

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Report No.: SZEM150700442502

Fax: +86 (0) 755 2671 0594 Page: 1 of 56

FCC REPORT

Application No: SZEM1504004425CR

Applicant: Harman International Industries, Inc. **Manufacturer:** Harman International Industries, Inc.

Factory: Dongguan Tai Sing Audio Technology Limited

Product Name: Bluetooth Headset

Model No.(EUT): RESPONSE

Trade Mark: JBL

FCC ID: APIJBLRESPONSE

Standards: 47 CFR Part 15, Subpart C (2014)

Date of Receipt: 2015-07-21

Date of Test: 2015-07-27 to 2015-07-29

Date of Issue: 2015-07-31

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM150700442502

Page: 2 of 56

2 Version

Revision Record						
Version	Chapter	Date	Modifier	Remark		
00		2015-07-31		Original		

Authorized for issue by:		
Tested By	Eric Fu	2015-07-29
	(Eric Fu) /Project Engineer	Date
Prepared By	Heely Wen.	2015-07-31
	(Hedy Wen) /Clerk	Date
Checked By	Owen 2hou	2015-07-31
	(Owen Zhou) /Reviewer	Date

Report No.: SZEM150700442502

Page: 3 of 56

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2009	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2009	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2009	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2009	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2009	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2009	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2009	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS

Report No.: SZEM150700442502

Page: 4 of 56

4 Contents

			Page
1	C	OVER PAGE	
2	VF	ERSION	
3		EST SUMMARY	
4	CC	ONTENTS	4
5	GI	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.1	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT.	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	8
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	8
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	EQUIPMENT LIST	9
6	TE	EST RESULTS AND MEASUREMENT DATA	12
	6.1	Antenna Requirement	
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	17
	6.4	6DB OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7 6.8	Spurious RF Conducted Emissions	
		RADIATED SPURIOUS EMISSION	
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7		HOTOGRAPHS - EUT TEST SETUP	
•		Conducted Emission	
	7.1 7.2	CONDUCTED EMISSION	
	7.2	RADIATED SPURIOUS EMISSION	
_			
X	PH	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	56

Report No.: SZEM150700442502

Page: 5 of 56

5 General Information

5.1 Client Information

Applicant:	Harman International Industries, Inc.			
Address of Applicant:	8500 Balboa Blvd, Northridge, CA 91329, UNITED STATES			
Manufacturer:	Harman International Industries, Inc.			
Address of Manufacturer:	8500 Balboa Blvd, Northridge, CA 91329, UNITED STATES			
Factory:	Dongguan Tai Sing Audio Technology Limited			
Address of Factory:	Tai Sing Industrial Road, Bai Zhou Bian Village, Dong Cheng, Dongguan City, Guangdong Province 523113, P.R. China			

5.2 General Description of EUT

Product Name:	Bluetooth Headset
Model No.:	RESPONSE
Trade Mark:	JBL
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V4.1 dual mode
	This report is for BLE mode
Modulation Type:	GFSK
Number of Channel:	40
Sample Type:	Portable production
Test Power Grade:	Class II
Test Software of EUT:	Blue Test 3
Antenna Type:	Integral
Antenna Gain:	4.1dBi
Battery:	Lithium-ion battery:3.7V(charge by USB)

Report No.: SZEM150700442502

Page: 6 of 56

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2440MHz
The Highest channel	2480MHz

Report No.: SZEM150700442502

Page: 7 of 56

5.3 Test Environment

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	55 % RH		
Atmospheric Pressure:	1005mbar		

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM150700442502

Page: 8 of 56

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 10m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-2.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM150700442502

Page: 9 of 56

5.10 Equipment List

	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2016-05-13	
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2015-10-24	
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2016-05-13	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2015-08-30	
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2015-08-30	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2015-08-30	
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2016-05-13	
8	Coaxial Cable	SGS	N/A	SEL0025	2016-05-13	
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24	
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	
11	Barometer	Chang Chun	DYM3	SEL0088	2016-05-13	

Report No.: SZEM150700442502

Page: 10 of 56

			raye.	10 01 3		
	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2016-05-13	
2	EMI Test Receiver	Agilent Technologies	N9038A	SEL0312	2015-09-16	
3	EMI Test software	AUDIX	E3	SEL0050	N/A	
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2015-10-24	
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2015-10-24	
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2015-10-24	
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2016-05-13	
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2015-10-24	
9	Coaxial cable	SGS	N/A	SEL0027	2016-05-13	
10	Coaxial cable	SGS	N/A	SEL0189	2016-05-13	
11	Coaxial cable	SGS	N/A	SEL0121	2016-05-13	
12	Coaxial cable	SGS	N/A	SEL0178	2016-05-13	
13	Band filter	Amindeon	82346	SEL0094	2016-05-13	
14	Barometer	Chang Chun	DYM3	SEL0088	2016-05-13	
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24	
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2016-05-13	
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2015-10-24	
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2016-05-13	

Report No.: SZEM150700442502

Page: 11 of 56

	RF connected test				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2015-10-24
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2015-10-24
4	Coaxial cable	SGS	N/A	SEL0178	2016-05-13
5	Coaxial cable	SGS	N/A	SEL0179	2016-05-13
6	Barometer	ChangChun	DYM3	SEL0088	2016-05-13
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2016-04-25
8	Band filter	amideon	82346	SEL0094	2016-05-13
9	POWER METER	R&S	NRVS	SEL0144	2015-10-24
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2016-04-25
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2015-10-24

Note: The calibration interval is one year, all the instruments are valid.

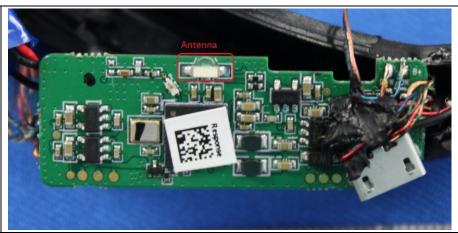
Report No.: SZEM150700442502

Page: 12 of 56

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

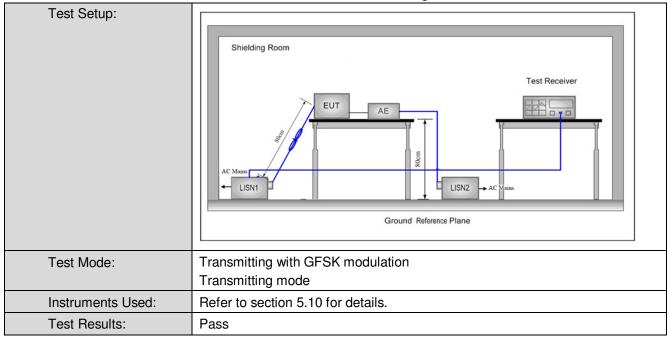
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 4.1dBi.

Report No.: SZEM150700442502

Page: 13 of 56

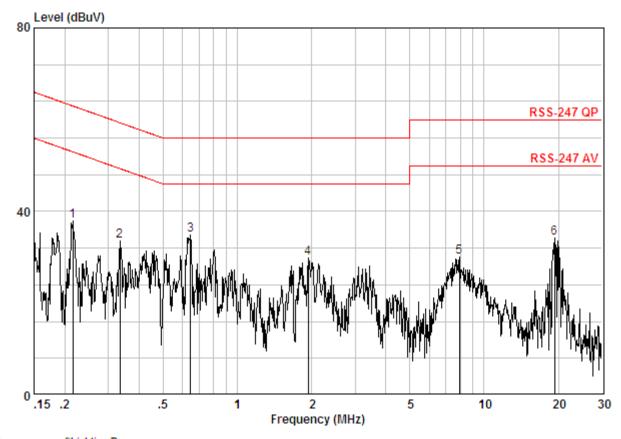

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207				
Test Method:	ANSI C63.10: 2009				
Test Frequency Range:	150kHz to 30MHz				
Limit:	Francisco (MIII-)	Limit (dBuV)			
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5 56		46		
	5-30	60	50		
	* Decreases with the logarithn	n of the frequency.			
Test Procedure:	The mains terminal disturbance voltage test was conducted in a shielded room.				
	2) The EUT was connected to	•	`		
	Impedance Stabilization N	, .	• • • • • • • • • • • • • • • • • • •		
	impedance. The power cal				
	connected to a second LISN 2, which was bonded to the ground				
	reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple				
	power cables to a single LISN provided the rating of the LISN was not exceeded.				
	3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was				
	placed on the horizontal ground reference plane,				
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.				
	5) In order to find the maximu		•		
equipment and all of the interface cables must be changed according t ANSI C63.10: 2009 on conducted measurement.					
	A1401 000.10. 2009 011 001	iduotod measurement.			

Report No.: SZEM150700442502

Page: 14 of 56

Report No.: SZEM150700442502


Page: 15 of 56

Measurement Data

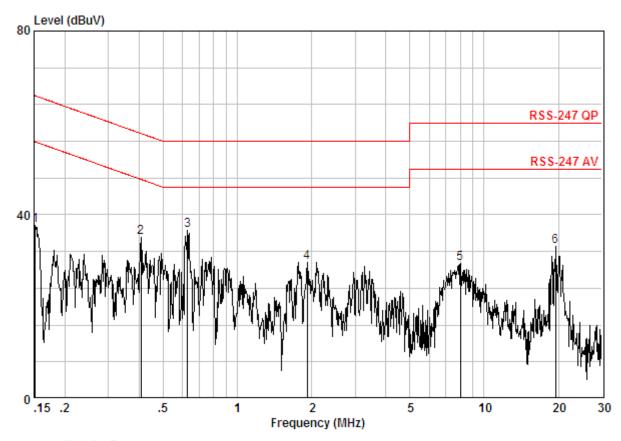
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

Site : Shielding Room
Condition : RSS-247 AV CE LINE

Job No. : 4425CR Test Mode : TX+charge


	Freq		LISN Factor					Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.21506	0.02	9.83	28.15	38.00	53.01	-15.00	Peak
2	0.33385	0.01	9.85	23.77	33.63	49.35	-15.73	Peak
3 @	0.64740	0.02	9.88	25.02	34.91	46.00	-11.09	Peak
4	1.939	0.02	9.95	19.81	29.78	46.00	-16.22	Peak
5	7.935	0.01	10.15	19.87	30.03	50.00	-19.97	Peak
6	19.326	0.02	10.28	23.95	34.26	50.00	-15.74	Peak

Report No.: SZEM150700442502

Page: 16 of 56

Neutral line:

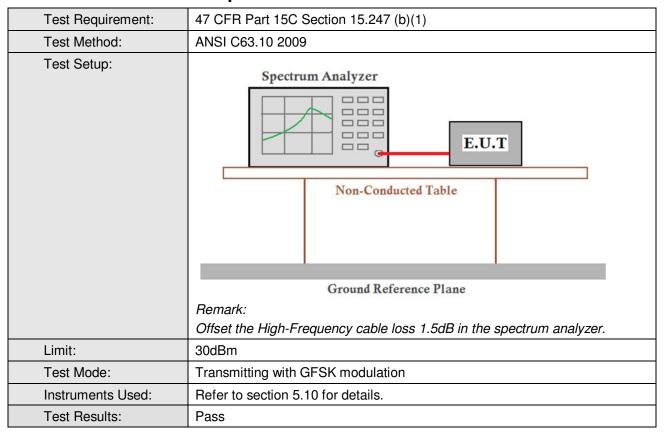
Site : Shielding Room

Condition : RSS-247 AV CE NEUTRAL

Job No. : 4425CR Test Mode : TX+charge

	Freq		LISN					Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15160	0.02	9.78	27.86	37.66	55.91	-18.25	Peak
2	0.40615	0.01	9.87	25.31	35.19	47.73	-12.53	Peak
3 @	0.62715	0.02	9.93	26.68	36.63	46.00	-9.37	Peak
4	1.918	0.02	10.11	19.58	29.72	46.00	-16.28	Peak
5	8.020	0.01	10.13	19.28	29.42	50.00	-20.58	Peak
6	19.428	0.02	10.37	22.71	33.10	50.00	-16.90	Peak

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

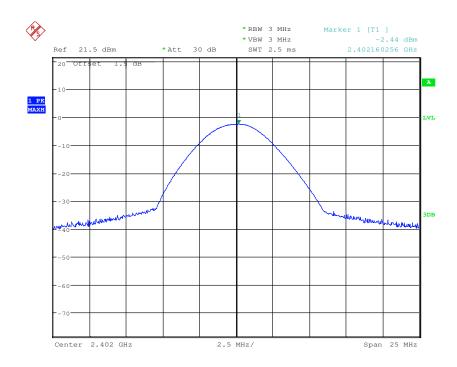
Report No.: SZEM150700442502

Page: 17 of 56

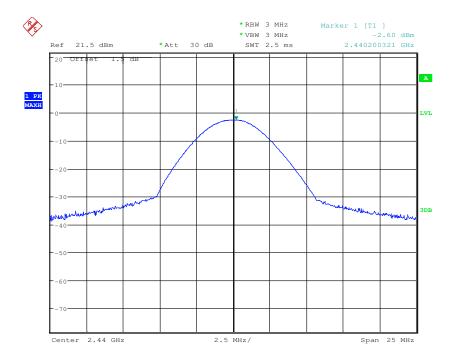
6.3 Conducted Peak Output Power

Measurement Data

modearoment Bata					
	GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-2.44	30.00	Pass		
Middle	-2.60	30.00	Pass		
Highest	-2.26	30.00	Pass		

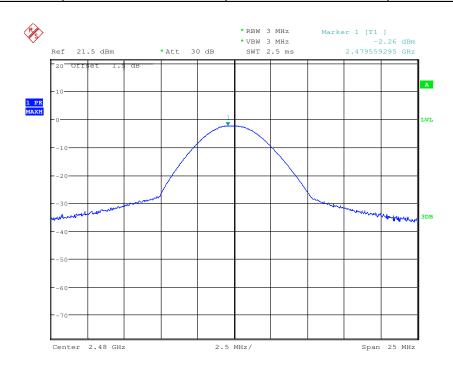


Report No.: SZEM150700442502


Page: 18 of 56

Test plot as follows:

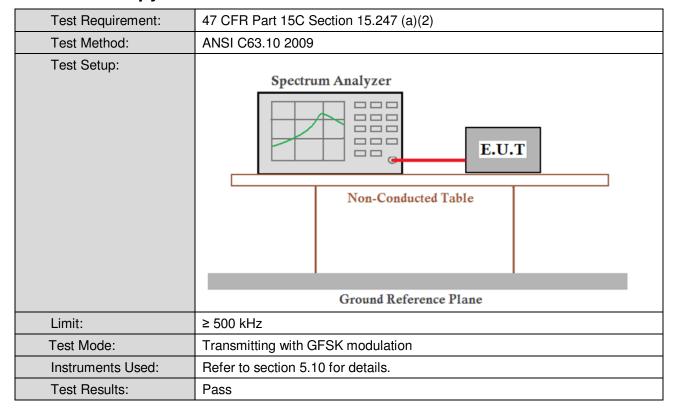
Test mode: GFSK Test channel: Lowest



Report No.: SZEM150700442502

Page: 19 of 56

Test mode: GFSK Test channel: Highest



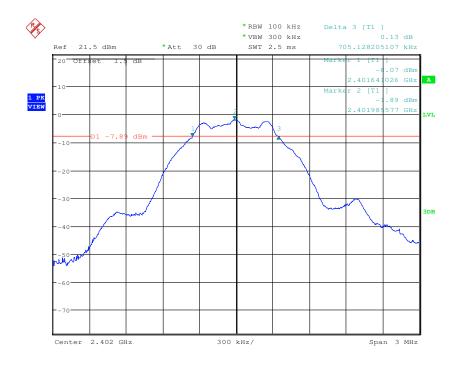
Report No.: SZEM150700442502

Page: 20 of 56

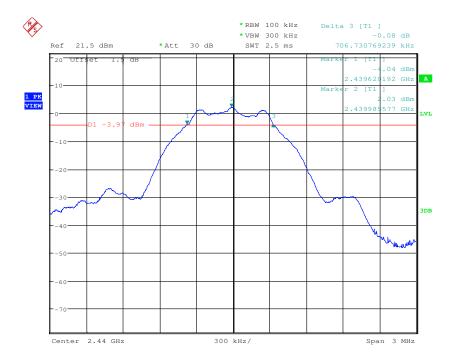
6.4 6dB Occupy Bandwidth

Measurement Data

Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	0.705	≥500	Pass
Middle	0.706	≥500	Pass
Highest	0.711	≥500	Pass

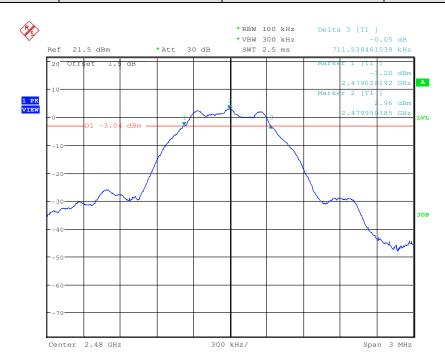


Report No.: SZEM150700442502


Page: 21 of 56

Test plot as follows:

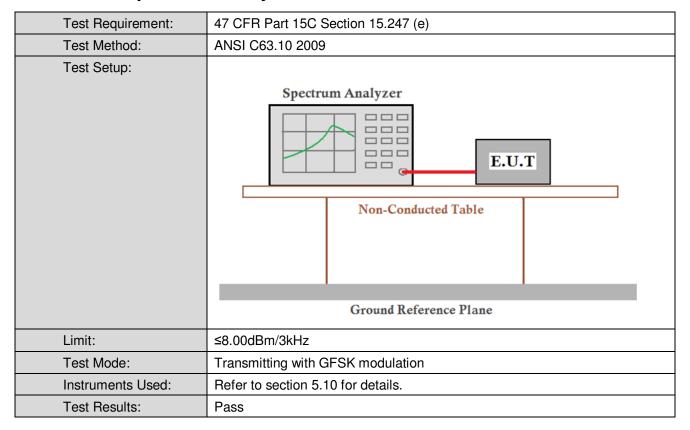
Test mode: GFSK Test channel: Lowest



Report No.: SZEM150700442502

Page: 22 of 56

Test mode: GFSK Test channel: Highest



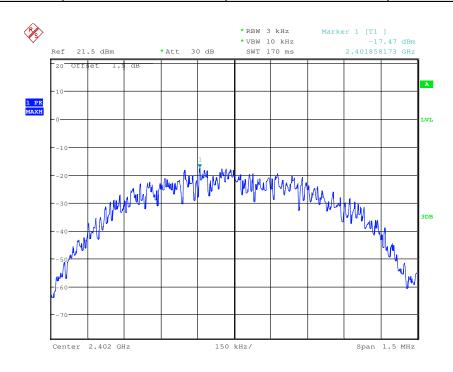
Report No.: SZEM150700442502

Page: 23 of 56

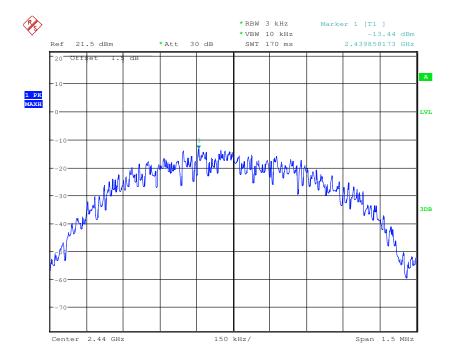
6.5 Power Spectral Density

Measurement Data

GFSK mode					
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result		
Lowest	-17.47	≤8.00	Pass		
Middle	-13.44	≤8.00	Pass		
Highest	-12.84	≤8.00	Pass		

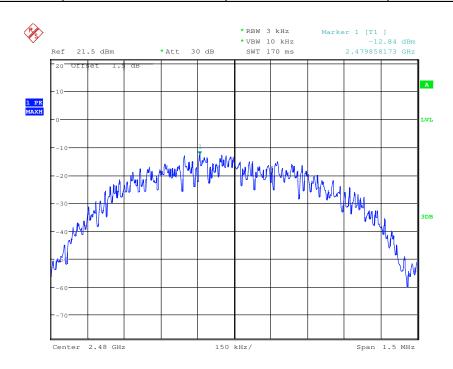


Report No.: SZEM150700442502


Page: 24 of 56

Test plot as follows:

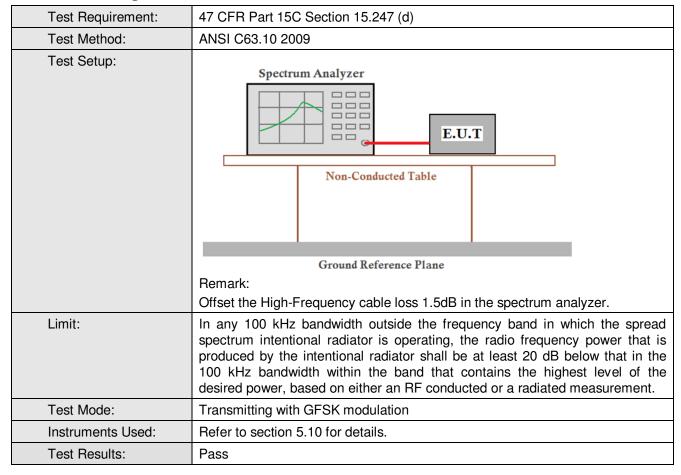
Test mode: GFSK Test channel: Lowest



Report No.: SZEM150700442502

Page: 25 of 56

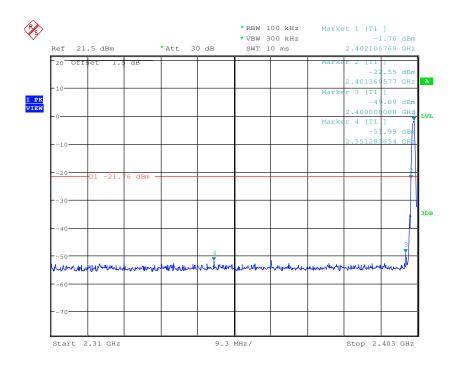
Test mode: GFSK Test channel: Highest



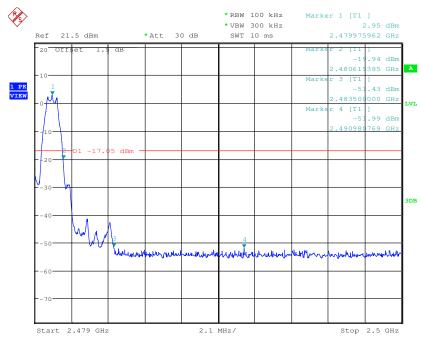
Report No.: SZEM150700442502

Page: 26 of 56

6.6 Band-edge for RF Conducted Emissions



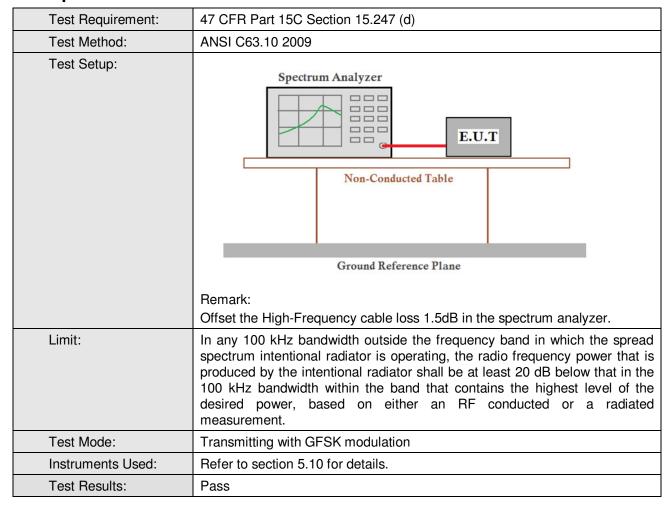
Report No.: SZEM150700442502


Page: 27 of 56

Test plot as follows:

Test mode: GFSK Test channel: Lowest

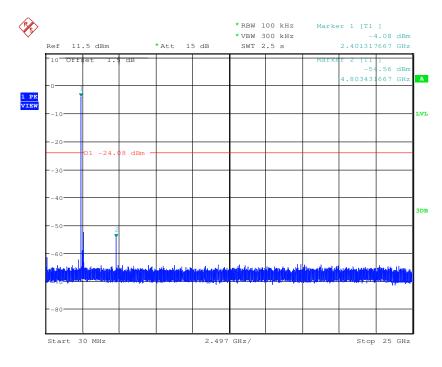
Test mode: GFSK Test channel: Highest

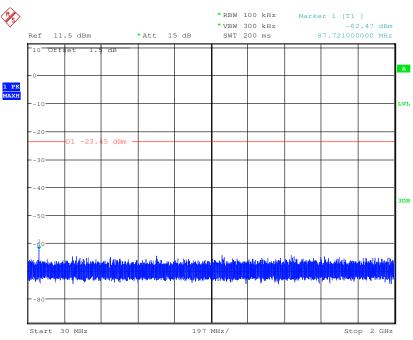


Report No.: SZEM150700442502

Page: 28 of 56

6.7 Spurious RF Conducted Emissions

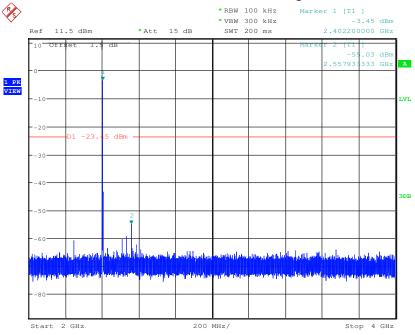




Report No.: SZEM150700442502

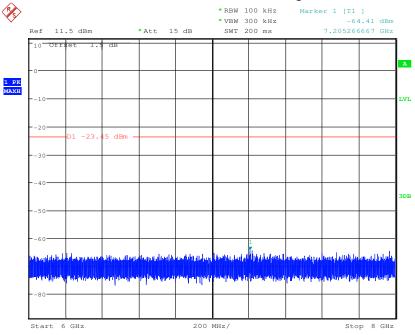
Page: 29 of 56

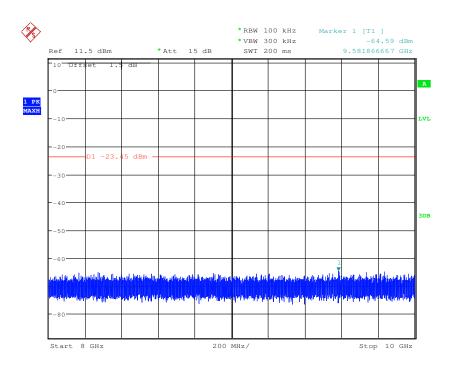
Test mode: GFSK Test channel: Lowest



Report No.: SZEM150700442502

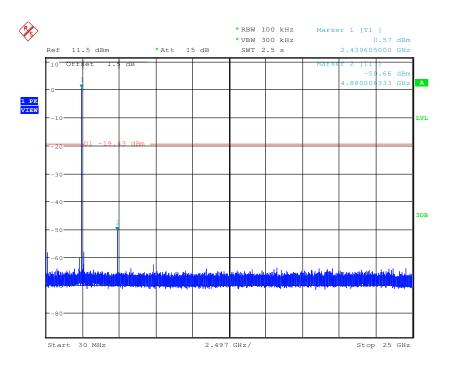
Page: 30 of 56

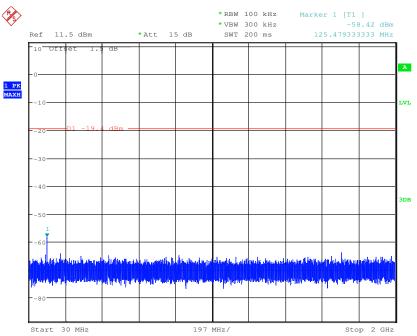




Report No.: SZEM150700442502

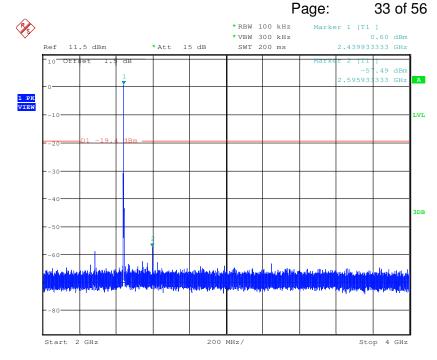
Page: 31 of 56

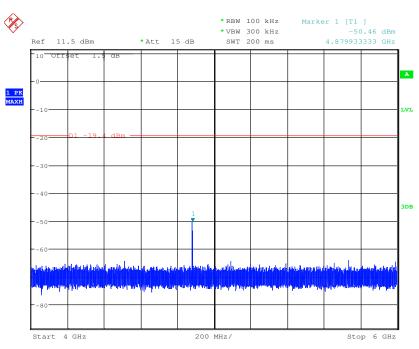




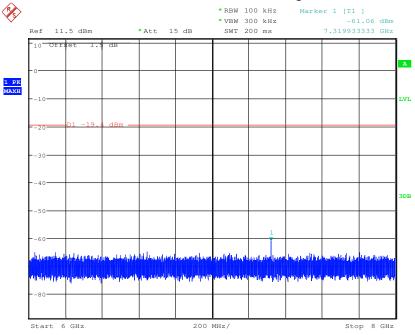
Report No.: SZEM150700442502

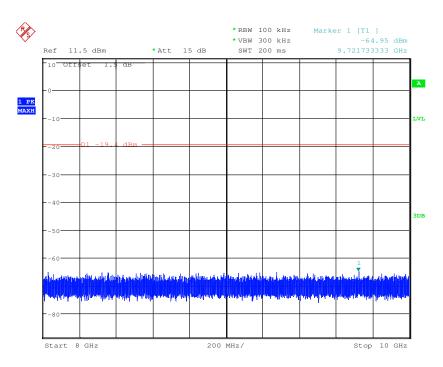
Page: 32 of 56


Test mode: GFSK Test channel: Middle



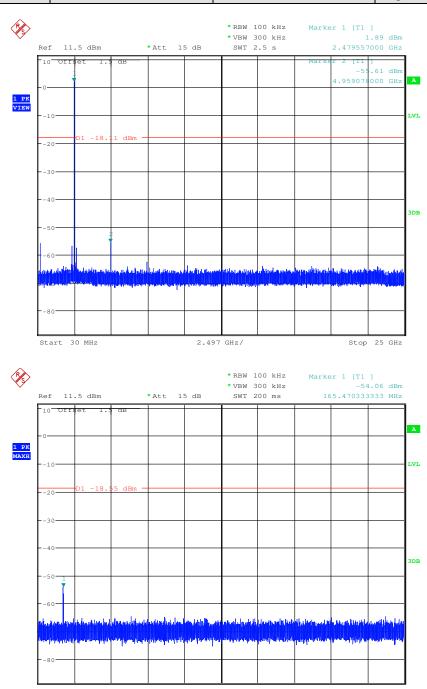
Report No.: SZEM150700442502





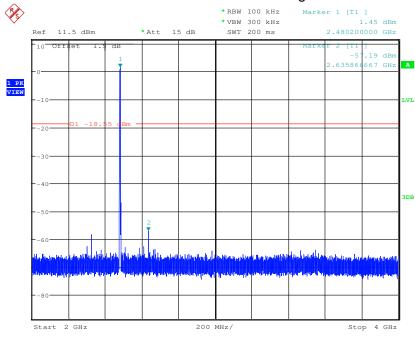
Report No.: SZEM150700442502

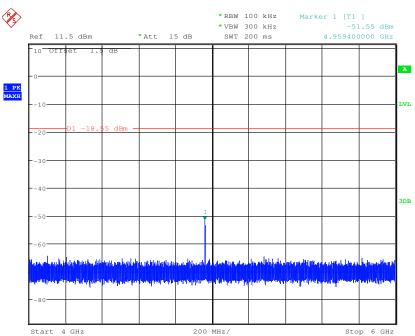
Page: 34 of 56



Report No.: SZEM150700442502

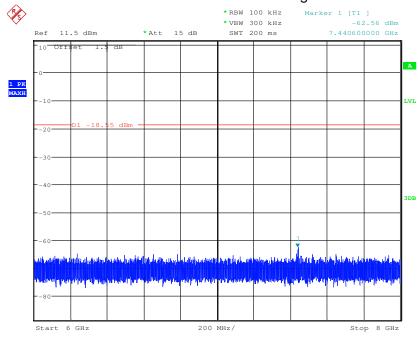
Page: 35 of 56

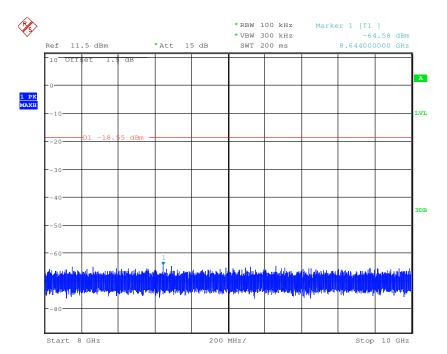




Report No.: SZEM150700442502

Page: 36 of 56





Report No.: SZEM150700442502

Page: 37 of 56

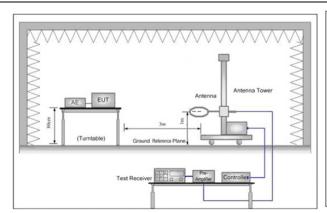
Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

Report No.: SZEM150700442502

Page: 38 of 56

6.8 Radiated Spurious Emission


6.8.1 Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10 2009						
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	noic Cham	ber)		
Receiver Setup:	Frequency		Detector	RBW		VBW	Remark
	0.009MHz-0.090MH	Z	Peak	10kHz	<u>.</u>	30kHz	Peak
	0.009MHz-0.090MH	Z	Average	10kHz	<u>.</u>	30kHz	Average
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	<u>-</u>	30kHz	Quasi-peak
	0.110MHz-0.490MHz Peak		10kHz	<u>-</u>	30kHz	Peak	
	0.110MHz-0.490MHz Average			10kHz	<u>-</u>	30kHz	Average
	0.490MHz -30MHz Quasi-peak			10kHz	<u>, </u>	30kHz	Quasi-peak
	30MHz-1GHz Quasi-peak		100 kH	z 3	300kHz	Quasi-peak	
	Above 1GHz		Peak	1MHz		3MHz	Peak
	Above Idiiz		Peak	1MHz		10Hz	Average
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	R	lemark	Measuremen distance (m)
	0.009MHz-0.490MHz	`	400/F(kHz)	(dDd v /111)			300
	0.490MHz-1.705MHz		1000/F(kHz)	-			30
	1.705MHz-30MHz		30	_		_	30
	30MHz-88MHz		100	40.0	Qua	asi-peak	3
	88MHz-216MHz		150	43.5		asi-peak	3
	216MHz-960MHz		200	46.0		asi-peak	3
	960MHz-1GHz		500	54.0		asi-peak	3
	Above 1GHz		500	54.0		verage	3
	Note: 15.35(b), Unless otherwise specified, the li frequency emissions is 20dB above the maximum permitte limit applicable to the equipment under test. This peak limit peak emission level radiated by the device.						erage emission
Test Setup:							

Report No.: SZEM150700442502

Page: 39 of 56

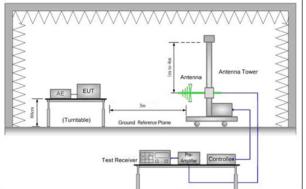


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

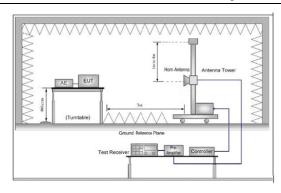


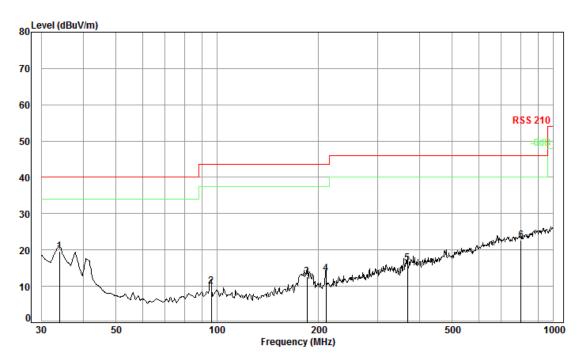
Figure 3. Above 1 GHz

Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel (2402MHz), the middle channel (2440MHz), the Highest channel (2480MHz)
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the

Report No.: SZEM150700442502

Page: 40 of 56

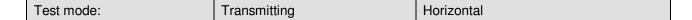

	worst case.				
	i. Repeat above procedures until all frequencies measured was complete.				
Exploratory Test Mode:	Transmitting with GFSK modulation				
	Transmitting mode				
Final Test Mode:	Transmitting with GFSK modulation				
	Pretest the EUT at Transmitting mode, found the Transmitting mode which it is worse case				
	For below 1GHz part, through pre-scan, the worst case is the lowest channel.				
	Only the worst case is recorded in the report.				
Instruments Used:	Refer to section 5.10 for details.				
Test Results:	Pass				

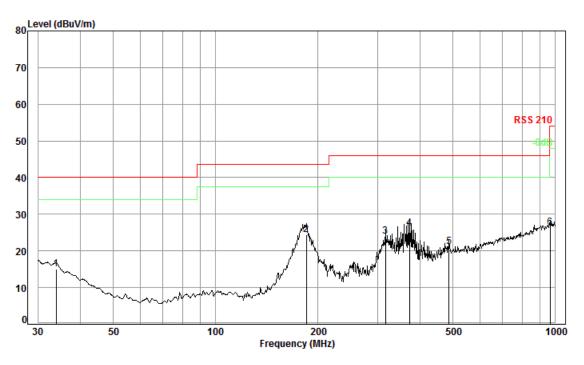
Report No.: SZEM150700442502

Page: 41 of 56

Radiated Emission below 1GHz					
30MHz~1GHz (QP)					
Test mode: Transmitting Vertical					

Condition: RSS 210 3m 3142C Vertical


Job No. : 4425CR Test Mode: TX mode


	Cable	Ant	Preamp	Read		Limit	0ver
Freq	Loss	Factor	Factor	Level	Level	Line	Limit
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
22.00				00.70	40 50		
33.92	0.60	16.51	27.34	29.79	19.56	40.00	-20.44
96.10	1.16	8.94	27.21	27.13	10.02	43.50	-33.48
185.14	1.38	10.00	26.75	28.12	12.75	43.50	-30.75
210.79	1.46	10.76	26.66	27.91	13.47	43.50	-30.03
368.11	2.11	15.42	26.93	25.79	16.39	46.00	-29.61
801.79	3.21	22.12	27.27	24.63	22.69	46.00	-23.31

Report No.: SZEM150700442502

Page: 42 of 56

Condition: RSS 210 3m 3142C Horizontal

Job No. : 4425CR Test Mode: TX mode

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	33.92	0.60	16.51	27.34	25.21	14.98	40.00	-25.02
2	185.14	1.38	10.00	26.75	39.81	24.44	43.50	-19.06
3	316.59	1.95	14.50	26.52	33.96	23.89	46.00	-22.11
4	372.00	2.12	15.75	26.95	35.32	26.24	46.00	-19.76
5	487.32	2.56	17.80	27.64	28.35	21.07	46.00	-24.93
6	965.54	3.67	23.30	26.47	25.85	26.35	54.00	-27.65

Report No.: SZEM150700442502

Page: 43 of 56

Transmitte	Transmitter Emission above 1GHz									
Test mod	le:	GFSK		Test chann		Lowes	t	Re	emark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Fa	eamp actor dB)	Read Level (dBuV)	Level (dBuV/m)		t Line ıV/m)	Over Limit (dB)	Polarization
3417.246	5.89	32.80	38	3.70	47.84	47.83	7	'4	-26.17	Vertical
4804.000	5.49	34.70	39).24	52.70	53.65	7	'4	-20.35	Vertical
5956.314	7.41	36.22	39).19	47.07	51.51	7	'4	-22.49	Vertical
7206.000	8.27	35.63	39	0.07	48.05	52.88	7	'4	-21.12	Vertical
9608.000	9.26	37.33	37	7.93	44.54	53.20	7	'4	-20.80	Vertical
11274.500	9.88	38.13	38	3.36	43.84	53.49	7	'4	-20.51	Vertical
3668.321	5.80	33.05	38	3.81	47.55	47.59	7	'4	-26.41	Horizontal
4804.000	5.49	34.70	39).24	53.04	53.99	7	'4	-20.01	Horizontal
5990.888	7.49	36.28	39).18	47.00	51.59	7	'4	-22.41	Horizontal
7206.000	8.27	35.63	39	9.07	47.09	51.92	7	'4	-22.08	Horizontal
9608.000	9.26	37.33	37	7.93	44.12	52.78	7	'4	-21.22	Horizontal
12015.620	10.26	38.72	38	3.71	43.10	53.37	7	'4	-20.63	Horizontal

Test mode:		GFSK		t channel:	Middle	Ren	nark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3594.760	5.85	32.99	38.78	46.71	46.77	74	-27.23	Vertical
4880.000	5.69	34.78	39.26	51.81	53.02	74	-20.98	Vertical
5999.562	7.51	36.30	39.18	47.15	51.78	74	-22.22	Vertical
7320.000	8.41	35.51	39.06	46.58	51.44	74	-22.56	Vertical
9760.000	9.18	37.80	37.84	43.91	53.05	74	-20.95	Vertical
11096.470	9.72	38.11	38.27	43.91	53.47	74	-20.53	Vertical
3759.672	5.74	33.12	38.85	47.25	47.26	74	-26.74	Horizontal
4880.000	5.69	34.78	39.26	52.39	53.60	74	-20.40	Horizontal
5999.562	7.51	36.30	39.18	47.75	52.38	74	-21.62	Horizontal
7320.000	8.41	35.51	39.06	47.38	52.24	74	-21.76	Horizontal
9760.000	9.18	37.80	37.84	44.46	53.60	74	-20.40	Horizontal
11757.650	10.16	38.46	38.59	43.95	53.98	74	-20.02	Horizontal

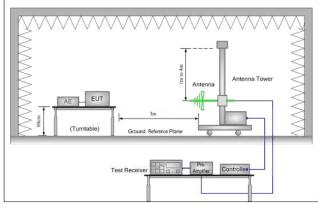
Report No.: SZEM150700442502

Page: 44 of 56

Test mode:		GFSK	Tes	t channel:	Highest	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3605.177	5.84	33.00	38.79	47.40	47.45	74	-26.55	Vertical
4960.000	5.89	34.86	39.29	51.81	53.27	74	-20.73	Vertical
6016.949	7.50	36.28	39.18	48.14	52.74	74	-21.26	Vertical
7440.000	8.54	35.43	39.05	47.91	52.83	74	-21.17	Vertical
9920.000	9.09	38.27	37.75	43.49	53.10	74	-20.90	Vertical
11372.800	9.96	38.15	38.41	44.28	53.98	74	-20.02	Vertical
3673.633	5.80	33.06	38.82	48.01	48.05	74	-25.95	Horizontal
4960.000	5.89	34.86	39.29	51.82	53.28	74	-20.72	Horizontal
6008.249	7.50	36.29	39.18	47.87	52.48	74	-21.52	Horizontal
7440.000	8.54	35.43	39.05	47.38	52.30	74	-21.70	Horizontal
9920.000	9.09	38.27	37.75	44.25	53.86	74	-20.14	Horizontal
11471.960	10.05	38.20	38.45	43.37	53.17	74	-20.83	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Report No.: SZEM150700442502

Page: 45 of 56

6.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10 2009							
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chambe	r)					
Limit:	Frequency	Limit (dBuV/m @3m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak Value					
	88MHz-216MHz	43.5	Quasi-peak Value					
	216MHz-960MHz	46.0	Quasi-peak Value					
	960MHz-1GHz	54.0	Quasi-peak Value					
	Above 1CUz	54.0	Average Value					
	Above 1GHz	74.0	Peak Value					
Test Setup:								

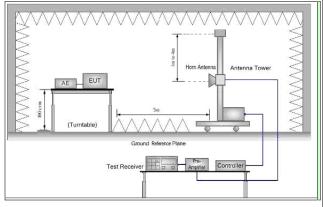


Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

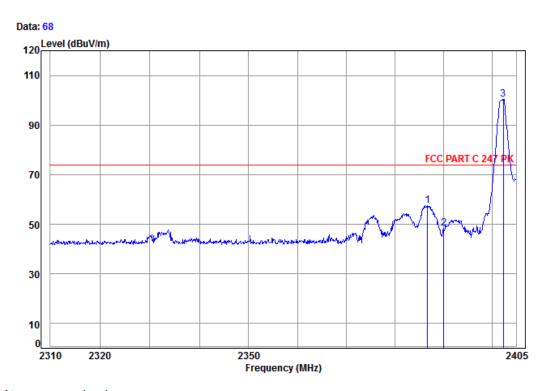
Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest

Report No.: SZEM150700442502

Page: 46 of 56

	channel g. Test the EUT in the lowest channel, the Highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.				
Exploratory Test Mode:	Transmitting with GFSK modulation				
	Transmitting mode, Charge + Transmitting mode				
Final Test Mode:	Transmitting with GFSK modulation				
	Pretest the EUT at Transmitting mode and Charge + Transmitting mode, found the Charge + Transmitting mode which it is worse case				
	Only the worst case is recorded in the report.				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				



Report No.: SZEM150700442502

Page: 47 of 56

Test plot as follows:

Test mode: GFSK Test channel: Lowest Remark: Peak Vertical

Site : chamber

Condition: FCC PART C 247 PK 3m Vertical

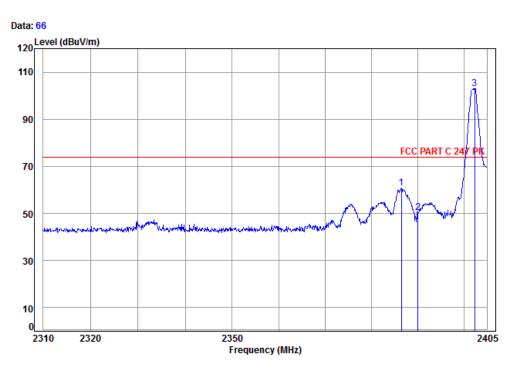
Job No: : 4425CR

1

2

Mode: : 2402 Band edge BLE

Ant Preamp Read Limit 0ver Freq Loss Factor Factor Level Level MHz dB/m dBuV dBuV/m dBuV/m dB dΒ 4.90 58.93 2386.65 32.32 38.46 57.69 74.00 -16.31 74.00 -25.69 2390.00 4.90 32.35 38.46 49.52 48.31 2402.38 32.41 38.46 101.53 100.40 74.00 26.40 4.92



Report No.: SZEM150700442502

Page: 48 of 56

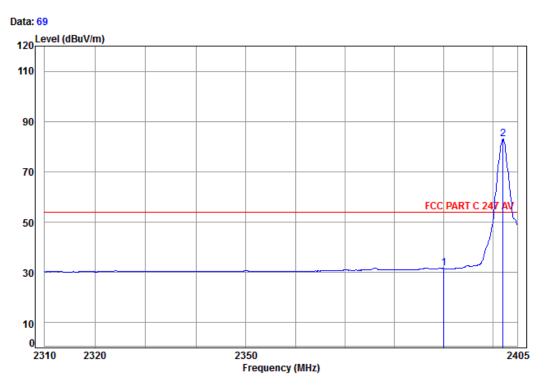
Test mode: GFSK Test channel: Lowest Remark: Peak Horizontal

Site : chamber

Condition: FCC PART C 247 PK 3m Horizontal

Job No: : 4425CR

Mode: : 2402 Band edge BLE


Cable Ant Preamp Read Limit 0ver Loss Factor Factor Freq line limit Level Level MHz dB dB/m dB dBuV dBuV/m dBuV/m 1 2386.37 4.90 32.32 38.46 62.13 60.89 74.00 -13.11 2390.00 4.90 32.35 38.46 51.52 50.31 74.00 -23.69 2402.38 4.92 32.41 38.46 104.15 103.02 74.00 29.02

Report No.: SZEM150700442502

Page: 49 of 56

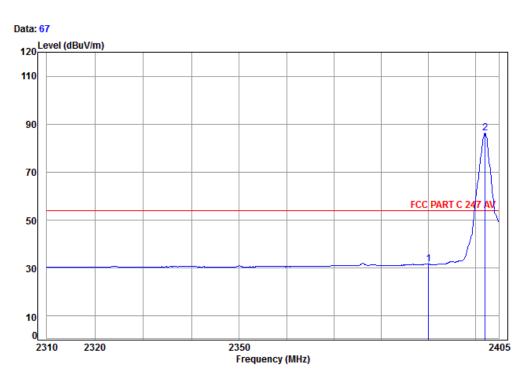
Test mode	: GFSK	Test channel:	Lowest	Remark:	Average	Vertical	
-----------	--------	---------------	--------	---------	---------	----------	--

Site : chamber

Condition: FCC PART C 247 AV 3m Vertical

Job No: : 4425CR

Mode: : 2402 Band edge BLE


Cable Ant Preamp Read Limit Loss Factor Factor Level Level Line Limit dBuV dBuV/m dBuV/m MHz dΒ dB/m dB 2390.00 4.90 32.35 38.46 32.83 31.62 54.00 -22.38 4.92 32.41 38.46 84.23 83.10 54.00 29.10 2402.09

Report No.: SZEM150700442502

Page: 50 of 56

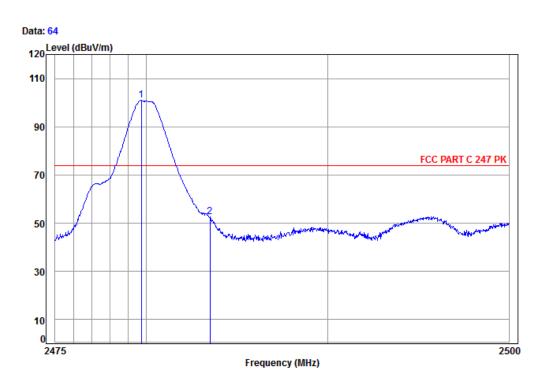
Test mode: GFSK Test channel: Lowest Remark: Average Horizontal

Site : chamber

Condition: FCC PART C 247 AV 3m Horizontal

Job No: : 4425CR

Mode: : 2402 Band edge BLE


Ant Preamp Limit 0ver Read Loss Factor Factor Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m 2390.00 4.90 32.35 38.46 32.86 31.65 54.00 -22.35 4.92 32.41 38.46 87.39 86.26 54.00 32.26 2402.09

Report No.: SZEM150700442502

Page: 51 of 56

Test mode: GFSK Test channel: Highest Remark: Peak Vertical

Site : chamber

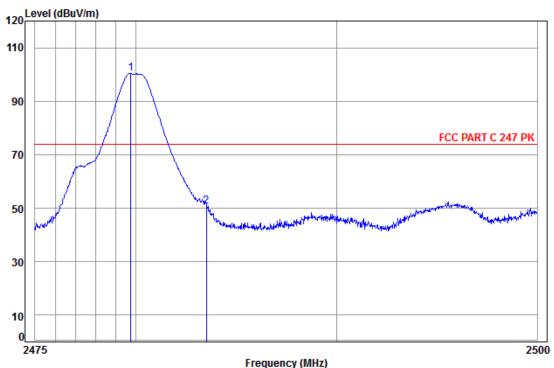
Condition: FCC PART C 247 PK 3m Vertical

Job No: : 4425CR

Mode: : 2480 Band edge BLE

Ant Preamp Cable Read Limit Over Loss Factor Factor Limit Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 2479.73 5.02 32.44 38.47 101.93 100.92 74.00 26.92

5.03 32.44 38.47 53.48 52.48 74.00 -21.52



Report No.: SZEM150700442502

Page: 52 of 56

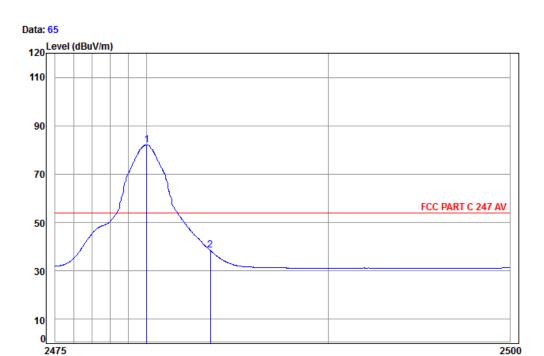
Test mode: G	GFSK	Test channel:	Highest	Remark:	Peak	Horizontal
--------------	------	---------------	---------	---------	------	------------

Site : chamber

Condition: FCC PART C 247 PK 3m Horizontal

Job No: : 4425CR

Mode: : 2480 Band edge BLE


Cable Ant Preamp 0ver Read limit Loss Factor Factor Level Level Line Limit MHz dBuV dBuV/m dBuV/m dB dB/m dB 5.02 32.44 38.47 101.48 100.47 74.00 26.47 2479.76 2483.50 5.03 32.44 38.47 51.78 50.78 74.00 -23.22

Report No.: SZEM150700442502

Page: 53 of 56

Test mode: GFSK Test channel: Highest Remark: Average Vertical

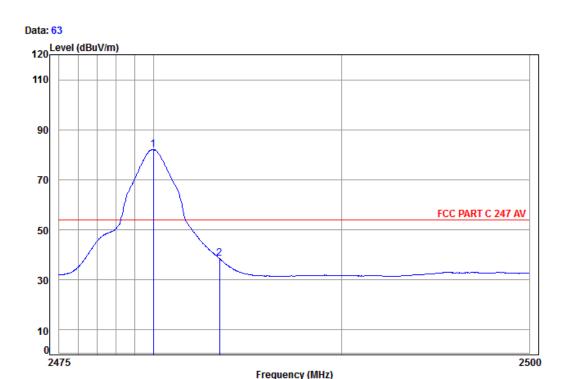
Frequency (MHz)

Site : chamber

Condition: FCC PART C 247 AV 3m Vertical

Job No: : 4425CR

Mode: : 2480 Band edge BLE


Cable Ant Preamp Limit 0ver Loss Factor Factor Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m 2480.01 5.02 32.44 38.47 83.23 82.22 54.00 28.22 5.03 32.44 38.47 39.63 38.63 54.00 -15.37 2483.50

Report No.: SZEM150700442502

54 of 56 Page:

Test mode: GF	FSK Test chann	nel: Highest Re	Remark: Average	Horizontal
---------------	----------------	-----------------	-----------------	------------

Site : chamber

Condition: FCC PART C 247 AV 3m Horizontal

: 4425CR

: 2480 Band edge BLE Mode:

ad Limit Over
el Level Line Limit
uV dBuV/m dBuV/m dB
16 82.15 54.00 28.15
59 38.59 54.00 -15.41

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No.: SZEM150700442502

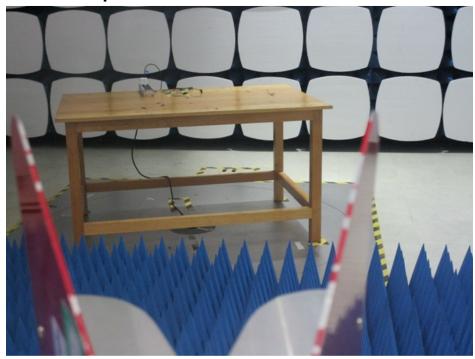
Page: 55 of 56

7 Photographs - EUT Test Setup

Test model No.: RESPONSE

7.1 Conducted Emission

7.2 Radiated Emission



Report No.: SZEM150700442502

Page: 56 of 56

7.3 Radiated Spurious Emission

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1507004425CR.