

# Honeywell International Inc.

## ADDENDUM TO TEST REPORT 95223-6

**AESU Processor  
Model: ISP-80C  
Part Number: 965-1694-002**

**Tested To The Following Standards:**

**FCC Part 87**

**Report No.: 95223-6A**

**Date of issue: March 20, 2014**



This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

## TABLE OF CONTENTS

|                                                            |    |
|------------------------------------------------------------|----|
| Administrative Information .....                           | 3  |
| Test Report Information .....                              | 3  |
| Revision History .....                                     | 3  |
| Report Authorization .....                                 | 3  |
| Test Facility Information .....                            | 4  |
| Software Versions .....                                    | 4  |
| Site Registration & Accreditation Information .....        | 4  |
| Summary of Results .....                                   | 5  |
| Conditions During Testing .....                            | 5  |
| Equipment Under Test .....                                 | 6  |
| Peripheral Devices .....                                   | 6  |
| FCC Part(s) 2 / 87 .....                                   | 7  |
| 2.1046 / 87.131 RF Power Output .....                      | 7  |
| 2.1047 Modulation Characteristics .....                    | 10 |
| 2.1049 / 87.135 Occupied Bandwidth .....                   | 11 |
| 2.1051 Spurious Emissions at Antenna Terminals .....       | 22 |
| 2.1053 / 87.139 Field Strength of Spurious Radiation ..... | 52 |
| 2.1055 / 87.133 Frequency Stability .....                  | 58 |
| Supplemental Information .....                             | 65 |
| Measurement Uncertainty .....                              | 65 |
| Emissions Test Details .....                               | 65 |

## ADMINISTRATIVE INFORMATION

### Test Report Information

**REPORT PREPARED FOR:**

Honeywell International Inc.  
15001 NE 36th Street, M/S-Qual Lab  
Redmond, WA 98052

Representative: Brian McAdams  
Customer Reference Number: 6400231228

**REPORT PREPARED BY:**

Morgan Tramontin  
CKC Laboratories, Inc.  
5046 Sierra Pines Drive  
Mariposa, CA 95338

Project Number: 95223

**DATE OF EQUIPMENT RECEIPT:**  
**DATE(S) OF TESTING:**

February 25, 2014  
February 25-28, 2014

### Revision History

**Original:** Testing of AE55 Processor, 965-1694-002 to FCC Part 87.

**Addendum A:** To correct specification limit on all data from 47 CFR 87.139(h) to 47 CFR 87.139(a) in Spurious Emissions sections. Insert corrected test data in Radiated Spurious Emissions section.

### Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.



*Steve Behm*  
*Director of Quality Assurance & Engineering Services*  
*CKC Laboratories, Inc.*

## Test Facility Information



Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

**TEST LOCATION(S):**  
CKC Laboratories, Inc.  
22116 23rd Drive S.E., Suite A  
Bothell, WA 98021-4413

## Software Versions

| CKC Laboratories Proprietary Software | Version |
|---------------------------------------|---------|
| EMITest Emissions                     | 5.00.14 |
| Immunity                              | 5.00.07 |

## Site Registration & Accreditation Information

| Location | CB #   | TAIWAN         | CANADA  | FCC    | JAPAN  |
|----------|--------|----------------|---------|--------|--------|
| Bothell  | US0081 | SL2-IN-E-1145R | 3082C-1 | 318736 | A-0148 |

## SUMMARY OF RESULTS

### Standard / Specification: FCC Part(s) 2 / 87

| Test Procedure/Method             | Description                             | Results |
|-----------------------------------|-----------------------------------------|---------|
| 2.1046 / 87.131 / TIA / EIA 603-C | RF Power Output                         | Pass    |
| 2.1047                            | Modulation Characteristics              | NA      |
| 2.1049 / 87.135 / TIA / EIA 603-C | Occupied Bandwidth                      | Pass    |
| 2.1051                            | Spurious Emissions at Antenna Terminals | Pass    |
| 2.1053 / 87.139 / TIA / EIA 603-C | Field Strength of Spurious Radiation    | Pass    |
| 2.1055 / 87.133 / TIA / EIA 603-C | Frequency Stability                     | Pass    |

NA = Not applicable. See the section in the report for the reason.

### Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

| Summary of Conditions |
|-----------------------|
| None                  |
|                       |

## EQUIPMENT UNDER TEST (EUT)

### EQUIPMENT UNDER TEST

#### AESU Processor

Manuf: Honeywell International Inc.

Model: ISP-80C

Part Number: 965-1694-002

Serial: ISPA-000146

### PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

#### TCAS Antenna Simulator

Manuf: Honeywell

Model: 727-0016-001

Serial: 0068

#### TCAS Antenna Simulator

Manuf: Honeywell

Model: 727-0016-001

Serial: 0081

#### AESU EMI Harness

Manuf: Honeywell

Model: 014-1089-004 REV

Serial: None

#### AESS Engineering Test Station

Manuf: Honeywell

Model: 951-0404-013

Serial: 218

## FCC PART(S) 2 / 87

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) requirements for 47 CFR Part 2: Frequency Allocations and Radio Treaty Matters, General Rules and Regulations and Licensed Device falling under Part 87: Aviation Services.

### 2.1046 / 87.131 RF Power Output

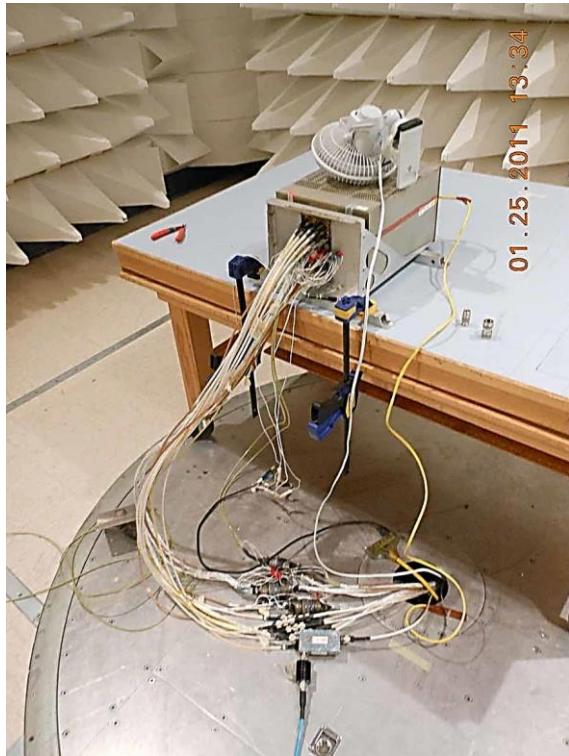
#### Test Conditions

The input of the directional coupler is directly attached to each antenna port and the output to the simulated antenna loads. The forward power will be measured through the forward power port attenuator and cables.

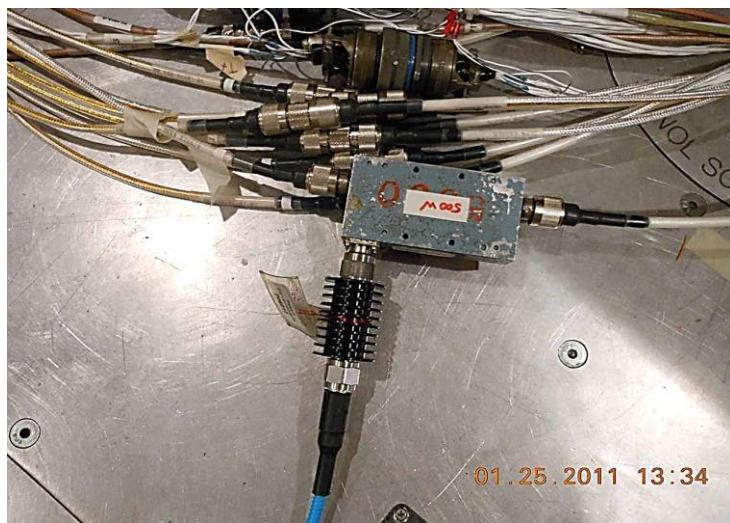
Temperature: 22°C

Pressure: 104.0kPa

Humidity: 35%


Engineer Name: Steven Pittsford

| Test Equipment |                     |                      |              |            |            |
|----------------|---------------------|----------------------|--------------|------------|------------|
| Asset #        | Description         | Model                | Manufacturer | Cal Date   | Cal Due    |
| 02872          | Spectrum Analyzer   | E4440A               | Agilent      | 7/19/2013  | 7/19/2015  |
| P01906         | Directional Coupler | 3002-30              | Narda        | 6/18/2013  | 6/18/2015  |
| P06505         | Cable               | 32026-29080-29080-84 | Astrolab     | 10/18/2013 | 10/18/2015 |
| P05547         | Cable               | Heliax               | Andrews      | 9/7/2012   | 9/7/2014   |
| P06217         | Attenuator          | 768-10               | Narda        | 3/31/2013  | 3/31/2015  |


### Test Data

| Frequency<br>(MHz) | Antenna Port | Mode | Spectrum<br>Analyzer<br>measurement<br>(dBm) | Loss due to<br>Cables &<br>Attenuators | Corrected<br>Peak Power<br>(dBm) | Peak<br>Power<br>(Watts) |
|--------------------|--------------|------|----------------------------------------------|----------------------------------------|----------------------------------|--------------------------|
| <b>1030</b>        | <b>1</b>     | S    | 6.4                                          | 41.6                                   | 48.0                             | 63.1                     |
|                    |              | C    | 4.8                                          | 43.2                                   | 48.0                             | 63.1                     |
| <b>1090</b>        | <b>1</b>     | S    | 3.2                                          | 43.0                                   | 46.2                             | 41.7                     |
|                    |              | C    | 3.8                                          | 43.0                                   | 46.8                             | 47.9                     |
| <b>1030</b>        | <b>2</b>     | S    | 5.2                                          | 41.6                                   | 46.8                             | 47.9                     |
|                    |              | C    | 4.7                                          | 43.2                                   | 47.9                             | 61.7                     |
| <b>1090</b>        | <b>2</b>     | S    | 3.8                                          | 43.0                                   | 46.8                             | 47.9                     |
|                    |              | C    | 4.9                                          | 43.0                                   | 47.9                             | 61.7                     |
| <b>1030</b>        | <b>3</b>     | S    | 5.5                                          | 41.6                                   | 47.1                             | 51.3                     |
|                    |              | C    | 5.0                                          | 43.2                                   | 48.2                             | 66.1                     |
| <b>1090</b>        | <b>3</b>     | S    | 3.0                                          | 43.0                                   | 46                               | 39.8                     |
|                    |              | C    | 4.1                                          | 43.0                                   | 47.2                             | 52.5                     |
| <b>1030</b>        | <b>4</b>     | S    | 5.7                                          | 41.6                                   | 47.3                             | 53.7                     |
|                    |              | C    | 3.7                                          | 43.2                                   | 46.9                             | 49.0                     |
| <b>1090</b>        | <b>4</b>     | S    | 2.6                                          | 43.0                                   | 45.6                             | 36.3                     |
|                    |              | C    | 3.8                                          | 43.0                                   | 46.8                             | 47.9                     |
| <b>1030</b>        | <b>TOTAL</b> | S    |                                              |                                        | <b>53.3</b>                      | <b>216.0</b>             |
|                    | <b>TOTAL</b> | C    |                                              |                                        | <b>53.8</b>                      | <b>239.9</b>             |
| <b>1090</b>        | <b>TOTAL</b> | S    |                                              |                                        | <b>52.2</b>                      | <b>165.7</b>             |
|                    | <b>TOTAL</b> | C    |                                              |                                        | <b>53.2</b>                      | <b>210.0</b>             |

## Test Setup Photo(s)



Overall Test Setup



Test Setup Close

**Note: These photos were taken on 2/25/2014.**

## 2.1047 Modulation Characteristics

|                                                                                                 |                  |                        |        |
|-------------------------------------------------------------------------------------------------|------------------|------------------------|--------|
| <b>Test Engineer:</b>                                                                           | Steven Pittsford | <b>Test Procedure:</b> | 2.1047 |
| <b>Test Level:</b>                                                                              | NA               |                        |        |
| <b>Declarations:</b> Not applicable because the EUT does not employ modulation characteristics. |                  |                        |        |

## 2.1049 /87.135 Occupied Bandwidth

### Test Conditions

Occupied Bandwidth: < 20 MHz for 99% of transmitted power.

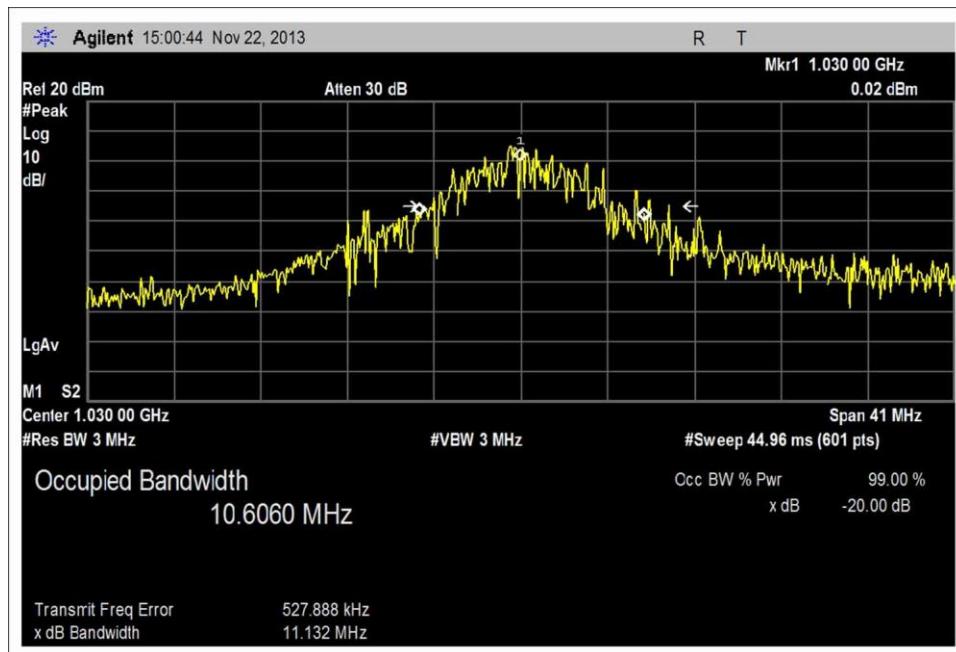
The input of the directional coupler is directly attached to each antenna port and the output to the simulated antenna loads. The forward power will be measured through the forward power port attenuator and cables.

Temperature: 22°C

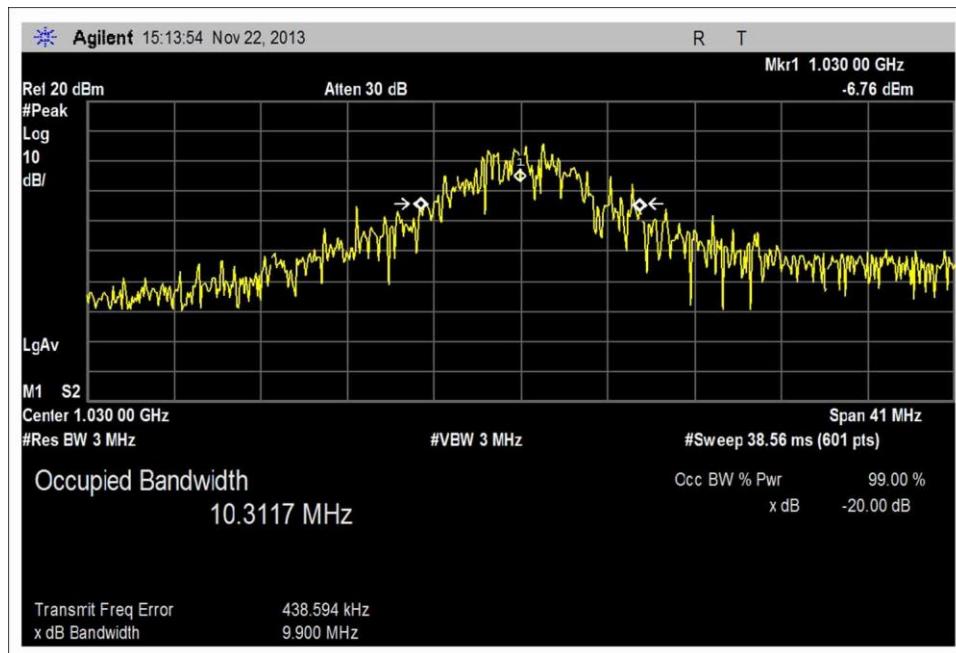
Pressure: 104.0kPa

Humidity: 35%

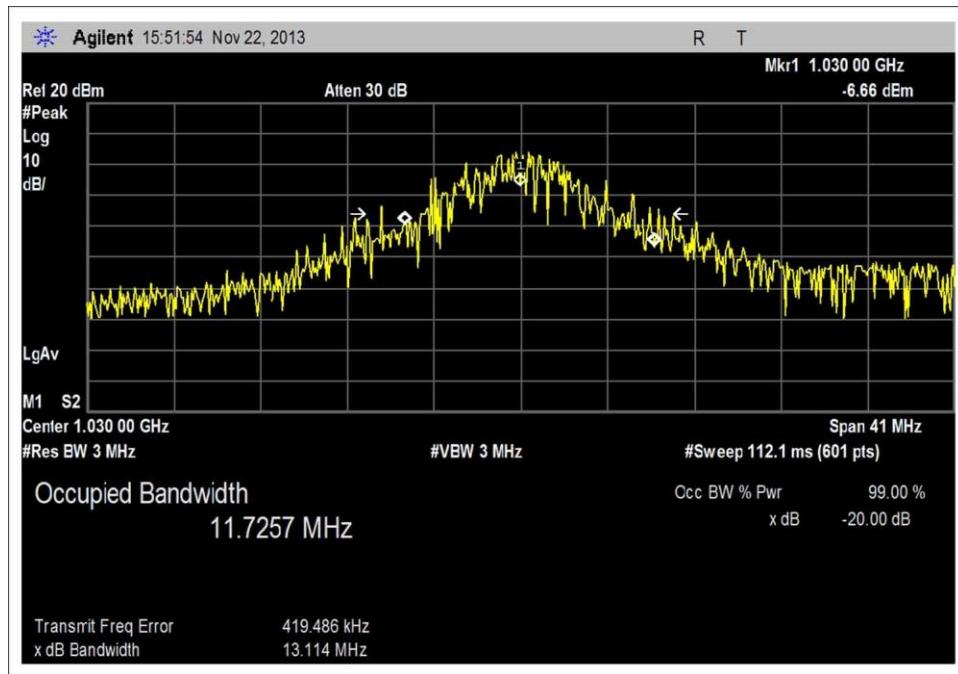
Engineer Name: Steven Pittsford


### Test Equipment

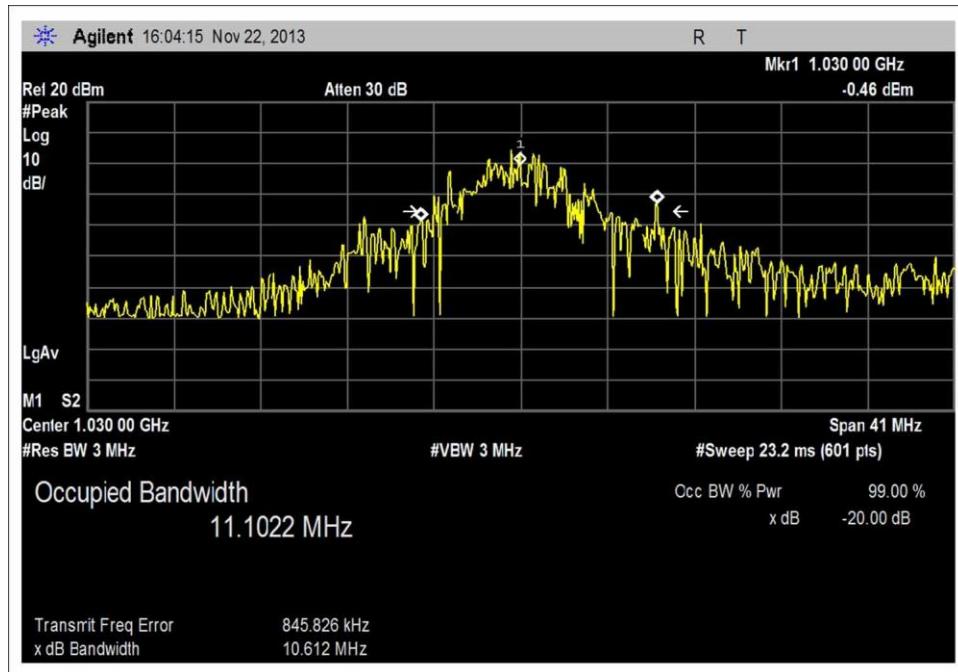
| Asset # | Description         | Model                | Manufacturer | Cal Date   | Cal Due    |
|---------|---------------------|----------------------|--------------|------------|------------|
| 02872   | Spectrum Analyzer   | E4440A               | Agilent      | 7/19/2013  | 7/19/2015  |
| P01906  | Directional Coupler | 3002-30              | Narda        | 6/18/2013  | 6/18/2015  |
| P06505  | Cable               | 32026-29080-29080-84 | Astrolab     | 10/18/2013 | 10/18/2015 |
| P05547  | Cable               | Heliax               | Andrews      | 9/7/2012   | 9/7/2014   |
| P06217  | Attenuator          | 768-10               | Narda        | 3/31/2013  | 3/31/2015  |


## Test Data

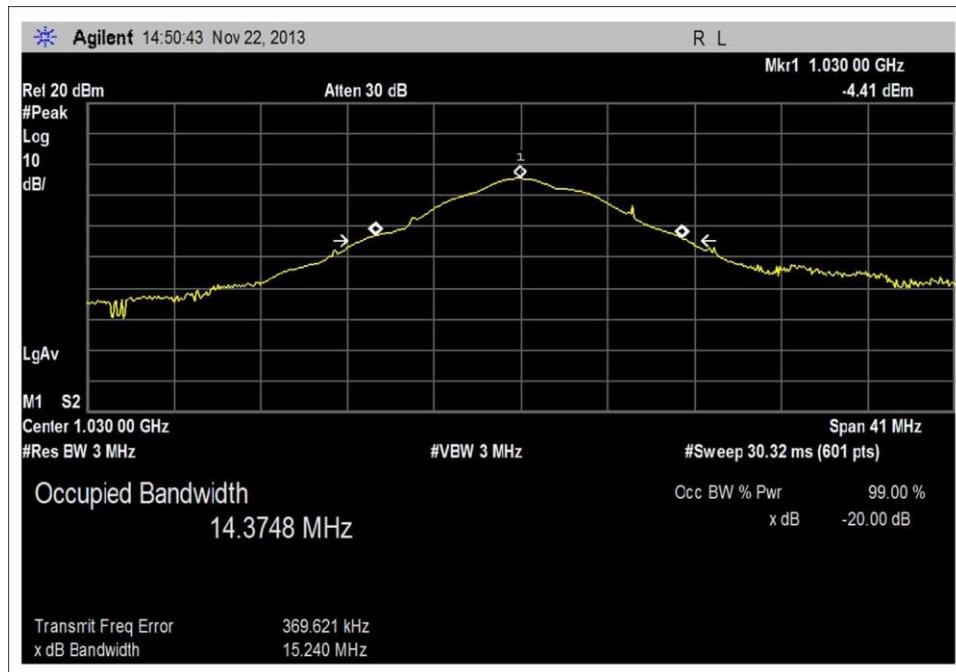
| Frequency (MHz) | Antenna Port | Mode | OBW (MHz) |
|-----------------|--------------|------|-----------|
| <b>1030</b>     | <b>1</b>     | S    | 14.3748   |
|                 |              | C    | 10.6060   |
| <b>1090</b>     | <b>1</b>     | S    | 10.1540   |
|                 |              | C    | 10.3408   |
| <b>1030</b>     | <b>2</b>     | S    | 15.0963   |
|                 |              | C    | 10.3117   |
| <b>1090</b>     | <b>2</b>     | S    | 11.3667   |
|                 |              | C    | 11.4246   |
| <b>1030</b>     | <b>3</b>     | S    | 14.9704   |
|                 |              | C    | 11.7257   |
| <b>1090</b>     | <b>3</b>     | S    | 11.1525   |
|                 |              | C    | 11.1804   |
| <b>1030</b>     | <b>4</b>     | S    | 16.0229   |
|                 |              | C    | 11.1022   |
| <b>1090</b>     | <b>4</b>     | S    | 10.6001   |
|                 |              | C    | 10.5802   |


## Test Plots

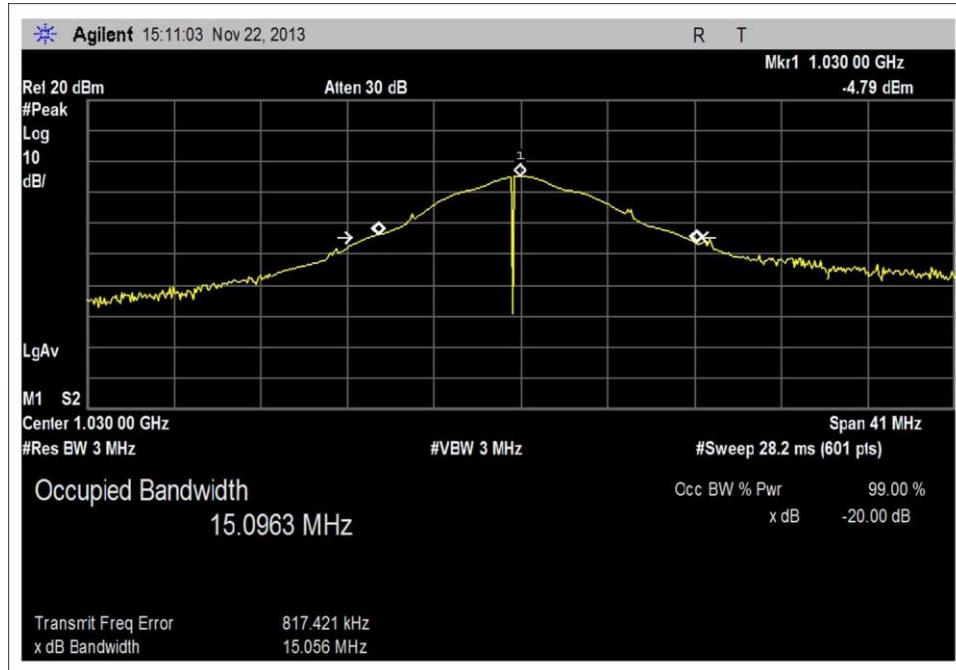



1030 C T1

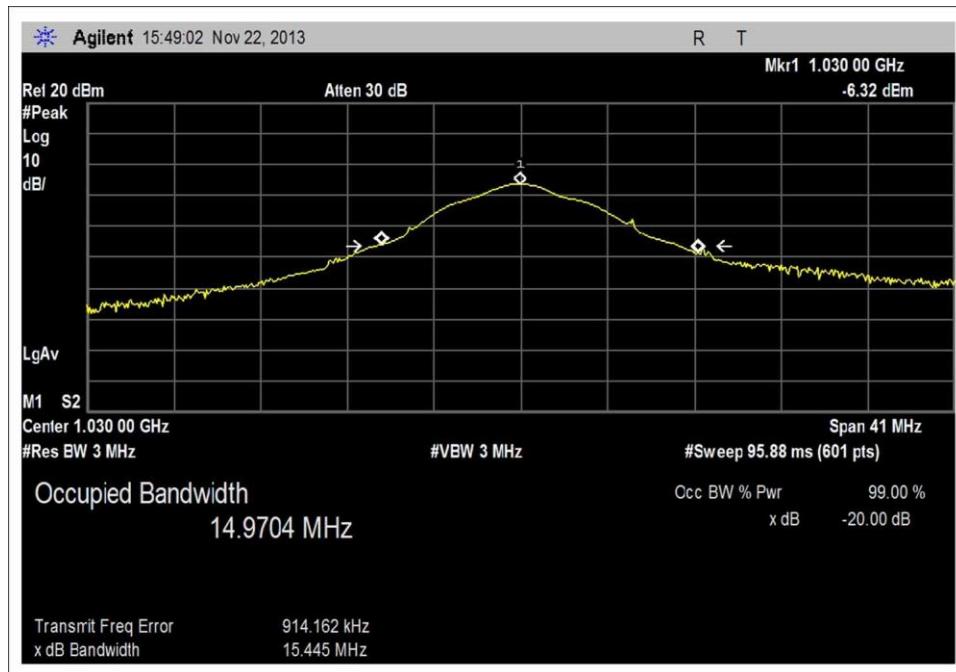



1030 C T2

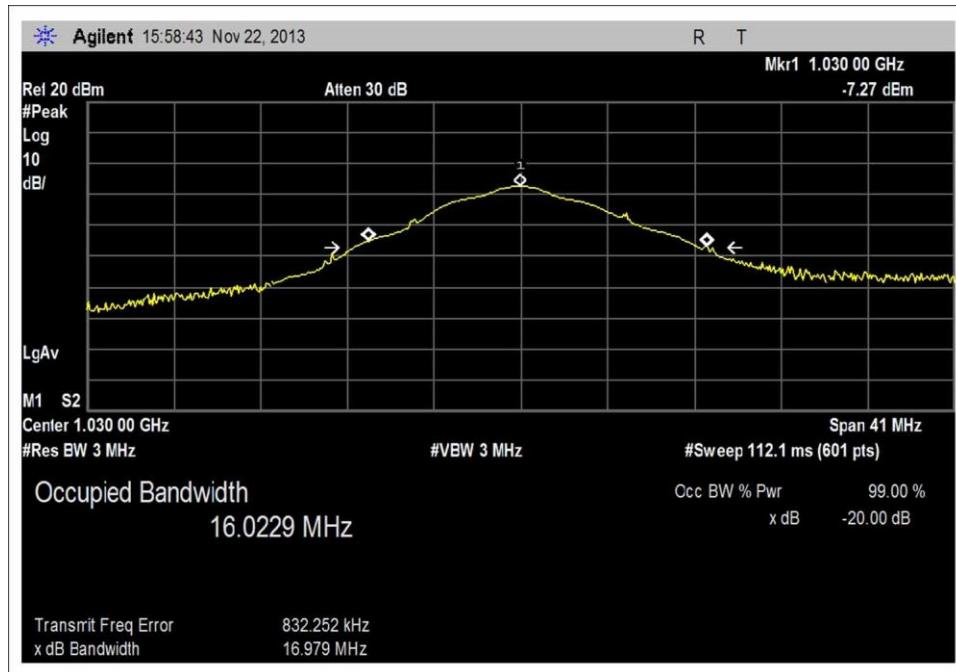



1030 C T3

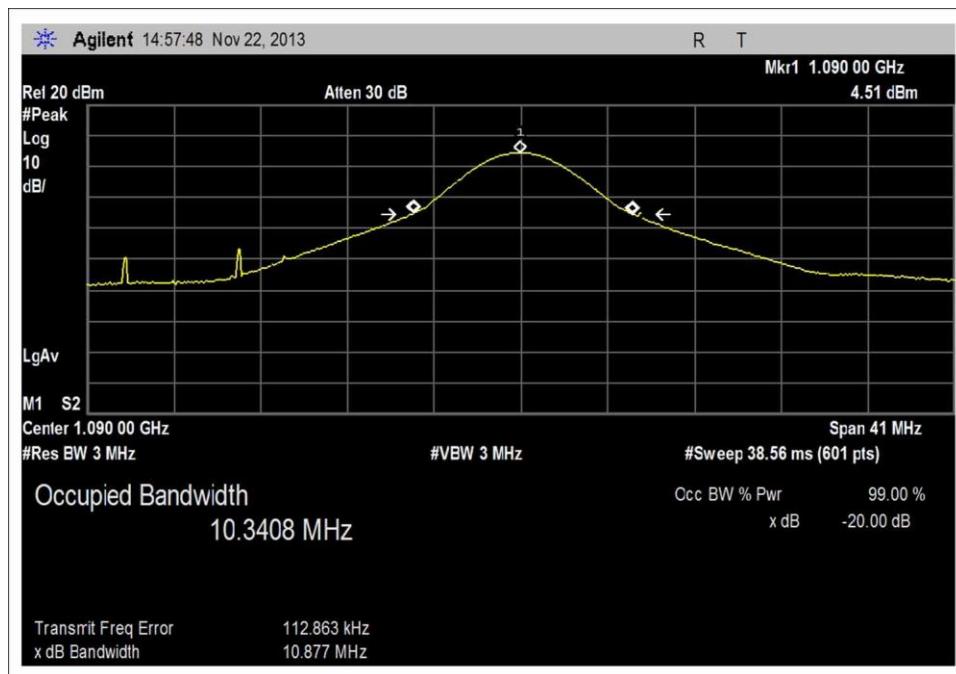



1030 C T4

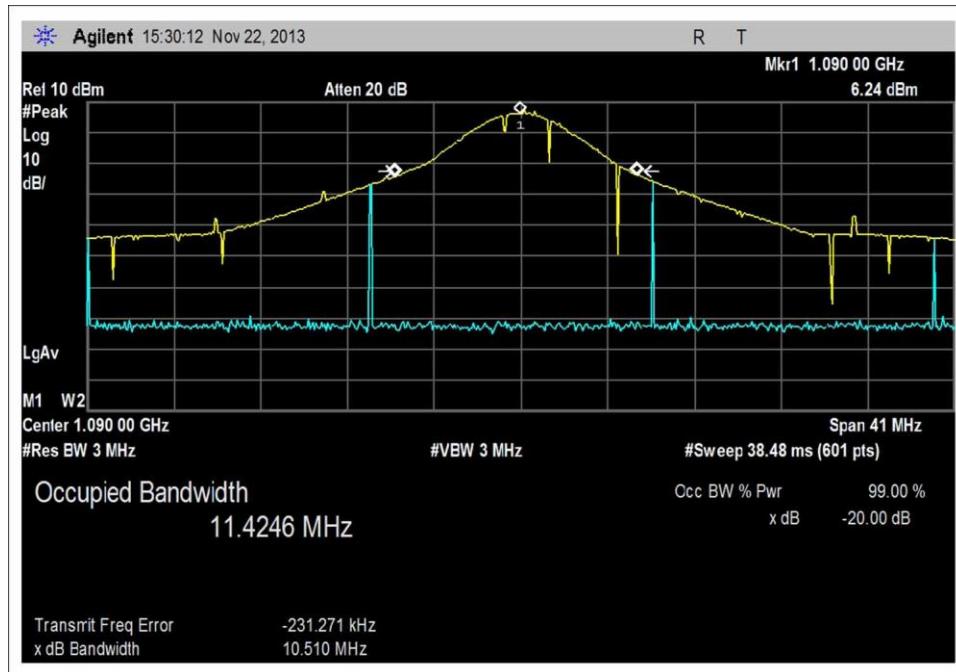



1030 S T1

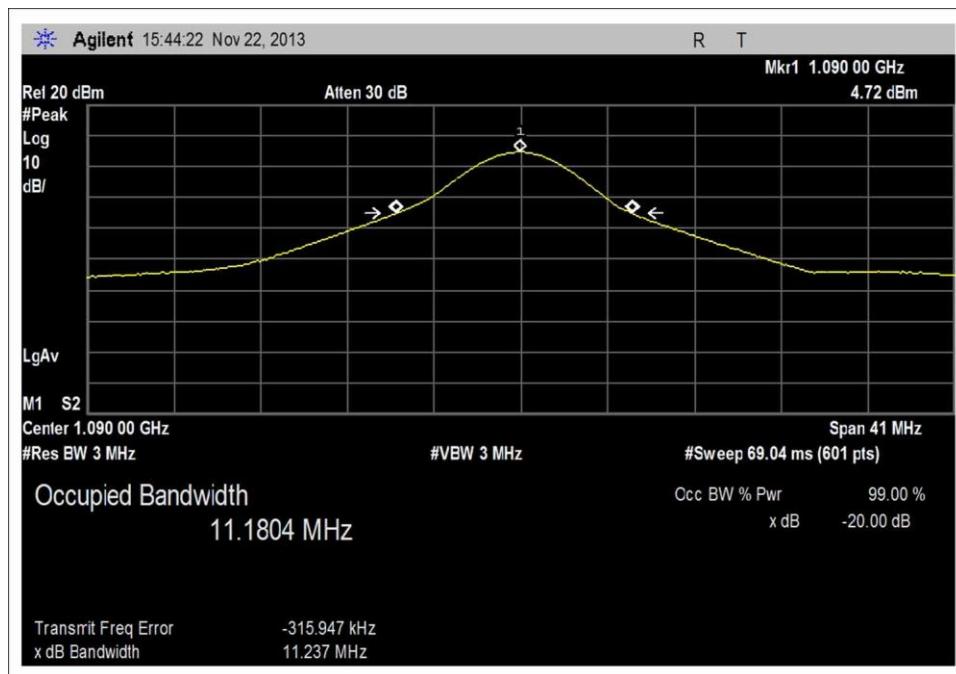



1030 S T2

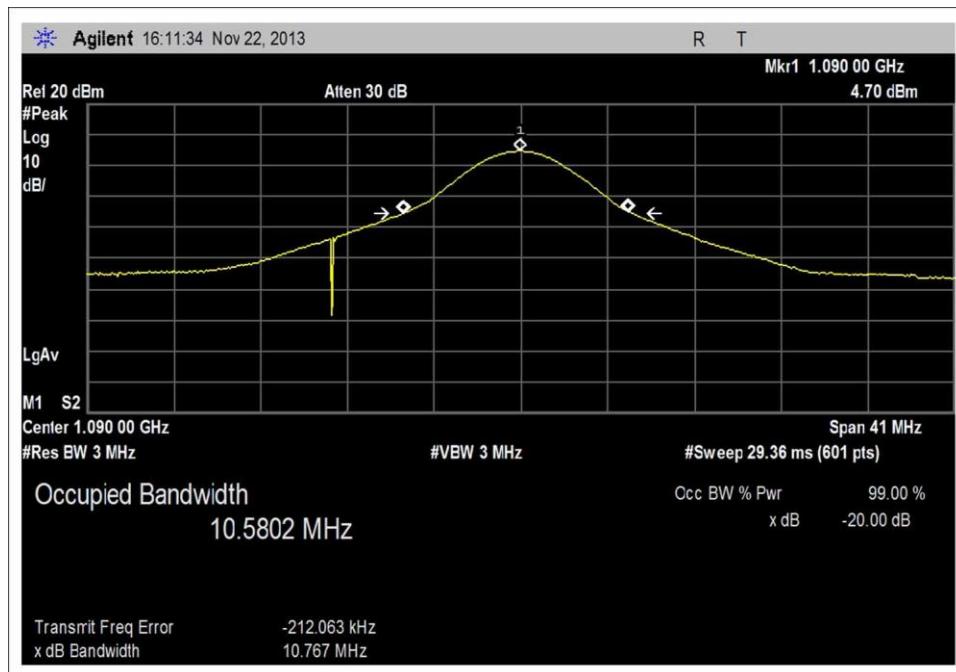



1030 S T3

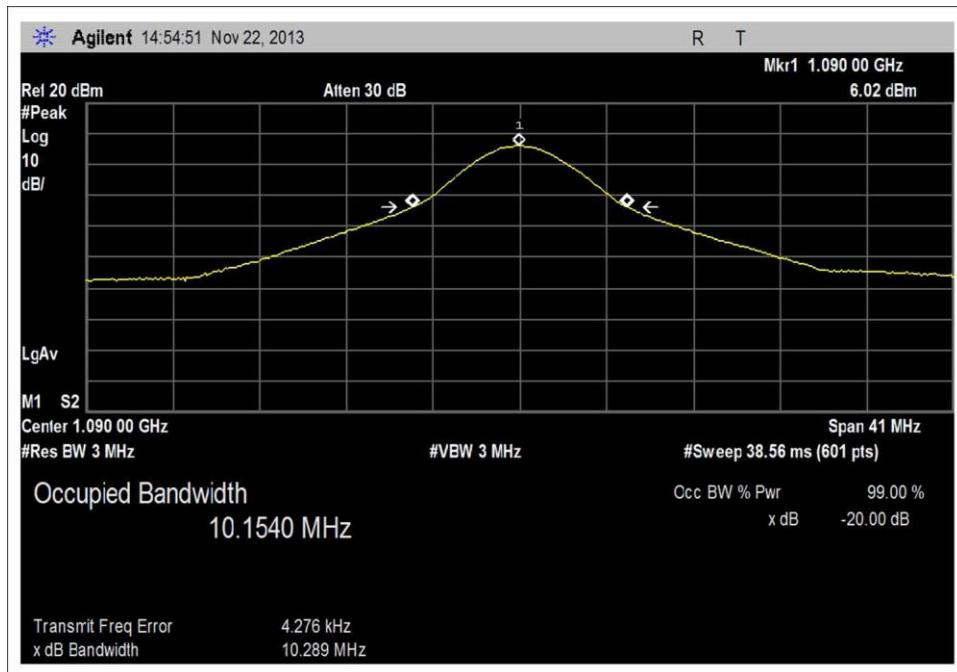



1030 S T4

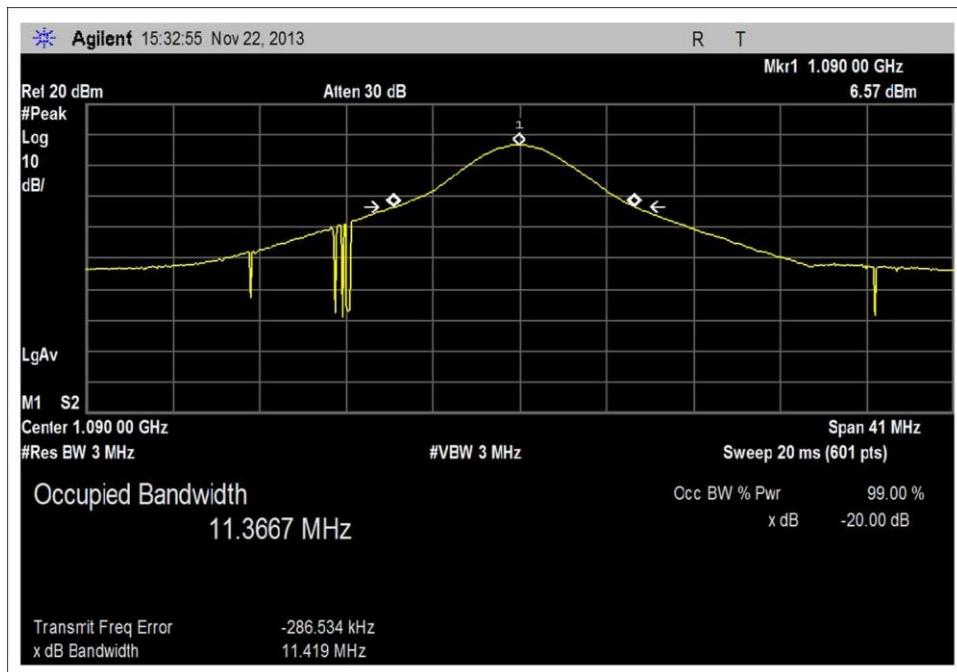



1090 C T1

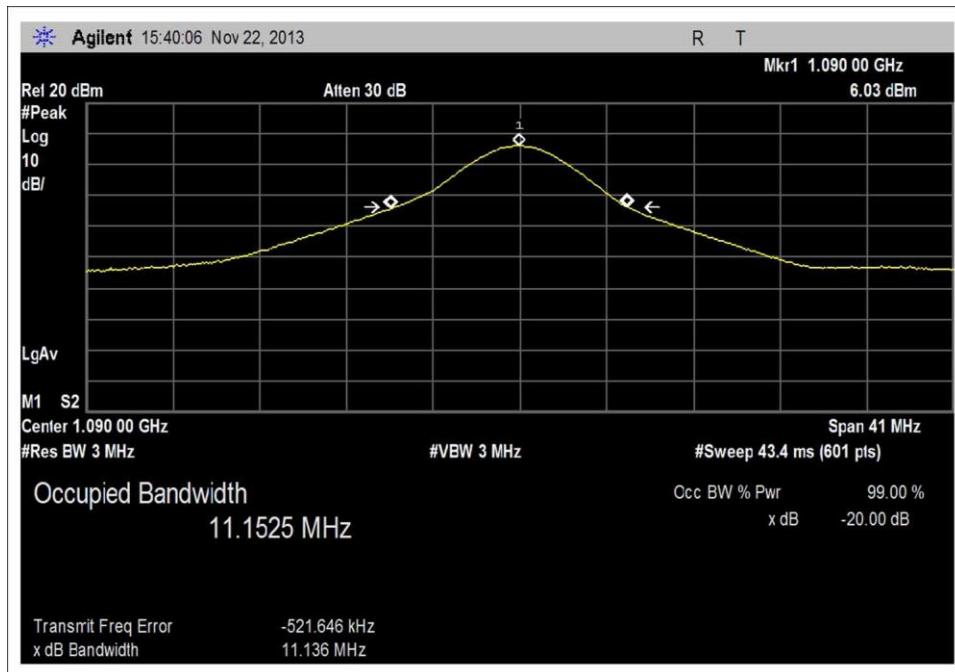



1090 C T2

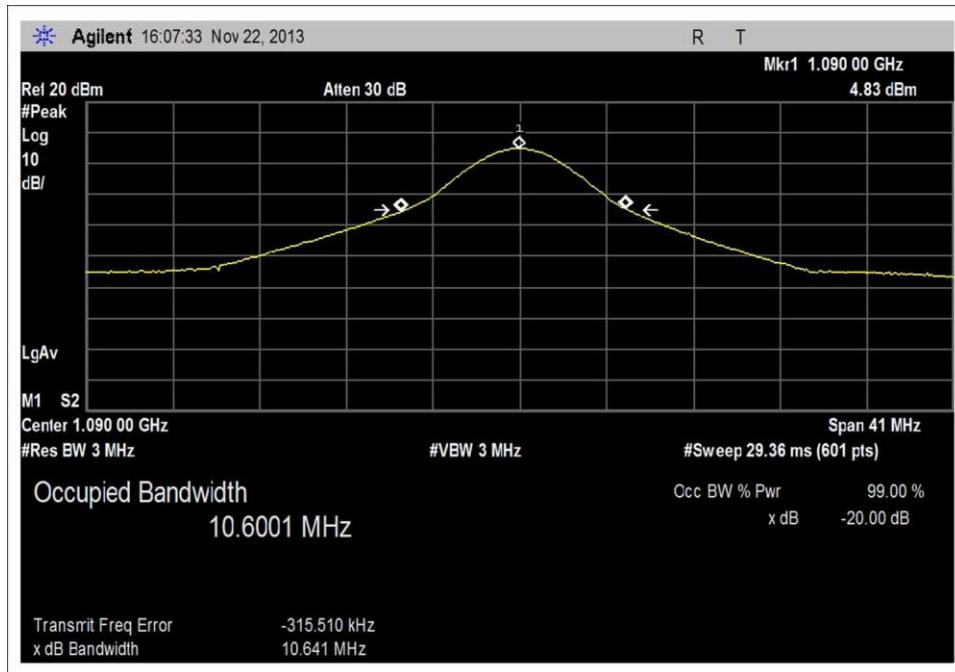



1090 C T3



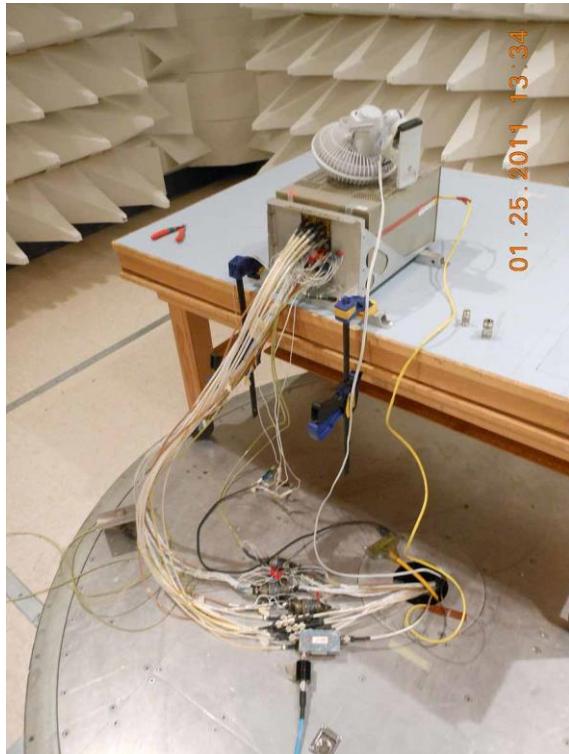

1090 C T4




1090 S T1



1090 S T2




1090 S T3



1090 S T4

## Test Setup Photo(s)



Overall Test Setup



Test Setup Close  
Note: Photos were taken day of testing 2/27/2014.

## 2.1051 Spurious Emissions at Antenna Terminals

### Test Conditions

The mask is checked at mode C at 1030MHz which only operates while 1090MHz is also operating. Mode S 1030MHz, Mode S 1090MHz and Mode C 1090MHz all operate independently and are tested one at a time. The input of the directional coupler is directly attached to each antenna port and the output to the simulated antenna loads. The forward power will be measured through the forward power port attenuator and cables.

Temperature: 22°C

Pressure: 104.0kPa

Humidity: 32%

Engineer Name: Steven Pittsford

### Test Equipment

| Asset # | Description         | Model                | Manufacturer | Cal Date   | Cal Due    |
|---------|---------------------|----------------------|--------------|------------|------------|
| 02872   | Spectrum Analyzer   | E4440A               | Agilent      | 7/19/2013  | 7/19/2015  |
| P01906  | Directional Coupler | 3002-30              | NARDA        | 6/18/2013  | 6/18/2015  |
| P06505  | Cable               | 32026-29080-29080-84 | Astrolab     | 10/18/2013 | 10/18/2015 |
| P05547  | Cable               | Heliax               | Andrews      | 9/7/2012   | 9/7/2014   |
| P06217  | Attenuator          | 768-10               | Narda        | 3/31/2013  | 3/31/2015  |

## Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Honeywell International Inc.**  
 Specification: **47 CFR §87.139(a) Spurious Emissions**  
 Work Order #: **95223** Date: **2/26/2014**  
 Test Type: **Conducted Emissions** Time: **12:37:23**  
 Equipment: **AESU Processor** Sequence#: **3**  
 Manufacturer: Honeywell International Inc. Tested By: Steven Pittsford  
 Model: ISP-80C (965-1694-002) 115V 400Hz  
 S/N: ISPA-000146

**Test Equipment:**

| ID  | Asset #  | Description                                   | Model                | Calibration Date | Cal Due Date |
|-----|----------|-----------------------------------------------|----------------------|------------------|--------------|
| T1  | AN02872  | Spectrum Analyzer                             | E4440A               | 7/19/2013        | 7/19/2015    |
| T2  | ANP06505 | Cable                                         | 32026-29080-29080-84 | 10/18/2013       | 10/18/2015   |
| T3  | ANP05547 | Cable                                         | Heliax               | 9/7/2012         | 9/7/2014     |
|     | AN02471  | Directional Coupler                           | DC5000               | 1/25/2013        | 1/25/2015    |
| T4  | AN02030  | Directional Coupler                           | DC6000               | 1/24/2013        | 1/24/2015    |
| T5  | ANP01906 | Directional Coupler                           | 3002-30              | 6/18/2013        | 6/18/2015    |
| T6  | ANP01904 | Directional Coupler                           | 3003-30              | 6/11/2013        | 6/11/2015    |
| T7  | ANP01905 | Directional Coupler                           | 3004-30              | 6/11/2013        | 6/11/2015    |
| T8  | ANP06511 | Directional Coupler- Fwd Pwr Port 1 Factor dB | 17566-03             | 10/31/2013       | 10/31/2015   |
| T9  | AN03209  | Preamp                                        | 83051A               | 3/5/2013         | 3/5/2015     |
| T10 | ANP06512 | Directional Coupler- Fwd Pwr Port 1 Factor dB | 18325-01             | 10/31/2013       | 10/31/2015   |
| T11 | AN00952A | Directional Coupler                           | DC2000               | 2/26/2014        | 2/26/2016    |

**Equipment Under Test (\* = EUT):**

| Function        | Manufacturer                 | Model #                | S/N         |
|-----------------|------------------------------|------------------------|-------------|
| AESU Processor* | Honeywell International Inc. | ISP-80C (965-1694-002) | ISPA-000146 |

**Support Devices:**

| Function                      | Manufacturer | Model #          | S/N  |
|-------------------------------|--------------|------------------|------|
| TCAS Antenna Simulator        | Honeywell    | 727-0016-001     | 0068 |
| TCAS Antenna Simulator        | Honeywell    | 727-0016-001     | 0081 |
| AESU EMI Harness              | Honeywell    | 014-1089-004 REV |      |
| AEES Engineering Test Station | Honeywell    | 951-0404-013     | 218  |

**Test Conditions / Notes:**

Temperature: 22°C

Pressure: 104.0kPa

Humidity: 35%

Frequency: 9kHz-14GHz

The EUT is sitting on an 80cm test table.

The EUT is connected to the support equipment outside the chamber through the EMI Harness.

The Antenna terminals are terminated by a characteristic loads located outside the chamber.

The EUT is transmitting at full power Mode S &amp; C at 1030MHz and 1090MHz simultaneously.

CISPR Bandwidths below 150kHz

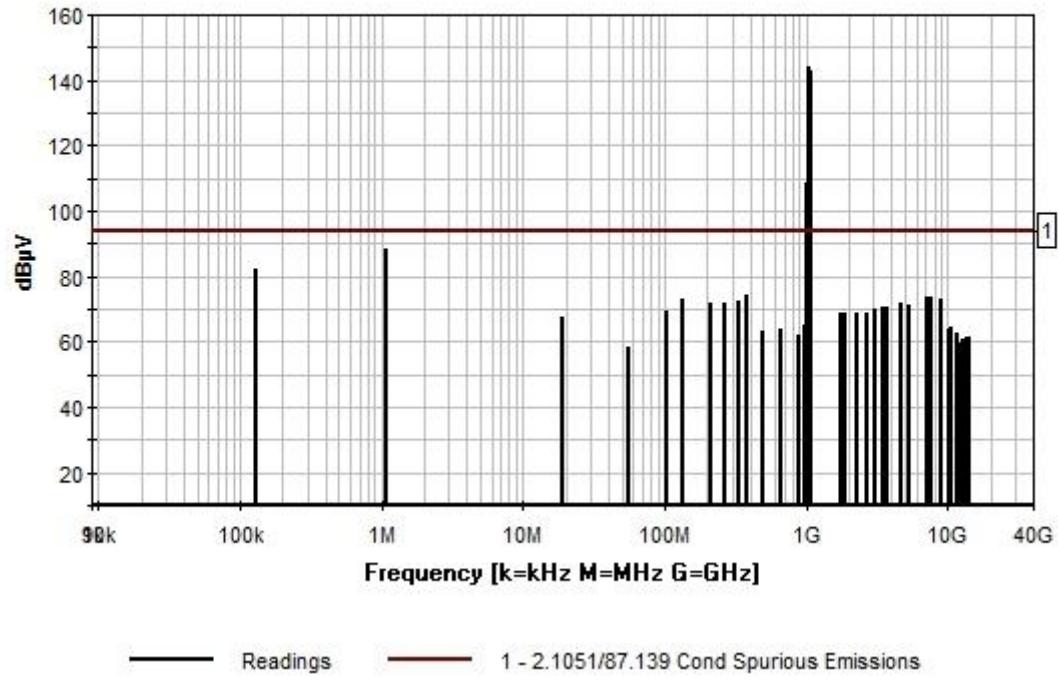
1) Resolution Bandwidth = 10 kHz for spurious emissions 150kHz - 1 GHz, and 1 MHz for spurious emissions above 1GHz.

2) Video Bandwidth = 300 kHz for spurious emissions 150kHz - 1 GHz, and 3 MHz for spurious emissions above 1 GHz.

3) Sweep Speed slow enough to maintain measurement calibration.

4) Detector Mode = Positive Peak.

Test Method TIA-603 C


Ext Attn: 0 dB

| # | Freq<br>MHz | Rdng<br>dB $\mu$ V | Reading listed by margin. |                 |                 |          | Test Lead: T1 |                    |                    |              |
|---|-------------|--------------------|---------------------------|-----------------|-----------------|----------|---------------|--------------------|--------------------|--------------|
|   |             |                    | T1<br>T5<br>T9            | T2<br>T6<br>T10 | T3<br>T7<br>T11 | T4<br>T8 | Dist<br>Table | Corr<br>dB $\mu$ V | Spec<br>dB $\mu$ V | Margin<br>dB |
|   |             |                    |                           |                 |                 |          |               |                    |                    | Polar<br>Ant |
| 1 | 1030.000M   | 111.2              | +0.0                      | +0.9            | +1.6            | +0.0     | +0.0          | 144.3              | 94.0               | +50.3        |
|   |             | Ambient            | +30.6                     | +0.0            | +0.0            | +0.0     |               |                    |                    | Fundamenta   |
|   |             |                    | +0.0                      | +0.0            | +0.0            |          |               |                    |                    |              |
| 2 | 1090.000M   | 110.0              | +0.0                      | +1.0            | +1.6            | +0.0     | +0.0          | 142.9              | 94.0               | +48.9        |
|   |             | Ambient            | +30.3                     | +0.0            | +0.0            | +0.0     |               |                    |                    | Fundamenta   |
|   |             |                    | +0.0                      | +0.0            | +0.0            |          |               |                    |                    |              |
| 3 | 1030.000M   | 108.4              | +0.0                      | +0.9            | +1.6            | +0.0     | +0.0          | 141.5              | 94.0               | +47.5        |
|   |             | Ambient            | +30.6                     | +0.0            | +0.0            | +0.0     |               |                    |                    | Fundamenta   |
|   |             |                    | +0.0                      | +0.0            | +0.0            |          |               |                    |                    |              |
| 4 | 1037.000M   | 98.7               | +0.0                      | +0.9            | +1.6            | +0.0     | +0.0          | 131.8              | 94.0               | +37.8        |
|   |             | Ambient            | +30.6                     | +0.0            | +0.0            | +0.0     |               |                    |                    | Fundamenta   |
|   |             |                    | +0.0                      | +0.0            | +0.0            |          |               |                    |                    |              |
| 5 | 1016.000M   | 75.3               | +0.0                      | +0.9            | +1.6            | +0.0     | +0.0          | 108.5              | 94.0               | +14.5        |
|   |             | Ambient            | +30.7                     | +0.0            | +0.0            | +0.0     |               |                    |                    | Fundamenta   |
|   |             |                    | +0.0                      | +0.0            | +0.0            |          |               |                    |                    |              |
| 6 | 1011.000M   | 70.3               | +0.0                      | +0.9            | +1.6            | +0.0     | +0.0          | 103.5              | 94.0               | +9.5         |
|   |             | Ambient            | +30.7                     | +0.0            | +0.0            | +0.0     |               |                    |                    | Fundamenta   |
|   |             |                    | +0.0                      | +0.0            | +0.0            |          |               |                    |                    |              |
| 7 | 1.075M      | 38.4               | +0.0                      | +0.0            | +0.1            | +0.0     | +0.0          | 88.1               | 94.0               | -5.9         |
|   |             |                    | +0.0                      | +0.0            | +0.0            | +0.0     |               |                    |                    |              |
|   |             |                    | +0.0                      | +0.0            | +49.6           |          |               |                    |                    |              |
| 8 | 129.000k    | 33.1               | +0.0                      | +0.0            | +0.0            | +0.0     | +0.0          | 82.5               | 94.0               | -11.5        |
|   |             |                    | +0.0                      | +0.0            | +0.0            | +0.0     |               |                    |                    |              |
|   |             |                    | +0.0                      | +0.0            | +49.4           |          |               |                    |                    |              |

|    |           |      |       |       |       |      |      |      |      |       |    |
|----|-----------|------|-------|-------|-------|------|------|------|------|-------|----|
| 9  | 384.400M  | 23.1 | +0.0  | +0.6  | +0.9  | +0.0 | +0.0 | 74.0 | 94.0 | -20.0 | T1 |
|    |           |      | +0.0  | +0.0  | +0.0  | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +0.0  |      |      |      |      |       |    |
| 10 | 7012.000M | 39.5 | +0.0  | +2.4  | +4.3  | +0.0 | +0.0 | 73.6 | 94.0 | -20.4 | T1 |
|    |           |      | +0.0  | +0.0  | +27.4 | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +0.0  |      |      |      |      |       |    |
| 11 | 7720.000M | 39.0 | +0.0  | +2.4  | +4.5  | +0.0 | +0.0 | 73.5 | 94.0 | -20.5 | T1 |
|    |           |      | +0.0  | +0.0  | +27.6 | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +0.0  |      |      |      |      |       |    |
| 12 | 8998.000M | 36.7 | +0.0  | +2.7  | +4.7  | +0.0 | +0.0 | 73.0 | 94.0 | -21.0 | T1 |
|    |           |      | +0.0  | +0.0  | +28.9 | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +0.0  |      |      |      |      |       |    |
| 13 | 133.200M  | 22.6 | +0.0  | +0.4  | +0.5  | +0.0 | +0.0 | 73.0 | 94.0 | -21.0 | T1 |
|    |           |      | +0.0  | +0.0  | +0.0  | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +49.5 |      |      |      |      |       |    |
| 14 | 334.600M  | 22.1 | +0.0  | +0.6  | +0.8  | +0.0 | +0.0 | 72.7 | 94.0 | -21.3 | T1 |
|    |           |      | +0.0  | +0.0  | +0.0  | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +0.0  |      |      |      |      |       |    |
| 15 | 208.200M  | 22.6 | +0.0  | +0.4  | +0.6  | +0.0 | +0.0 | 72.1 | 94.0 | -21.9 | T1 |
|    |           |      | +0.0  | +0.0  | +0.0  | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +0.0  |      |      |      |      |       |    |
| 16 | 262.600M  | 22.1 | +0.0  | +0.5  | +0.7  | +0.0 | +0.0 | 72.1 | 94.0 | -21.9 | T1 |
|    |           |      | +0.0  | +0.0  | +0.0  | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +0.0  |      |      |      |      |       |    |
| 17 | 4720.000M | 36.3 | +0.0  | +2.3  | +3.5  | +0.0 | +0.0 | 71.8 | 94.0 | -22.2 | T1 |
|    |           |      | +0.0  | +0.0  | +29.7 | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +0.0  |      |      |      |      |       |    |
| 18 | 5356.000M | 36.1 | +0.0  | +2.7  | +3.7  | +0.0 | +0.0 | 71.4 | 94.0 | -22.6 | T1 |
|    |           |      | +0.0  | +0.0  | +28.9 | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +0.0  |      |      |      |      |       |    |
| 19 | 3474.000M | 36.7 | +0.0  | +1.6  | +3.1  | +0.0 | +0.0 | 70.9 | 94.0 | -23.1 | T1 |
|    |           |      | +0.0  | +29.5 | +0.0  | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +0.0  |      |      |      |      |       |    |
| 20 | 3654.000M | 36.2 | +0.0  | +1.6  | +3.2  | +0.0 | +0.0 | 70.7 | 94.0 | -23.3 | T1 |
|    |           |      | +0.0  | +29.7 | +0.0  | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +0.0  |      |      |      |      |       |    |
| 21 | 3084.000M | 37.1 | +0.0  | +1.6  | +2.9  | +0.0 | +0.0 | 70.2 | 94.0 | -23.8 | T1 |
|    |           |      | +0.0  | +28.6 | +0.0  | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +0.0  |      |      |      |      |       |    |
| 22 | 102.800M  | 19.0 | +0.0  | +0.3  | +0.4  | +0.0 | +0.0 | 69.3 | 94.0 | -24.7 | T1 |
|    |           |      | +0.0  | +0.0  | +0.0  | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +49.6 |      |      |      |      |       |    |
| 23 | 1855.000M | 35.7 | +0.0  | +1.2  | +2.2  | +0.0 | +0.0 | 69.0 | 94.0 | -25.0 | T1 |
|    |           |      | +29.9 | +0.0  | +0.0  | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +0.0  |      |      |      |      |       |    |
| 24 | 2660.000M | 35.2 | +0.0  | +1.4  | +2.7  | +0.0 | +0.0 | 68.7 | 94.0 | -25.3 | T1 |
|    |           |      | +0.0  | +29.4 | +0.0  | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +0.0  |      |      |      |      |       |    |
| 25 | 1749.000M | 35.8 | +0.0  | +1.2  | +2.1  | +0.0 | +0.0 | 68.7 | 94.0 | -25.3 | T1 |
|    |           |      | +29.6 | +0.0  | +0.0  | +0.0 |      |      |      |       |    |
|    |           |      | +0.0  | +0.0  | +0.0  |      |      |      |      |       |    |

|    |            |      |       |       |       |       |      |      |      |       |    |
|----|------------|------|-------|-------|-------|-------|------|------|------|-------|----|
| 26 | 2298.000M  | 34.8 | +0.0  | +1.4  | +2.5  | +0.0  | +0.0 | 68.6 | 94.0 | -25.4 | T1 |
|    |            |      | +0.0  | +29.9 | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  |       |      |      |      |       |    |
| 27 | 19.010M    | 17.5 | +0.0  | +0.1  | +0.0  | +0.0  | +0.0 | 67.4 | 94.0 | -26.6 | T1 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +49.8 |       |      |      |      |       |    |
| 28 | 19.010M    | 17.5 | +0.0  | +0.1  | +0.0  | +0.0  | +0.0 | 67.4 | 94.0 | -26.6 | T1 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +49.8 |       |      |      |      |       |    |
| 29 | 983.800M   | 13.2 | +0.0  | +0.9  | +1.5  | +49.8 | +0.0 | 65.4 | 94.0 | -28.6 | T1 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  |       |      |      |      |       |    |
| 30 | 10492.000M | 34.0 | +0.0  | +3.2  | +5.1  | +0.0  | +0.0 | 64.5 | 94.0 | -29.5 | T1 |
|    | M          |      | +0.0  | +0.0  | +0.0  | +50.0 |      |      |      |       |    |
|    |            |      | -27.8 | +0.0  | +0.0  |       |      |      |      |       |    |
| 31 | 651.400M   | 12.8 | +0.0  | +0.8  | +1.2  | +49.3 | +0.0 | 64.1 | 94.0 | -29.9 | T1 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  |       |      |      |      |       |    |
| 32 | 10164.000M | 33.5 | +0.0  | +3.0  | +5.0  | +0.0  | +0.0 | 63.7 | 94.0 | -30.3 | T1 |
|    | M          |      | +0.0  | +0.0  | +0.0  | +50.1 |      |      |      |       |    |
|    |            |      | -27.9 | +0.0  | +0.0  |       |      |      |      |       |    |
| 33 | 487.000M   | 12.5 | +0.0  | +0.7  | +1.0  | +49.3 | +0.0 | 63.5 | 94.0 | -30.5 | T1 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  |       |      |      |      |       |    |
| 34 | 11642.000M | 32.3 | +0.0  | +3.6  | +5.4  | +0.0  | +0.0 | 62.5 | 94.0 | -31.5 | T1 |
|    | M          |      | +0.0  | +0.0  | +0.0  | +49.6 |      |      |      |       |    |
|    |            |      | -28.4 | +0.0  | +0.0  |       |      |      |      |       |    |
| 35 | 886.600M   | 10.1 | +0.0  | +0.9  | +1.4  | +49.8 | +0.0 | 62.2 | 94.0 | -31.8 | T1 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  |       |      |      |      |       |    |
| 36 | 13968.000M | 33.9 | +0.0  | +4.4  | +6.1  | +0.0  | +0.0 | 61.7 | 94.0 | -32.3 | T1 |
|    | M          |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | -31.1 | +48.4 | +0.0  |       |      |      |      |       |    |
| 37 | 13608.000M | 34.1 | +0.0  | +4.0  | +6.0  | +0.0  | +0.0 | 61.4 | 94.0 | -32.6 | T1 |
|    | M          |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | -30.8 | +48.1 | +0.0  |       |      |      |      |       |    |
| 38 | 13204.000M | 33.1 | +0.0  | +4.1  | +6.0  | +0.0  | +0.0 | 60.9 | 94.0 | -33.1 | T1 |
|    | M          |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | -30.5 | +48.2 | +0.0  |       |      |      |      |       |    |
| 39 | 12826.000M | 33.0 | +0.0  | +3.7  | +5.9  | +0.0  | +0.0 | 60.7 | 94.0 | -33.3 | T1 |
|    | M          |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | -30.0 | +48.1 | +0.0  |       |      |      |      |       |    |
| 40 | 12476.000M | 31.8 | +0.0  | +3.5  | +5.7  | +0.0  | +0.0 | 59.6 | 94.0 | -34.4 | T1 |
|    | M          |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | -29.5 | +48.1 | +0.0  |       |      |      |      |       |    |
| 41 | 10112.000M | 28.7 | +0.0  | +3.0  | +4.9  | +0.0  | +0.0 | 58.7 | 94.0 | -35.3 | T1 |
|    | M          |      | +0.0  | +0.0  | +0.0  | +50.0 |      |      |      |       |    |
|    |            |      | -27.9 | +0.0  | +0.0  |       |      |      |      |       |    |
| 42 | 56.410M    | 7.9  | +0.0  | +0.3  | +0.3  | +0.0  | +0.0 | 58.3 | 94.0 | -35.7 | T1 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +49.8 |       |      |      |      |       |    |

CKC Laboratories, Inc. Date: 2/26/2014 Time: 12:37:23 Honeywell International Inc. WO#: 95223  
Test Lead: T1 115V 400Hz Sequence#: 3 T1  
Honeywell International Inc. AESU (Aircraft Environment Surveillance Unit) P/N: ISP-80C (PN: 965-1694-002)



Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Honeywell International Inc.**  
 Specification: **47 CFR §87.139(a) Spurious Emissions**  
 Work Order #: **95223** Date: 2/26/2014  
 Test Type: **Conducted Emissions** Time: 13:34:46  
 Equipment: **AESU Processor** Sequence#: 4  
 Manufacturer: Honeywell International Inc. Tested By: Steven Pittsford  
 Model: ISP-80C (965-1694-002) 115V 400Hz  
 S/N: ISPA-000146

**Test Equipment:**

| ID  | Asset #  | Description                         | Model                | Calibration Date | Cal Due Date |
|-----|----------|-------------------------------------|----------------------|------------------|--------------|
| T1  | AN02872  | Spectrum Analyzer                   | E4440A               | 7/19/2013        | 7/19/2015    |
| T2  | ANP06505 | Cable                               | 32026-29080-29080-84 | 10/18/2013       | 10/18/2015   |
| T3  | ANP05547 | Cable                               | Heliax               | 9/7/2012         | 9/7/2014     |
| T4  | AN02471  | Directional Coupler                 | DC5000               | 1/25/2013        | 1/25/2015    |
| T5  | AN02030  | Directional Coupler                 | DC6000               | 1/24/2013        | 1/24/2015    |
| T6  | ANP01906 | Directional Coupler                 | 3002-30              | 6/18/2013        | 6/18/2015    |
| T7  | ANP01904 | Directional Coupler                 | 3003-30              | 6/11/2013        | 6/11/2015    |
| T8  | ANP01905 | Directional Coupler                 | 3004-30              | 6/11/2013        | 6/11/2015    |
| T9  | ANP06511 | Directional Coupler- Fwd Pwr Port 1 | 17566-03             | 10/31/2013       | 10/31/2015   |
|     |          | Factor dB                           |                      |                  |              |
| T10 | AN03209  | Preamp                              | 83051A               | 3/5/2013         | 3/5/2015     |
| T11 | ANP06512 | Directional Coupler- Fwd Pwr Port 1 | 18325-01             | 10/31/2013       | 10/31/2015   |
|     |          | Factor dB                           |                      |                  |              |
| T12 | AN00952A | Directional Coupler                 | DC2000               | 2/26/2014        | 2/26/2016    |

**Equipment Under Test (\* = EUT):**

| Function        | Manufacturer                 | Model #                | S/N         |
|-----------------|------------------------------|------------------------|-------------|
| AESU Processor* | Honeywell International Inc. | ISP-80C (965-1694-002) | ISPA-000146 |

**Support Devices:**

| Function                      | Manufacturer | Model #          | S/N  |
|-------------------------------|--------------|------------------|------|
| TCAS Antenna Simulator        | Honeywell    | 727-0016-001     | 0068 |
| TCAS Antenna Simulator        | Honeywell    | 727-0016-001     | 0081 |
| AESU EMI Harness              | Honeywell    | 014-1089-004 REV |      |
| AEES Engineering Test Station | Honeywell    | 951-0404-013     | 218  |

**Test Conditions / Notes:**

Temperature: 22°C

Pressure: 104.0kPa

Humidity: 35%

Frequency: 9kHz-14GHz

The EUT is sitting on an 80cm test table.

The EUT is connected to the support equipment outside the chamber through the EMI Harness.

The Antenna terminals are terminated by a characteristic loads located outside the chamber.

The EUT is transmitting at full power Mode S &amp; C at 1030MHz and 1090MHz simultaneously.

CISPR Bandwidths below 150kHz

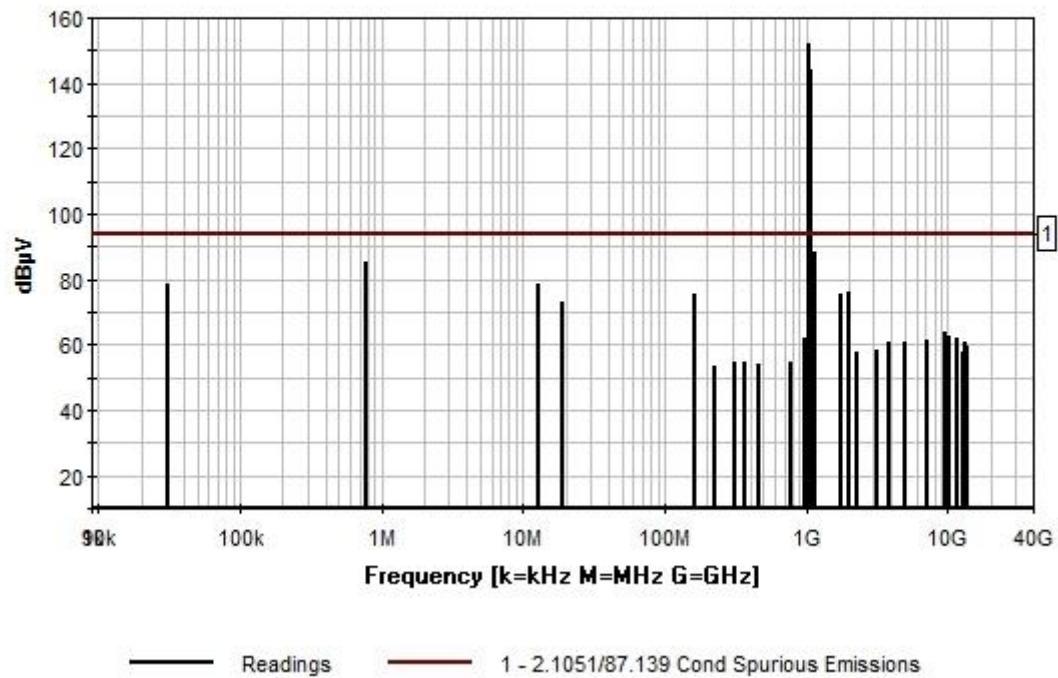
1) Resolution Bandwidth = 10 kHz for spurious emissions 150kHz - 1 GHz, and 1 MHz for spurious emissions above 1GHz.

2) Video Bandwidth = 300 kHz for spurious emissions 150kHz - 1 GHz, and 3 MHz for spurious emissions above 1 GHz.

3) Sweep Speed slow enough to maintain measurement calibration.

4) Detector Mode = Positive Peak.

Test Method TIA-603 C


Ext Attn: 0 dB

| # | Freq      | Rdng       | Reading listed by margin. |       |      |       | Test Lead: T2 |            |            |             |
|---|-----------|------------|---------------------------|-------|------|-------|---------------|------------|------------|-------------|
|   |           |            | T1                        | T2    | T3   | T4    | Dist          | Corr       | Spec       | Margin      |
|   |           |            | T5                        | T6    | T7   | T8    |               |            |            |             |
|   |           |            | T9                        | T10   | T11  | T12   |               |            |            |             |
|   | MHz       | dB $\mu$ V | dB                        | dB    | dB   | dB    | Table         | dB $\mu$ V | dB $\mu$ V | dB          |
|   |           |            |                           |       |      |       |               |            |            | Ant         |
| 1 | 1030.120M | 118.7      | +0.0                      | +0.9  | +1.6 | +0.0  | +0.0          | 151.8      | 94.0       | +57.8       |
|   |           |            | +0.0                      | +30.6 | +0.0 | +0.0  |               |            |            | Fundamental |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            |             |
| 2 | 1090.000M | 110.9      | +0.0                      | +1.0  | +1.6 | +0.0  | +0.0          | 143.8      | 94.0       | +49.8       |
|   |           |            | +0.0                      | +30.3 | +0.0 | +0.0  |               |            |            | Fundamental |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            |             |
| 3 | 1161.000M | 55.8       | +0.0                      | +1.0  | +1.7 | +0.0  | +0.0          | 88.6       | 94.0       | -5.4        |
|   |           |            | +0.0                      | +30.1 | +0.0 | +0.0  |               |            |            |             |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            |             |
| 4 | 789.000k  | 35.9       | +0.0                      | +0.0  | +0.0 | +0.0  | +0.0          | 85.5       | 94.0       | -8.5        |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            |             |
|   |           |            | +0.0                      | +0.0  | +0.0 | +49.6 |               |            |            |             |
| 5 | 31.278k   | 29.4       | +0.0                      | +0.0  | +0.0 | +0.0  | +0.0          | 78.8       | 94.0       | -15.2       |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            |             |
|   |           |            | +0.0                      | +0.0  | +0.0 | +49.4 |               |            |            |             |
| 6 | 12.995M   | 28.8       | +0.0                      | +0.1  | +0.1 | +0.0  | +0.0          | 78.7       | 94.0       | -15.3       |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            |             |
|   |           |            | +0.0                      | +0.0  | +0.0 | +49.7 |               |            |            |             |
| 7 | 1980.000M | 42.4       | +0.0                      | +1.3  | +2.3 | +0.0  | +0.0          | 76.4       | 94.0       | -17.6       |
|   |           |            | +0.0                      | +30.4 | +0.0 | +0.0  |               |            |            |             |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            |             |
| 8 | 1729.000M | 42.8       | +0.0                      | +1.2  | +2.1 | +0.0  | +0.0          | 75.7       | 94.0       | -18.3       |
|   |           |            | +0.0                      | +29.6 | +0.0 | +0.0  |               |            |            |             |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            |             |

|    |            |      |       |       |       |       |      |      |      |       |    |
|----|------------|------|-------|-------|-------|-------|------|------|------|-------|----|
| 9  | 165.000M   | 25.3 | +0.0  | +0.4  | +0.5  | +0.0  | +0.0 | 75.6 | 94.0 | -18.4 | T2 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +49.4 |      |      |      |       |    |
| 10 | 18.993M    | 23.0 | +0.0  | +0.1  | +0.0  | +0.0  | +0.0 | 72.9 | 94.0 | -21.1 | T2 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +49.8 |      |      |      |       |    |
| 11 | 9670.000M  | 26.5 | +0.0  | +2.9  | +4.8  | +0.0  | +0.0 | 63.9 | 94.0 | -30.1 | T2 |
|    |            |      | +0.0  | +0.0  | +0.0  | +29.7 |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 12 | 10122.000M | 32.8 | +0.0  | +3.0  | +5.0  | +0.0  | +0.0 | 62.9 | 94.0 | -31.1 | T2 |
|    | M          |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +50.0 | -27.9 | +0.0  | +0.0  |      |      |      |       |    |
| 13 | 991.600M   | 10.2 | +0.0  | +0.9  | +1.5  | +0.0  | +0.0 | 62.3 | 94.0 | -31.7 | T2 |
|    |            |      | +49.7 | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 14 | 11634.000M | 31.8 | +0.0  | +3.6  | +5.4  | +0.0  | +0.0 | 62.0 | 94.0 | -32.0 | T2 |
|    | M          |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +49.6 | -28.4 | +0.0  | +0.0  |      |      |      |       |    |
| 15 | 7174.000M  | 27.5 | +0.0  | +2.4  | +4.3  | +0.0  | +0.0 | 61.6 | 94.0 | -32.4 | T2 |
|    |            |      | +0.0  | +0.0  | +0.0  | +27.4 |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 16 | 5008.000M  | 25.5 | +0.0  | +2.5  | +3.6  | +0.0  | +0.0 | 60.9 | 94.0 | -33.1 | T2 |
|    |            |      | +0.0  | +0.0  | +0.0  | +29.3 |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 17 | 13398.000M | 33.1 | +0.0  | +4.1  | +6.0  | +0.0  | +0.0 | 60.7 | 94.0 | -33.3 | T2 |
|    | M          |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | -30.6 | +48.1 | +0.0  |      |      |      |       |    |
| 18 | 3826.000M  | 25.5 | +0.0  | +1.7  | +3.3  | +0.0  | +0.0 | 60.6 | 94.0 | -33.4 | T2 |
|    |            |      | +0.0  | +0.0  | +30.1 | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 19 | 13796.000M | 32.0 | +0.0  | +4.2  | +6.1  | +0.0  | +0.0 | 59.5 | 94.0 | -34.5 | T2 |
|    | M          |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | -30.9 | +48.1 | +0.0  |      |      |      |       |    |
| 20 | 3168.000M  | 25.5 | +0.0  | +1.6  | +3.0  | +0.0  | +0.0 | 58.7 | 94.0 | -35.3 | T2 |
|    |            |      | +0.0  | +0.0  | +28.6 | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 21 | 2294.000M  | 24.0 | +0.0  | +1.4  | +2.5  | +0.0  | +0.0 | 57.8 | 94.0 | -36.2 | T2 |
|    |            |      | +0.0  | +0.0  | +29.9 | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 22 | 12910.000M | 30.2 | +0.0  | +3.8  | +5.9  | +0.0  | +0.0 | 57.8 | 94.0 | -36.2 | T2 |
|    | M          |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | -30.2 | +48.1 | +0.0  |      |      |      |       |    |
| 23 | 773.800M   | 3.2  | +0.0  | +0.8  | +1.3  | +0.0  | +0.0 | 55.0 | 94.0 | -39.0 | T2 |
|    |            |      | +49.7 | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 24 | 307.600M   | 4.6  | +0.0  | +0.5  | +0.8  | +49.0 | +0.0 | 54.9 | 94.0 | -39.1 | T2 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 25 | 366.200M   | 3.7  | +0.0  | +0.6  | +0.9  | +49.5 | +0.0 | 54.7 | 94.0 | -39.3 | T2 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |

|    |          |     |       |      |      |       |      |      |      |       |    |
|----|----------|-----|-------|------|------|-------|------|------|------|-------|----|
| 26 | 465.400M | 3.4 | +0.0  | +0.6 | +1.0 | +0.0  | +0.0 | 54.4 | 94.0 | -39.6 | T2 |
|    |          |     | +49.4 | +0.0 | +0.0 | +0.0  |      |      |      |       |    |
|    |          |     | +0.0  | +0.0 | +0.0 | +0.0  |      |      |      |       |    |
| 27 | 225.400M | 4.0 | +0.0  | +0.5 | +0.6 | +48.6 | +0.0 | 53.7 | 94.0 | -40.3 | T2 |
|    |          |     | +0.0  | +0.0 | +0.0 | +0.0  |      |      |      |       |    |
|    |          |     | +0.0  | +0.0 | +0.0 | +0.0  |      |      |      |       |    |

CKC Laboratories, Inc. Date: 2/26/2014 Time: 13:34:46 Honeywell International Inc. WO#: 95223  
 Test Lead: T2 115V 400Hz Sequence#: 4 T2  
 Honeywell International Inc. AESU (Aircraft Environment Surveillance Unit) P/N: ISP-80C (PN: 965-1694-002)



Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Honeywell International Inc.**  
 Specification: **47 CFR §87.139(a) Spurious Emissions**  
 Work Order #: **95223** Date: 2/26/2014  
 Test Type: **Conducted Emissions** Time: 14:11:46  
 Equipment: **AESU Processor** Sequence#: 5  
 Manufacturer: Honeywell International Inc. Tested By: Steven Pittsford  
 Model: ISP-80C (965-1694-002) 115V 400Hz  
 S/N: ISPA-000146

**Test Equipment:**

| ID  | Asset #  | Description                         | Model                | Calibration Date | Cal Due Date |
|-----|----------|-------------------------------------|----------------------|------------------|--------------|
| T1  | AN02872  | Spectrum Analyzer                   | E4440A               | 7/19/2013        | 7/19/2015    |
| T2  | ANP06505 | Cable                               | 32026-29080-29080-84 | 10/18/2013       | 10/18/2015   |
| T3  | ANP05547 | Cable                               | Heliax               | 9/7/2012         | 9/7/2014     |
| T4  | AN02471  | Directional Coupler                 | DC5000               | 1/25/2013        | 1/25/2015    |
| T5  | AN02030  | Directional Coupler                 | DC6000               | 1/24/2013        | 1/24/2015    |
| T6  | ANP01906 | Directional Coupler                 | 3002-30              | 6/18/2013        | 6/18/2015    |
| T7  | ANP01904 | Directional Coupler                 | 3003-30              | 6/11/2013        | 6/11/2015    |
| T8  | ANP01905 | Directional Coupler                 | 3004-30              | 6/11/2013        | 6/11/2015    |
| T9  | ANP06511 | Directional Coupler- Fwd Pwr Port 1 | 17566-03             | 10/31/2013       | 10/31/2015   |
|     |          | Factor dB                           |                      |                  |              |
| T10 | AN03209  | Preamp                              | 83051A               | 3/5/2013         | 3/5/2015     |
| T11 | ANP06512 | Directional Coupler- Fwd Pwr Port 1 | 18325-01             | 10/31/2013       | 10/31/2015   |
|     |          | Factor dB                           |                      |                  |              |
| T12 | AN00952A | Directional Coupler                 | DC2000               | 2/26/2014        | 2/26/2016    |

**Equipment Under Test (\* = EUT):**

| Function        | Manufacturer                 | Model #                | S/N         |
|-----------------|------------------------------|------------------------|-------------|
| AESU Processor* | Honeywell International Inc. | ISP-80C (965-1694-002) | ISPA-000146 |

**Support Devices:**

| Function                      | Manufacturer | Model #          | S/N  |
|-------------------------------|--------------|------------------|------|
| TCAS Antenna Simulator        | Honeywell    | 727-0016-001     | 0068 |
| TCAS Antenna Simulator        | Honeywell    | 727-0016-001     | 0081 |
| AESU EMI Harness              | Honeywell    | 014-1089-004 REV |      |
| AEES Engineering Test Station | Honeywell    | 951-0404-013     | 218  |

**Test Conditions / Notes:**

Temperature: 22°C

Pressure: 104.0kPa

Humidity: 35%

Frequency: 9kHz-14GHz

The EUT is sitting on an 80cm test table.

The EUT is connected to the support equipment outside the chamber through the EMI Harness.

The Antenna terminals are terminated by a characteristic loads located outside the chamber.

The EUT is transmitting at full power Mode S &amp; C at 1030MHz and 1090MHz simultaneously.

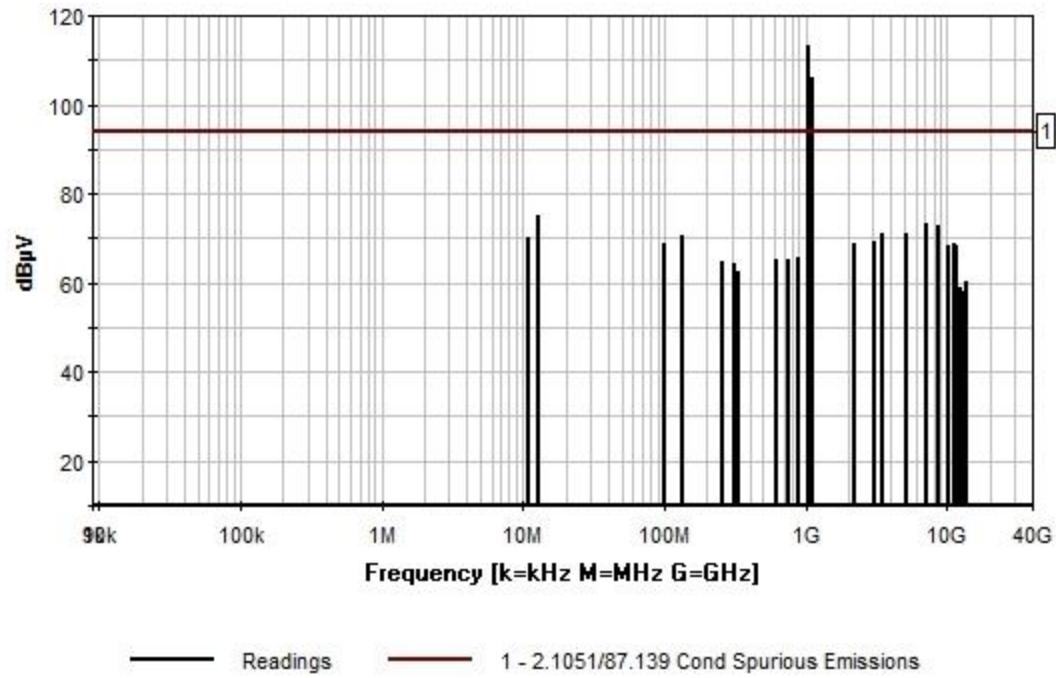
CISPR Bandwidths below 150kHz

1) Resolution Bandwidth = 10 kHz for spurious emissions 150kHz - 1 GHz, and 1 MHz for spurious emissions above 1GHz.

2) Video Bandwidth = 300 kHz for spurious emissions 150kHz - 1 GHz, and 3 MHz for spurious emissions above 1 GHz.

3) Sweep Speed slow enough to maintain measurement calibration.

4) Detector Mode = Positive Peak.


Test Method TIA-603 C

Ext Attn: 0 dB

| # | Freq<br>MHz | Rdng<br>dB $\mu$ V | Reading listed by margin. |                 |                 |                 | Test Lead: T3 |                    |                    |              |
|---|-------------|--------------------|---------------------------|-----------------|-----------------|-----------------|---------------|--------------------|--------------------|--------------|
|   |             |                    | T1<br>T5<br>T9            | T2<br>T6<br>T10 | T3<br>T7<br>T11 | T4<br>T8<br>T12 | Dist<br>Table | Corr<br>dB $\mu$ V | Spec<br>dB $\mu$ V | Margin<br>dB |
|   |             |                    | dB                        | dB              | dB              | dB              |               |                    |                    |              |
| 1 | 1029.000M   | 80.2               | +0.0                      | +0.9            | +1.6            | +0.0            | +0.0          | 113.3              | 94.0               | +19.3        |
|   |             |                    | +0.0                      | +30.6           | +0.0            | +0.0            |               |                    |                    | Fundamental  |
|   |             |                    | +0.0                      | +0.0            | +0.0            | +0.0            |               |                    |                    |              |
| 2 | 1108.000M   | 73.1               | +0.0                      | +1.0            | +1.6            | +0.0            | +0.0          | 106.0              | 94.0               | +12.0        |
|   |             |                    | +0.0                      | +30.3           | +0.0            | +0.0            |               |                    |                    | Fundamental  |
|   |             |                    | +0.0                      | +0.0            | +0.0            | +0.0            |               |                    |                    |              |
| 3 | 13.010M     | 25.3               | +0.0                      | +0.1            | +0.1            | +0.0            | +0.0          | 75.2               | 94.0               | -18.8        |
|   |             |                    | +0.0                      | +0.0            | +0.0            | +0.0            |               |                    |                    |              |
|   |             |                    | +0.0                      | +0.0            | +0.0            | +49.7           |               |                    |                    |              |
| 4 | 7066.000M   | 38.9               | +0.0                      | +2.5            | +4.3            | +0.0            | +0.0          | 73.1               | 94.0               | -20.9        |
|   |             |                    | +0.0                      | +0.0            | +0.0            | +27.4           |               |                    |                    |              |
|   |             |                    | +0.0                      | +0.0            | +0.0            | +0.0            |               |                    |                    |              |
| 5 | 8740.000M   | 36.8               | +0.0                      | +2.7            | +4.6            | +0.0            | +0.0          | 72.8               | 94.0               | -21.2        |
|   |             |                    | +0.0                      | +0.0            | +0.0            | +28.7           |               |                    |                    |              |
|   |             |                    | +0.0                      | +0.0            | +0.0            | +0.0            |               |                    |                    |              |
| 6 | 5206.000M   | 35.9               | +0.0                      | +2.5            | +3.7            | +0.0            | +0.0          | 71.2               | 94.0               | -22.8        |
|   |             |                    | +0.0                      | +0.0            | +0.0            | +29.1           |               |                    |                    |              |
|   |             |                    | +0.0                      | +0.0            | +0.0            | +0.0            |               |                    |                    |              |
| 7 | 3434.000M   | 36.9               | +0.0                      | +1.7            | +3.1            | +0.0            | +0.0          | 71.1               | 94.0               | -22.9        |
|   |             |                    | +0.0                      | +0.0            | +29.4           | +0.0            |               |                    |                    |              |
|   |             |                    | +0.0                      | +0.0            | +0.0            | +0.0            |               |                    |                    |              |
| 8 | 133.000M    | 20.0               | +0.0                      | +0.4            | +0.5            | +0.0            | +0.0          | 70.4               | 94.0               | -23.6        |
|   |             |                    | +0.0                      | +0.0            | +0.0            | +0.0            |               |                    |                    |              |
|   |             |                    | +0.0                      | +0.0            | +0.0            | +49.5           |               |                    |                    |              |

|    |            |      |       |       |       |       |      |      |      |       |    |
|----|------------|------|-------|-------|-------|-------|------|------|------|-------|----|
| 9  | 11.010M    | 20.4 | +0.0  | +0.1  | +0.1  | +0.0  | +0.0 | 70.3 | 94.0 | -23.7 | T3 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +49.7 |      |      |      |       |    |
| 10 | 3062.000M  | 36.1 | +0.0  | +1.6  | +2.9  | +0.0  | +0.0 | 69.3 | 94.0 | -24.7 | T3 |
|    |            |      | +0.0  | +0.0  | +28.7 | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 11 | 11132.000M | 38.2 | +0.0  | +3.4  | +5.3  | +0.0  | +0.0 | 68.9 | 94.0 | -25.1 | T3 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +49.9 | -27.9 | +0.0  | +0.0  |      |      |      |       |    |
| 12 | 99.600M    | 18.4 | +0.0  | +0.3  | +0.4  | +0.0  | +0.0 | 68.7 | 94.0 | -25.3 | T3 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +49.6 |       |      |      |      |       |    |
| 13 | 2204.000M  | 34.8 | +0.0  | +1.4  | +2.4  | +0.0  | +0.0 | 68.7 | 94.0 | -25.3 | T3 |
|    |            |      | +0.0  | +0.0  | +30.1 | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 14 | 11750.000M | 37.8 | +0.0  | +3.7  | +5.5  | +0.0  | +0.0 | 68.3 | 94.0 | -25.7 | T3 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +49.8 | -28.5 | +0.0  | +0.0  |      |      |      |       |    |
| 15 | 10328.000M | 38.1 | +0.0  | +3.1  | +5.0  | +0.0  | +0.0 | 68.2 | 94.0 | -25.8 | T3 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +49.9 | -27.9 | +0.0  | +0.0  |      |      |      |       |    |
| 16 | 897.000M   | 13.4 | +0.0  | +0.9  | +1.4  | +0.0  | +0.0 | 65.5 | 94.0 | -28.5 | T3 |
|    |            |      | +49.8 | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 17 | 743.500M   | 13.7 | +0.0  | +0.8  | +1.3  | +0.0  | +0.0 | 65.3 | 94.0 | -28.7 | T3 |
|    |            |      | +49.5 | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 18 | 621.500M   | 13.7 | +0.0  | +0.7  | +1.2  | +0.0  | +0.0 | 65.0 | 94.0 | -29.0 | T3 |
|    |            |      | +49.4 | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 19 | 257.400M   | 14.9 | +0.0  | +0.5  | +0.7  | +48.6 | +0.0 | 64.7 | 94.0 | -29.3 | T3 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 20 | 307.400M   | 14.2 | +0.0  | +0.5  | +0.8  | +48.9 | +0.0 | 64.4 | 94.0 | -29.6 | T3 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 21 | 333.000M   | 12.1 | +0.0  | +0.6  | +0.8  | +49.2 | +0.0 | 62.7 | 94.0 | -31.3 | T3 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 22 | 13630.000M | 33.1 | +0.0  | +4.0  | +6.0  | +0.0  | +0.0 | 60.4 | 94.0 | -33.6 | T3 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | -30.8 | +48.1 | +0.0  |      |      |      |       |    |
| 23 | 12436.000M | 31.1 | +0.0  | +3.5  | +5.7  | +0.0  | +0.0 | 58.9 | 94.0 | -35.1 | T3 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | -29.4 | +48.0 | +0.0  |      |      |      |       |    |
| 24 | 12982.000M | 30.7 | +0.0  | +3.8  | +5.9  | +0.0  | +0.0 | 58.0 | 94.0 | -36.0 | T3 |
|    |            |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |            |      | +0.0  | -30.3 | +47.9 | +0.0  |      |      |      |       |    |

CKC Laboratories, Inc. Date: 2/26/2014 Time: 14:11:46 Honeywell International Inc. WO#: 95223  
Test Lead: T3 115V 400Hz Sequence#: 5 T3  
Honeywell International Inc. AESU (Aircraft Environment Surveillance Unit) P/N: ISP-80C (PN: 965-1694-002)



Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Honeywell International Inc.**  
 Specification: **47 CFR §87.139(a) Spurious Emissions**  
 Work Order #: **95223** Date: 2/26/2014  
 Test Type: **Conducted Emissions** Time: 14:40:24  
 Equipment: **AESU Processor** Sequence#: 6  
 Manufacturer: Honeywell International Inc. Tested By: Steven Pittsford  
 Model: ISP-80C (965-1694-002) 115V 400Hz  
 S/N: ISPA-000146

**Test Equipment:**

| ID  | Asset #  | Description                         | Model                | Calibration Date | Cal Due Date |
|-----|----------|-------------------------------------|----------------------|------------------|--------------|
| T1  | AN02872  | Spectrum Analyzer                   | E4440A               | 7/19/2013        | 7/19/2015    |
| T2  | ANP06505 | Cable                               | 32026-29080-29080-84 | 10/18/2013       | 10/18/2015   |
| T3  | ANP05547 | Cable                               | Heliax               | 9/7/2012         | 9/7/2014     |
| T4  | AN02471  | Directional Coupler                 | DC5000               | 1/25/2013        | 1/25/2015    |
| T5  | AN02030  | Directional Coupler                 | DC6000               | 1/24/2013        | 1/24/2015    |
| T6  | ANP01906 | Directional Coupler                 | 3002-30              | 6/18/2013        | 6/18/2015    |
| T7  | ANP01904 | Directional Coupler                 | 3003-30              | 6/11/2013        | 6/11/2015    |
| T8  | ANP01905 | Directional Coupler                 | 3004-30              | 6/11/2013        | 6/11/2015    |
| T9  | ANP06511 | Directional Coupler- Fwd Pwr Port 1 | 17566-03             | 10/31/2013       | 10/31/2015   |
|     |          | Factor dB                           |                      |                  |              |
| T10 | AN03209  | Preamp                              | 83051A               | 3/5/2013         | 3/5/2015     |
| T11 | ANP06512 | Directional Coupler- Fwd Pwr Port 1 | 18325-01             | 10/31/2013       | 10/31/2015   |
|     |          | Factor dB                           |                      |                  |              |
| T12 | AN00952A | Directional Coupler                 | DC2000               | 2/26/2014        | 2/26/2016    |

**Equipment Under Test (\* = EUT):**

| Function        | Manufacturer                 | Model #                | S/N         |
|-----------------|------------------------------|------------------------|-------------|
| AESU Processor* | Honeywell International Inc. | ISP-80C (965-1694-002) | ISPA-000146 |

**Support Devices:**

| Function                      | Manufacturer | Model #          | S/N  |
|-------------------------------|--------------|------------------|------|
| TCAS Antenna Simulator        | Honeywell    | 727-0016-001     | 0068 |
| TCAS Antenna Simulator        | Honeywell    | 727-0016-001     | 0081 |
| AESU EMI Harness              | Honeywell    | 014-1089-004 REV |      |
| AEES Engineering Test Station | Honeywell    | 951-0404-013     | 218  |

**Test Conditions / Notes:**

Temperature: 22°C

Pressure: 104.0kPa

Humidity: 35%

Frequency: 9kHz-14GHz

The EUT is sitting on an 80cm test table.

The EUT is connected to the support equipment outside the chamber through the EMI Harness.

The Antenna terminals are terminated by a characteristic loads located outside the chamber.

The EUT is transmitting at full power Mode S &amp; C at 1030MHz and 1090MHz simultaneously.

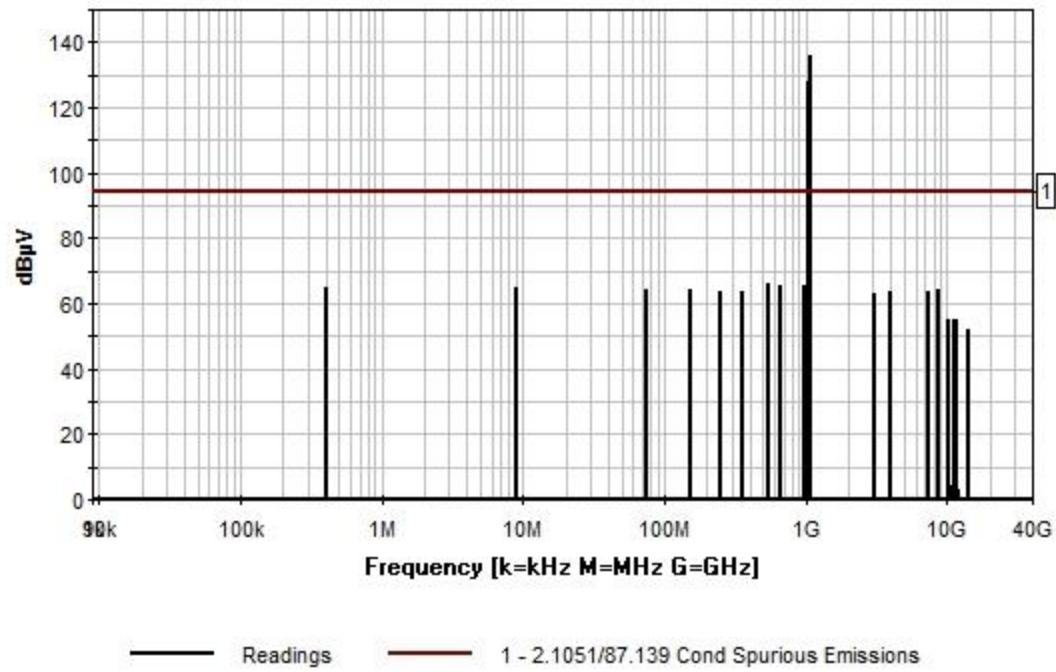
CISPR Bandwidths below 150kHz

1) Resolution Bandwidth = 10 kHz for spurious emissions 150kHz - 1 GHz, and 1 MHz for spurious emissions above 1GHz.

2) Video Bandwidth = 300 kHz for spurious emissions 150kHz - 1 GHz, and 3 MHz for spurious emissions above 1 GHz.

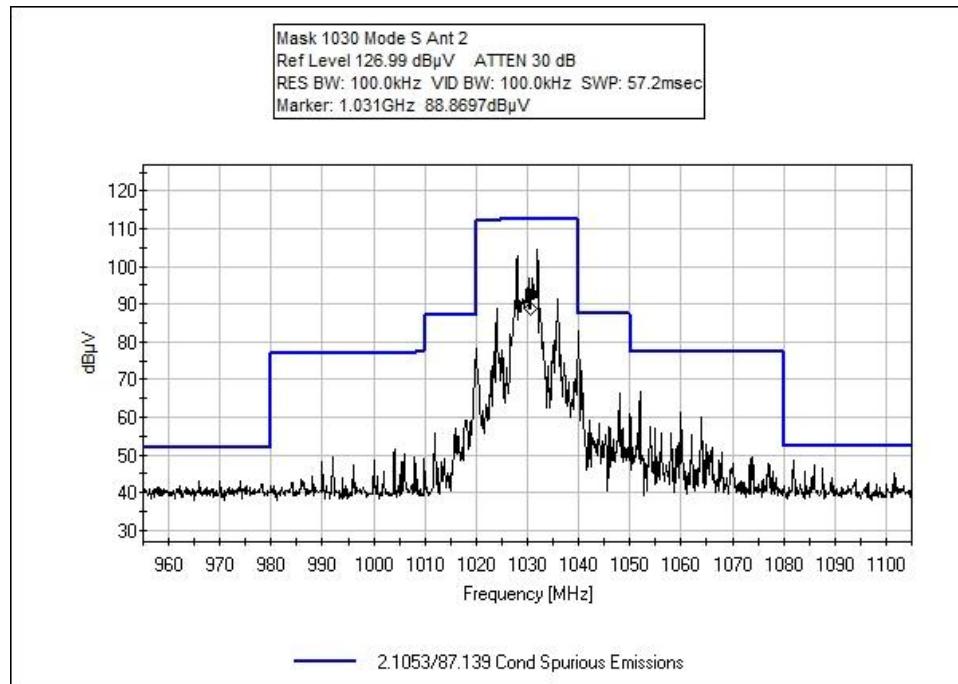
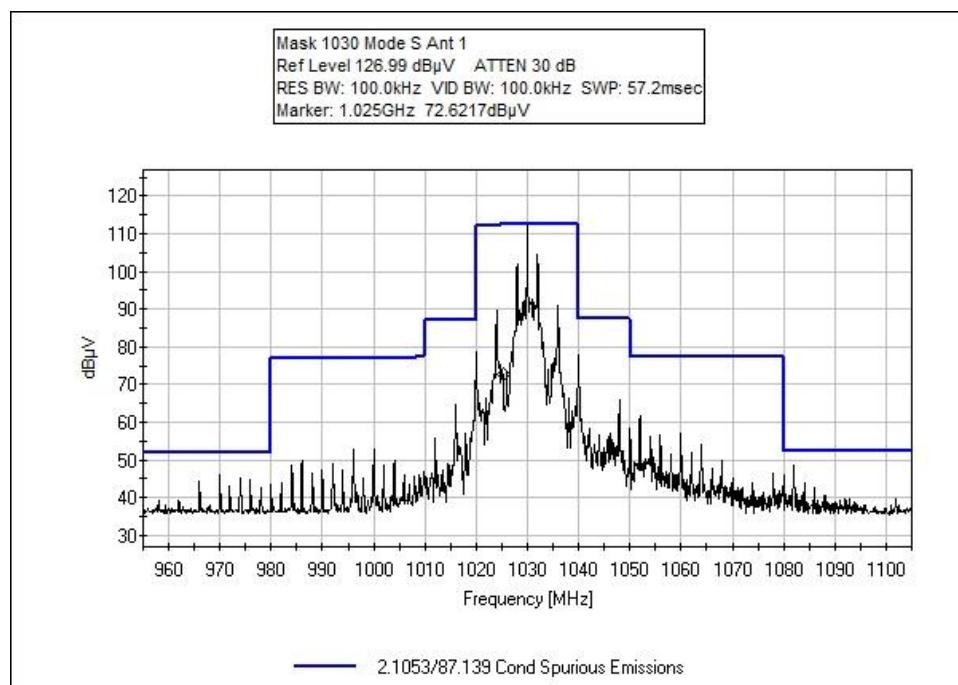
3) Sweep Speed slow enough to maintain measurement calibration.

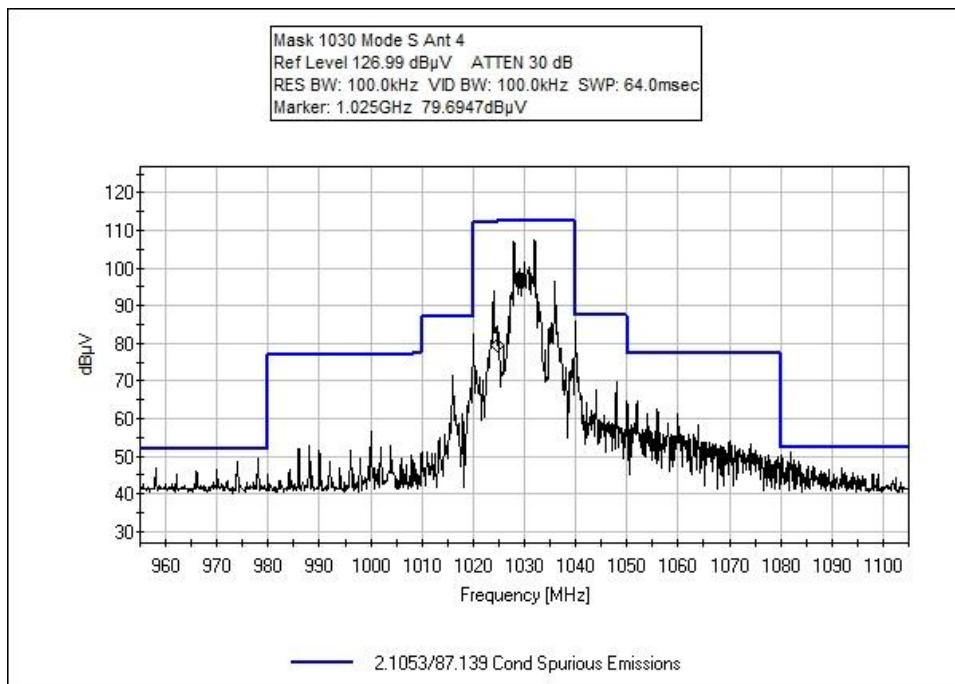
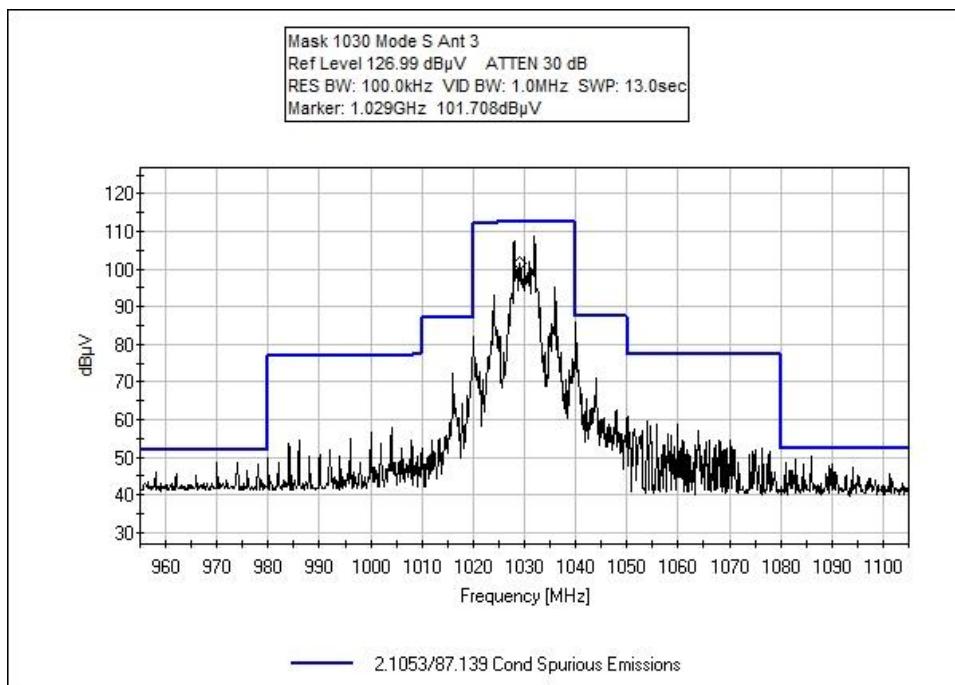
4) Detector Mode = Positive Peak.

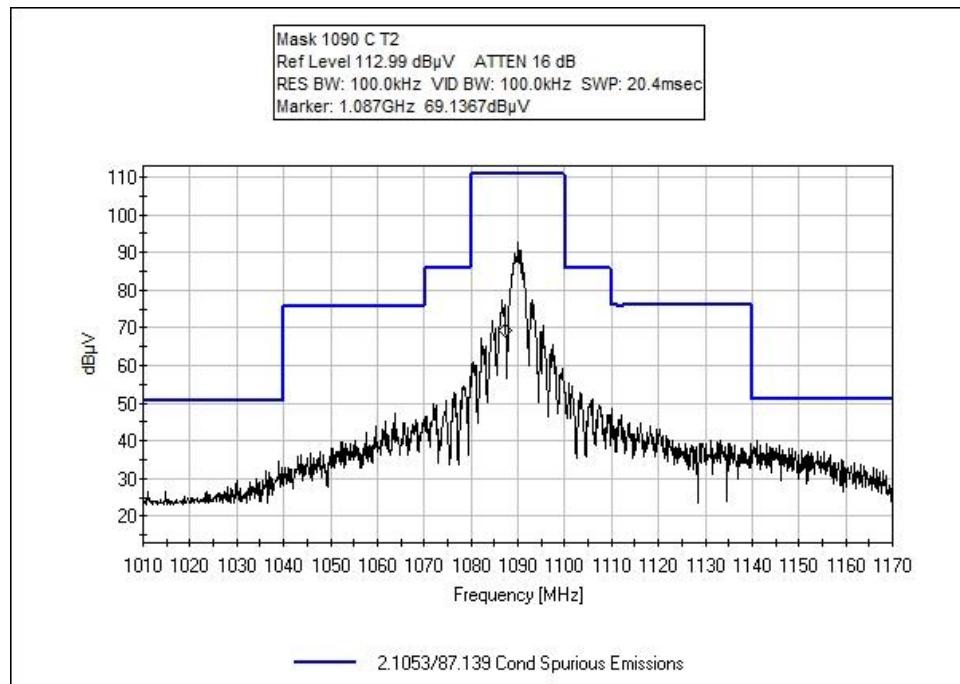
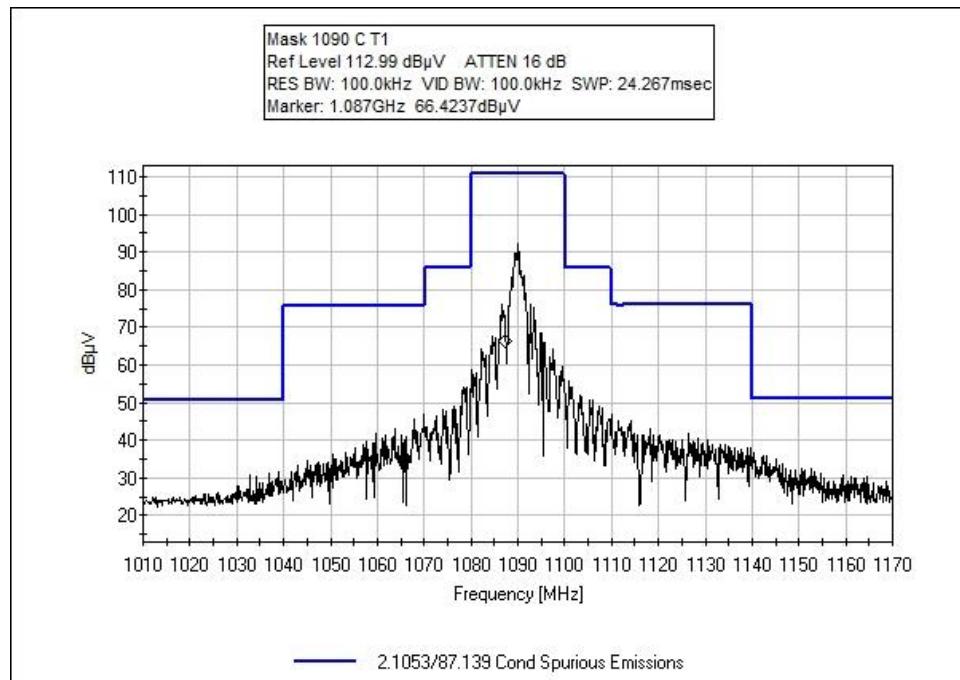

Test Method TIA-603 C

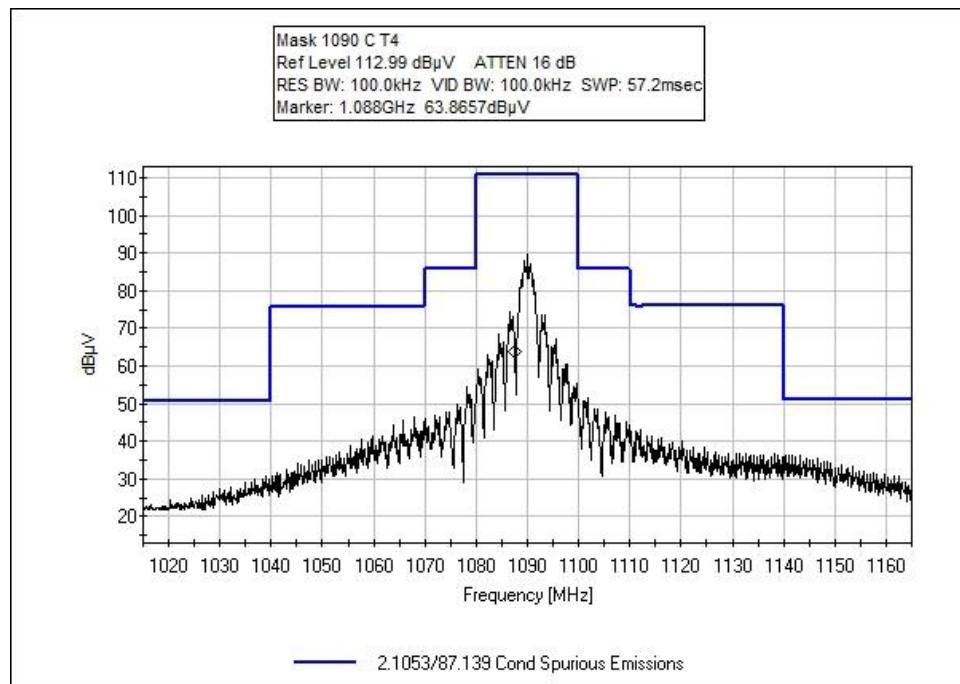
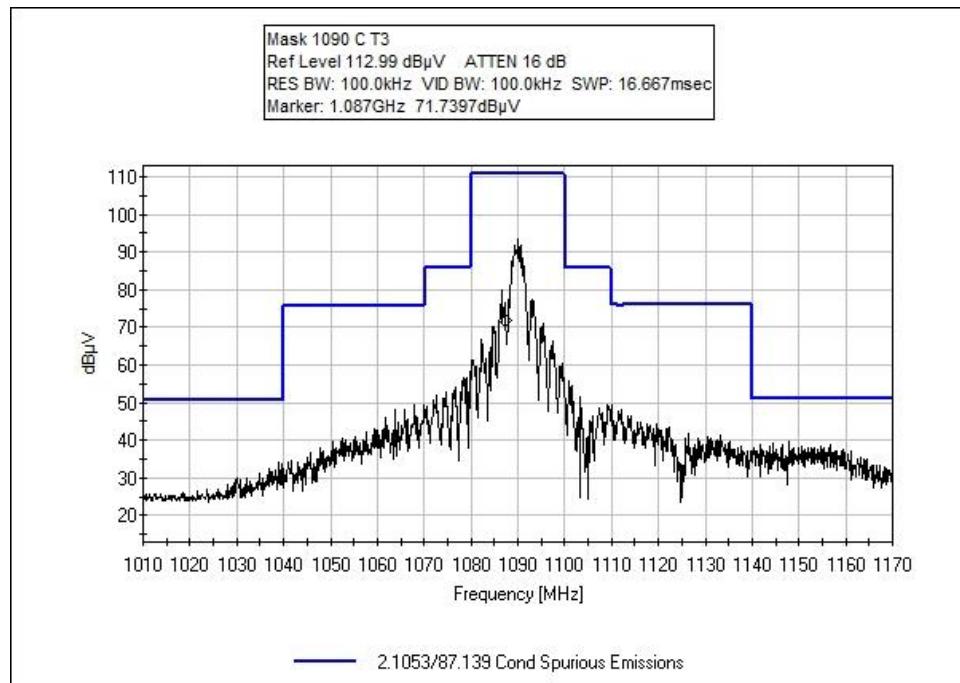
Ext Attn: 0 dB

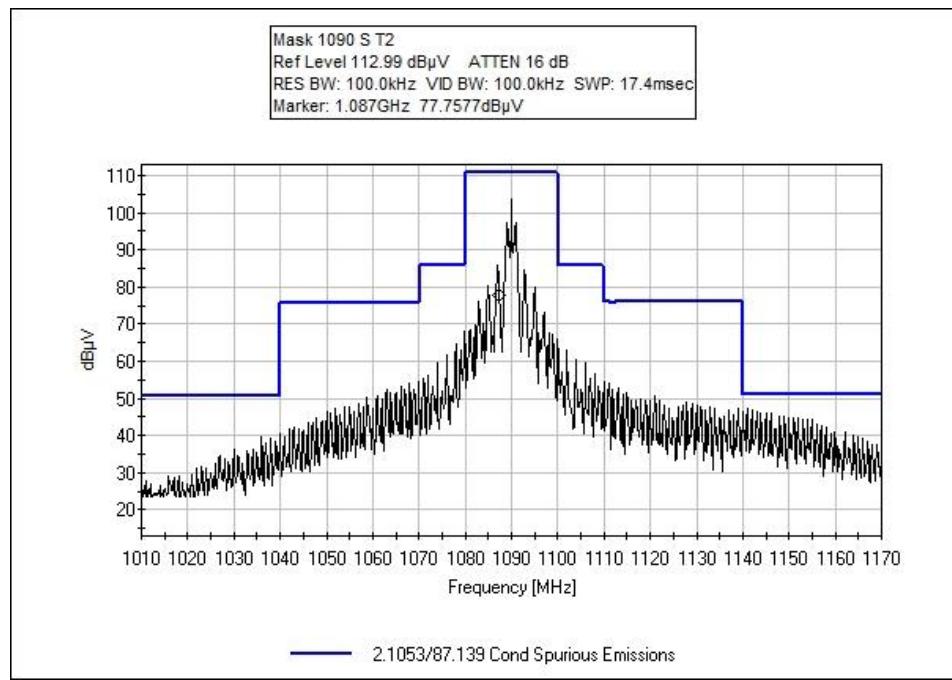
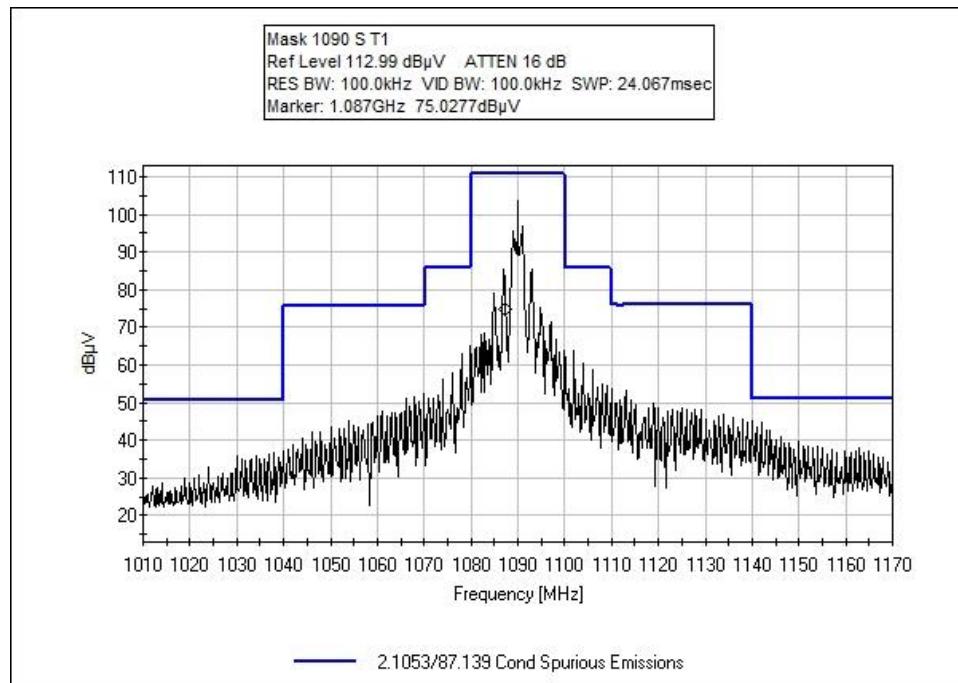
| # | Freq      | Rdng       | Reading listed by margin. |       |      |       | Test Lead: T4 |            |            |             |
|---|-----------|------------|---------------------------|-------|------|-------|---------------|------------|------------|-------------|
|   |           |            | T1                        | T2    | T3   | T4    | Dist          | Corr       | Spec       | Margin      |
|   |           |            | T5                        | T6    | T7   | T8    |               |            |            |             |
|   |           |            | T9                        | T10   | T11  | T12   |               |            |            |             |
|   | MHz       | dB $\mu$ V | dB                        | dB    | dB   | dB    | Table         | dB $\mu$ V | dB $\mu$ V | dB          |
| 1 | 1091.000M | 103.2      | +0.0                      | +1.0  | +1.6 | +0.0  | +0.0          | 136.1      | 94.0       | +42.1       |
|   |           |            | +0.0                      | +30.3 | +0.0 | +0.0  |               |            |            | Fundamental |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            |             |
| 2 | 1029.000M | 94.8       | +0.0                      | +0.9  | +1.6 | +0.0  | +0.0          | 127.9      | 94.0       | +33.9       |
|   |           |            | +0.0                      | +30.6 | +0.0 | +0.0  |               |            |            | Fundamental |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            |             |
| 3 | 536.800M  | 15.0       | +0.0                      | +0.7  | +1.1 | +0.0  | +0.0          | 66.1       | 94.0       | -27.9       |
|   |           |            | +49.3                     | +0.0  | +0.0 | +0.0  |               |            |            |             |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            |             |
| 4 | 963.400M  | 13.5       | +0.0                      | +0.9  | +1.5 | +0.0  | +0.0          | 65.7       | 94.0       | -28.3       |
|   |           |            | +49.8                     | +0.0  | +0.0 | +0.0  |               |            |            |             |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            |             |
| 5 | 658.600M  | 13.9       | +0.0                      | +0.8  | +1.2 | +0.0  | +0.0          | 65.3       | 94.0       | -28.7       |
|   |           |            | +49.4                     | +0.0  | +0.0 | +0.0  |               |            |            |             |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            |             |
| 6 | 410.000k  | 15.5       | +0.0                      | +0.0  | +0.0 | +0.0  | +0.0          | 65.0       | 94.0       | -29.0       |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            | Fundamental |
|   |           |            | +0.0                      | +0.0  | +0.0 | +49.5 |               |            |            |             |
| 7 | 9.010M    | 14.8       | +0.0                      | +0.1  | +0.1 | +0.0  | +0.0          | 64.7       | 94.0       | -29.3       |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            |             |
|   |           |            | +0.0                      | +0.0  | +0.0 | +49.7 |               |            |            |             |
| 8 | 73.610M   | 14.1       | +0.0                      | +0.3  | +0.3 | +0.0  | +0.0          | 64.4       | 94.0       | -29.6       |
|   |           |            | +0.0                      | +0.0  | +0.0 | +0.0  |               |            |            |             |
|   |           |            | +0.0                      | +0.0  | +0.0 | +49.7 |               |            |            |             |

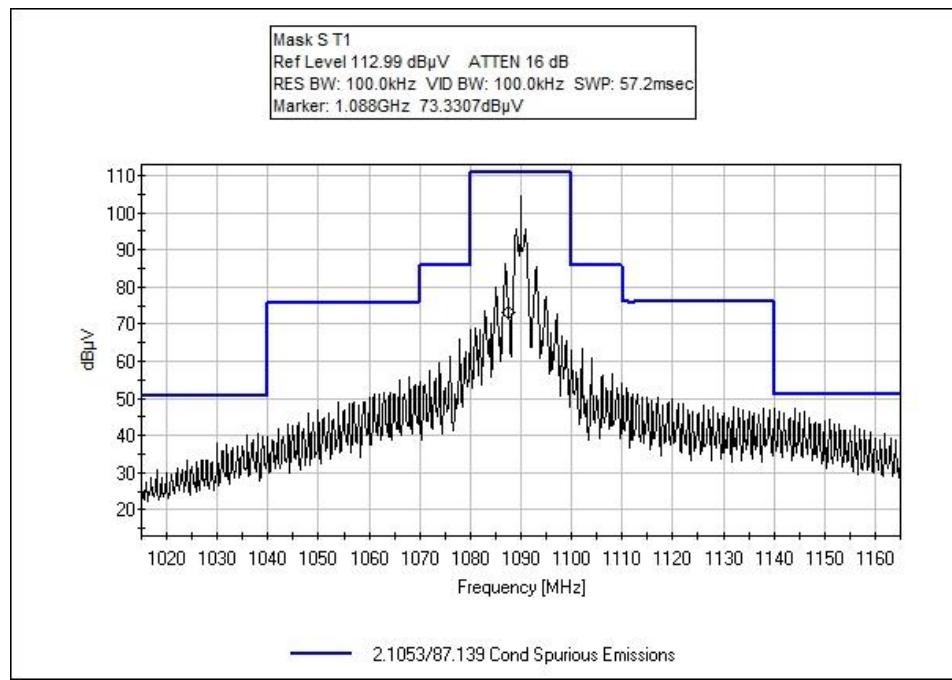
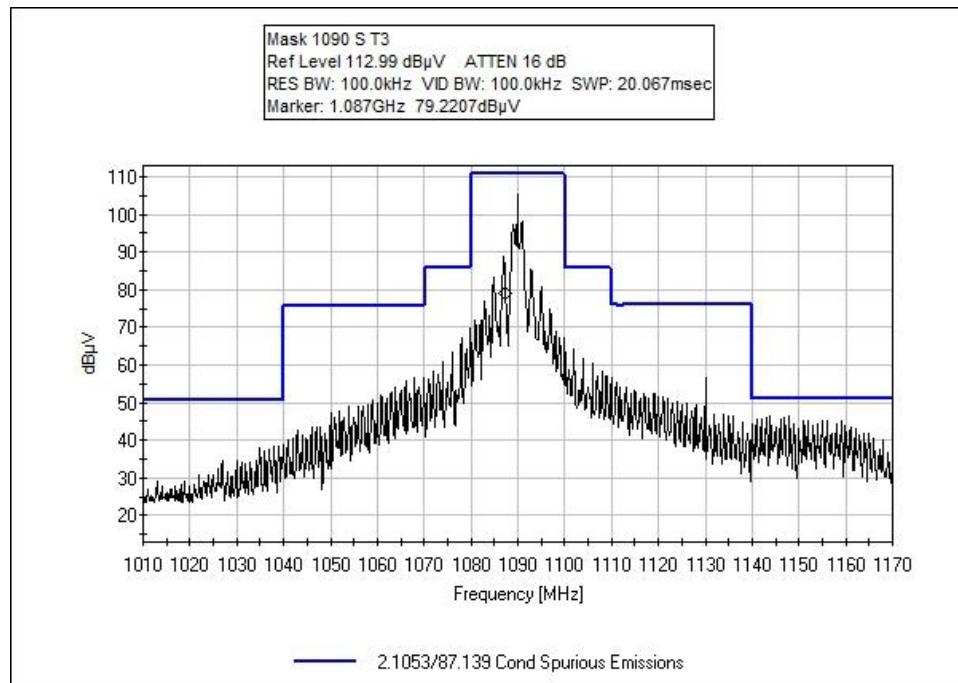


|    |                |      |       |       |       |       |      |      |      |       |    |
|----|----------------|------|-------|-------|-------|-------|------|------|------|-------|----|
| 9  | 151.200M       | 13.8 | +0.0  | +0.4  | +0.5  | +0.0  | +0.0 | 64.2 | 94.0 | -29.8 | T4 |
|    |                |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |                |      | +0.0  | +0.0  | +0.0  | +49.5 |      |      |      |       |    |
| 10 | 8566.000M      | 28.2 | +0.0  | +2.6  | +4.6  | +0.0  | +0.0 | 64.0 | 94.0 | -30.0 | T4 |
|    |                |      | +0.0  | +0.0  | +0.0  | +28.6 |      |      |      |       |    |
|    |                |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 11 | 7258.000M      | 29.6 | +0.0  | +2.4  | +4.3  | +0.0  | +0.0 | 63.8 | 94.0 | -30.2 | T4 |
|    |                |      | +0.0  | +0.0  | +0.0  | +27.5 |      |      |      |       |    |
|    |                |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 12 | 251.600M       | 13.8 | +0.0  | +0.5  | +0.7  | +48.6 | +0.0 | 63.6 | 94.0 | -30.4 | T4 |
|    |                |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |                |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 13 | 358.800M       | 13.0 | +0.0  | +0.6  | +0.9  | +49.0 | +0.0 | 63.5 | 94.0 | -30.5 | T4 |
|    |                |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |                |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 14 | 3900.000M      | 28.1 | +0.0  | +1.8  | +3.3  | +0.0  | +0.0 | 63.4 | 94.0 | -30.6 | T4 |
|    |                |      | +0.0  | +0.0  | +30.2 | +0.0  |      |      |      |       |    |
|    |                |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 15 | 3084.000M      | 30.0 | +0.0  | +1.6  | +2.9  | +0.0  | +0.0 | 63.1 | 94.0 | -30.9 | T4 |
|    |                |      | +0.0  | +0.0  | +28.6 | +0.0  |      |      |      |       |    |
|    |                |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
| 16 | 10166.000<br>M | 24.9 | +0.0  | +3.0  | +5.0  | +0.0  | +0.0 | 55.1 | 94.0 | -38.9 | T4 |
|    |                |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |                |      | +50.1 | -27.9 | +0.0  | +0.0  |      |      |      |       |    |
| 17 | 11150.000<br>M | 24.3 | +0.0  | +3.5  | +5.3  | +0.0  | +0.0 | 55.0 | 94.0 | -39.0 | T4 |
|    |                |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |                |      | +49.8 | -27.9 | +0.0  | +0.0  |      |      |      |       |    |
| 18 | 11714.000<br>M | 24.5 | +0.0  | +3.6  | +5.5  | +0.0  | +0.0 | 54.8 | 94.0 | -39.2 | T4 |
|    |                |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |                |      | +49.7 | -28.5 | +0.0  | +0.0  |      |      |      |       |    |
| 19 | 13956.000<br>M | 24.6 | +0.0  | +4.4  | +6.1  | +0.0  | +0.0 | 52.2 | 94.0 | -41.8 | T4 |
|    |                |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |                |      | +0.0  | -31.1 | +48.2 | +0.0  |      |      |      |       |    |
| 20 | 10604.000<br>M | 24.1 | +0.0  | +3.2  | +5.1  | +0.0  | +0.0 | 4.6  | 94.0 | -89.4 | T4 |
|    |                |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |                |      | +0.0  | -27.8 | +0.0  | +0.0  |      |      |      |       |    |
| 21 | 11936.000<br>M | 22.4 | +0.0  | +3.7  | +5.6  | +0.0  | +0.0 | 3.1  | 94.0 | -90.9 | T4 |
|    |                |      | +0.0  | +0.0  | +0.0  | +0.0  |      |      |      |       |    |
|    |                |      | +0.0  | -28.6 | +0.0  | +0.0  |      |      |      |       |    |

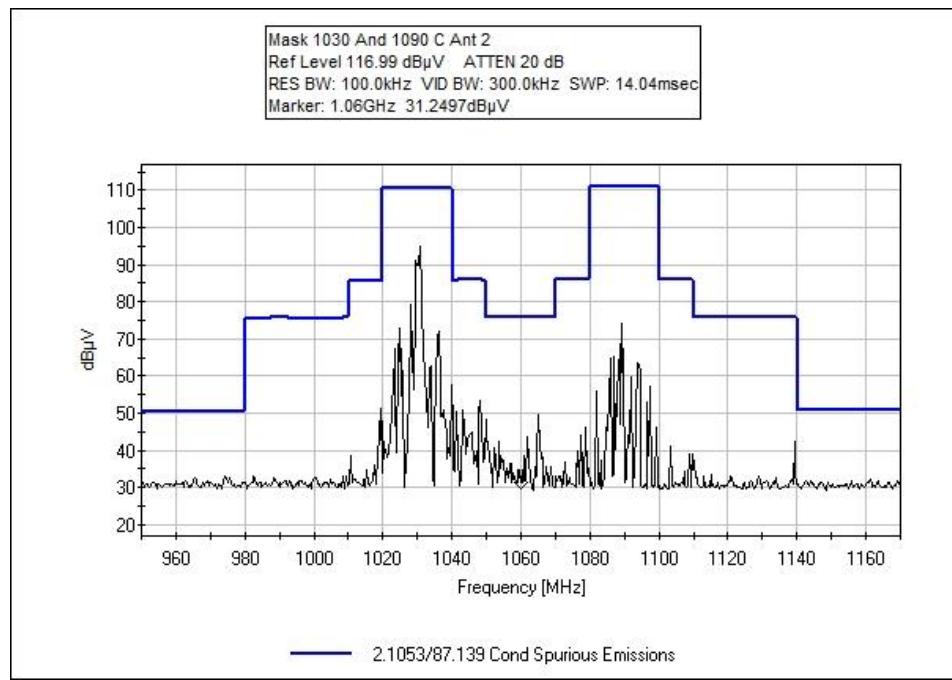
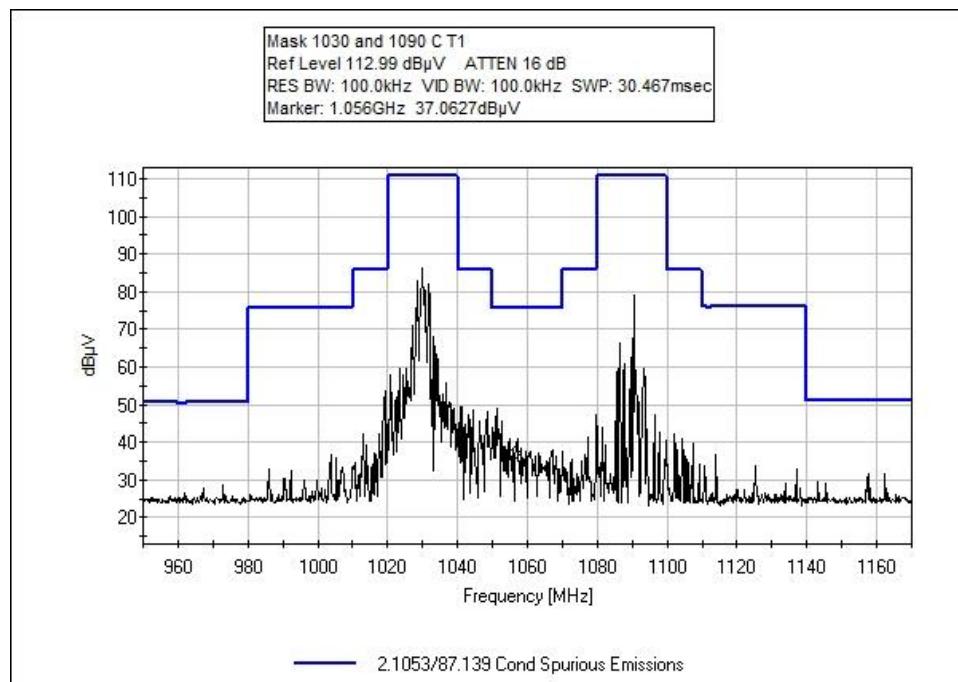


CKC Laboratories, Inc. Date: 2/26/2014 Time: 14:40:24 Honeywell International Inc. WO#: 95223  
Test Lead: T4 115V 400Hz Sequence#: 6 T4  
Honeywell International Inc. AESU (Aircraft Environment Surveillance Unit) P/N: ISP-80C (PN: 965-1694-002)

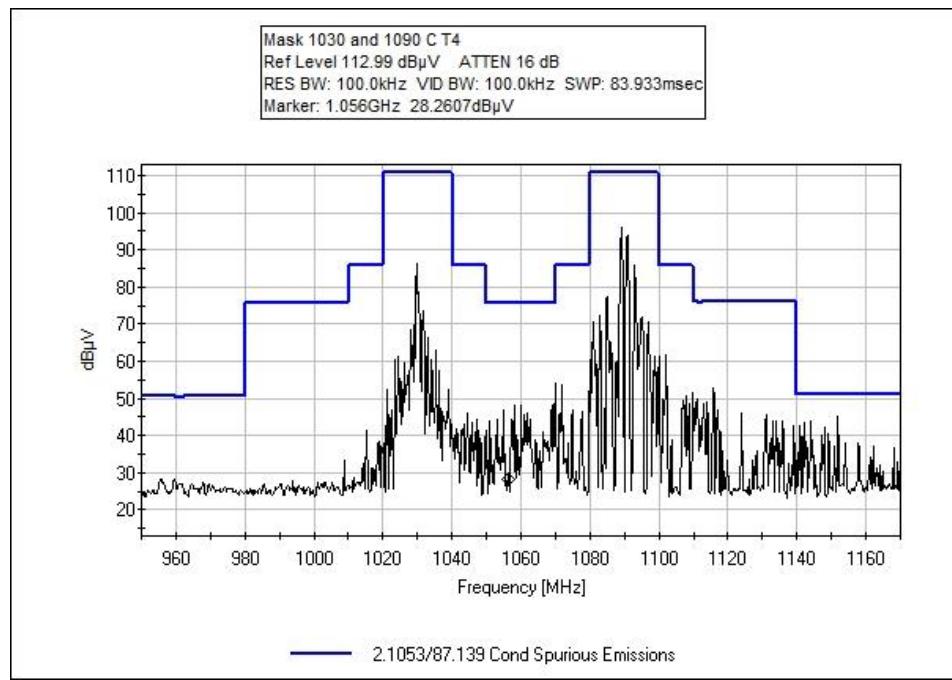
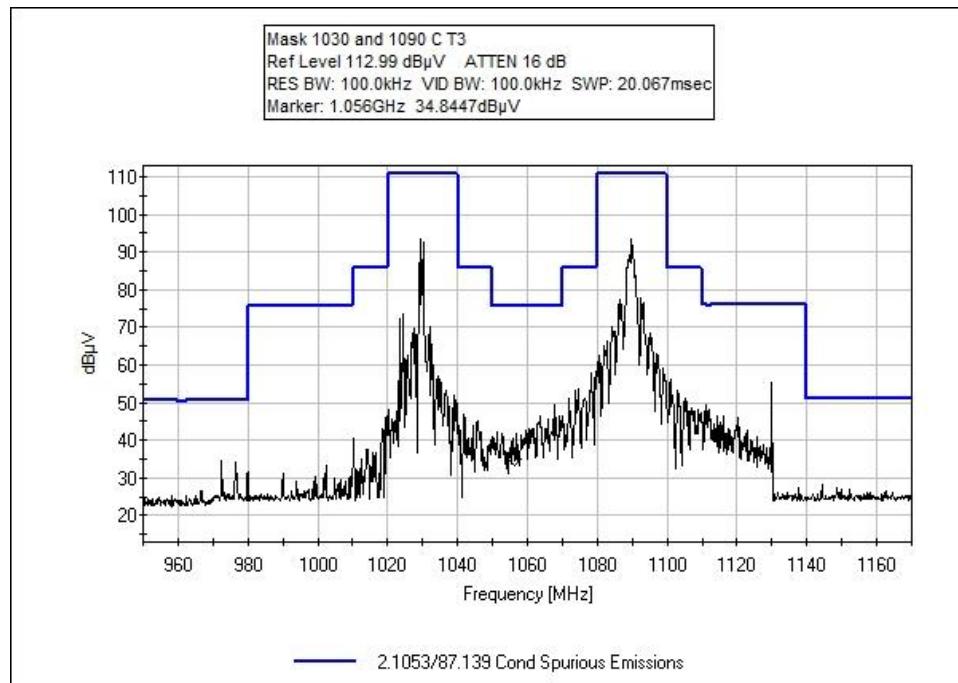






## Test Plots



Note: 2.1053 / 87.139 Conducted Spurious Emissions is a typo. The correct reference is 2.1051 / 87.139 Conducted Spurious Emissions. The plots come in as jpg format and cannot be altered.

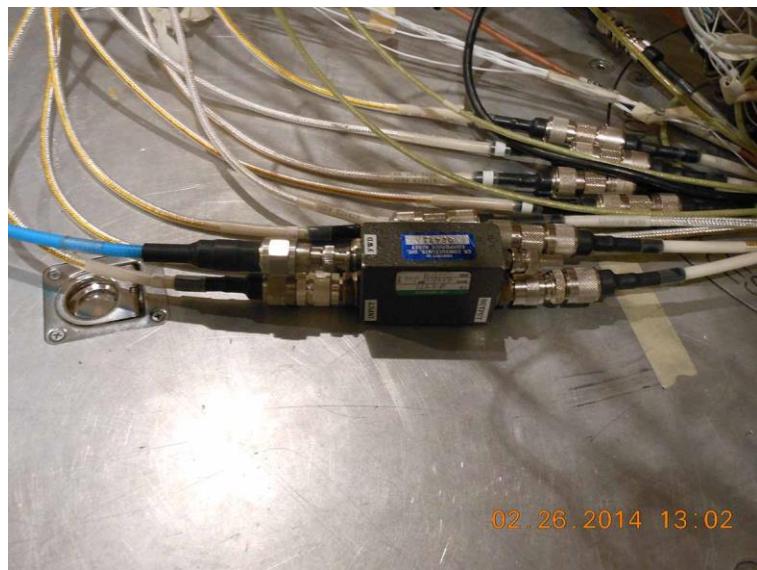













## Test Setup Photo(s)



9kHz-200MHz



200-400MHz



1-2GHz




2-4GHz



4-10GHz



10-12GHz



12-14GHz



400MHz-1GHz

## 2.1053 / 87.139 Field Strength of Spurious Radiation

### Test Conditions

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Honeywell International Inc.**  
 Specification: **47 CFR §87.139(a) Spurious Emissions**  
 Work Order #: **95223** Date: 2/26/2014  
 Test Type: **Maximized Emissions** Time: 10:11:35  
 Equipment: **AESU Processor** Sequence#: 2  
 Manufacturer: Honeywell International Inc. Tested By: Steven Pittsford  
 Model: ISP-80C (965-1694-002)  
 S/N: ISPA-000146

**Test Equipment:**

| ID  | Asset #  | Description         | Model                       | Calibration Date | Cal Due Date |
|-----|----------|---------------------|-----------------------------|------------------|--------------|
| T1  | AN02308  | Preamp              | 8447D                       | 4/3/2012         | 4/3/2014     |
| T2  | AN01996  | Biconilog Antenna   | CBL6111C                    | 3/2/2012         | 3/2/2014     |
| T3  | ANP05360 | Cable               | RG214                       | 12/3/2012        | 12/3/2014    |
| T4  | ANP05541 | Cable               | Heliax                      | 4/11/2012        | 4/11/2014    |
| T5  | ANP06505 | Cable               | 32026-29080-<br>29080-84    | 10/18/2013       | 10/18/2015   |
| T6  | AN02872  | Spectrum Analyzer   | E4440A                      | 7/19/2013        | 7/19/2015    |
| T7  | ANP05547 | Cable               | Heliax                      | 9/7/2012         | 9/7/2014     |
| T8  | AN00052  | Loop Antenna        | 6502                        | 5/16/2012        | 5/16/2014    |
| T9  | AN03209  | Preamp              | 83051A                      | 3/5/2013         | 3/5/2015     |
| T10 | AN01467  | Horn Antenna-ANSI   | 3115<br>C63.5 Calibration   | 9/16/2013        | 9/16/2015    |
| T11 | ANP06217 | Attenuator          | 768-10                      | 3/22/2012        | 3/22/2014    |
| T12 | AN02741  | Active Horn Antenna | AMFW-5F-<br>12001800-20-10P | 12/18/2012       | 12/18/2014   |

***Equipment Under Test (\* = EUT):***

| Function        | Manufacturer                 | Model #                | S/N         |
|-----------------|------------------------------|------------------------|-------------|
| AESU Processor* | Honeywell International Inc. | ISP-80C (965-1694-002) | ISPA-000146 |

***Support Devices:***

| Function                      | Manufacturer | Model #          | S/N  |
|-------------------------------|--------------|------------------|------|
| TCAS Antenna Simulator        | Honeywell    | 727-0016-001     | 0068 |
| TCAS Antenna Simulator        | Honeywell    | 727-0016-001     | 0081 |
| AESU EMI Harness              | Honeywell    | 014-1089-004 REV |      |
| AEES Engineering Test Station | Honeywell    | 951-0404-013     | 218  |

***Test Conditions / Notes:***

Temperature: 22°C

Pressure: 104.0kPa

Humidity: 35%

Frequency: 9k-14GHz

The EUT is sitting on an 80cm test table.

The EUT is connected to the support equipment outside the chamber through the EMI Harness

The Antenna terminals are terminated by a characteristic loads located outside the chamber.

The EUT is transmitting at full power Mode S & C at 1030MHz and 1090MHz simultaneously

CISPR Bandwidths below 150kHz

- 1) Resolution Bandwidth = 10 kHz for spurious emissions 150kHz - 1 GHz, and 1 MHz for spurious emissions above 1GHz.
- 2) Video Bandwidth = 300 kHz for spurious emissions 150kHz - 1 GHz, and 3 MHz for spurious emissions above 1 GHz.
- 3) Sweep Speed slow enough to maintain measurement calibration.
- 4) Detector Mode = Positive Peak.

Test Method TIA-603 C

## Test Data

|                                  |                   |        |
|----------------------------------|-------------------|--------|
| <b>Operating Frequency(ies):</b> | 1030MHz & 1090MHz |        |
| <b>Operational Mode(s):</b>      | Mode C & S        |        |
| <b>Highest Measured Power:</b>   | 48                | dBm    |
| <b>Measurement Distance:</b>     | 3                 | meters |

*Limit Definition:*

| Frequency Range | Limit (dBc) | Limit Calculation |
|-----------------|-------------|-------------------|
| 9kHz - 14GHz    | 61          | 43+10*LOG(P)      |

| Frequency (MHz) | Reference Level (dBm) | Measured (dBc) | Margin | Antenna Polarity |
|-----------------|-----------------------|----------------|--------|------------------|
| 10000.000       | -30.9                 | 78.9           | -17.9  | Horizontal       |
| 10000.000       | -31.0                 | 79.0           | -18.0  | Vertical         |
| 9810.000        | -31.2                 | 79.2           | -18.2  | Vertical         |
| 7630.000        | -31.5                 | 79.5           | -18.5  | Vertical         |
| 9266.390        | -32.0                 | 80.0           | -19.0  | Vertical         |
| 7211.890        | -32.0                 | 80.0           | -19.0  | Vertical         |
| 8720.000        | -32.5                 | 80.5           | -19.5  | Vertical         |
| 8241.620        | -32.5                 | 80.5           | -19.5  | Vertical         |
| 3270.000        | -34.4                 | 82.4           | -21.4  | Vertical         |
| 6540.000        | -36.4                 | 84.4           | -23.4  | Vertical         |
| 5450.000        | -37.0                 | 85.0           | -24.0  | Vertical         |
| 6179.440        | -37.5                 | 85.5           | -24.5  | Horizontal       |
| 5148.130        | -39.6                 | 87.6           | -26.6  | Vertical         |
| 4360.000        | -40.6                 | 88.6           | -27.6  | Vertical         |
| 4121.130        | -42.0                 | 90.0           | -29.0  | Horizontal       |
| 3112.550        | -42.1                 | 90.1           | -29.1  | Vertical         |
| 2180.000        | -42.4                 | 90.4           | -29.4  | Vertical         |
| 396.012         | -42.6                 | 90.6           | -29.6  | Vertical         |
| 1187.850        | -45.2                 | 93.2           | -32.2  | Vertical         |
| 39.553          | -45.2                 | 93.2           | -32.2  | Horizontal       |
| 2055.250        | -45.4                 | 93.4           | -32.4  | Horizontal       |
| 264.077         | -48.0                 | 96.0           | -35.0  | Vertical         |

|           |       |       |       |            |
|-----------|-------|-------|-------|------------|
| 106.769   | -48.4 | 96.4  | -35.4 | Vertical   |
| 14041.520 | -57.8 | 105.8 | -44.8 | Vertical   |
| 13393.420 | -58.3 | 106.3 | -45.3 | Vertical   |
| 13952.000 | -58.3 | 106.3 | -45.3 | Horizontal |
| 11147.480 | -59.1 | 107.1 | -46.1 | Vertical   |
| 11147.520 | -59.1 | 107.1 | -46.1 | Horizontal |
| 12356.700 | -59.6 | 107.6 | -46.6 | Vertical   |
| 10297.380 | -60.2 | 108.2 | -47.2 | Vertical   |
| 11326.960 | -60.5 | 108.5 | -47.5 | Vertical   |

## Test Setup Photo(s)



AESS Test Station Outside, Conducted



Test Setup Inside 1, Radiated



Test Setup Inside 2, Radiated

**Note: The two photos above were taken the day of testing 2/26/2014.**

## 2.1055 / 87.133 Frequency Stability

### Test Conditions

The EUT was placed into a controlled temperature chamber and stabilized at the temperature indicated. The EUT was then operated for fifteen minutes after which time the transmitter frequency was measured.

The input of the directional coupler is directly attached to each antenna port and the output to the simulated antenna loads. The forward power will be measured through the forward power port attenuator and cables.

20 PPM or + 20.6 kHz from the +20°C frequency over a temperature range from -15°C to +70°C.

Pressure: 101.0kPa

Humidity: 31%

Engineer Name: Steven Pittsford

### Test Equipment

| Asset # | Description                   | Model                | Manufacturer | Cal Date   | Cal Due    |
|---------|-------------------------------|----------------------|--------------|------------|------------|
| 02872   | Spectrum Analyzer             | E4440A               | Agilent      | 7/19/2013  | 7/19/2015  |
| P01906  | Directional Coupler           | 3002-30              | NARDA        | 6/18/2013  | 6/18/2015  |
| P06505  | Cable                         | 32026-29080-29080-84 | Astrolab     | 10/18/2013 | 10/18/2015 |
| 02757   | Temperature Chamber           | F100/350-8           | Bemco        | 1/22/2013  | 1/22/2015  |
| P06217  | Attenuator                    | 768-10               | Narda        | 3/31/2013  | 3/31/2015  |
| 03029   | Thermometer, Digital Infrared | 566                  | Fluke        | 2/1/2013   | 2/1/2015   |

## Test Data

| Antenna Port 1                   |          |                                  |                         |                                  |                         |
|----------------------------------|----------|----------------------------------|-------------------------|----------------------------------|-------------------------|
| Temp                             | Mode     | Measured Freq<br>(1030MHz Ideal) | 1030MHz Deviation (kHz) | Measured Freq<br>(1090MHz Ideal) | 1090MHz Deviation (kHz) |
| <b>-15°C</b>                     | <b>S</b> | 1.029999                         | -1                      | 1.089999                         | -1                      |
|                                  | <b>C</b> | 1.030002                         | 2                       | 1.090001                         | 1                       |
| <b>-10°C</b>                     | <b>S</b> | 1.029997                         | -3                      | 1.089999                         | -1                      |
|                                  | <b>C</b> | 1.029997                         | -3                      | 1.089999                         | -1                      |
| <b>0°C</b>                       | <b>S</b> | 1.029997                         | -3                      | 1.089997                         | -3                      |
|                                  | <b>C</b> | 1.029994                         | -6                      | 1.089998                         | -2                      |
| <b>10°C</b>                      | <b>S</b> | 1.029998                         | -2                      | 1.089999                         | -1                      |
|                                  | <b>C</b> | 1.030002                         | 2                       | 1.089999                         | -1                      |
| <b>20°C</b>                      | <b>S</b> | 1.029998                         | -2                      | 1.090000                         | 0                       |
|                                  | <b>C</b> | 1.029996                         | -4                      | 1.089999                         | -1                      |
| <b>30°C</b>                      | <b>S</b> | 1.029997                         | -3                      | 1.090000                         | 0                       |
|                                  | <b>C</b> | 1.029999                         | -1                      | 1.090000                         | 0                       |
| <b>40°C</b>                      | <b>S</b> | 1.029999                         | -1                      | 1.089998                         | -2                      |
|                                  | <b>C</b> | 1.029995                         | -5                      | 1.089998                         | -2                      |
| <b>50°C</b>                      | <b>S</b> | 1.029997                         | -3                      | 1.089998                         | -2                      |
|                                  | <b>C</b> | 1.030005                         | 5                       | 1.089999                         | -1                      |
| <b>60°C</b>                      | <b>S</b> | 1.029997                         | -3                      | 1.089999                         | -1                      |
|                                  | <b>C</b> | 1.030004                         | 4                       | 1.089999                         | -1                      |
| <b>70°C</b>                      | <b>S</b> | 1.029999                         | -1                      | 1.089998                         | -2                      |
|                                  | <b>C</b> | 1.029999                         | -1                      | 1.089999                         | -1                      |
| <b>20°C 115% Nominal Voltage</b> | <b>S</b> | 1.030001                         | 1                       | 1.089998                         | -2                      |
|                                  | <b>C</b> | 1.030001                         | 1                       | 1.089997                         | -3                      |
| <b>20°C 85% Nominal Voltage</b>  | <b>S</b> | 1.029999                         | -1                      | 1.089999                         | -1                      |
|                                  | <b>C</b> | 1.030001                         | 1                       | 1.089999                         | -1                      |

**Antenna Port 2**

| Temp                             | Mode     | Measured Freq (1030MHz Ideal) | 1030MHz Deviation (kHz) | Measured Freq (1090MHz Ideal) | 1090MHz Deviation (kHz) |
|----------------------------------|----------|-------------------------------|-------------------------|-------------------------------|-------------------------|
| <b>-15°C</b>                     | <b>S</b> | 1.029999                      | -1                      | 1.090000                      | 0                       |
|                                  | <b>C</b> | 1.029998                      | -2                      | 1.090000                      | 0                       |
| <b>-10°C</b>                     | <b>S</b> | 1.029997                      | -3                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.029998                      | -2                      | 1.089997                      | -3                      |
| <b>0°C</b>                       | <b>S</b> | 1.029997                      | -3                      | 1.090001                      | 1                       |
|                                  | <b>C</b> | 1.029996                      | -4                      | 1.089998                      | -2                      |
| <b>10°C</b>                      | <b>S</b> | 1.029997                      | -3                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.030003                      | 3                       | 1.089998                      | -2                      |
| <b>20°C</b>                      | <b>S</b> | 1.029996                      | -4                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.029998                      | -2                      | 1.089998                      | -2                      |
| <b>30°C</b>                      | <b>S</b> | 1.029999                      | -1                      | 1.089999                      | -1                      |
|                                  | <b>C</b> | 1.029993                      | -7                      | 1.089998                      | -2                      |
| <b>40°C</b>                      | <b>S</b> | 1.029998                      | -2                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.030009                      | 9                       | 1.089998                      | -2                      |
| <b>50°C</b>                      | <b>S</b> | 1.029997                      | -3                      | 1.089999                      | -1                      |
|                                  | <b>C</b> | 1.029997                      | -3                      | 1.089998                      | -2                      |
| <b>60°C</b>                      | <b>S</b> | 1.029997                      | -3                      | 1.089999                      | -1                      |
|                                  | <b>C</b> | 1.029998                      | -2                      | 1.089998                      | -2                      |
| <b>70°C</b>                      | <b>S</b> | 1.029998                      | -2                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.029999                      | -1                      | 1.089999                      | -1                      |
| <b>20°C 115% Nominal Voltage</b> | <b>S</b> | 1.029997                      | -3                      | 1.090000                      | 0                       |
|                                  | <b>C</b> | 1.030002                      | 2                       | 1.089997                      | -3                      |
| <b>20°C 85% Nominal Voltage</b>  | <b>S</b> | 1.029998                      | -2                      | 1.089999                      | -1                      |
|                                  | <b>C</b> | 1.029996                      | -4                      | 1.089998                      | -2                      |

| Antenna Port 3                   |          |                               |                         |                               |                         |
|----------------------------------|----------|-------------------------------|-------------------------|-------------------------------|-------------------------|
| Temp                             | Mode     | Measured Freq (1030MHz Ideal) | 1030MHz Deviation (kHz) | Measured Freq (1090MHz Ideal) | 1090MHz Deviation (kHz) |
| <b>-15°C</b>                     | <b>S</b> | 1.029998                      | -2                      | 1.089999                      | -1                      |
|                                  | <b>C</b> | 1.030002                      | 2                       | 1.089999                      | -1                      |
| <b>-10°C</b>                     | <b>S</b> | 1.029998                      | -2                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.030003                      | 3                       | 1.089999                      | -1                      |
| <b>0°C</b>                       | <b>S</b> | 1.029999                      | -1                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.030001                      | 1                       | 1.089999                      | -1                      |
| <b>10°C</b>                      | <b>S</b> | 1.029999                      | -1                      | 1.089999                      | -1                      |
|                                  | <b>C</b> | 1.029999                      | -1                      | 1.089999                      | -1                      |
| <b>20°C</b>                      | <b>S</b> | 1.029998                      | -2                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.030001                      | 1                       | 1.090000                      | 0                       |
| <b>30°C</b>                      | <b>S</b> | 1.029998                      | -2                      | 1.089999                      | -1                      |
|                                  | <b>C</b> | 1.030004                      | 4                       | 1.089997                      | -3                      |
| <b>40°C</b>                      | <b>S</b> | 1.029998                      | -2                      | 1.089997                      | -3                      |
|                                  | <b>C</b> | 1.029996                      | -4                      | 1.089998                      | -2                      |
| <b>50°C</b>                      | <b>S</b> | 1.029999                      | -1                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.029998                      | -2                      | 1.089998                      | -2                      |
| <b>60°C</b>                      | <b>S</b> | 1.029997                      | -3                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.029998                      | -2                      | 1.090000                      | 0                       |
| <b>70°C</b>                      | <b>S</b> | 1.029999                      | -1                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.029999                      | -1                      | 1.089999                      | -1                      |
| <b>20°C 115% Nominal Voltage</b> | <b>S</b> | 1.029998                      | -2                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.029995                      | -5                      | 1.089998                      | -2                      |
| <b>20°C 85% Nominal Voltage</b>  | <b>S</b> | 1.029999                      | -1                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.029999                      | -1                      | 1.089998                      | -2                      |

| Antenna Port 4                   |          |                               |                         |                               |                         |
|----------------------------------|----------|-------------------------------|-------------------------|-------------------------------|-------------------------|
| Temp                             | Mode     | Measured Freq (1030MHz Ideal) | 1030MHz Deviation (kHz) | Measured Freq (1090MHz Ideal) | 1090MHz Deviation (kHz) |
| <b>-15°C</b>                     | <b>S</b> | 1.029998                      | -2                      | 1.089999                      | -1                      |
|                                  | <b>C</b> | 1.029996                      | -4                      | 1.089998                      | -2                      |
| <b>-10°C</b>                     | <b>S</b> | 1.030000                      | 0                       | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.029996                      | -4                      | 1.089999                      | -1                      |
| <b>0°C</b>                       | <b>S</b> | 1.029999                      | -1                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.029999                      | -1                      | 1.089998                      | -2                      |
| <b>10°C</b>                      | <b>S</b> | 1.030000                      | 0                       | 1.090000                      | 0                       |
|                                  | <b>C</b> | 1.029997                      | -3                      | 1.089999                      | -1                      |
| <b>20°C</b>                      | <b>S</b> | 1.029999                      | -1                      | 1.089997                      | -3                      |
|                                  | <b>C</b> | 1.029996                      | -4                      | 1.089999                      | -1                      |
| <b>30°C</b>                      | <b>S</b> | 1.029999                      | -1                      | 1.089999                      | -1                      |
|                                  | <b>C</b> | 1.030009                      | 9                       | 1.089999                      | -1                      |
| <b>40°C</b>                      | <b>S</b> | 1.029997                      | -3                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.029992                      | -8                      | 1.089998                      | -2                      |
| <b>50°C</b>                      | <b>S</b> | 1.029998                      | -2                      | 1.089999                      | -1                      |
|                                  | <b>C</b> | 1.030001                      | 1                       | 1.089998                      | -2                      |
| <b>60°C</b>                      | <b>S</b> | 1.029998                      | -2                      | 1.090000                      | 0                       |
|                                  | <b>C</b> | 1.030009                      | 9                       | 1.089998                      | -2                      |
| <b>70°C</b>                      | <b>S</b> | 1.029997                      | -3                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.030007                      | 7                       | 1.089999                      | -1                      |
| <b>20°C 115% Nominal Voltage</b> | <b>S</b> | 1.029998                      | -2                      | 1.089999                      | -1                      |
|                                  | <b>C</b> | 1.030001                      | 1                       | 1.089998                      | -2                      |
| <b>20°C 85% Nominal Voltage</b>  | <b>S</b> | 1.029998                      | -2                      | 1.089998                      | -2                      |
|                                  | <b>C</b> | 1.030000                      | 0                       | 1.089999                      | -1                      |

**Test Setup Photo(s)**



Inside Temperature Chamber 87.133



Outside Temperature Chamber



Outside Temperature Chamber

## SUPPLEMENTAL INFORMATION

### Measurement Uncertainty

| Uncertainty Value | Parameter                 |
|-------------------|---------------------------|
| 4.73 dB           | Radiated Emissions        |
| 3.34 dB           | Mains Conducted Emissions |
| 3.30 dB           | Disturbance Power         |

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of  $k=2$ . Compliance is deemed to occur provided measurements are below the specified limits.

### Emissions Test Details

#### TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

#### CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in  $\text{dB}\mu\text{V}/\text{m}$ , the spectrum analyzer reading in  $\text{dB}\mu\text{V}$  was corrected by using the following formula. This reading was then compared to the applicable specification limit.

| <b>SAMPLE CALCULATIONS</b> |                |
|----------------------------|----------------|
| Meter reading              | (dB $\mu$ V)   |
| + Antenna Factor           | (dB)           |
| + Cable Loss               | (dB)           |
| - Distance Correction      | (dB)           |
| - Preamplifier Gain        | (dB)           |
| = Corrected Reading        | (dB $\mu$ V/m) |

#### TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| <b>MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE</b> |                     |                  |                   |
|-------------------------------------------------------------------|---------------------|------------------|-------------------|
| TEST                                                              | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
| CONDUCTED EMISSIONS                                               | 150 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS                                                | 9 kHz               | 150 kHz          | 200 Hz            |
| RADIATED EMISSIONS                                                | 150 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS                                                | 30 MHz              | 1000 MHz         | 120 kHz           |
| RADIATED EMISSIONS                                                | 1000 MHz            | >1 GHz           | 1 MHz             |

#### SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

##### Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

##### Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

##### Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.