

toll-free: (866)311-3268 http://www.flomlabs.com info@flomlabs.com

Date: October 13, 2006

Federal Communications Commission

Via: Electronic Filing

Attention: **Authorization & Evaluation Division**

Applicant: Kenwood USA Corporation

Equipment: TK-5310 K6 FCC ID: ALH39913120 FCC Rules: 22,74,90

Gentlemen:

On behalf of the Applicant, enclosed please find Application Form 731, Engineering Test Report and all pertinent documentation, the whole for approval of the referenced equipment as shown.

Filing fees are attached.

We trust the same is in order. Should you need any further information, kindly contact the writer who is authorized to act as agent.

Sincerely yours,

Hoosamuddin S. Bandukwala, Lab Director

enclosure(s) cc: Applicant HSB/mdw

toll-free: (866)311-3268 http://www.flomlabs.com info@flomlabs.com

Date: October 13, 2006

Federal Communications Commission

Via: Electronic Filing

Attention: **Authorization & Evaluation Division**

Applicant: Kenwood USA Corporation

Equipment: TK-5310 K6 FCC ID: ALH39913120 FCC Rules: 22,74,90

Gentlemen:

On behalf of the Applicant, enclosed please find Application Form 731, Engineering Test Report and all pertinent documentation, the whole for approval of the referenced equipment as shown i.e.:

- a) Application Form
- b) Test Report (if applicable)
- c) Filing Fees
- d) Copy of Original Grant
- e) Expository Statement and/or letter by Applicant
- f) Photos (if applicable)
- g) Label Drawing (if changes have been made)

We trust the same is in order. Should you need any further information, kindly contact the writer who is authorized to act as agent.

Sincerely yours,

Hoosamuddin S. Bandukwala, Lab Director

enclosure(s) cc: Applicant HSB/mdw

Flom Test Labs 3356 North San Marcos Place, Suite 107 Chandler, Arizona 85225-7176 (866) 311-3268 phone, (480) 926-3598 fax

Transmitter Certification

of

FCC ID: ALH39913120 Model: TK-5310 K6

to

Federal Communications Commission

Rule Part(s) 22,74,90

Date of report: October 13, 2006

On the Behalf of the Applicant:

Kenwood USA Corporation

At the Request of: P.O.

> Kenwood USA Corporation Communications Division

3975 Johns Creek Court, Suite 300

Suwanee, GA 30024

Attention of: Joel E. Berger, Research & Development

JBerger@kenwoodusa.com (678) 474-4722; FAX: -4731

Supervised by:

Hoosamuddin S. Bandukwala, Lab Director

Transmitter Certification

of

FCC ID: ALH39913120 Model: TK-5310 K6

to

Federal Communications Commission

Rule Part(s) 22,74,90

Date of report: October 13, 2006

On the Behalf of the Applicant:

Kenwood USA Corporation

At the Request of: P.O.

> Kenwood USA Corporation Communications Division

3975 Johns Creek Court, Suite 300

Suwanee, GA 30024

Attention of: Joel E. Berger, Research & Development

> JBerger@kenwoodusa.com (678) 474-4722; FAX: -4731

Supervised by:

Hoosamuddin S. Bandukwala, Lab Director

Flom Test Labs 3356 North San Marcos Place, Suite 107 Chandler, Arizona 85225-7176 (866) 311-3268 phone, (480) 926-3598 fax

FCC ID: ALH39913120 MFA p0680010, d06a0017

List of Exhibits

(FCC Certification (Transmitters) - Revised 9/28/98)

Applicant: Kenwood USA Corporation

FCC ID: ALH39913120

By Applicant:

- 1. Letter of Authorization
- 2. Confidentiality Request: 0.457 And 0.459
- 3. Part 90.203(e) & (g) Attestation
- 4. Identification Drawings, 2.1033(c)(11)

Label

Location of Label

Compliance Statement

Location of Compliance Statement

- 5. Photographs, 2.1033(c)(12)
- 6. Documentation: 2.1033(c)
 - (3) User Manual
 - (9) Tune Up Info
 - (10) Schematic Diagram
 - (10) Circuit Description
 Block Diagram
 Parts List
 Active Devices
- 7. MPE/SAR Report

By M.F.A. Inc.:

A. Testimonial & Statement of Certification

The Applicant has been cautioned as to the following:

15.21 **Information to the User**.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) **Special Accessories**.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in leu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

Table of Contents

Rule	Description	Page
2.1033(c)(14)	Rule Summary	2
	Standard Test Conditions and Engineering Practices	3
2.1033(c)	General Information Required	4
2.1046(a)	ERP Carrier Power (Radiated)	8
2.1046(a)	RF Power Output (Radiated)	8
2.1046(a)	Carrier Output Power (Conducted)	9
2.1051	Unwanted Emissions (Transmitter Conducted)	9
2.1053(a)	Field Strength of Spurious Radiation	11
2.1049(c)(1)	Emission Masks (Occupied Bandwidth)	14
90.214	Transient Frequency Behavior	24
2.1047(a)	Audio Low Pass Filter (Voice Input)	30
2.1047(a)	Audio Frequency Response	30
2.1047(b)	Modulation Limiting	30
2.1047(a)	Audio Low Pass Filter (Voice Input)	31
2.1047(a)	Audio Frequency Response	31
2.1055(a)(1)	Frequency Stability (Temperature Variation)	34
2.202(g)	Necessary Bandwidth and Emission Bandwidth	37
2.202(g)	Necessary Bandwidth and Emission Bandwidth	38

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

a)

b) Laboratory: (FCC: 31040/SIT) (Canada: IC 2044)	M. Flom Associates, Inc. 3356 N. San Marcos Place, Suite 107 Chandler, AZ 85225
c) Report Number:	d06a0017
d) Client:	Kenwood USA Corporation Communications Division 3975 Johns Creek Court, Suite 300 Suwanee, GA 30024
e) Identification:	TK-5310 K6 FCC ID: ALH39913120
EUT Description:	UHF P25 Transceiver
f) EUT Condition:	Not required unless specified in individual tests.
g) Report Date: EUT Received:	October 13, 2006
h, j, k):	As indicated in individual tests.
i) Sampling method:	No sampling procedure used.
I) Uncertainty:	In accordance with MFA internal quality manual.
m) Supervised by:	Hoosamuddin S. Bandukwala, Lab Director
n) Results:	The results presented in this report relate only to the item tested.
o) Reproduction:	This report must not be reproduced, except in full, without written permission from this laboratory.

Test Report

Sub-part

2.1033(c)(14): Test and Measurement Data

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts:

	21 - Domestic Public Fixed Radio Services
X	22 - Public Mobile Services
	22 Subpart H - Cellular Radiotelephone Service
	22.901(d) - Alternative technologies and auxiliary services
	23 - International Fixed Public Radiocommunication services
	24 - Personal Communications Services
X	74 Subpart H - Low Power Auxiliary Stations
	80 - Stations in the Maritime Services
	80 Subpart E - General Technical Standards
	80 Subpart F - Equipment Authorization for Compulsory Ships
	80 Subpart K - Private Coast Stations and Marine Utility Stations
	80 Subpart S - Compulsory Radiotelephone Installations for Small Passenger Boats
	80 Subpart T - Radiotelephone Installation Required for Vessels on the Great Lakes
	80 Subpart U - Radiotelephone Installations Required by the Bridge-to-Bridge Act
	80 Subpart V - Emergency Position Indicating Radio Beacons (EPIRB'S)
	80 Subpart W - Global Maritime Distress and Safety System (GMDSS)
	80 Subpart X - Voluntary Radio Installations
	87 - Aviation Services
Х	80 Subpart X - Voluntary Radio Installations 87 - Aviation Services 90 - Private Land Mobile Radio Services
	94 - Private Operational-Fixed Microwave Service
	95 Subpart A - General Mobile Radio Service (GMRS)
	95 Subpart C - Radio Control (R/C) Radio Service
	95 Subpart D - Citizens Band (CB) Radio Service
	95 Subpart E - Family Radio Service
	95 Subpart F - Interactive Video and Data Service (IVDS)
	94 - Private Operational-Fixed Microwave Service 95 Subpart A - General Mobile Radio Service (GMRS) 95 Subpart C - Radio Control (R/C) Radio Service 95 Subpart D - Citizens Band (CB) Radio Service 95 Subpart E - Family Radio Service 95 Subpart F - Interactive Video and Data Service (IVDS) 97 - Amateur Radio Service
	101 - Fixed Microwave Services

Standard Test Conditions and Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-2003, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104 °F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst-case measurements.

A2LA

"A2LA has accredited M. Flom Associates, Inc. Chandler, AZ for technical competence in the field of Electrical Testing. The accreditation covers the specific tests and types of tests listed on the agreed scope of accreditation. This laboratory meets the requirements of ISO/IEC 17025 - 1999 'General Requirements for the Competence of Testing and Calibration Laboratories' and any additional program requirements in the identified field of testing."

Certificate Number: 2152-01

List of General Information Required for Certification

In Accordance with FCC Rules and Regulations, Volume II, Part 2 and to

Sub-part 2.1033 (c)(1): Name and Address of Applicant:						
	Kenwood USA Corporation Communications Division 3975 Johns Creek Court, Suite 300 Suwanee, GA 30024					
Manufacturer:						
	Kenwood Corporation 14-6, Dogenzaka 1-Chome Shibuya-ku, Tokyo 150, Japan OR Kenwood Electronics Technologies 1 Ang Mo Kio Street 63 Singapore 569110	PTE Ltd.				
(c)(2): FCC ID :		ALH39913120				
Model Number:		TK-5310 K6				
(c)(3): Instruction Manual(s):						
Please s	see attached exhibits					
(c)(4): Type of Emission :		16K0F3E/11K0F3E/8K10F1E/8K10F1D				
(c)(5): Frequency Range, MHz	: :	380 to 470				
(c)(6): Power Rating, Watts : Switchable	e <u>x</u> Variable	1 to 4 watts N/A				
FCC Grant Note	2:					

(c)(7): Maximum Power Rating, Watts:

DUT Results:

Fails ____

Χ

Passes

Subpart 2.1033 (continued)

(c)(8): Voltages & currents in all elements in final RF stage, including final transistor or solid-state device:

Collector Current, A = 2 Collector Voltage, Vdc = 7.5 Supply Voltage, Vdc = 7.5

(c)(9): Tune-Up Procedure:

Please see attached exhibits

(c)(10): Circuit Diagram/Circuit Description:

Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

Please see attached exhibits

(c)(11): Label Information:

Please see attached exhibits

(c)(12): Photographs:

Please see attached exhibits

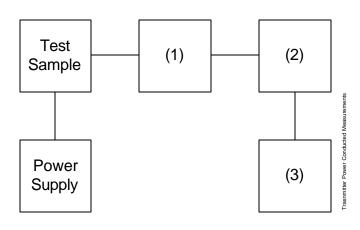
(c)(13): Digital Modulation Description:

____ Attached Exhibits _x_ N/A

(c)(14): Test and Measurement Data:

Follows

Name of Test: Carrier Output Power (Conducted)


Specification: 47 CFR 2.1046(a)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.1

Measurement Procedure

- A) The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the unmodulated output power was measured by means of an RF Power Meter.
- B) Measurement accuracy is $\pm 3\%$.

Transmitter Test Set-Up: RF Power Output

	Asset	Description	s/n	Cycle	Last Cal
(1) X	Coaxial i00231/2 i00122/3	Attenuator PASTERNACK PE7021-30 (30 dB) NARDA 766 (10 dB)	231 or 232 7802 or 7802A	NCR NCR	
(2) X	Power i00020	Meters HP 8901A Power Mode	2105A01087	12 mo.	May-05
(3) X	Freque	ncy Counter HP 8901A Frequency Mode	2105A01087	12 mo.	May-05

Carrier Output Power (Conducted)

Measurement Results

(Worst case)

Frequency of Carrier, MHz = 380.0, 469.9, 425.0 Ambient Temperature = $23^{\circ}C \pm 3^{\circ}C$

Power Setting	RF Power, Watts
Low	1
Low	<u> </u>
High	4

Performed by: Michael D. Wyman

Michael A Wywn

Name of Test: RF Power Output (Radiated)

Specification: 47 CFR 2.1046(a)

Test Equipment: As per attached page

Measurement Procedure (Radiated)

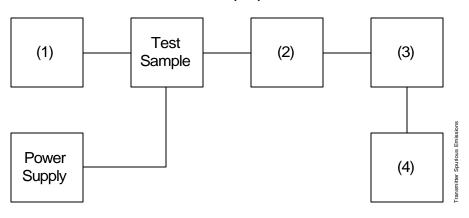
- 1. The EUT was placed on an open-field site and its radiated field strength at a known distance was measured by means of a spectrum analyzer. Equivalent loading was calculated from the equation $P_t=((E \times R)^2/49.2)$ watts, where R = 3m.
- 2. Measurement accuracy is ±1.5 dB.

Measurement Results

State: Amps Mode: Ambient Temperature: 23°C ± 3°C

Frequency Tuned,	Frequency Emission,	Meter,	CF, dB	ERP, dBm	
MHz	MHz	dBuV/m			
Hi power	380.000000	114.8	20.8	38.3	
	425.000000	115.7	21.5	39.9	
	469.999999	110.0	22.3	34.9	
Lo power	380.000000	108.9	20.8	32.3	
	425.000000	112.1	21.5	36.2	
	469.999999	102.8	22.3	27.7	

Name of Test: Unwanted Emissions (Transmitter Conducted)


Specification: 47 CFR 2.1051

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.13

Measurement Procedure

- A) The emissions were measured for the worst case as follows:
 - 1). within a band of frequencies defined by the carrier frequency plus and minus one channel.
 - 2). from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40 GHz, whichever is lower.
- B) The magnitude of spurious emissions that are attenuated more than 20 dB below the permissible value need not be specified.

Transmitter Test Set-Up: Spurious Emission

Asset	Description	s/n
HSSEL	Describtion	3/11

(1)	Audio	Oscil	lator/	'Generator
-----	-------	-------	--------	------------

Χ	i00017	HP 8903A Audio Analyzer	2216A01753	12 mo.	Aug/07
	i00002	HP 3336B Synthesizer / Level Gen	1931A01465	12 mo	

(2) Coaxial Attenuator

Χ	i00231/2	PASTERNACK PE7021-30 (30 dB)	231 or 232	NCR
	i0012/3	NARDA 766 (10 dB)	7802 or 7802A	NCR

(3) Filters; Notch, HP, LP, BP

None required

(4) Spectrum Analyzer

Х	100048	HP 8566B Spectrum Analyzer	2511A01467	12 mo.	Aug/0/
	i00029	HP 8563E Spectrum Analyzer	3213A00104	12 mo.	May-04

Name of Test: Unwanted Emissions (Transmitter Conducted)

Measurement Results

(Worst Case)

Summary:

Frequency of carrier, MHz = 380.110, 425.110, 469.990

Spectrum Searched, GHz = $0 \text{ to } 10 \text{ x } F_C$

Maximum Response, Hz = 2820

All Other Emissions = = 20 dB Below Limit

Limit(s), dBc

-(43+10xLOG P) = -43 (1 Watt)-(43+10xLOG P) = -49 (4 Watts)

Tabulated Results follow:

Measurement Results

G0690019: 2006-Sep-21 Thu 12:53:00

State: 1: High Power Ambient Temperature: 23°C ± 3°C

Frequency Tuned, MHz	Frequency Emission, MHz	Level, dBm	Level, dBc	Margin, dB
380.110000	760.011000	-37.9	-68.2	-24.9
425.110000	850.003000	-40.4	-70.7	-27.4
469.990000	940.017000	-41.8	-72.1	-28.8
380.110000	1140.823000	-43.4	-73.7	-30.4
425.110000	1275.604000	-43.5	-73.8	-30.5
469.990000	1409.738000	-42.8	-73.1	-29.8
380.110000	1520.859000	-43.2	-73.5	-30.2
425.110000	1700.772000	-43.2	-73.5	-30.2
469.990000	1879.839000	-42.9	-73.2	-29.9
380.110000	1900.087000	-43.1	-73.4	-30.1
425.110000	2125.680000	-41.4	-71.7	-28.4
380.110000	2280.585000	-42	-72.3	-29
469.990000	2350.042000	-42.2	-72.5	-29.2
425.110000	2550.650000	-43	-73.3	-30
380.110000	2661.032000	-43.1	-73.4	-30.1
469.990000	2820.390000	-43.1	-73.4	-30.1
425.110000	2975.563000	-43.5	-73.8	-30.5
380.110000	3040.994000	-43.8	-74.1	-30.8
469.990000	3290.162000	-42.6	-72.9	-29.6
425.110000	3400.400000	-43.5	-73.8	-30.5
380.110000	3420.586000	-43.4	-73.7	-30.4
469.990000	3760.157000	-44.2	-74.5	-31.2
380.110000	3801.381000	-43.8	-74.1	-30.8
425.110000	3826.391000	-43.7	-74	-30.7
469.990000	4230.272000	-43.4	-73.7	-30.4
425.110000	4250.639000	-42.7	-73	-29.7
469.990000	4700.261000	-43.5	-73.8	-30.5

Performed by:

Flom Test Labs 3356 North San Marcos Place, Suite 107 Chandler, Arizona 85225-7176 (866) 311-3268 phone, (480) 926-3598 fax

Name of Test: Field Strength of Spurious Radiation

Specification: 47 CFR 2.1053(a)

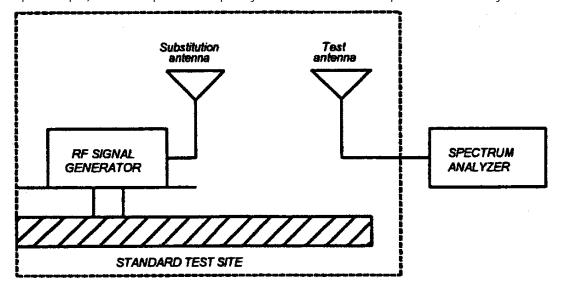
Guide: ANSI/TIA/EIA-603-1992/2001, Paragraph 1.2.12 and Table 16, 47 CFR 22.917


Measurement Procedure

Definition:

Radiated spurious emissions are emissions from the equipment when transmitting into a non-radiating load on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.

Method of Measurement:


- A) Connect the equipment as illustrated
- B) Adjust the spectrum analyzer for the following settings:
 - 1) Resolution Bandwidth 100 kHz (<1 GHZ), 1 MHZ (> 1GHz).
 - 2) Video Bandwidth = 3 times Resolution Bandwidth, or 30 kHz (22.917)
 - 3) Sweep Speed ≤2000 Hz/second
 - 4) Detector Mode = Mean or Average Power
 - C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load that is placed on the turntable. The RF cable to this load should be of minimum length.

Field Strength of Spurious Radiation (Cont.)

- D) For each spurious measurement the test antenna should be adjusted to the correct length for the frequency involved. This length may be determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to \pm the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.
- F) Repeat step E) for each spurious frequency with the test antenna polarized vertically.

- G) Reconnect the equipment as illustrated.
- H) Keep the spectrum analyzer adjusted as in step B).
- I) Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.

Field Strength of Spurious Radiation (Cont.)

- J) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- K) Repeat step J) with both antennas vertically polarized for each spurious frequency.
- L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps J) and K) by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.
- M) The levels recorded in step L) are absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:

Radiated spurious emissions dB =

10log₁₀(TX power in watts/0.001) - the levels in step I)

NOTE: It is permissible that other antennas provided can be referenced to a dipole.

Test Equipment

	Asset	Description	s/n	Cycle	Cal Date
Tra	nsducer				
	88000i	EMCO 3109-B 25MHz-300MHz	2336	12 mo.	Sep-03
Χ	i00089	Aprel 2001 200MHz-1GHz	001500	12 mo.	Oct-07
Χ	i00103	EMCO 3115 1GHz-18GHz	9208-3925	12 mo.	Sep-08
Am	plifier				
Χ	i00028	HP 8449A	2749A00121	NCR	
Spe	ctrum Ana	lyzer			
Χ	i00029	HP 8563E	3213A00104	12 mo.	Jan-07
Χ	i00033	HP 85462A	3625A00357	12 mo.	Oct-06
Sub	stitution G	enerator			
Χ	i00067	HP 8920A Communication TS	3345U01242	12 mo.	Jul-07
	i00207	HP 8753D Network Analyzer	3410A08514	12 mo.	Jul-04
Mic	rophone, A	Antenna Port, and Cabling			
	Microphor	ne	Cable Length	Meters	
	Antenna F	Port Terminated	Load	Antenna G	ain
	All Ports	Terminated by Load	Peripheral Peripheral		

Field Strength of Spurious Radiation

Measurement Results

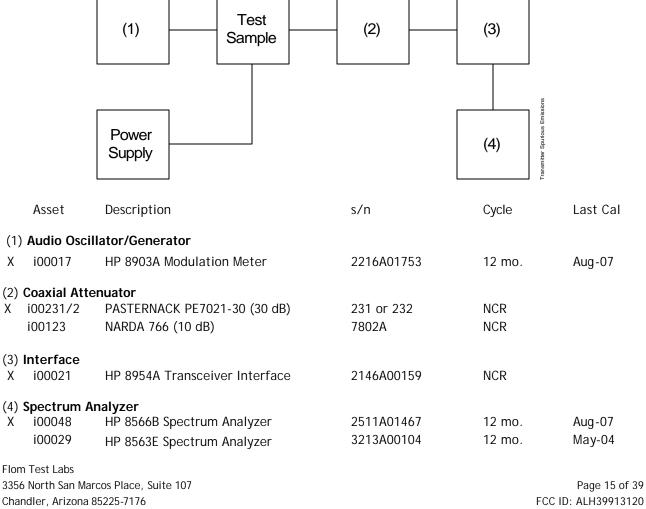
g0690042: 2006-Sep-26 Tue 10:08:00

STATE: 2:High Power Ambient Temperature: 23°C ± 3°C

Frequency Tuned, MHz	Frequency Emission, MHz	ERP, dBm
425.110	850.000000	-30.7
425.110	1274.990000	-37.0
425.110	1699.990000	-28.2
425.110	2124.997500	-44.2
425.110	2549.997500	-44.1
425.110	2975.000000	-46.4

MFA p0680010, d06a0017

Name of Test: Emission Masks (Occupied Bandwidth)

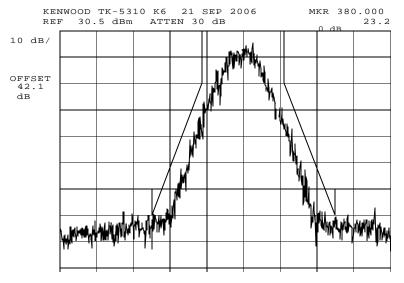

Specification: 47 CFR 2.1049(c)(1)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.11

Measurement Procedure

- A) The EUT and test equipment were set up as shown below
- B) For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for ±2.5/±1.25 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- C) For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- D) The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test

Transmitter Test Set-Up: Occupied Bandwidth



(866) 311-3268 phone, (480) 926-3598 fax

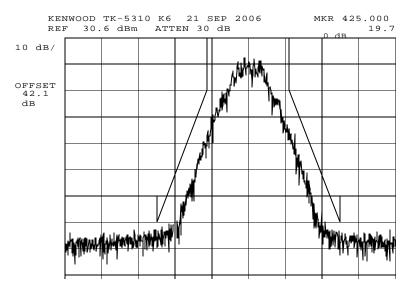
Measurement Results

g0690012: 2006-Sep-21 Thu 11:17:00 State: 1:Low Power Ambient Temperature: 23°C ± 3°C

Power: Modulation: LOW NONE LO CHNNEL

Performed by:

Michael D. Wyman


Michael D Wywn

Measurement Results

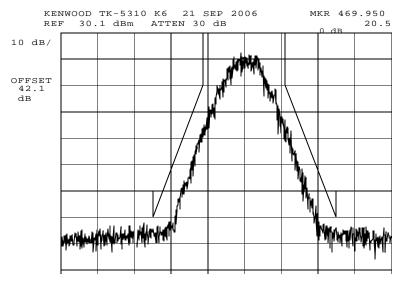
g0690013: 2006-Sep-21 Thu 11:26:00

State: 1:Low Power Ambient Temperature: 23°C ± 3°C

Power: Modulation:

LOW NONE MID CHANNEL

Michael Al Wywn


Performed by: Michael D. wyman

Measurement Results

g0690014: 2006-Sep-21 Thu 11:29:00

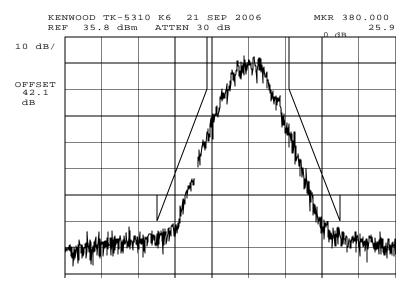
State: 1:Low Power Ambient Temperature: 23°C ± 3°C

Power: Modulation:

LOW NONE HI CHANNEL

Performed by:

Michael D. Wyman


Michael D Wywn

Measurement Results

g0690015: 2006-Sep-21 Thu 11:31:00

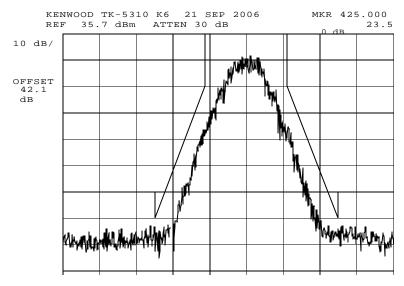
State: 2:High Power Ambient Temperature: 23°C ± 3°C

Power: Modulation:

HIGH NONE LO CHANNEL

Performed by:

Michael D. Wyman


Michael D Wywn

Measurement Results

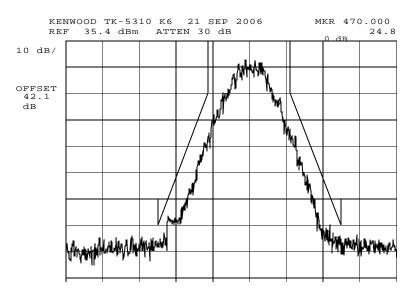
g0690016: 2006-Sep-21 Thu 11:33:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C

Power: Modulation:

HIGH NONE MID CHANNEL

Michael Al Wywn


Performed by: Michael D. wyman

Measurement Results

g0690017: 2006-Sep-21 Thu 11:34:00

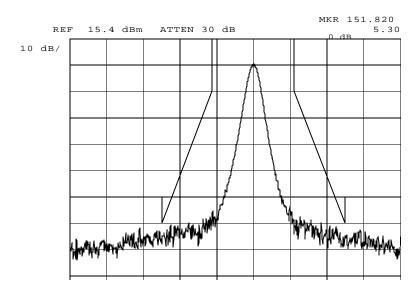
State: 2:High Power Ambient Temperature: 23°C ± 3°C

Power: Modulation:

HIGH NONE HI CHANNEL

Performed by:

Michael D. Wyman


Michael D Wywn

Measurement Results

g0690020: 2006-Sep-25 Mon 13:35:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C

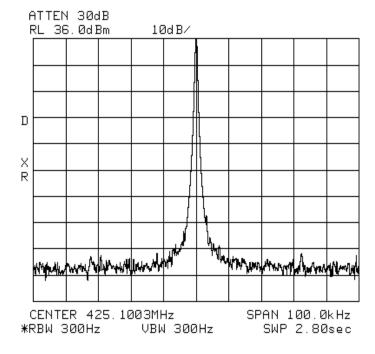
Power: HIGH Modulation: NONE

MASK: D, VHF/UHF 12.5kHz BW

Performed by:

Michael D. Wyman

Michael Al Wywn



Emission Masks (Occupied Bandwidth)

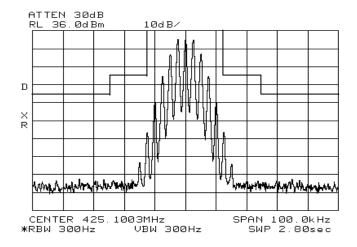
Measurement Results

g0690020: 2006-Sep-25 Mon 13:35:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C

Performed by:

Michael D. Wyman


Michael Al Wywn

Measurement Results

g0690020: 2006-Sep-25 Mon 13:35:00

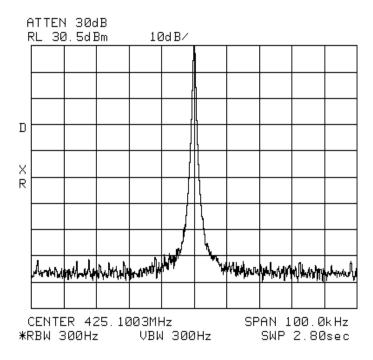
State: 2:High Power Ambient Temperature: 23°C ± 3°C

Power: HIGH

Modulation: NONE

MASK: B, VHF/UHF 25 kHz BW

Michael Al Wywn


Performed by: Michael D. Wyman

Measurement Results

g0690020: 2006-Sep-25 Mon 13:35:00

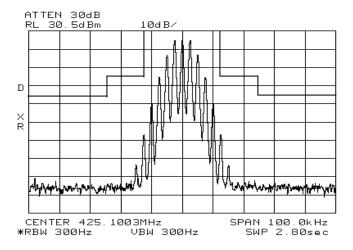
State: 2:Low Power Ambient Temperature: 23°C ± 3°C

Power:

Modulation: NONE

Performed by:

Michael D. Wyman


Michael Al Wywn

Measurement Results

g0690020: 2006-Sep-25 Mon 13:35:00

State: 2:Low Power Ambient Temperature: 23°C ± 3°C

Power: LOW Modulation:

NONE

MASK: B, VHF/UHF 25 kHz BW

Performed by:

Michael D. Wyman

Michael Al Wywn

Transient Frequency Behavior

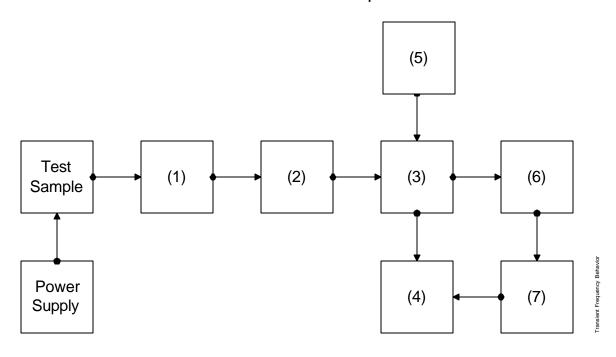
Name of Test:

Specification: 47 CFR 90.214

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.19

Measurement Procedure

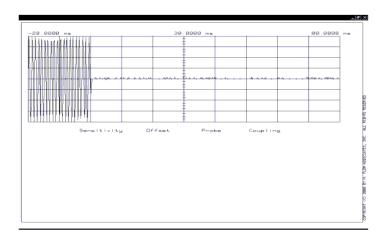
- A) The EUT was setup as shown on the attached page, following TIA/EIA-603 steps a, b, and c as a guide.
- B) The transmitter was turned on.
- C) Sufficient attenuation was provided so that the transmitter carrier level measured at the output of the combiner was 40 dB below the maximum input level of the test receiver. This level was recorded.
- D) The transmitter was turned off.
- E) An RF signal generator (1) modulated with a 1 kHz tone at either 25, 12.5, or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -20 dB below the level recorded for step C) above, measured at the output of the combiner. This level was then fixed for the remainder of the test.
- F) The oscilloscope was setup using TIA/EIA-603 steps j and k as a guide, and to either 10 ms/div (UHF) or 5 ms/div (VHF).
- G) The 30 dB attenuator was removed, the transmitter was turned on, and the level of the carrier at the output of the combiner was recorded.
- H) The <u>carrier on-time</u> as referenced in TIA/EIA-603 steps m, n, and o was captured and plotted. The <u>carrier off-time</u> as referenced in TIA/EIA-603 steps p, q, r, and s was captured and plotted.

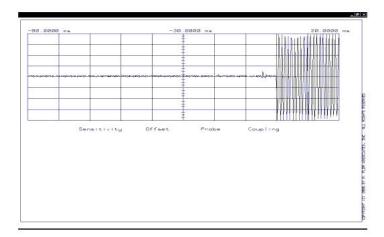

Michael D. Wyman

Performed by:

Transient Frequency Behavior

Transmitter Set-Up




	Asset	Description	s/n	Cycle	Last Cal
(1) X	Attenuator (I i00231/2	Removed after 1st step) PASTERNACK PE7021-30 (30 dB)	231 or 232	NCR	
(2) X	Attenuator i00231/2 i00122/3	PASTERNACK PE7021-30 (30 dB) NARDA 766 (10 dB)	231 or 232 7802 or 7802A	NCR NCR	
(3) X	Combiner i00154	4 x 25 Ω Combiner	154	NCR	
(4) X	Crystal Deco	der HP 8470B Crystal Detector	1822A10054	NCR	
(5) X	RF Signal Ge i00067	nerator HP 8920A Communication TS	3345U01242	12 mo.	Jun-06
(6) X	Modulation A i00020	Analyzer HP 8901A Modulation Meter	2105A01087	12 mo.	May-06
(7) X	Oscilloscope i00030	HP 54502A Digital Oscilloscope	2927A00209	12 mo.	Feb-05

Name of Test: Transient Frequency Behavior

State: Ambient Temperature: 23°C ± 3°C

Power: 1 Watt Modulation: 12.5 kHz

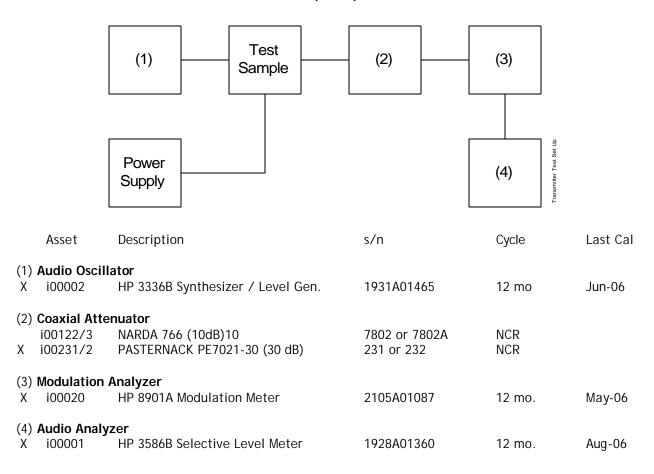
Description: Transient Behavior

Michael D. Wyman

Michael Al Wyun

Performed by:

Name of Test: Audio Low Pass Filter (Voice Input)

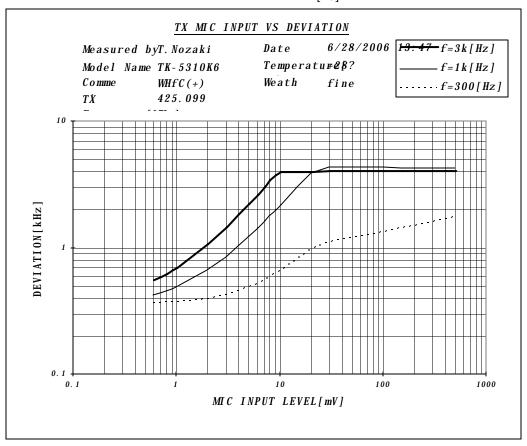

Specification: 47 CFR 2.1047(a)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.15

Measurement Procedure

- A) The EUT and test equipment were set up such that the audio input was connected at the input to the modulation limiter, and the modulated stage.
- B) The audio output was connected at the output to the modulated stage.

Transmitter Test Set-Up: Response of Low Pass Filter


Name of Test: Audio Low Pass Filter (Voice Input)

Measurement Results

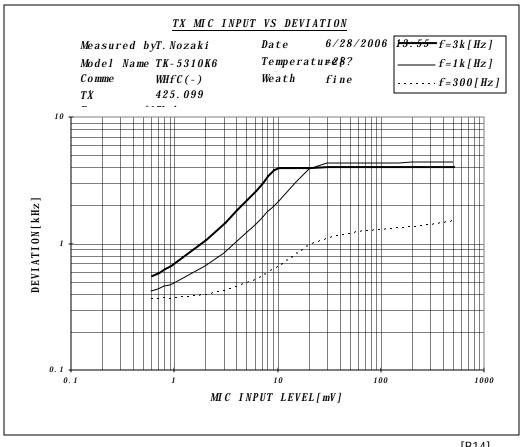
[B3] [B4] State: [B5]

Ambient Temperature: 23°C ± 3°C

[B6]

[B7]

Data Supplied By Applicant


Name of Test: Audio Low Pass Filter (Voice Input)

Measurement Results

[B10] [B11] State: [B12]

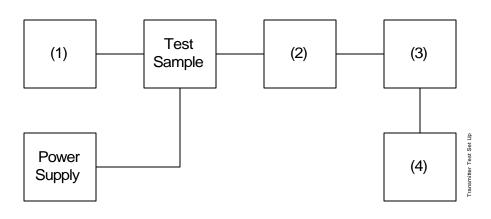
Ambient Temperature: 23°C ± 3°C

[B13]

[B14]

Data Supplied by Applicant

Name of Test: Modulation Limiting


Specification: 47 CFR 2.1047(b)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.3

Measurement Procedure

- A) The signal generator was connected to the input of the EUT as shown below.
- B) The modulation response was measured for each of three frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
- C) The input level was varied from 30% modulation (± 1.5 kHz deviation) to at least 20 dB higher than the saturation point.
- D) Measurements were performed for both negative and positive modulation and the respective results were recorded.

Transmitter Test Set-Up: Modulation Limiting

Asset	Description	s/n
HOOCI	Description	3/11

(1)	Audio	Ocail	lator
(1)	AUDIO	USCII	liator

X i00017 HP 8903A Audio Analyzer 2216A01753 12 mo. Aug-06

(2) Coaxial Attenuator

i0012/23 NARDA 766-(10 dB) 7802 or 7802A NCR X i00231/2 PASTERNACK PE7021-30 (30 dB) 231 or 232 NCR

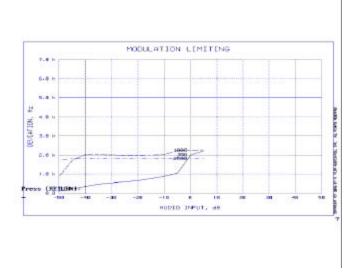
(3) Modulation Analyzer

X i00020 HP 8901A Modulation Meter 2105A01087 12 mo. May-06

(4) Audio Analyzer

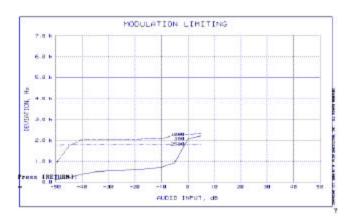
X i00017 HP 8903A Audio Analyzer 2216A01753 12 mo. Aug-06

Name of Test: Modulation Limiting


Measurement Results

g06a0050: 2006-Oct-12 Thu 15:34:00

State: 0:General Ambient Temperature: 23°C ± 3°C


Positive Peaks:

Positive

Negative Peaks:

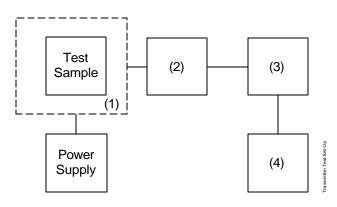
Negative

Performed by:

Michael D. Wyman

Michael D Wywn

Name of Test: Frequency Stability (Temperature Variation)


Specification: 47 CFR 2.1055(a)(1)

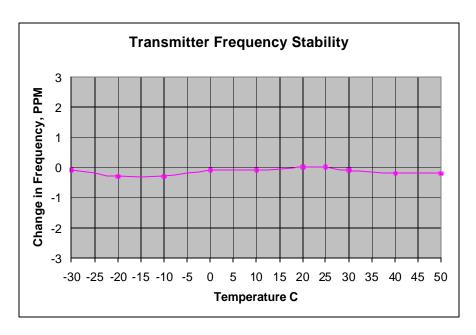
Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

Measurement Procedure

- A) The EUT and test equipment were set up as shown on the following page.
- B) With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- C) With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- D) The temperature tests were performed for the worst case.

Transmitter Test Set-Up: Temperature Variation

	Asset	Description	s/n	Cycle	Last Cal
(1) X	Temperatur i00027	e, Humidity, Vibration Tenney Temp. Chamber	9083-765-234	NCR	
(2)	Coaxial Atte	nuator			
X	i00231/2 i00122/3	PASTERNACK PE7021-30 (30 dB) NARDA 766 (10 dB)	231 or 232 7802 or 7802A	NCR NCR	
(3) X	RF Power i00067	HP 8920A Communications TS	3345U01242	12 mo.	Jun-06
(4)	Frequency (Counter			
Χ	i00067	HP 8920A Communications TS	3345U01242	12 mo.	Jun-06



Frequency Stability (Temperature Variation)

Measurement Results

g0690040: 2006-Sep-25 Mon 12:28:39

State: 0:General Ambient Temperature: 23°C ± 3°C

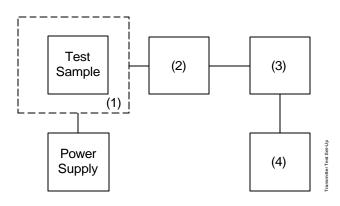
Temp	Change in Freq Hz	Change in Freq PPM
-30	-50.00	-0.10
-20	-140.00	-0.30
-10	-120.00	-0.30
0	-115.00	-0.10
10	-50.00	-0.10
20	10.00	0.00
25	0.00	0.00
30	-30.00	-0.10
40	-80.00	-0.20
50	-90.00	-0.20

Performed by:

Flom Test Labs 3356 North San Marcos Place, Suite 107 Chandler, Arizona 85225-7176 (866) 311-3268 phone, (480) 926-3598 fax Michael D. Wyman

Michael A Wyun

Name of Test: Frequency Stability (Voltage Variation)


Specification: 47 CFR 2.1055(d)(1)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

Measurement Procedure

- A) The EUT was placed in a temperature chamber (if required) at 25±5°C and connected as shown below.
- B) The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- C) The variation in frequency was measured for the worst case.

Transmitter Test Set-Up: Voltage Variation

	Asset	Description	s/n	Cycle	Last Cal
(1)	Temperatur	e, Humidity, Vibration			
	i00027	Tenney Temp. Chamber	9083-765-234	NCR	
(2)	Coaxial Atte	nuator			
Χ	i00231/2	PASTERNACK PE7021-30 (30 dB)	231 or 232	NCR	
	i00122/3	NARDA 766 (10 dB)	7802 or 7802A	NCR	
(3)	RF Power				
Χ	i00020	HP 8901A Power Mode	2105A01087	12 mo.	Jun-06
(4)	Frequency (Counter			
Χ	i00020	HP 8901A Frequency Mode	2105A01087	12 mo.	Jun-06

Results: Frequency Stability (Voltage Variation)

[B16] [B17]

State: [B18] Ambient Temperature: 23°C ± 3°C

Limit, ppm = [B19] Wide 5.0 Narrow 2.5 (Mobile)

Limit, Hz = [B20] 775 Battery End Point (Voltage) = [B21] 11.3

% of STV	Voltage	Frequency, MHz	Change, Hz	Change, ppm
[B23]	[B24]	[B25]	[B26]	[B27] [B28]
115	15.6	425.09998	-20	-0.05
100	13.6	425.09998	-20	-0.05
85	11.6	425.09998	-20	-0.05
83	11.3	425.09998	-20	-0.05

[B30]

Data Supplied By Applicant

Name of Test: Necessary Bandwidth and Emission Bandwidth

Specification: 47 CFR 2.202(g)

Flom Test Labs 3356 North San Marcos Place, Suite 107 Chandler, Arizona 85225-7176 (866) 311-3268 phone, (480) 926-3598 fax

Page 38 of 39 FCC ID: ALH39913120 MFA p0680010, d06a0017

Modulation = 16K0F3E

Necessary Bandwidth Calculation:

Maximum Modulation (M), kHz = 3 Maximum Deviation (D), kHz = 5 Constant Factor (K) = 1

Necessary Bandwidth (B_N), kHz = (2xM)+(2xDxK)

= 16.0

Modulation = 11K0F3E

Necessary Bandwidth Calculation:

Maximum Modulation (M), kHz = 3 Maximum Deviation (D), kHz = 2.5 Constant Factor (K) = 1

Necessary Bandwidth (B_N), kHz = (2xM)+(2xDxK)

= 11.0

Modulation = 8K1F1D

Necessary Bandwidth Calculation:

Maximum Modulation (M), kHz = 1.41Maximum Deviation (D), kHz = 2.5Constant Factor (K) = 1

Necessary Bandwidth (B_N), kHz = (2xM)+(2xDxK)

= 7.82

Modulation = 8K1F1E

Necessary Bandwidth Calculation:

Maximum Modulation (M), kHz = 1.41 Maximum Deviation (D), kHz = 2.5 Constant Factor (K) = 1

Necessary Bandwidth (B_N) , kHz = (2xM)+(2xDxK)

= 7.82

Michael A Wywa

Performed by: Michael D. Wyman

END OF TEST REPORT

Testimonial and Statement of Certification

This is to Certify:

- 1. **That** the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. **That** the technical data supplied with the application was taken under my direction and supervision.
- 3. **That** the data was obtained on representative units, randomly selected.
- 4. **That**, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

Certifying Engineer:

Hoosamuddin S. Bandukwala, Lab Director