

Nemko-CCL, Inc.
1940 West Alexander Street
Salt Lake City, UT 84119
801-972-6146

Test Report

Certification

Test Of: MVR900

FCC ID: ALZMVR900

Test Specification:
FCC PART 15, Subpart C

Test Report Serial No: 204821-3.1

Applicant:
Multi-Voice Radio
266 E 900 S
Mapleton, UT 84664

Dates of Test: April 4 and 5, 2012

Issue Date: April 10, 2012

Accredited Testing Laboratory By:

NVLAP Lab Code 100272-0

CERTIFICATION OF ENGINEERING REPORT

This report has been prepared by Nemko-CCL, Inc. to document compliance of the device described below with the requirements of Federal Communications Commission (FCC) Part 15, Subpart C. This report may be reproduced in full. Partial reproduction may only be made with the written consent of the laboratory. The results in this report apply only to the sample tested.

- Applicant: Multi-Voice Radio
- Manufacturers: Precision Assembly and Newonics, Inc.
- Brand Name: Multi-Voice Radio
- Model Number: MVR900
- FCC ID Number: ALZMVR900

On this 10th day of April 2012, I, individually and for Nemko-CCL, Inc., certify that the statements made in this engineering report are true, complete, and correct to the best of my knowledge, and are made in good faith.

Although NVLAP has recognized that the Nemko-CCL, Inc. EMC testing facilities are in good standing, this report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Nemko-CCL, Inc.

Tested by: Norman P. Hansen
EMC Technician

TABLE OF CONTENTS

	PAGE
SECTION 1.0 CLIENT INFORMATION	4
SECTION 2.0 EQUIPMENT UNDER TEST (EUT).....	5
SECTION 3.0 TEST SPECIFICATION, METHODS & PROCEDURES	9
SECTION 4.0 OPERATION OF EUT DURING TESTING.....	16
SECTION 5.0 SUMMARY OF TEST RESULTS	17
SECTION 6.0 MEASUREMENTS, EXAMINATIONS AND DERIVED RESULTS	18
APPENDIX 1 TEST PROCEDURES AND TEST EQUIPMENT.....	36
APPENDIX 2 PHOTOGRAPHS.....	41
APPENDIX 3 MANUFACTURER'S STATEMENT/ATTESTATION.....	54

SECTION 1.0 CLIENT INFORMATION

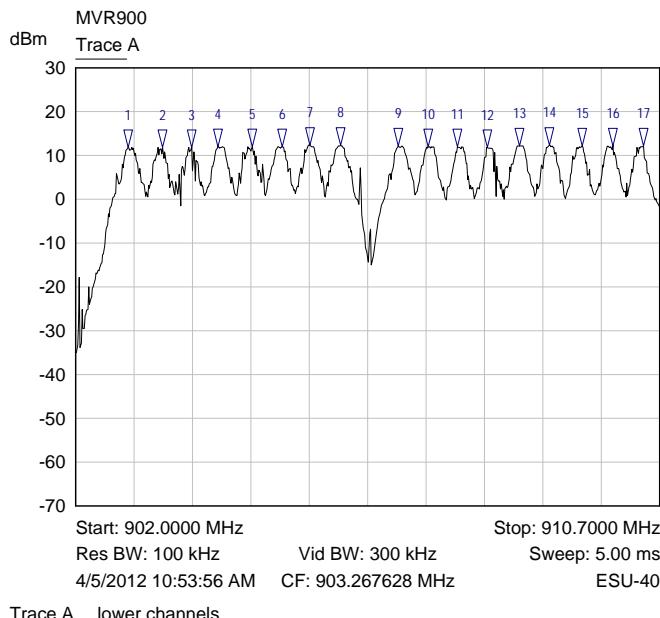
1.1 Applicant:

Company Name: Multi-Voice Radio
266 E 900 S
Mapleton, UT 84664

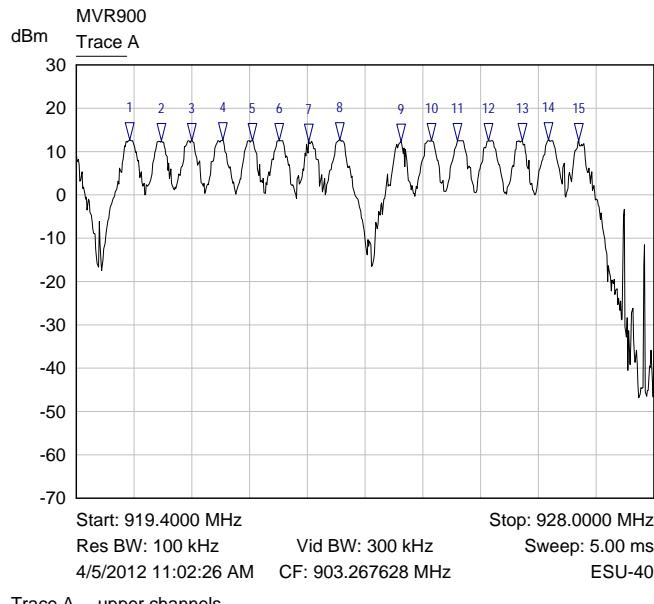
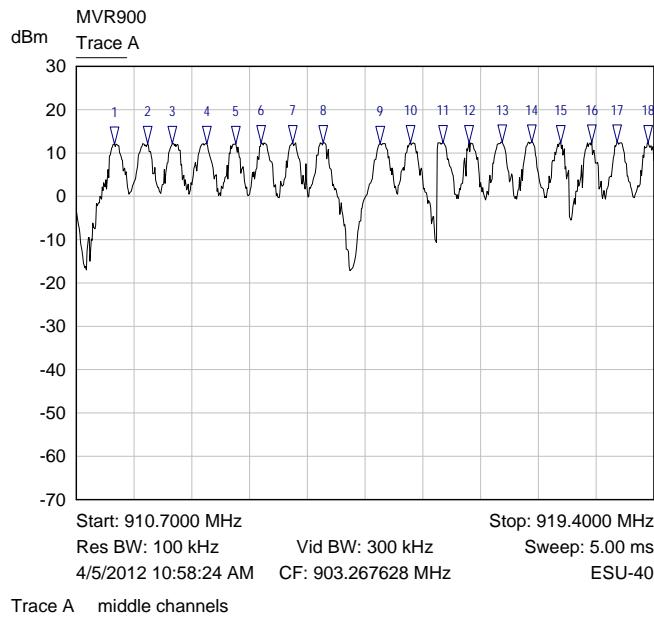
Contact Name: Dustin Fraser
Title: Vice President

1.2 Manufacturer:

Company Name: Precision Assembly
1315 West 400 South
Orem, UT 84058


Company Name: Newonics, Inc.
1883 South 5070 Wet
Salt Lake City, UT 84104

SECTION 2.0 EQUIPMENT UNDER TEST (EUT)**2.1 Identification of EUT:**



Brand Name: Multi-Voice Radio
 Model Number: MVR900
 Serial Number: Engineering Unit
 Country of Manufacture: U.S.A.

2.2 Description of EUT:

The MVR900 is a wireless communication device operating in the 902 – 928 MHz band that allows for group communications. The MVR900 may be used hands free or may be used as a push to talk device. Ports are provided for connection of a headset and an external power source/battery charger. The MVR900 is powered by 2 SAM i9100 Li-Ion batteries. The MVR900 was tested using 2 different antennas, a Mobil-Advance Industrial Co. Ltd. M020030916 and a 128AM-002 antenna. The MVR900 is a frequency hopping spread spectrum device using 50 channels between 902.8 MHz and 926.9 MHz. See the plots of the channels below.

Mkr	Trace	X-Axis	Value
1	Trace A	902.7808 MHz	11.80 dBm
2	Trace A	903.2966 MHz	11.86 dBm
3	Trace A	903.7288 MHz	11.79 dBm
4	Trace A	904.1192 MHz	12.03 dBm
5	Trace A	904.6351 MHz	11.97 dBm
6	Trace A	905.0813 MHz	12.01 dBm
7	Trace A	905.4856 MHz	12.30 dBm
8	Trace A	905.9457 MHz	12.27 dBm
9	Trace A	906.8101 MHz	12.09 dBm
10	Trace A	907.2563 MHz	12.06 dBm
11	Trace A	907.6885 MHz	12.06 dBm
12	Trace A	908.1346 MHz	11.85 dBm
13	Trace A	908.6087 MHz	12.20 dBm
14	Trace A	909.0548 MHz	12.31 dBm
15	Trace A	909.5428 MHz	12.16 dBm
16	Trace A	910.0029 MHz	12.14 dBm
17	Trace A	910.4630 MHz	12.13 dBm

Mkr	Trace	X-Axis	Value
1	Trace A	911.2716 MHz	12.02 dBm
2	Trace A	911.7736 MHz	12.14 dBm
3	Trace A	912.1500 MHz	12.17 dBm
4	Trace A	912.6659 MHz	12.22 dBm
5	Trace A	913.0981 MHz	12.22 dBm
6	Trace A	913.4885 MHz	12.29 dBm
7	Trace A	913.9625 MHz	12.39 dBm
8	Trace A	914.4226 MHz	12.28 dBm
9	Trace A	915.2731 MHz	12.25 dBm
10	Trace A	915.7332 MHz	12.36 dBm
11	Trace A	916.2212 MHz	12.39 dBm
12	Trace A	916.6115 MHz	12.38 dBm
13	Trace A	917.1135 MHz	12.49 dBm
14	Trace A	917.5596 MHz	12.55 dBm
15	Trace A	917.9918 MHz	12.28 dBm
16	Trace A	918.4659 MHz	12.42 dBm
17	Trace A	918.8423 MHz	12.49 dBm
18	Trace A	919.3163 MHz	12.28 dBm

Mkr	Trace	X-Axis	Value
1	Trace A	920.1994 MHz	12.62 dBm
2	Trace A	920.6679 MHz	12.51 dBm
3	Trace A	921.1228 MHz	12.48 dBm
4	Trace A	921.5776 MHz	12.59 dBm
5	Trace A	922.0186 MHz	12.50 dBm
6	Trace A	922.4183 MHz	12.54 dBm
7	Trace A	922.8593 MHz	12.32 dBm
8	Trace A	923.3279 MHz	12.68 dBm
9	Trace A	924.2375 MHz	12.27 dBm
10	Trace A	924.6923 MHz	12.55 dBm
11	Trace A	925.0782 MHz	12.55 dBm
12	Trace A	925.5330 MHz	12.56 dBm
13	Trace A	926.0429 MHz	12.55 dBm
14	Trace A	926.4288 MHz	12.69 dBm
15	Trace A	926.8837 MHz	12.47 dBm

This report covers the circuitry of the devices subject to FCC Part 15, Subpart C. The circuitry of the device subject to FCC Part 15, Subpart B has been tested to FCC Subpart B and found to comply. Compliance is shown Nemko-CCL report #204821-2.1.

2.3 EUT and Support Equipment:

The FCC ID numbers for the EUT and support equipment used during the test are listed below:

Brand Name Model Number Serial No.	FCC ID Number	Description	Name of Interface Ports / Interface Cables
BN: Multi-Voice Radio MN: MVR900 (Note 1) SN: Engineering Unit	ALZMVR900	Handheld Communication System	See Section 2.4
BN: Multi-Voice Radio MN: Headset SN: None	None	Headset	Audio/Cable with 5 pin connector (Note 2)
BN: Shenzhen Nandao Electromachinery Co. Ltd. MN: ND-0501000L SN: None	None	Power Supply	USB/Cable from supply with Micro USB connector

Note: (1) EUT
(2) Interface port connected to EUT (See Section 2.4)

The support equipment listed above was not modified in order to achieve compliance with this standard.

2.4 Interface Ports on EUT:

Name of Ports	No. of Ports Fitted to EUT	Cable Descriptions/Length
Audio	1	5 conductor cable/1.5 meter
Power	1	Cable with Micro USB connector from power supply/1.0 meter

2.5 Modification Incorporated/Special Accessories on EUT:

The following modifications were made to the MVR900 by the Client during testing to comply with the specification. This report is not complete without an accompanying signed attestation, included as Appendix 3, that the product will have all of the documented modifications incorporated into the product when manufactured and placed on the market.

1. C119 had a 4.7 kΩ resistor installed.

SECTION 3.0 TEST SPECIFICATION, METHODS & PROCEDURES**3.1 Test Specification:**

Title: FCC PART 15, Subpart C (47 CFR 15)
15.203, 15.207, and 15.247

Limits and methods of measurement of radio interference characteristics of radio frequency devices

Purpose of Test: The tests were performed to demonstrate initial compliance

3.2 Methods & Procedures:**3.2.1 §15.203 Antenna Requirement**

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

3.2.2 §15.207 Conducted Limits

(a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15 – 0.5*	66 to 56*	56 to 46*
0.5 – 5	56	46
5 - 30	60	50

*Decreases with the logarithm of the frequency.

3.2.3 §15.247 Operation within the bands 902 – 928 MHz, 2400 – 2483.5 MHz, and 5725 – 5850 MHz

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400 – 2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

(ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any

channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 non-overlapping channels are used.

(2) Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

(b) The maximum peak output power of the intentional radiator shall not exceed the following:

(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725 – 5850 MHz bands: 1 watt. As an alternative to a peak power measurement, compliance with the Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

(iii) Fixed, point-to-point operation, as used in paragraphs (b)(4)(i) and (b)(4)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

(2) In addition to the provisions in paragraphs (b)(1), (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

(i) Different information must be transmitted to each receiver.

(ii) If the transmitter employs an antenna system that emits multiple directional beams but does not emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna /antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:

(A) The directional gain shall be calculated as the sum of $10 \log$ (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

(B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.

(iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

(iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4. The digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

(i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter.

Note: Spread spectrum systems are sharing these bands on a noninterference basis with systems supporting critical Government requirements that have been allocated the usage of these bands, secondary only to ISM equipment operated under the provisions of Part 18 of this Chapter. Many of these Government systems are airborne radiolocation systems that emit a high EIRP which can cause interference to other users. Also, investigations of the effect of spread spectrum interference to U. S. Government operations in the 902-928 MHz band may require a future decrease in the power limits allowed for spread spectrum operation.

3.3 Test Procedure

The conducted disturbance at mains ports and radiated disturbance testing was performed according to the procedures in ANSI C63.4: 2003 and using the guidance, DA 00-705, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems, dated March 30, 2000. Testing was performed at Nemko-CCL, Inc. Wanship open area test site #2, located at 29145 Old Lincoln Highway, Wanship, UT. This site has been fully described in a report submitted to the FCC, and was accepted in a letter dated February 15, 2012 (90504).

Nemko-CCL, Inc. is accredited by National Voluntary Laboratory Accreditation Program (NVLAP); NVLAP Lab Code: 100272-0, which is effective until September 30, 2012.

For radiated emission testing at 30 MHz or above that is performed at distances closer than the specified distance, an inverse proportionality factor of 20 dB per decade is used to normalize the measured data for determining compliance.

SECTION 4.0 OPERATION OF EUT DURING TESTING

4.1 Operating Environment:

Power Supply: 3.7 VDC from SAM i9100 Li-Ion batteries or
4.7 VDC from external power supply

4.2 Operating Modes:

The transmitter was tested while in a constant transmit mode at the maximum power setting at the desired frequency, using either the upper, middle, or lower channel. Tests, when required, were made with the EUT hopping between channels. The AC mains voltage was varied as required by §15.31(e) with no change seen in the voltage supplied to the transmitter or in transmitter characteristics. Fully charged batteries were used for testing with the EUT powered by batteries. The worst-case emissions were seen with the EUT powered by the external power supply and placed horizontally on the EUT table.

4.3 EUT Exercise Software:

Multi-Voice Radio test software was used to exercise the transmitter.

SECTION 5.0 SUMMARY OF TEST RESULTS**5.1 FCC Part 15, Subpart C****5.1.1 Summary of Tests:**

Section	Environmental Phenomena	Frequency Range (MHz)	Result
15.203	Antenna Requirements	Structural requirement	Complied
15.207	Conducted Disturbance at Mains Ports	0.15 to 30	Complied
15.247(a)	Channel Separation	902 – 928	Complied
15.247(a)	20 dB Bandwidth	902 – 928	Complied
15.247(a)	Time of Occupancy	902 – 928	Complied
15.247(b)	Peak Output Power	902 – 928	Complied
15.247(c)	Operation with Antennas with Directional Gains >6 dBi	902 – 928	Not Applicable
15.247(d)	Spurious Emissions	30 – 9280	Complied
15.247(e)	Peak Power Spectral Density	902 – 928	Not Applicable
15.247(f)	Hybrid System Requirements	902 – 928	Not Applicable
15.247(g)	Channel Usage	902 – 928	Complied (Note 1)
15.247(h)	Channel Intelligence/Avoidance	902 – 928	Complied (Note 1)
15.247(i)	RF Safety	902 – 928	Complied (Note 1)

Note 1: Compliance with these requirements is shown in documents filed with the FCC at the time of Certification.

5.2 Result

In the configuration tested, the EUT complied with the requirements of the specification.

SECTION 6.0 MEASUREMENTS, EXAMINATIONS AND DERIVED RESULTS**6.1 General Comments:**

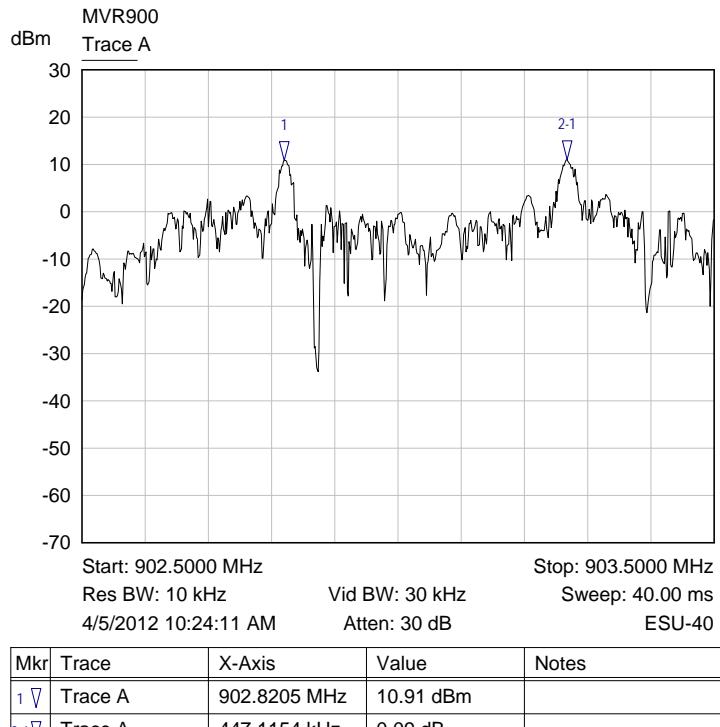
This section contains the test results only. Details of the test methods used and a list of the test equipment used during the measurements can be found in Appendix 1 of this report.

6.2 Test Results:**6.2.1 §15.203 Antenna Requirements**

The EUT uses antennas having reverse SMA/reverse threads for connectors.

6.2.2 §15.207 Conducted Disturbance at the AC Mains Ports

Frequency (MHz)	AC Mains Lead	Detector	Measured Level (dB μ V)	Limit (dB μ V)	Margin (dB)
0.15	Hot Lead	Quasi-Peak (Note 2)	61.0	66.0	-5.0
0.15	Hot Lead	Average (Note 2)	42.7	56.0	-13.3
0.30	Hot Lead	Quasi-Peak (Note 2)	48.4	60.3	-11.9
0.30	Hot Lead	Average (Note 2)	34.9	50.3	-15.4
0.64	Hot Lead	Quasi-Peak (Note 1)	41.8	46.0	-4.2
0.77	Hot Lead	Quasi-Peak (Note 1)	40.8	46.0	-5.2
1.23	Hot Lead	Quasi-Peak (Note 1)	39.2	46.0	-6.8
2.15	Hot Lead	Quasi-Peak (Note 1)	41.0	46.0	-5.0
0.17	Neutral Lead	Quasi-Peak (Note 2)	52.6	65.2	-12.6
0.17	Neutral Lead	Average (Note 2)	43.5	55.2	-11.7
0.32	Neutral Lead	Quasi-Peak (Note 2)	49.2	59.8	-10.6
0.32	Neutral Lead	Average (Note 2)	40.2	49.8	-9.6
0.63	Neutral Lead	Quasi-Peak (Note 2)	48.0	56.0	-8.0
0.63	Neutral Lead	Average (Note 2)	38.0	46.0	-8.0
0.77	Neutral Lead	Quasi-Peak (Note 2)	49.3	56.0	-6.7
0.77	Neutral Lead	Average (Note 2)	35.4	46.0	-10.6


Frequency (MHz)	AC Mains Lead	Detector	Measured Level (dB μ V)	Limit (dB μ V)	Margin (dB)
1.08	Neutral Lead	Quasi-Peak (Note 1)	42.2	46.0	-3.8
1.24	Neutral Lead	Quasi-Peak (Note 2)	46.2	56.0	-9.8
1.24	Neutral Lead	Average (Note 2)	29.9	46.0	-16.1
Note 1: The reference detector used for the measurements was Quasi-Peak or Peak and the data was compared to the average limit; therefore, the EUT was deemed to meet both the average and quasi-peak limits. Note 2: The reference detector used for the measurements was quasi-peak and average and the data was compared to the respective limits.					

RESULT

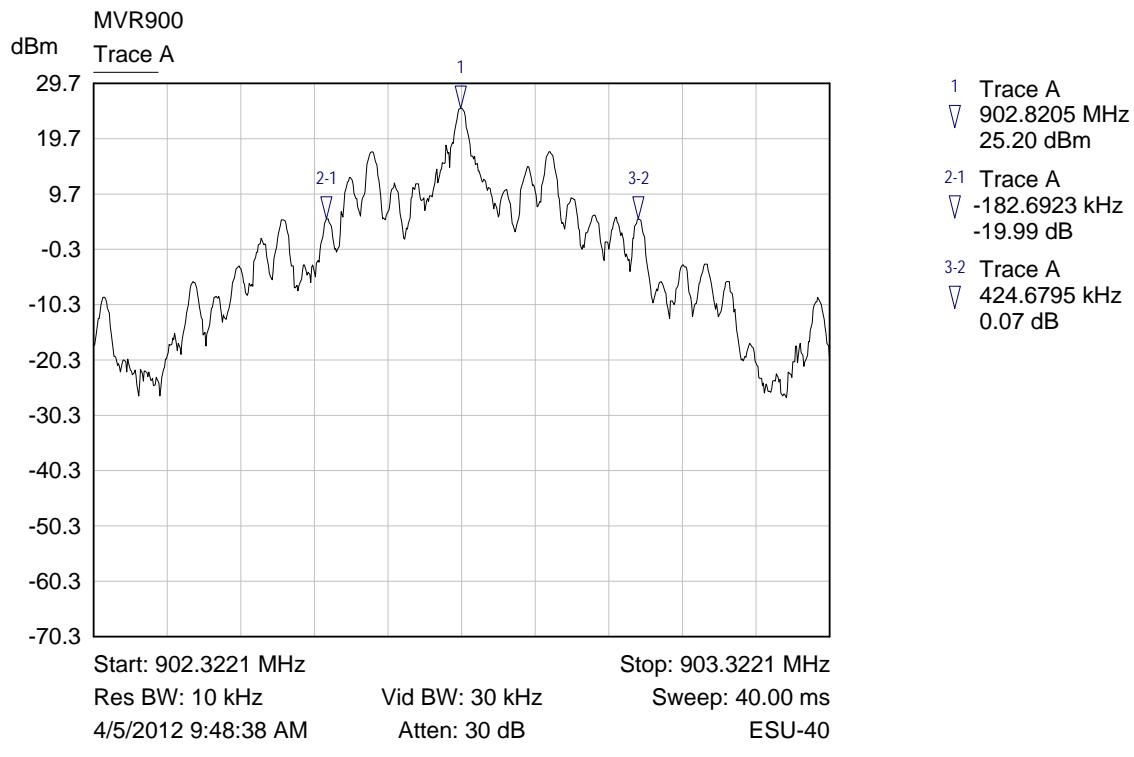
The EUT complied with the specification by 3.8 dB.

6.2.3 §15.247(a)(1) Channel Separation

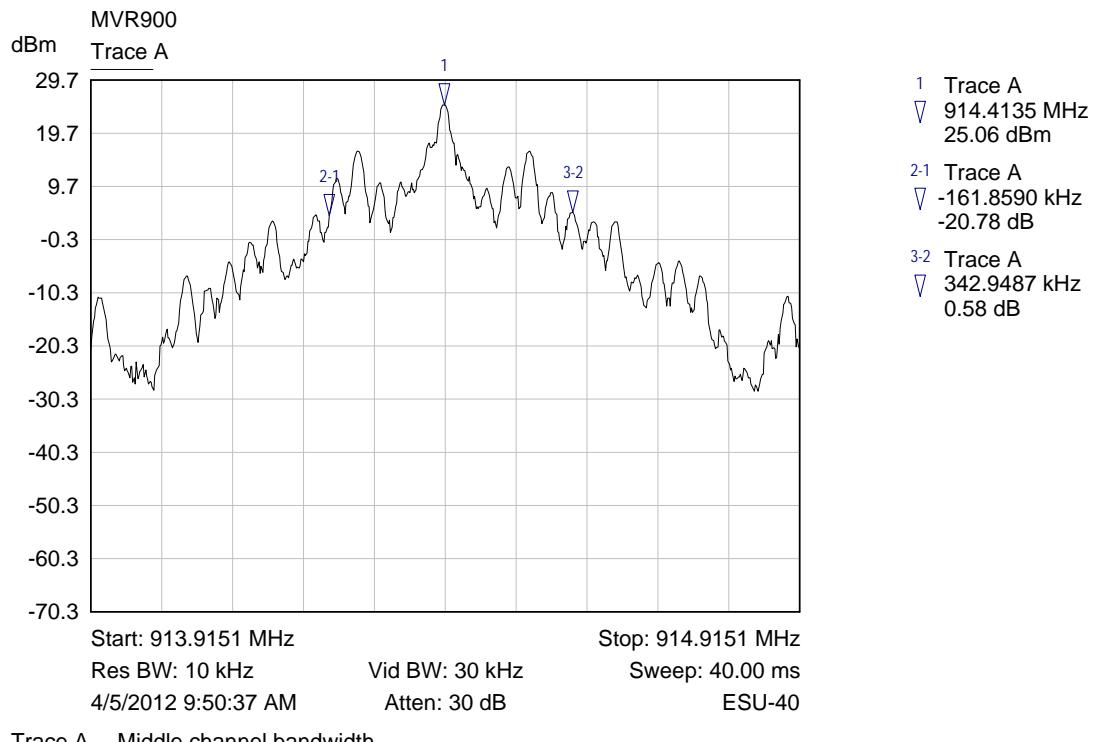
The EUT must have the hopping channel carrier frequencies separated by 25 kHz or the 20 dB bandwidth, whichever is greater. A plot of the channel separation is shown below. The 20 dB bandwidth is 424.7 kHz and is shown in section 6.2.4.

Trace A channel separation

RESULT


The channel carrier frequency separation is 447.1 kHz, which is greater than the 20 dB bandwidth of 424.7 kHz; therefore, the EUT complies with the specification.

6.2.4 §15.247(a)(1)(i) Channel Bandwidth

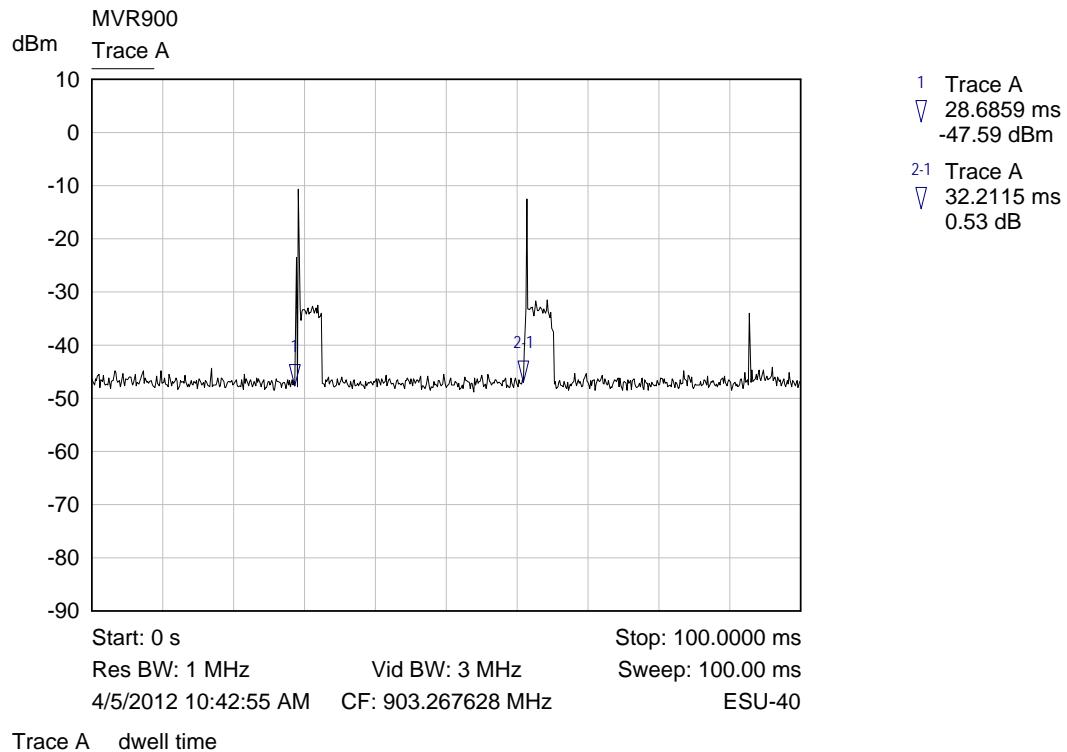

The 20 dB bandwidth must be less than 500 kHz. See the table and plots below.

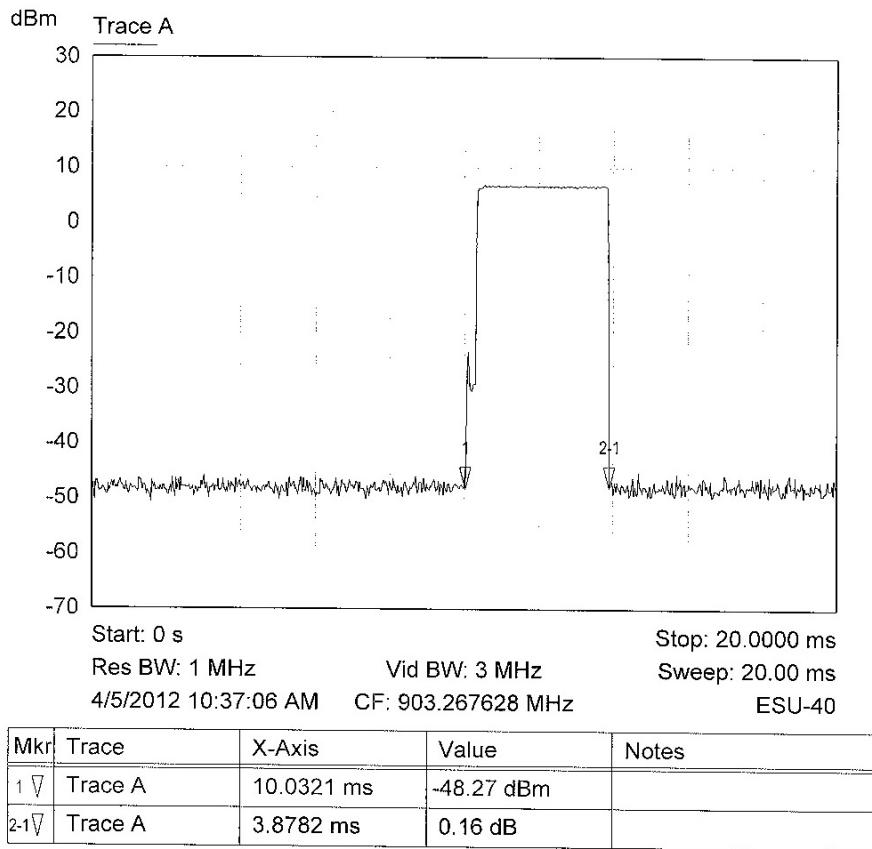
Frequency (MHz)	Emission 20 dB bandwidth (kHz)
902.8	424.7
914.4	342.9
926.9	342.9

Lowest Channel Bandwidth

Middle Channel Bandwidth

Upper Channel Bandwidth




RESULT

In the configuration tested, the 20 dB bandwidth was less than 500 kHz; therefore, the EUT complied with the requirements of the specification.

6.2.5 §15.247(a)(1)(i) Channel Occupancy

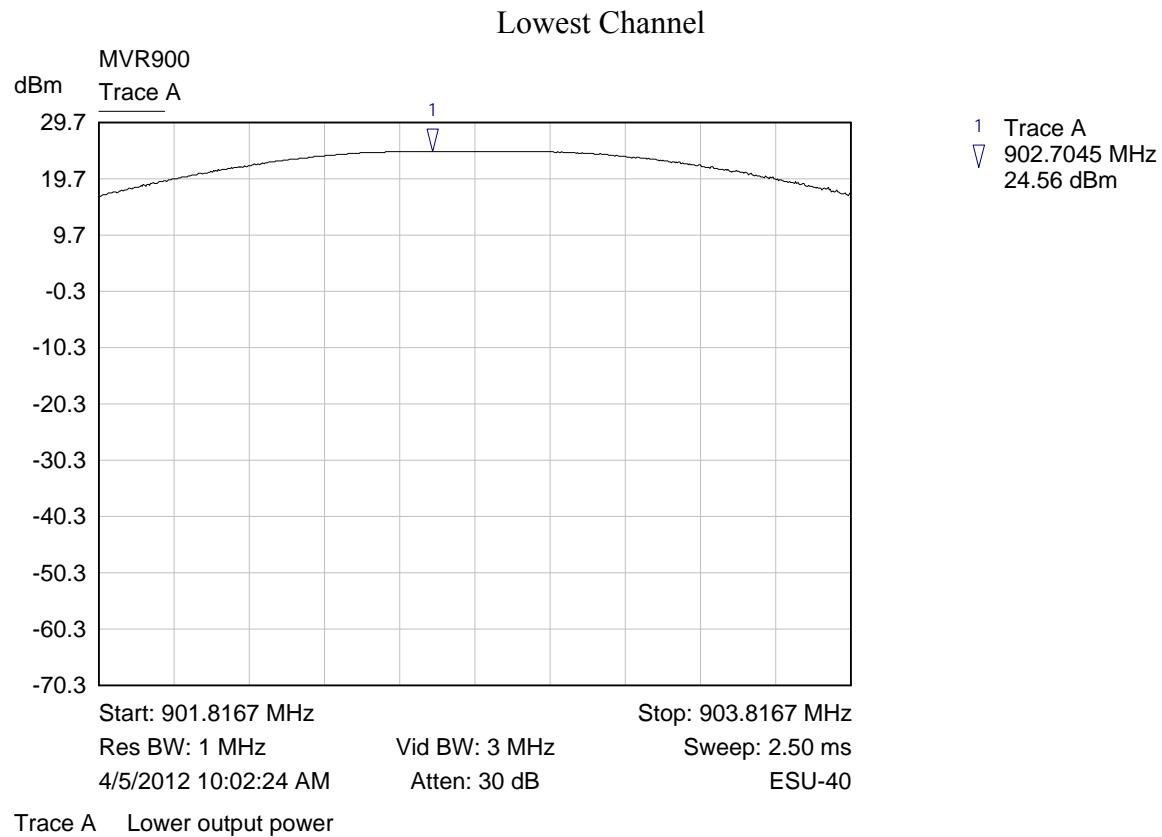
The EUT uses 50 channels that have a bandwidth greater than 250 kHz; therefore, the EUT must have an average time of occupancy on any frequency that is no greater than 0.4 seconds in a 10 second period. See the plot and calculations below.

Trace A on time

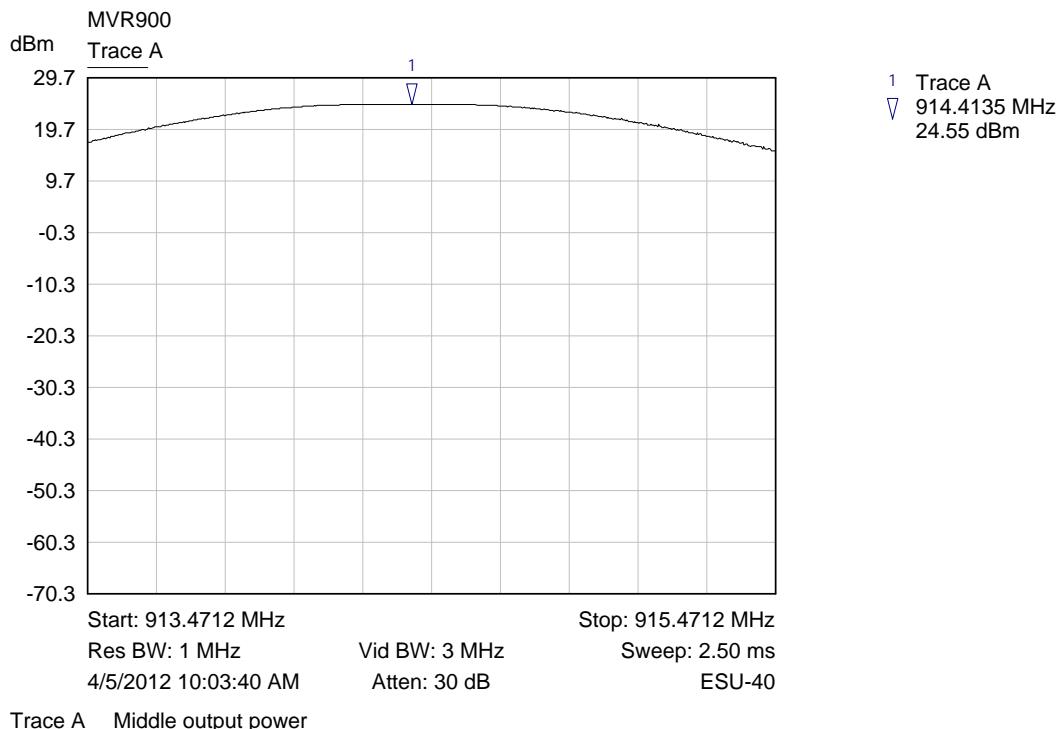
From the plot, the EUT transmits for 3.8782 ms, has a receive time of 28.3333 ms for a total frame period of 32.2115 ms. The channel on time can be calculated by the time period, divided by the number of channels, divided by the frame time, multiplied by the on time within the frame:

$$\text{Dwell time} = 10 \text{ seconds} / 50 \text{ channels} / 32.2115 \text{ ms} \times 3.8782 \text{ ms} = 24.1 \text{ ms}$$

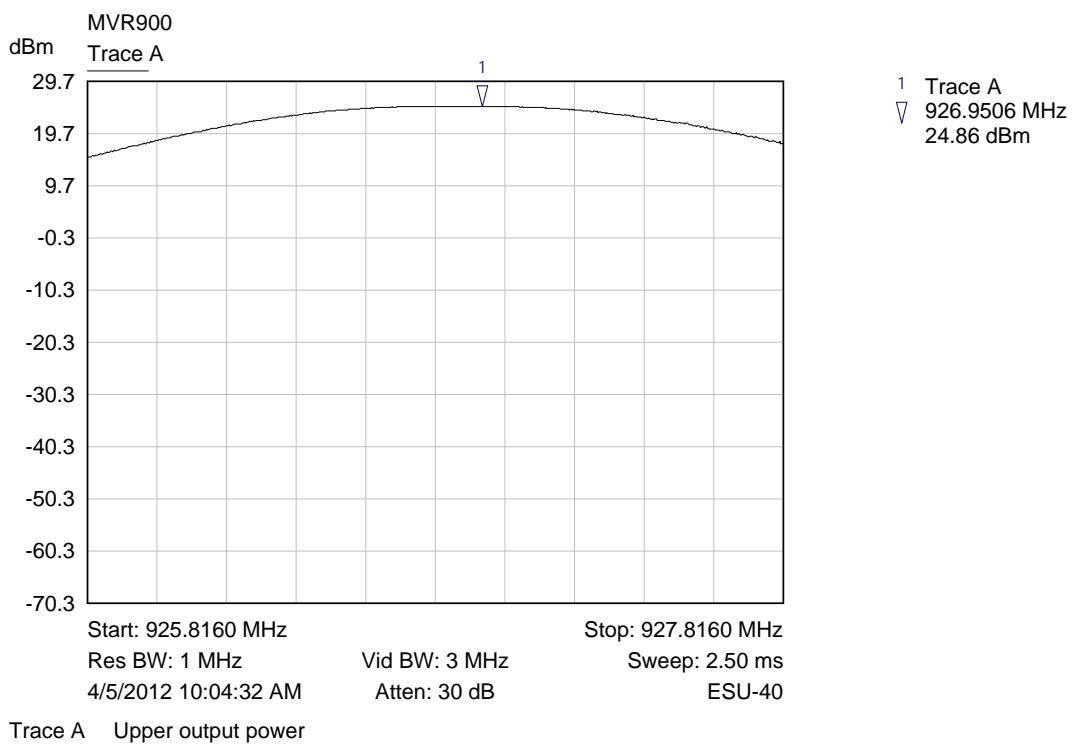
RESULT


The EUT complies with the specification as the EUT transmits for 24.1 ms in every 10 seconds, less than the 0.4 seconds allowed by the specification and the EUT uses a pseudo-random hopping sequence that uses each of the 50 channels equally.

6.2.6 §15.247(b)(2) Peak Output Power


The antennas used with the EUT have a gain of 0 dBi. The EUT uses 50 hopping

channels. The limit for this device is 30 dBm or 1 Watt. Plots are shown below and the results of this testing are summarized in the table.


Frequency (MHz)	Measurement (dBm)	Output Power (mW)
902.8	24.56	285.76
914.4	24.55	285.10
926.9	24.86	306.20

Middle Channel

Upper Channel

RESULT

In the configuration tested, the RF peak output power was less than 1 Watt; therefore, the EUT complied with the requirements of the specification.

6.2.7 §15.247(d) Spurious Emissions

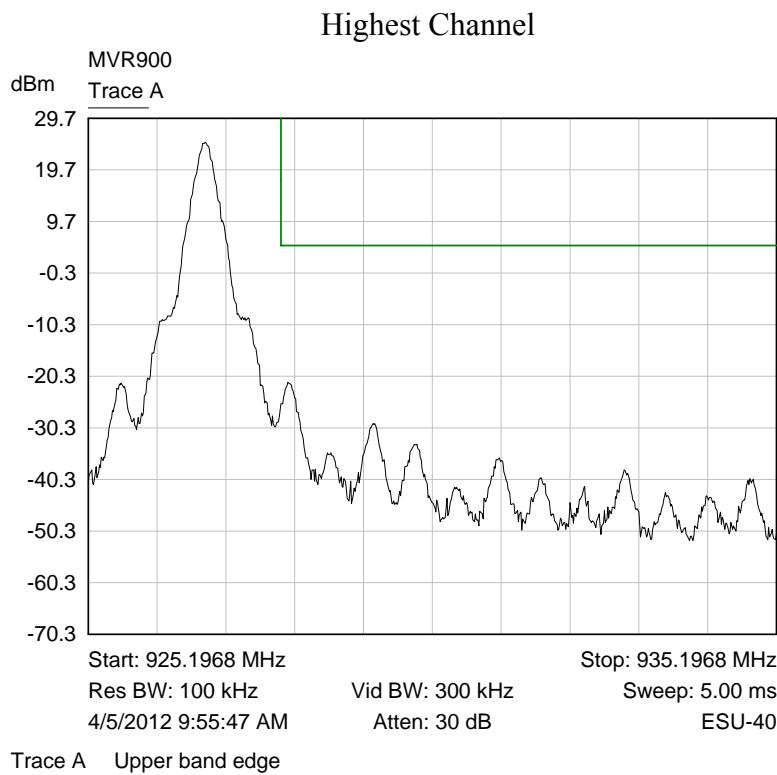
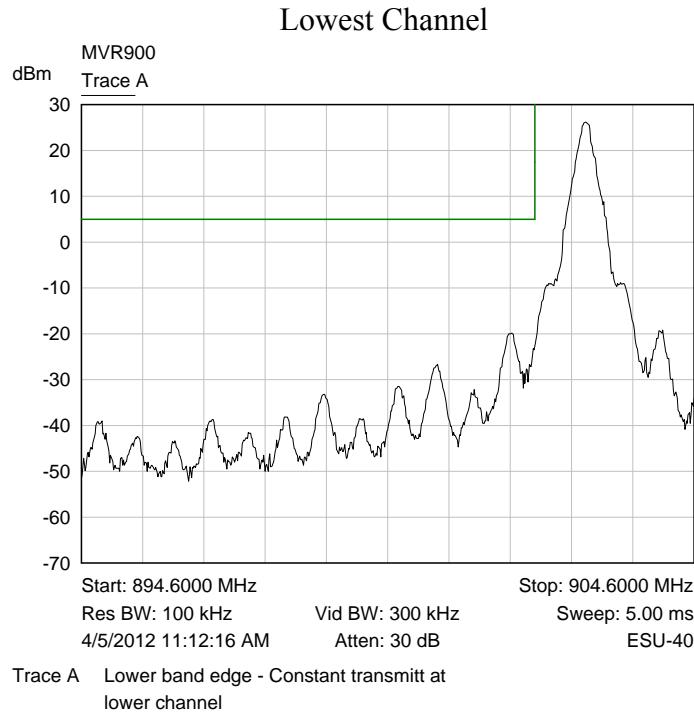
6.2.7.1 Conducted Spurious Emissions

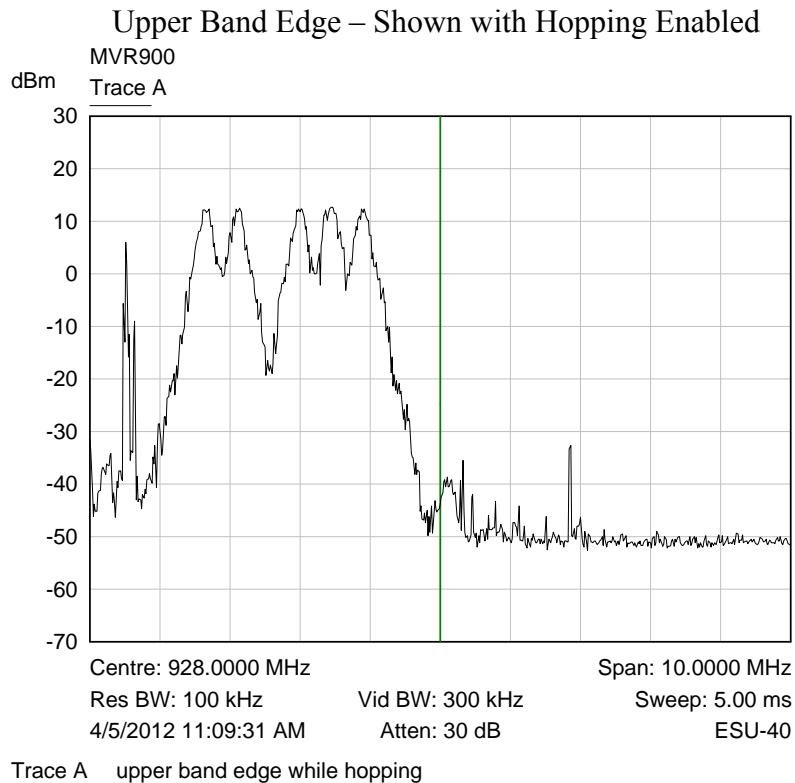
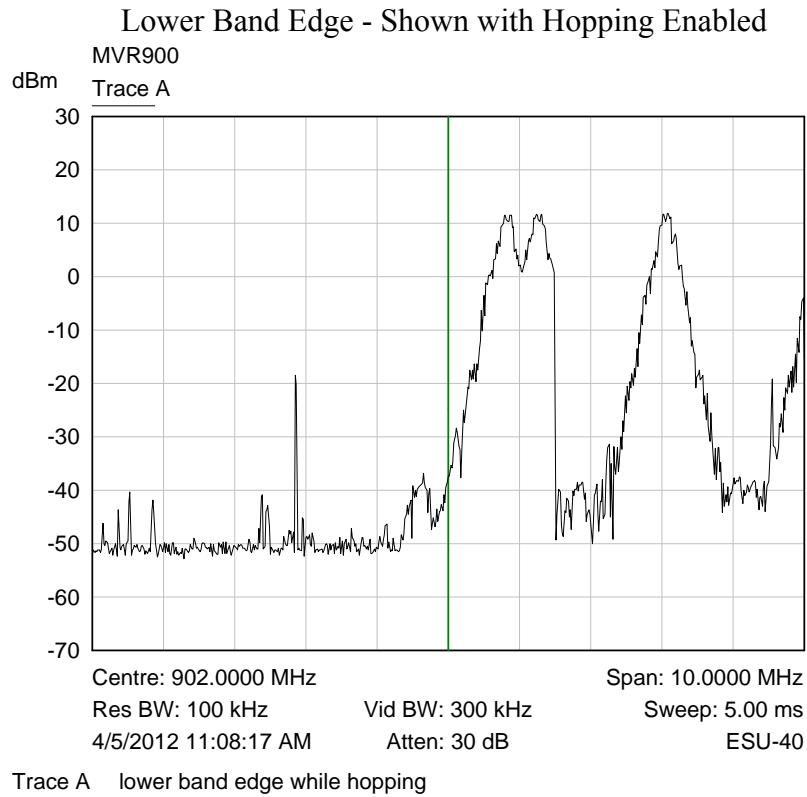
The frequency range from 30 MHz to the tenth harmonic of the highest fundamental frequency was investigated to measure any antenna-conducted emissions. Shown below are plots with the EUT tuned to the upper and lower channels. Band edge plots are also shown with the EUT hopping. These plots demonstrate compliance with the provisions of this section at the band edges. The tables show the measurement data from spurious emissions in the restricted bands across the frequency range when transmitting at the lowest frequency, middle frequency, and upper frequency.

The emissions must be attenuated 20 dB below the highest power level measured within the authorized band as measured with a 100 kHz RBW; the highest level measured was 24.96 dBm; therefore, the criteria is $24.96 - 20.0 = 4.96$ dBm.

Transmitting on the Lowest Channel (902.8MHz)

Frequency (MHz)	Corrected Level (dBm)	Criteria (dBm)
1805.6	-28.5	4.96
2708.4	-30.8	4.96
3611.2	-48.5	4.96
4514.0	-54.8	4.96
5416.8	-64.8	4.96
6319.6	-58.3	4.96
7222.4	-64.6	4.96
8125.2	-65.2	4.96
9028.0	-65.0	4.96

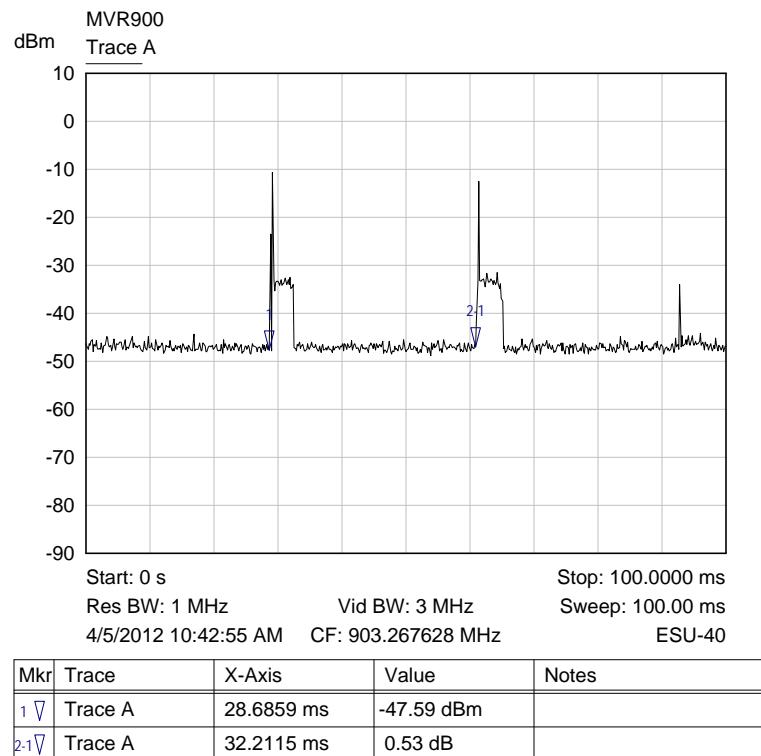


Transmitting on the Middle Channel (914.4 MHz)



Frequency (MHz)	Corrected Level (dBm)	Criteria (dBm)
1828.8	-27.0	4.96
2743.2	-31.9	4.96

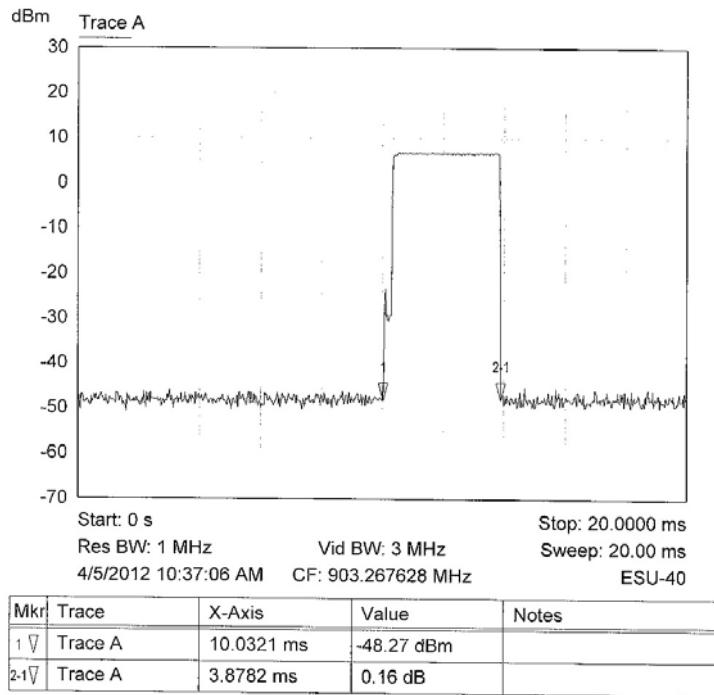
Frequency (MHz)	Corrected Level (dBm)	Criteria (dBm)
3657.6	-48.0	4.96
4572.0	-54.2	4.96
5486.4	-62.1	4.96
6400.8	-60.5	4.96
7315.2	-65.1	4.96
8229.6	-65.5	4.96
9144.0	-64.9	4.96

Transmitting on the Highest Channel (926.9 MHz)

Frequency (MHz)	Corrected Level (dBm)	Criteria (dBm)
1853.8	-25.5	4.96
2780.7	-30.7	4.96
3707.6	-47.7	4.96
4634.5	-52.7	4.96
5561.4	-60.3	4.96
6488.3	-59.9	4.96
7415.2	-67.5	4.96
8342.1	-66.6	4.96
9269.0	-61.5	4.96


RESULT

The spurious conducted emissions were attenuated by at least 20 dB and the emissions remain in the allowed band of operation; therefore, the EUT complies with the specification.


6.2.5.2 Radiated Emissions

The frequency range from 30 MHz to 9280 MHz was investigated to measure any radiated emissions in the restricted bands. Any emissions in the restricted bands must meet the limits specified in §15.209.

An averaging factor, as allowed by §15.35(c), was applied to the average measurements and was calculated as shown below.

Trace A dwell time

Trace A on time

The EUT has an on time of 3.8782 ms and then has an off or receive time of 28.3333ms. The total frame time is 32.2115 ms. The averaging factor is calculated by the following equation.

$$AFactor = 20 \log (P_{on}/P_{total}) = 20 \log (3.8782 / 32.2115) = -18.4 \text{ dB}$$

The tables show the worst-case emissions measured from the MVR900. Tabular data for each of the spurious emissions is shown below.

Transmitting at the Lowest Frequency (902.8 MHz)

Frequency (MHz)	Detection Mode	Antenna Polarity	Receiver Reading (dB μ V)	Correction Factor (dB)	Averaging Factor (dB)	Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
2708.7	Peak	Vertical	13.0	32.7	0.0	45.7	74.0	-28.3
2708.7	Average	Vertical	7.3	32.7	-18.4	21.6	54.0	-32.4
2708.7	Peak	Horizontal	18.9	32.7	0.0	51.6	74.0	-22.4
2708.7	Average	Horizontal	15.5	32.7	-18.4	29.8	54.0	-24.2
3611.6	Peak	Vertical	19.7	35.7	0.0	55.4	74.0	-18.6

Frequency (MHz)	Detection Mode	Antenna Polarity	Receiver Reading (dB μ V)	Correction Factor (dB)	Averaging Factor (dB)	Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
3611.6	Average	Vertical	15.5	35.7	-18.4	32.8	54.0	-21.2
3611.6	Peak	Horizontal	25.2	35.7	0.0	60.9	74.0	-13.1
3611.6	Average	Horizontal	21.6	35.7	-18.4	38.9	54.0	-15.1
4514.5	Peak	Vertical	19.7	39.2	0.0	58.9	74.0	-15.1
4514.5	Average	Vertical	14.4	39.2	-18.4	35.2	54.0	-18.8
4514.5	Peak	Horizontal	6.1	39.2	0.0	45.3	74.0	-28.7
4514.5	Average	Horizontal	0.9	39.2	-18.4	21.7	54.0	-32.3
5417.4	Peak	Vertical	6.1	39.2	0.0	45.3	74.0	-28.7
5417.4	Average	Vertical	0.9	39.2	-18.4	21.7	54.0	-32.3
5417.4	Peak	Horizontal	7.8	39.2	0.0	47.0	74.0	-27.0
5417.4	Average	Horizontal	3.6	39.2	-18.4	24.4	54.0	-29.6
7223.2	Peak	Vertical	3.6	42.1	0.0	45.7	74.0	-28.3
7223.2	Average	Vertical	-6.4	42.1	-18.4	17.3	54.0	-36.7
7223.2	Peak	Horizontal	4.0	42.1	0.0	46.1	74.0	-27.9
7223.2	Average	Horizontal	-4.6	42.1	-18.4	19.1	54.0	-34.9
8126.1	Peak	Vertical	2.9	43.3	0.0	46.2	74.0	-27.8
8126.1	Average	Vertical	-7.2	43.3	-18.4	17.7	54.0	-36.3
8126.1	Peak	Horizontal	2.9	43.3	0.0	46.2	74.0	-27.8
8126.1	Average	Horizontal	-7.2	43.3	-18.4	17.7	54.0	-36.3
9029.0	Peak	Vertical	2.4	44.5	0.0	46.9	74.0	-27.1
9029.0	Average	Vertical	-8.5	44.5	-18.4	17.6	54.0	-36.4
9029.0	Peak	Horizontal	2.8	44.5	0.0	47.3	74.0	-26.7
9029.0	Average	Horizontal	-8.5	44.5	-18.4	17.6	54.0	-36.4

Transmitting at the Middle Frequency (914.4 MHz)

Frequency (MHz)	Detection Mode	Antenna Polarity	Receiver Reading (dB μ V)	Correction Factor (dB)	Averaging Factor (dB)	Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
2743.3	Peak	Vertical	10.7	32.7	0.0	43.4	74.0	-30.6
2743.3	Average	Vertical	6.9	32.7	-18.4	21.2	54.0	-32.8
2743.3	Peak	Horizontal	10.3	32.7	0.0	43.0	74.0	-31.0
2743.3	Average	Horizontal	5.7	32.7	-18.4	20.0	54.0	-34.0
3657.6	Peak	Vertical	25.0	35.8	0.0	60.8	74.0	-13.2
3657.6	Average	Vertical	21.5	35.8	-18.4	38.9	54.0	-15.1
3657.6	Peak	Horizontal	18.5	35.8	0.0	54.3	74.0	-19.7
3657.6	Average	Horizontal	14.3	35.8	-18.4	31.7	54.0	-22.3
4572.0	Peak	Vertical	19.7	37.2	0.0	56.9	74.0	-17.1
4572.0	Average	Vertical	14.8	37.2	-18.4	33.6	54.0	-20.4
4572.0	Peak	Horizontal	14.7	37.2	0.0	51.9	74.0	-22.1
4572.0	Average	Horizontal	9.2	37.2	-18.4	28.0	54.0	-26.0
5486.4	Peak	Vertical	7.1	39.4	0.0	46.5	74.0	-27.5
5486.4	Average	Vertical	3.4	39.4	-18.4	24.4	54.0	-29.6
5486.4	Peak	Horizontal	3.8	39.4	0.0	43.2	74.0	-30.8
5486.4	Average	Horizontal	-3.0	39.4	-18.4	18.0	54.0	-36.0
7315.2	Peak	Vertical	4.0	42.3	0.0	46.3	74.0	-27.7
7315.2	Average	Vertical	-5.2	42.3	-18.4	18.7	54.0	-35.3
7315.2	Peak	Horizontal	3.3	42.3	0.0	45.6	74.0	-28.4
7315.2	Average	Horizontal	-7.2	42.3	-18.4	16.7	54.0	-37.3
8229.6	Peak	Vertical	2.2	43.5	0.0	45.7	74.0	-28.3
8229.6	Average	Vertical	-8.9	43.5	-18.4	16.2	54.0	-37.8
8229.6	Peak	Horizontal	1.6	43.5	0.0	45.1	74.0	-28.9
8229.6	Average	Horizontal	-8.8	43.5	-18.4	16.3	54.0	-37.7
9144.0	Peak	Vertical	2.4	44.6	0.0	47.0	74.0	-27.0
9144.0	Average	Vertical	-8.7	44.6	-18.4	17.5	54.0	-36.5
9144.0	Peak	Horizontal	1.8	44.6	0.0	46.4	74.0	-27.6
9144.0	Average	Horizontal	-8.6	44.6	-18.4	17.6	54.0	-36.4

Transmitting at the Highest Frequency (926.9 MHz)

Frequency (MHz)	Detection Mode	Antenna Polarity	Receiver Reading (dB μ V)	Correction Factor (dB)	Averaging Factor (dB)	Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
2780.7	Peak	Vertical	11.6	32.9	0.0	44.5	74.0	-29.5
2780.7	Average	Vertical	8.4	32.9	-18.4	22.9	54.0	-31.1
2780.7	Peak	Horizontal	10.1	32.9	0.0	43.0	74.0	-31.0
2780.7	Average	Horizontal	6.7	32.9	-18.4	21.2	54.0	-32.8
3707.6	Peak	Vertical	20.6	36.0	0.0	56.6	74.0	-17.4
3707.6	Average	Vertical	16.3	36.0	-18.4	33.9	54.0	-20.1
3707.6	Peak	Horizontal	19.4	36.0	0.0	55.4	74.0	-18.6
3707.6	Average	Horizontal	15.0	36.0	-18.4	32.6	54.0	-21.4
4635.6	Peak	Vertical	16.1	37.3	0.0	53.4	74.0	-20.6
4635.6	Average	Vertical	10.6	37.3	-18.4	29.5	54.0	-24.5
4635.6	Peak	Horizontal	13.8	37.3	0.0	51.1	74.0	-22.9
4635.6	Average	Horizontal	8.1	37.3	-18.4	27.0	54.0	-27.0
5561.5	Peak	Vertical	7.1	39.5	0.0	46.6	74.0	-27.4
5561.5	Average	Vertical	3.1	39.5	-18.4	24.2	54.0	-29.8
5561.5	Peak	Horizontal	4.2	39.5	0.0	43.7	74.0	-30.3
5561.5	Average	Horizontal	-2.8	39.5	-18.4	18.3	54.0	-35.7
7415.3	Peak	Vertical	3.5	42.6	0.0	46.1	74.0	-27.9
7415.3	Average	Vertical	-4.8	42.6	-18.4	19.4	54.0	-34.6
7415.3	Peak	Horizontal	2.1	42.6	0.0	44.7	74.0	-29.3
7415.3	Average	Horizontal	-9.1	42.6	-18.4	15.1	54.0	-38.9
8342.2	Peak	Vertical	2.1	43.6	0.0	45.7	74.0	-28.3
8342.2	Average	Vertical	-10.3	43.6	-18.4	14.9	54.0	-39.1
8342.2	Peak	Horizontal	2.1	43.6	0.0	45.7	74.0	-28.3
8342.2	Average	Horizontal	-10.3	43.6	-18.4	14.9	54.0	-39.1
9269.0	Peak	Vertical	2.4	44.5	0.0	46.9	74.0	-27.1
9269.0	Average	Vertical	-10.0	44.5	-18.4	16.1	54.0	-37.9
9269.0	Peak	Horizontal	2.6	44.5	0.0	47.1	74.0	-26.9
9269.0	Average	Horizontal	-10.0	44.5	-18.4	16.1	54.0	-37.9

RESULT

The emissions in the restricted bands met the limits specified in §15.209; therefore, the EUT complies with the specification.

APPENDIX 1 TEST PROCEDURES AND TEST EQUIPMENT**A1.1 §15.207 Conducted Disturbance at the AC Mains**

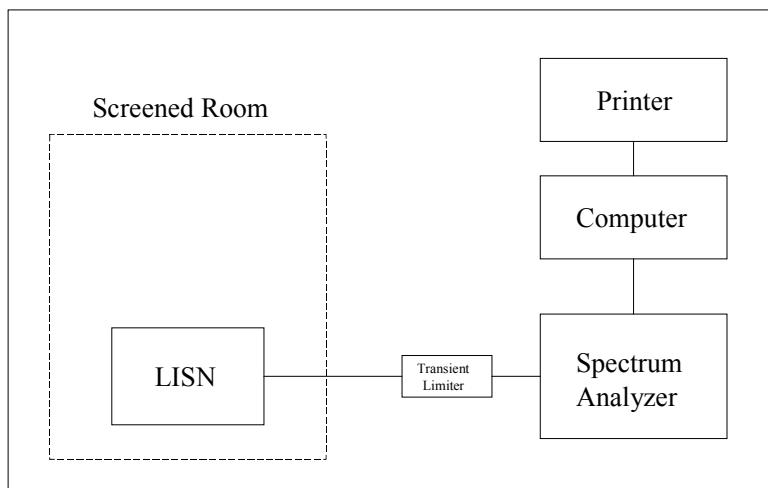
The conducted disturbance at mains ports from the EUT was measured using a spectrum analyzer with a quasi-peak adapter for peak, quasi-peak and average readings. The quasi-peak adapter uses a bandwidth of 9 kHz, with the spectrum analyzer's resolution bandwidth set at 100 kHz, for readings in the 150 kHz to 30 MHz frequency ranges.

The conducted disturbance at mains ports measurements are performed in a screen room using a (50 Ω/50 μH) Line Impedance Stabilization Network (LISN).

Where mains flexible power cords are longer than 1 m, the excess cable is folded back and forth as far as possible so as to form a bundle not exceeding 0.4 m in length.

Where the EUT is a collection of devices with each device having its own power cord, the point of connection for the LISN is determined from the following rules:

- (a) Each power cord, which is terminated in a mains supply plug, shall be tested separately.
- (b) Power cords, which are not specified by the manufacturer to be connected via a host unit, shall be tested separately.
- (c) Power cords which are specified by the manufacturer to be connected via a host unit or other power supplying equipment shall be connected to that host unit and the power cords of that host unit connected to the LISN and tested.
- (d) Where a special connection is specified, the necessary hardware to effect the connection is supplied by the manufacturer for the testing purpose.
- (e) When testing equipment with multiple mains cords, those cords not under test are connected to an artificial mains network (AMN) different than the AMN used for the mains cord under test.


For AC mains port testing, desktop EUT are placed on a non-conducting table at least 0.8 meters from the metallic floor and placed 40 cm from the vertical coupling plane (copper plating in the wall behind EUT table). Floor standing equipment is placed directly on the earth grounded floor.

Type of Equipment	Manufacturer	Model Number	Serial Number	Date of Last Calibration
Wanship Open Area Test Site #2	Nemko-CCL, Inc.	N/A	N/A	11/16/2011
Test Software	Nemko-CCL, Inc.	Conducted Emissions	Revision 1.2	N/A
Spectrum Analyzer	Hewlett Packard	8566B	2230A01711	01/17/2012

Type of Equipment	Manufacturer	Model Number	Serial Number	Date of Last Calibration
Quasi-Peak Detector	Hewlett Packard	85650A	2043A00137	01/18/2012
LISN	EMCO	3825/2	9305-2099	03/12/2012
Conductance Cable Wanship Site #2	Nemko-CCL, Inc.	Cable J	N/A	12/14/2011
Transient Limiter	Hewlett Packard	11947A	3107A02266	12/14/2011

An independent calibration laboratory or Nemko-CCL Inc. personnel calibrates all the equipment listed above at intervals defined in ANSI C63.4:2003 Section 4.4 following outlined calibration procedures. All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Supporting documentation relative to tractability is on file and is available for examination upon request.

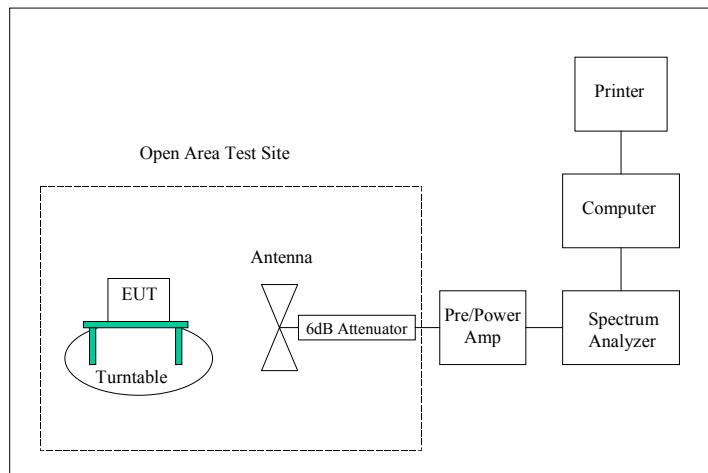
Conducted Emissions Test Setup

A1.2 §15.247 Radiated Measurements

The radiated disturbance from the EUT was measured using a spectrum analyzer with a quasi-peak adapter for peak and quasi-peak readings. A preamplifier with a fixed gain of 26 dB was used to increase the sensitivity of the measuring instrumentation. The quasi-peak adapter uses a bandwidth of 120 kHz, with the spectrum analyzer's resolution bandwidth set at 1 MHz, for readings in the 30 to 1000 MHz frequency ranges.

A biconilog antenna was used to measure the frequency range of 30 to 1000 MHz, at a distance of 3 meters from the EUT. The readings obtained by these antennas are correlated to the levels obtained with a tuned dipole antenna by adding antenna factors. A double-ridged guide antenna was used to measure the emissions at frequencies above 1000 MHz at a distance of 3 or 1 meter from the EUT.

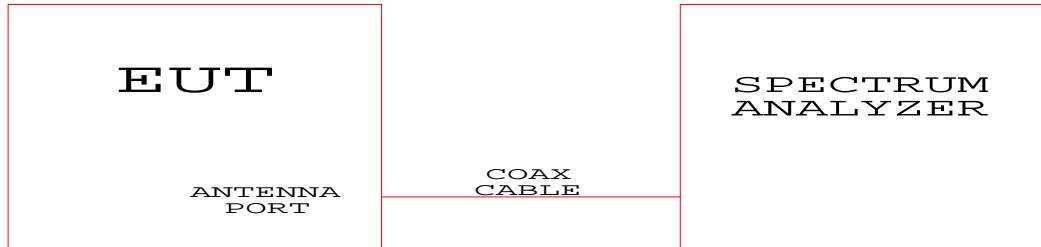
The configuration of the EUT was varied to find the maximum radiated emission. The EUT was connected to the peripherals listed in Section 2.3 via the interconnecting cables listed in Section 2.4. A technician manually manipulated these interconnecting cables to obtain worst-case radiated disturbance. The EUT was rotated 360 degrees, and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission. Where there were multiple interface ports all of the same type, cables are either placed on all of the ports or cables added to these ports until the emissions do not increase by more than 2 dB.


Desktop EUT are measured on a non-conducting table 0.8 meters above the ground plane. The table is placed on a turntable, which is level with the ground plane. For equipment normally placed on floors, the equipment shall be placed directly on the turntable.

Type of Equipment	Manufacturer	Model Number	Serial Number	Date of Last Calibration
Wanship Open Area Test Site #2	Nemko-CCL, Inc.	N/A	N/A	11/16/2011
Test Software	Nemko-CCL, Inc.	Radiated Emissions	Revision 1.3	N/A
Spectrum Analyzer/Receiver	Rhode & Schwarz	1302.6005.40	100064	07/28/2011
Spectrum Analyzer	Hewlett Packard	8566B	2230A01711	01/17/2012
Quasi-Peak Detector	Hewlett Packard	85650A	2043A00137	01/18/2012
Biconilog Antenna	EMCO	3142	9601-1009	04/21/2011
Double Ridged Guide Antenna	EMCO	3115	9604-4779	03/10/2011
High Frequency Amplifier	Miteq	AFS4-01001800-43-10P-4	1096455	06/22/2011

Type of Equipment	Manufacturer	Model Number	Serial Number	Date of Last Calibration
6' High Frequency Cable	Microcoax	UFB197C-0-0720-000000	1296	05/10/2011
20' High Frequency Cable	Microcoax	UFB197C-1-3120-000000	1297	05/10/2011
3 Meter Radiated Emissions Cable Wanship Site #2	Microcoax	UFB205A-0-4700-000000	1295	05/10/2011
Pre/Power-Amplifier	Hewlett Packard	8447F	3113A05161	08/25/2011
6 dB Attenuator	Hewlett Packard	8491A	32835	12/14/2011

An independent calibration laboratory or Nemko-CCL, Inc. personnel calibrates all the equipment listed above at intervals defined in ANSI C63.4:2003 Section 4.4 following outlined calibration procedures. All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Supporting documentation relative to tractability is on file and is available for examination upon request.


Radiated Emissions Test Setup

A1.2 §15.247 Conducted Measurements at the Antenna

Type of Equipment	Manufacturer	Model Number	Serial Number
Spectrum Analyzer	Hewlett Packard	8566B	2230A01711
Quasi-Peak Detector	Hewlett Packard	85650A	2043A00137
Spectrum Analyzer/Receiver	Rohde & Schwarz	1302.6005.40	100064
Low Loss Cable (1 dB)	N/A	N/A	N/A

An independent calibration laboratory or Nemko-CCL, Inc. personnel calibrates all the equipment listed above at intervals defined in ANSI C63.4:2003 Section 4.4 following outlined calibration procedures. All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Supporting documentation relative to tractability is on file and is available for examination upon request.

Test Configuration Block Diagram

APPENDIX 2 PHOTOGRAPHS

Photograph 1 – Front View Radiated Disturbance Worst Case Configuration

Photograph 2 – Back View Radiated Disturbance Worst Case Configuration

Photograph 3 – Front View Conducted Disturbance Worst Case Configuration

Photograph 4 – Back View Conducted Disturbance Worst Case Configuration

Photograph 5 – Front View of the EUT

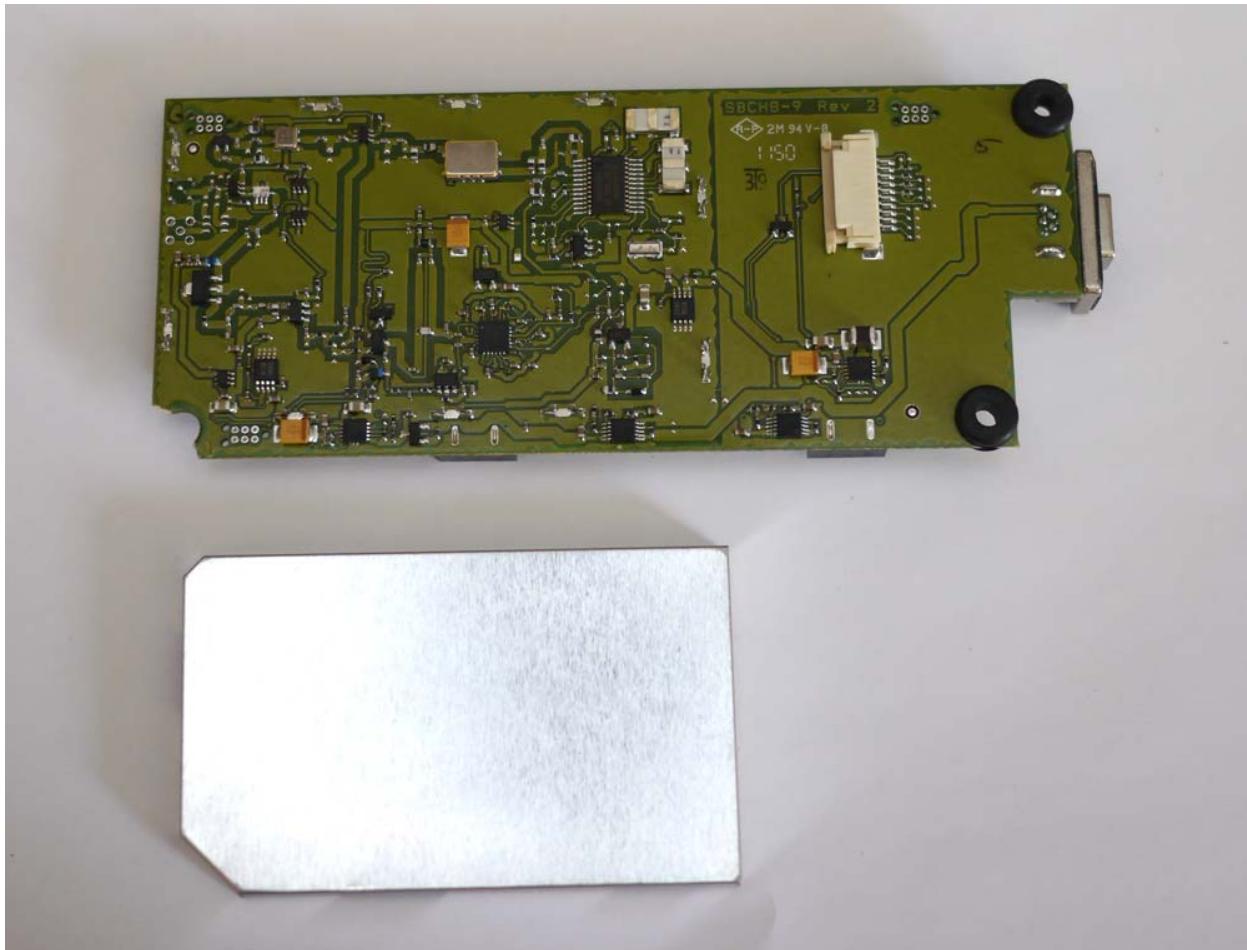
Photograph 6 – Back View of the EUT

Photograph 7 – View of the Top of the EUT

Photograph 8 – View of the EUT with Headset Attached

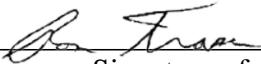
Photograph 9 – View of the EUT with Housing Opened

Photograph 10 – View of the EUT Housing Open with Batteries Removed Showing Front Side of the PCB


Photograph 11 – View of the Front Side of the PCB

Photograph 12 – View of the Bottom of the PCB with RF Shield in Place

Photograph 13 – View of the Bottom of the PCB with RF Shield Removed


APPENDIX 3 MANUFACTURER'S STATEMENT/ATTESTATION

The manufacturer or responsible party for the equipment tested hereby affirms:

- a) That he/she has reviewed and concurs that the tests shown in this report are reflective of the operational characteristics of the device for which certification is sought;
- b) That the device in this test report will be representative of production units;
- c) That the product will have all of the documented modifications incorporated into the product when manufactured and placed on the market;
- d) That all changes in hardware and software/firmware to the subject device will be reviewed.
- e) That any changes impacting the attributes, functionality or operational characteristics documented in this report will be communicated to the body responsible for approving or certifying the subject equipment.

Ron Fraser

Printed name of official

Signature of official

April 12, 2012

Date

NOTE—This affirmation must be signed by the responsible party before it is submitted to a regulatory body for approval.