SAR at M2 to SAR at M1 = 39.8%

Maximum value of SAR (measured) = 0.354 W/kg

0 dB = 0.360 W/kg = -4.43 dBW/kg

Report No.: WT248001908 Page 38 of 59

AppendixC :RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

Report No.: WT248001908 Page 39 of 59

中国认可 国际互认 校准 CNAS 校准 CALIBRATION CNAS LOS70

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Client : SMC

Certificate No: 24J02Z80006

CALIBRATION CERTIFICATE

Object DAE4 - SN: 1636

Calibration Procedure(s) FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date: January 23, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 \pm 3) $^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	12-Jun-23 (CTTL, No.J23X05436)	Jun-24

	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	250
Reviewed by:	Lin Jun	SAR Test Engineer	119
Approved by:	Qi Dianyuan	SAR Project Leader	2001

Issued: January 25, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 24J02Z80006

Page 1 of 3

Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: 24J02Z80006

Page 2 of 3

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1μV , full range = -100...+300 mV

Low Range: 1LSB = 61nV , full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	405.080 ± 0.15% (k=2)	405.111 ± 0.15% (k=2)	405.101 ± 0.15% (k=2)
Low Range	4.00074 ± 0.7% (k=2)	3.98754 ± 0.7% (k=2)	3.98840 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	168° ± 1 °

Certificate No: 24J02Z80006

Page 3 of 3

Page 42 of 59 Report No.: WT248001908

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Client

SMQ

Certificate No: 24J02Z80005

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN: 3881

Calibration Procedure(s)

FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

January 29, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.) Schedule	d Calibration
Power Meter NRP2	101919	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Power sensor NRP-Z91	101547	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Power sensor NRP-Z91	101548	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Reference 10dBAttenuator	18N50W-10d	B 19-Jan-23(CTTL, No.J23X00212)	Jan-25
Reference 20dBAttenuator	18N50W-20d	B 19-Jan-23(CTTL, No.J23X00211)	Jan-25
Reference Probe EX3DV4	SN 3846	31-May-23(SPEAG, No.EX-3846_May23)	May-24
DAE4	SN 1555	24-Aug-23(SPEAG, No.DAE4-1555_Aug23)	Aug-24
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator MG3700A	6201052605	12-Jun-23(CTTL, No.J23X05434)	Jun-24
Network Analyzer E5071C	MY46110673	25-Dec-23(CTTL, No.J23X13425)	Dec-24
Reference 10dBAttenuator	BT0520	11-May-23(CTTL, No.J23X04061)	May-25
Reference 20dBAttenuator	BT0267	11-May-23(CTTL, No.J23X04062)	May-25
OCP DAK-12	SN 1174	25-Oct-23(SPEAG, No.OCP-DAK12-1174_Oc	t23) Oct-24

Calibrated by: Yu Zongying

Function

SAR Test Engineer

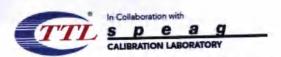
Reviewed by:

Lin Jun

Qi Dianyuan

SAR Test Engineer

Approved by:


SAR Project Leader

Issued: January 31, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 24J02Z80005

Page 1 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010.

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:24J02Z80005

Page 2 of 9

Report No.: WT248001908 Page 44 of 59

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3881

Basic Calibration Parameters

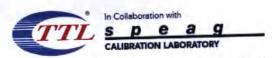
	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.49	0.55	0.58	±10.0%
DCP(mV) ^B	106.6	113.1	106.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	CW	X	0.0	0.0	1.0	0.00	177.9	±2.7%
		Y	0.0	0.0	1.0		196.2	
		Z	0.0	0.0	1.0		198.3	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No:24J02Z80005


Page 3 of 9

Report No.: WT248001908 Page 45 of 59

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

B Numerical linearization parameter: uncertainty not required.

E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3881

Calibration Parameter Determined in Head Tissue Simulating Media

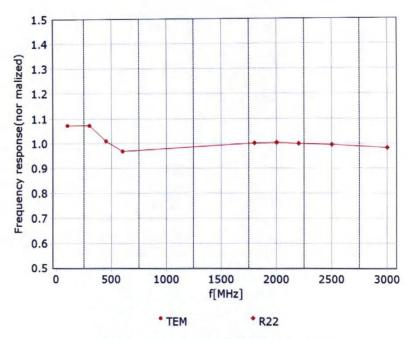
f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.90	9.90	9.90	0.13	1.32	±12.7%
835	41.5	0.90	9.39	9.39	9.39	0.15	1.36	±12.7%
900	41.5	0.97	9.35	9.35	9.35	0.17	1.22	±12.7%
1750	40.1	1.37	8.26	8.26	8.26	0.25	1.01	±12.7%
1810	40.0	1.40	8.04	8.04	8.04	0.20	1.14	±12.7%
1900	40.0	1.40	7.95	7.95	7.95	0.26	1.01	±12.7%
2100	39.8	1.49	7.97	7.97	7.97	0.24	0.99	±12.7%
2300	39.5	1.67	7.76	7.76	7.76	0.58	0.69	±12.7%
2450	39.2	1.80	7.51	7.51	7.51	0.59	0.68	±12.7%
2600	39.0	1.96	7.31	7.31	7.31	0.65	0.67	±12.7%
3300	38.2	2.71	7.09	7.09	7.09	0.45	0.88	±13.9%
3500	37.9	2.91	6.90	6.90	6.90	0.42	0.95	±13.9%
3700	37.7	3.12	6.62	6.62	6.62	0.30	1.35	±13.9%
3900	37.5	3.32	6.37	6.37	6.37	0.35	1.58	±13.9%
4100	37.2	3.53	6.44	6.44	6.44	0.30	1.38	±13.9%
4200	37.1	3.63	6.33	6.33	6.33	0.30	1.50	±13.9%
4400	36.9	3.84	6.23	6.23	6.23	0.30	1.50	±13.9%
4600	36.7	4.04	6.14	6.14	6.14	0.40	1.30	±13.9%
4800	36.4	4.25	6.07	6.07	6.07	0.40	1.40	±13.9%
4950	36.3	4.40	5.85	5.85	5.85	0.40	1.40	±13.9%
5250	35.9	4.71	5.24	5.24	5.24	0.45	1.40	±13.9%
5600	35.5	5.07	4.60	4.60	4.60	0.45	1.40	±13.9%
5750	35.4	5.22	4.68	4.68	4.68	0.40	1.60	±13.9%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No:24J02Z80005

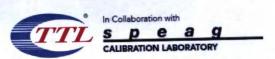
Page 4 of 9

Report No.: WT248001908 Page 46 of 59


F At frequency up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

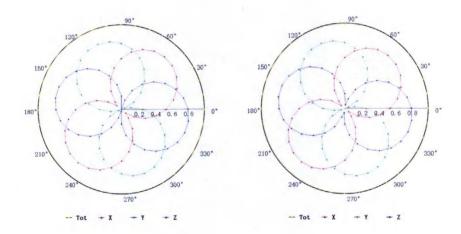


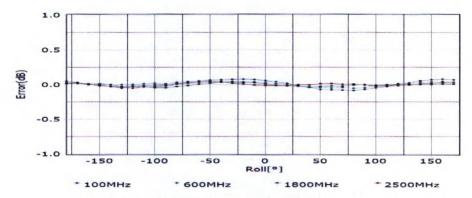
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:24J02Z80005

Page 5 of 9

Report No.: WT248001908 Page 47 of 59





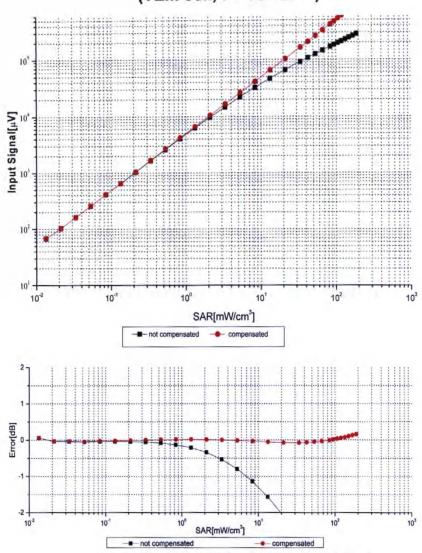
Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Certificate No:24J02Z80005


Page 6 of 9

Report No.: WT248001908 Page 48 of 59

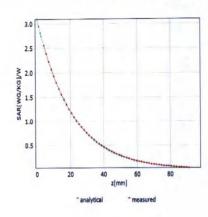
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

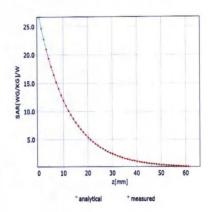
Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No:24J02Z80005

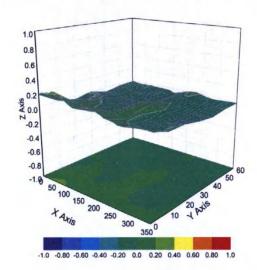
Page 7 of 9

Report No.: WT248001908 Page 49 of 59



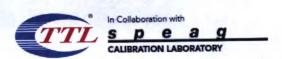


Conversion Factor Assessment


f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid



Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:24J02Z80005

Page 8 of 9

Report No.: WT248001908 Page 50 of 59

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3881

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	118.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:24J02Z80005

Page 9 of 9

Report No.: WT248001908 Page 51 of 59

Report No.: WT248001908 Page 52 of 59

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

Client

http://www.caict.ac.cn

24J02Z000562 Certificate No:

SMQ **CALIBRATION CERTIFICATE**

Object D2450V2 - SN: 818

Calibration Procedure(s) FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: September 5, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	17-May-24 (CTTL, No. J24X04107)	May-25
Power sensor NRP6A	101369	17-May-24 (CTTL, No. J24X04107)	May-25
Reference Probe EX3DV4	SN 7307	28-May-24(SPEAG, No. EX-7307_May24)	May-25
DAE4	SN 1556	03-Jan-24(CTTL-SPEAG, No.24J02Z80002)	Jan-25
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	25-Dec-23 (CTTL, No. J23X13426)	Dec-24
NetworkAnalyzer E5071C	MY46110673	25-Dec-23 (CTTL, No. J23X13425)	Dec-24
OCP DAK-3.5(weighted)	1040	22-Jan-24(SPEAG, No.OCP-DAK3.5-1040_Jan24)	Jan-25

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	Solit Se
Reviewed by:	Lin Jun	SAR Test Engineer	= 4
Approved by:	Qi Dianyuan	SAR Project Leader	200

Issued: September 13, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 24J02Z000562 Page 1 of 6

Report No.: WT248001908 Page 53 of 59

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528; Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: 24J02Z000562

Page 2 of 6

Measurement Conditions

DASY52	52.10.4
Advanced Extrapolation	
Triple Flat Phantom 5.1C	
10 mm	with Spacer
dx, dy, dz = 5 mm	
2450 MHz ± 1 MHz	
	Advanced Extrapolation Triple Flat Phantom 5.1C 10 mm dx, dy, dz = 5 mm

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.79 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.6 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 18.7 % (k=2)

Certificate No: 24J02Z000562

Page 3 of 6

Report No.: WT248001908 Page 55 of 59

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.4Ω+ 5.55jΩ	
Return Loss	- 24.6dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.070 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: 24J02Z000562

Page 4 of 6

Report No.: WT248001908 Page 56 of 59

Date: 2024-09-05

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: cttl@chinattl.com http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 818

Communication System: UID 0, CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.792$ S/m; $\varepsilon_r = 39.57$; $\rho = 1000$ kg/m³

Phantom section: Right Section

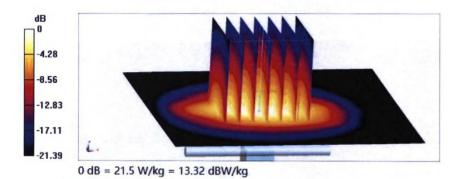
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(7.37, 7.34, 7.95) @ 2450 MHz; Calibrated: 2024-05-28
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2024-01-03
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.8 V/m; Power Drift = -0.07 dB

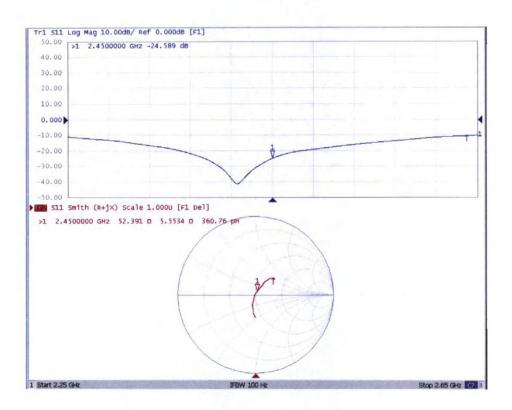

Peak SAR (extrapolated) = 25.9 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.15 W/kg

Smallest distance from peaks to all points 3 dB below = 8.5 mm

Ratio of SAR at M2 to SAR at M1 = 51.4%

Maximum value of SAR (measured) = 21.5 W/kg


Certificate No: 24J02Z000562

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: 24J02Z000562

Page 6 of 6

Appendix E. Photographs of the Test Set-Up -----END-----

Report No.: WT248001908 Page 59 of 59