

FCC TEST REPORT

REPORT NO.: F910401A03

MODEL NO.: JT166P13, JT166L13, JT166T13,

JT166S13, JT166U13

TYPE NO.: L51B

RECEIVED: April 1, 2002

TESTED: April 3, 2002

APPLICANT: JEAN CO., LTD.

ADDRESS: 7F,2, Rei Kuang Road, Nei Hu,

Taipei, Taiwan, R.O.C

ISSUED BY: Advance Data Technology Corporation

LAB LOCATION: 47 14th Lin, Chiapau Tsun, Linko, Taipei,

Taiwan, R.O.C.

This test report consists of 19 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CNLA, NVLAP or any government agencies. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

0528 ILAC MRA NVLAP

Lab Code: 200102-0

FCC ID: AMPL51B

Table of Contents

1	CERTIFICATION	3
2	SUMMARY OF TEST RESULTS	4
3 3.1 3.2 3.3	GENERAL INFORMATION GENERAL DESCRIPTION OF EUT DESCRIPTION OF TEST MODES DESCRIPTION OF SUPPORT UNITS	5 5
4 4.1	EMISSION TESTCONDUCTED EMISSION MEASUREMENT	7
4.1.1 4.1.2 4.1.3	LIMITS OF CONDUCTED EMISSION MEASUREMENT TEST INSTRUMENTS TEST PROCEDURE	7
4.1.4 4.1.5	DEVIATION FROM TEST STANDARDTEST SETUP	8
4.1.6 4.1.7	EUT OPERATING CONDITIONSTEST RESULTS	9
4.1.7 4.2 4.2.1	RADIATED EMISSION MEASUREMENTLIMITS OF RADIATED EMISSION MEASUREMENT	12
4.2.2 4.2.3	TEST INSTRUMENTSTEST PROCEDURE	13
4.2.4 4.2.5	DEVIATION FROM TEST STANDARDTEST SETUP	14
4.2.6 4.2.7	EUT OPERATING CONDITIONS	14
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	17
6	APPENDIX - INFORMATION ON THE TESTING LABORATORIES	19

CERTIFICATION

PRODUCT: 15" LCD Monitor

BRAND NAME: JEAN

MODEL NO: JT166P13, JT166L13, JT166T13, JT166S13, JT166U13

TYPE NO.: L51B

TEST ITEM: ENGINEERING SAMPLE

APPLICANT: JEAN CO., LTD.

STANDARDS: FCC Part 15, Subpart B, Class B

CISPR 22: 1997, Class B

ANSI C63.4-1992

We, Advance Data Technology Corporation, hereby certify that one sample (model: JT166P13) of the designation has been tested in our facility on April 3, 2002. The test record, data evaluation and Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions herein specified.

TESTED BY: Ath Lin DATE: 04/09/2002

(Arthur Lin)

CHECKED BY: Kathy Tseng , DATE: 04/09/2002

(Kathy Tseng)

APPROVED BY: Fred Chen/ Manager)

FCC ID: AMPL51B

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

Standard	Test Type	Result	Remarks
FCC Part 15, Subpart B, Class B /	Conducted Test	PASS	Meets Class B Limit Minimum passing margin is –14.42 dB at 0.201 MHz
CISPR 22: 1997, Class B	Radiated Test	PASS	Meets Class B Limit Minimum passing margin is –4.40 dB at 117.42 MHz

NOTE: For conducted emission test, the test limit used is according to FCC Part 15.107. In this part, conducted emission test for telecom port is not mentioned and therefore this item is not tested.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	15" LCD MONITOR
MODEL NO.	JT166P13, JT166L13, JT166T13, JT166S13
WODEL NO.	JT166U13
TYPE NO.	L51B
	Switching
POWER SUPPLY	100-240V, 0.8A, 50/60Hz
POWER SUPPLI	Power Cord
	Non-shielded, AC 3-pin (1.8m)
DATA CABLE	Nonshielded (1.5m) with one ferrite core

NOTE: This report is prepared for Class II permissive change. The main change is to change the circuit.

The EUT is a 15" LCD MONITOR with the panel, brand:CPT model: CLASS150XG02J. Its resolution is up to 1024 x 768.

The EUT has four model names, which are identical to each other in all aspects except for their outer appearance and with speaker or not as follows:

MODEL	DIFFERENCE
JT166P13	All with speaker but with
JT166T13	different outer appearance
JT166S13	
JT166L13	Without speaker
JT166U13	

During the test, the model: JT166P13 was chosen as a representative model and its data was recorded in this report.

For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

3.2 DESCRIPTION OF TEST MODES

The EUT was pre-tested under the following resolution and horizontal synchronization speed mode:

- ♦ 1024 x 768 (60kHz)
- ♦ 800 x 600 (47kHz)
- ♦ 640 x 480 (31.5kHz)

3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Personal	HP	Brio BA410	SG12106031	FCC DoC Approved
	Computer				
2	PRINTER	EPSON	LQ-300+	DCGY017059	FCC DoC Approved
3	MODEM	ACEEX	1414	980020501	IFAXDM1414
4	PS/2	BTC	5121W	A00801378	E5XKB5121WTH0110
	KEYBOARD				
5	PS2/MOUSE	LOGITECH	M-S61	HCA12001857	JNZ211403
6	EARPHONE	KOKA	ST-8	H201031	N/A
7	VGA CARD	ELSA	ERAZOR III LT	0111011969	FCC DoC Approved
8	SOUND CARD	TOP	SOHO 4CH	019T98000962	LWHA521-T9
		SOLUTION			

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA
2	1.2m braid shielded wire, terminated with DB25 and Centronics connector via metallic
	frame, w/o core
3	1.2 m braid shielded wire, terminated with DB25 and DB9 connector via metallic frame,
	w/o core.
4	1.6 m foil shielded wire, terminated with PS/2 connector via metallic frame, w/o core.
5	1.8 mNon shielded wire, terminated with PS/2 connector via drain wire, w/o core.
6	1.8 m wrapped shielded wire, terminated with 3.5mm phone plug via drain wire, w/o core.
7	NA
8	NA

NOTE: All power cords of the above support units are non shielded (1.8m).

4 EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
FREQUENCT (WHZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

NOTES: (1) The lower limit shall apply at the transition frequencies.

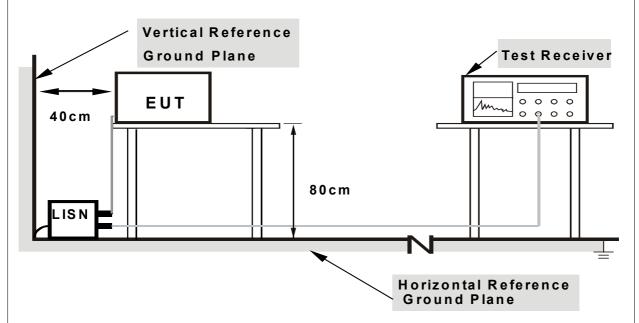
- (2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
ROHDE & SCHWARZ Test Receiver	ESCS30	834115/016	Mar. 03, 2003
ROHDE & SCHWARZ Artificial Mains Network (For EUT)	ESH3-Z5	847265/023	Jan. 10, 2003
* ROHDE & SCHWARZ 4-wire ISN	ENY41	838119/028	Dec. 10, 2002
* ROHDE & SCHWARZ 2-wire ISN	ENY22	837497/018	Dec. 10, 2002
EMCO L.I.S.N. (For peripherals)	3825/2	9504-2359	July 10, 2002
Software	Cond-V2L	NA	NA
RF cable (JYEBAO)	5D-FB	Cable-C03.01	July 11, 2002
Terminator (For EMCO LISN)	NA	E1-01-300	Feb. 20, 2003
Terminator (For EMCO LISN)	NA	E1-01-301	Feb. 20, 2003
Shielded Room	Site 3	ADT-C03	NA
VCCI Site Registration No.	Site 3	C-274	NA

NOTE: 1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. "*": These equipment are used for conducted telecom port test only (if tested).


4.1.3 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits could not be reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

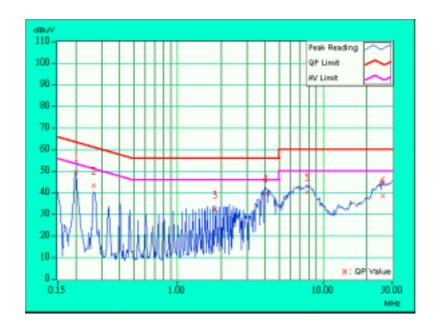
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power of all equipment.
- b. PC ran a test program to enable all functions.
- c. PC read and wrote messages from FDD and HDD.
- d. PC sent "H" messages to 15" LCD Monitor (EUT) and 15" LCD MONITOR displayed "H" patterns on screen.
- e. PC sent "H" messages to modem.
- f. PC sent "H" messages to printer, and the printer printed them on paper.
- g. PC sent audio message to EUT's internal speaker or external earphone.
- h. Steps c-h were repeated.

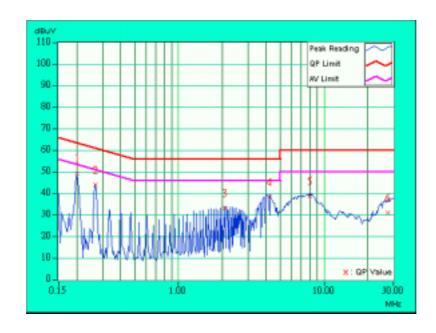

4.1.7 TEST RESULTS

EUT	15" LCD Monitor	MODEL	JT166P13	
MODE	1024x768 (60 kHz)	6dB BANDWIDTH	10 kHz	
INPUT POWER	120Vac, 60 Hz	PHASE	Line (L)	
ENVIRONMENTAL	22 deg. C, 70 % RH,	TESTED BY: ARTHUR LIN		
CONDITIONS	1005 hPa	IESIED BI. ARIHU	K LIN	

	Freq.	Corr.	Readin	g Value	Emis Le	sion vel	Lir	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.201	0.10	49.06	-	49.16	-	63.58	53.58	-14.42	-
2	0.267	0.10	42.88	-	42.98	ı	61.20	51.20	-18.22	-
3	1.814	0.20	31.84	-	32.04	-	56.00	46.00	-23.96	-
4	4.029	0.30	39.31	-	39.61	-	56.00	46.00	-16.39	-
5	7.787	0.36	39.94	-	40.30	-	60.00	50.00	-19.70	-
6	25.844	0.50	38.16	-	38.66	-	60.00	50.00	-21.34	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



EUT	15" LCD Monitor	MODEL	JT166P13
MODE	1024x768 (60 kHz)	6dB BANDWIDTH	10 kHz
INPUT POWER	120Vac, 60 Hz	PHASE	Neutral (N)
ENVIRONMENTAL	22 deg. C, 70 % RH,	TESTED BY:ARTHUR LIN	
CONDITIONS	1005 hPa		

	Freq.	Corr.	Readin	g Value	Emis Le	sion vel	Lir	nit	Mar	gin
No		Factor	[dB ((uV)]	[dB ((uV)]	[dB	(uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.201	0.10	48.03	-	48.13	-	63.58	53.58	-15.45	-
2	0.268	0.10	43.06	-	43.16	ı	61.17	51.17	-18.01	-
3	2.080	0.20	32.24	ı	32.44	-	56.00	46.00	-23.56	-
4	4.228	0.30	37.28	-	37.58	-	56.00	46.00	-18.42	-
5	8.052	0.37	37.86	-	38.23	-	60.00	50.00	-21.77	-
6	27.377	1.19	30.10	-	31.29	-	60.00	50.00	-28.71	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT FOR FREQUENCY BELOW 1000 MHz

FREQUENCY (MHz)	Class A (at 10m)	Class B (at 10m)			
FREQUENCY (WIHZ)	dBuV/m	dBuV/m			
30 – 230	40	30			
230 - 1000	47	37			

LIMIT OF RADIATED EMISSION OF FCC PART 15, SUBPART B FOR FREQUENCY ABOVE 1000 MHz

FREQUENCY (MHz)	Class A (dBu	ıV/m) (at 3m)	Class B (dBuV/m) (at 3m)		
	PEAK	AVERAGE	PEAK	AVERAGE	
Above 1000	80.0	60.0	74.0	54.0	

Note: (1) The lower limit shall apply at the transition frequencies.

- (2) Emission level (dBuV/m) = 20 log Emission level (uV/m).
- (3) All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 TEST INSTRUMENTS

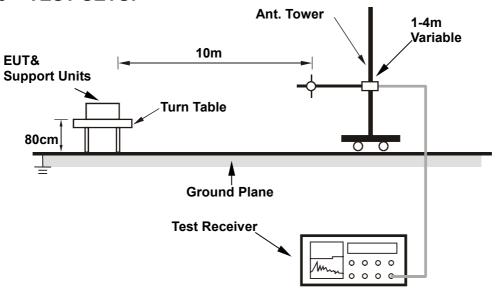
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
HP Spectrum Analyzer	8590L	3544A00941	Dec.10, 2002
HP Pre-Amplifier	8447D	2944A08312	Aug. 19, 2002
* HP Preamplifier	8449B	3008A01201	Dec. 06, 2002
* HP Preamplifier	8449B	3008A01292	Aug. 21, 2002
* R&S Receiver	ESI7	100033	May 30, 2002
SCHWARZBECK Tunable Dipole Antenna	VHA 9103 UHA 9105	E101051 E101055	Nov. 23, 2002
* ROHDE & SCHWARZ TEST RECEIVER	ESMI	839013/007 839379/002	Jan. 27, 2003
* CHASE BILOG Antenna	CBL6111A	1500	Aug. 30, 2002
* SCHWARZBECK Horn Antenna	BBHA9120- D1	D130	July 6, 2002
* EMCO Horn Antenna	3115	9312-4192	April 15, 2002
* EMCO Turn Table	1060-04	1196	NA
* EMCO Tower	1051	1264	NA
* Software	AS61D4	NA	NA
* ANRITSU RF Switches	MP59B	M06089	Aug. 30, 2002
* TIMES RF cable	LMR-600	CABLE-ST1-01	Aug. 30, 2002
Open Field Test Site	Site 1	ADT-R01	June 15, 2002
VCCI Site Registration No.	Site 1	R-236	NA

NOTE: 1.The measurement uncertainty is less than +/- 3.0dB, which is calculated as per the NAMAS document NIS81.

- 2. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.
- 3. "*" = These equipment are used for the final measurement.
- 4. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

4.2.3 TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10-meter open field site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.



- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the ratable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be retested one by one using the quasi- peak method or average method as specified and then reported In Data sheet peak mode and QP mode.
- g. For measurement of frequency above 1000 MHz, the EUT was set 3 meters away from the interference antenna and the detect function was set to Peak or Average.

4.2.4 DEVIATION FROM TEST STANDARD

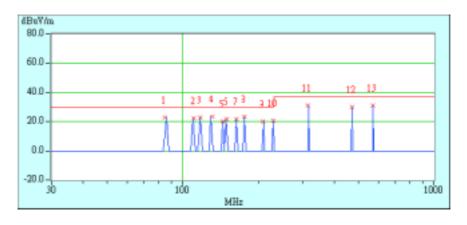
No deviation

4.2.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

Same as 4.1.6

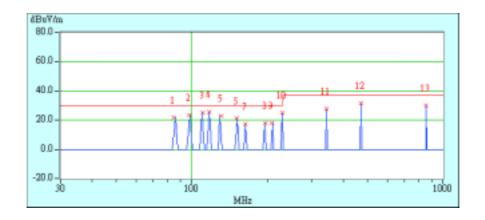

4.2.7 TEST RESULTS

EUT	15" LCD Monitor	MODEL	JT166P13	
MODE	1024x768 (60kHz)	FREQUENCY	30-1000 MHz	
MODE	1024X100 (00K112)	RANGE		
		DETECTOR	Quasi-Peak, 120kHz	
INPUT POWER	120Vac, 60 Hz	FUNCTION &		
		BANDWIDTH		
ENVIRONMENTAL	22 deg. C, 70 % RH,	TESTED BY: ADTU	LID LIN	
CONDITIONS	1005 hPa	TESTED BY:ARTHUR LIN		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 10 M										
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Antenna	Cable	Pre-Amp.	Correction
No.	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor	Factor	Gain	Factor
	(IVIITZ)	(dBuV/m)	(ubuv/III)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
1	84.80	23.1 QP	30.00	-6.90	4.00H	225	14.00	7.55	1.55	0.00	-9.10
2	110.90	22.3 QP	30.00	-7.70	4.00H	202	10.12	10.59	1.59	0.00	-12.18
3	117.43	22.7 QP	30.00	-7.30	4.00H	62	10.02	11.06	1.61	0.00	-12.69
4	130.46	23.4 QP	30.00	-6.60	4.00H	99	10.54	11.21	1.65	0.00	-12.87
5	143.60	20.3 QP	30.00	-9.70	4.00H	325	7.66	10.93	1.71	0.00	-12.65
6	150.01	22.0 QP	30.00	-8.00	4.00H	324	9.65	10.62	1.73	0.00	-12.36
7	163.07	21.5 QP	30.00	-8.50	4.00H	9	10.05	9.68	1.77	0.00	-11.45
8	176.12	23.2 QP	30.00	-6.80	4.00H	119	12.60	8.86	1.73	0.00	-10.61
9	208.70	20.1 QP	30.00	-9.90	4.00H	235	8.83	9.28	1.99	0.00	-11.27
10	228.40	20.7 QP	30.00	-9.30	4.00H	307	8.25	10.37	2.08	0.00	-12.46
11	315.03	31.0 QP	37.00	-6.00	2.20H	180	15.56	13.03	2.41	0.00	-15.44
12	472.55	29.8 QP	37.00	-7.20	1.38H	213	10.07	16.52	3.22	0.00	-19.73
13	572.78	31.2 QP	37.00	-5.80	1.88H	225	7.53	20.11	3.56	0.00	-23.67

REMARKS:

- 1. Emission level(dBuV/m)=Raw Value(dBuV) Correction Factor(dB)
- 2. Correction Factor(dB/m) = Pre-Amplifier Gain (dB) Antenna Factor (dB/m) Cable Factor (dB)
- 3. Pre-Amplifier Gain (dB) = 0, when the test receiver is used to read the value and because it did not use the Pre-Amplifier.
- 4. The other emission levels were very low against the limit.
- 5. Margin value = Emission level Limit value.



EUT	15" LCD Monitor	MODEL	JT166P13		
MODE	1024x768 (60kHz)	FREQUENCY RANGE	30-1000 MHz		
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak, 120kHz		
ENVIRONMENTAL CONDITIONS	22 deg. C, 70 % RH, 1005 hPa	TESTED BY:ARTH	UR LIN		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 10 M										
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Antenna	Cable	Pre-Amp.	Correction
No.	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor	Factor	Gain	Factor
	(IVIITZ)	(dBuV/m)	(ubuv/III)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
1	84.79	22.0 QP	30.00	-8.00	1.31V	169	12.90	7.55	1.55	0.00	-9.10
2	97.78	23.3 QP	30.00	-6.70	1.00V	221	12.20	9.54	1.56	0.00	-11.10
3	110.91	25.0 QP	30.00	-5.00	1.00V	15	12.82	10.59	1.59	0.00	-12.18
4	117.42	25.6 QP	30.00	-4.40	1.00V	32	12.92	11.06	1.61	0.00	-12.68
5	130.46	22.6 QP	30.00	-7.40	1.00V	69	9.74	11.21	1.65	0.00	-12.87
6	150.05	21.0 QP	30.00	-9.00	1.00V	59	8.79	10.47	1.74	0.00	-12.22
7	163.07	17.5 QP	30.00	-12.50	1.00V	282	6.05	9.68	1.77	0.00	-11.45
8	195.80	17.9 QP	30.00	-12.10	1.00V	16	7.31	8.70	1.88	0.00	-10.60
9	208.70	18.0 QP	30.00	-12.00	1.00V	96	6.73	9.28	1.99	0.00	-11.28
10	228.32	25.0 QP	30.00	-5.00	1.00V	2	12.55	10.37	2.08	0.00	-12.46
11	343.80	28.0 QP	37.00	-9.00	1.00V	219	11.96	13.46	2.58	0.00	-16.04
12	472.54	31.8 QP	37.00	-5.20	3.18V	178	12.07	16.52	3.22	0.00	-19.73
13	859.13	30.2 QP	37.00	-6.80	1.93V	330	2.02	23.54	4.64	0.00	-28.18

REMARKS:

- 1. Emission level(dBuV/m)=Raw Value(dBuV) Correction Factor(dB)
- 2. Correction Factor(dB/m) = Pre-Amplifier Gain (dB) Antenna Factor (dB/m) Cable Factor (dB)
- 3. Pre-Amplifier Gain (dB) = 0, when the test receiver is used to read the value and because it did not use the Pre-Amplifier.
- 4. The other emission levels were very low against the limit.
- 5. Margin value = Emission level Limit value.

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

CONDUCTED EMISSION TEST

FCC ID: AMPL51B

6 APPENDIX - INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025, Guide 25 or EN 45001:

USA FCC, NVLAP, UL Germany TUV Rheinland

Japan VCCI New Zealand MoC

Norway NEMKO, DNV

Canada INDUSTRY CANADA

R.O.C. CNLA, BSMI

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml.

If you have any comments, please feel free to contact us at the following:

 Lin Kou EMC Lab:
 Hsin Chu EMC Lab:

 Tel: 886-2-26052180
 Tel: 886-35-935343

 Fax: 886-2-26052943
 Fax: 886-35-935342

Lin Kou Safety Lab: Lin Kou RF & Telecom Lab.

Tel: 886-2-26093195 Tel: 886-3-3270910 Fax: 886-2-26093184 Fax: 886-3-3270892

Email: service@mail.adt.com.tw
Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.