FCC ID: ALH35573110

Transmitter Certification

of

FCC ID: ALH35573110 Model: TKR-751

to

Federal Communications Commission

Rule Part(s) 22, 74, 90, 90.210, Confidentiality

Date of report: January 13, 2004

On the Behalf of the Applicant:

Kenwood USA Corporation

At the Request of: P.O. JB-F-006

Kenwood USA Corporation Communications Division

3975 Johns Creek Court, Suite 300

Suwanee, GA 30024

Attention of: Joel E. Berger, Research & Development

JBerger@kenwoodusa.com (678) 474-4722; FAX: -4731

Supervised by:

Morton Flom, P. Eng.

FCC ID: ALH35573110

List of Exhibits

(FCC **Certification** (Transmitters) - Revised 9/28/98)

Applicant: Kenwood USA Corporation

FCC ID: ALH35573110

By Applicant:

1. Letter of Authorization	X
2. Identification Drawings, 2.1033(c)(11) x Label x Location of Label x Compliance Statement x Location of Compliance Statement	
3. Photographs, 2.1033(c)(12)	x
4. Documentation: 2.1033(c) (3) User Manual (9) Tune Up Info (10) Schematic Diagram (10) Circuit Description Block Diagram Parts List Active Devices	x x x x x x
5. Part 90.203(e) & (g) Attestation	х
6. Request for Confidentiality	х
7. MPE Report	x

By M.F.A. Inc.:

A. Testimonial & Statement of Certification

The Applicant has been cautioned as to the following:

15.21 **Information to the User**.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) **Special Accessories**.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

Table of Contents

<u>Rule</u>	<u>Description</u>	<u>Page</u>
	Test Report	1
2.1033(c)	General Information Required	2
2.1033(c)(14)	Rule Summary	5
	Standard Test Conditions and Engineering Practices	6
2.1046(a)	Carrier Output Power (Conducted)	7
2.1046(a)	ERP Carrier Power (Radiated)	9
2.1051	Unwanted Emissions (Transmitter Conducted)	10
2.1053(a)	Field Strength of Spurious Radiation	15
2.1049(c)(1)	Emission Masks (Occupied Bandwidth)	19
90.214	Transient Frequency Behavior	30
2.1047(a)	Audio Low Pass Filter (Voice Input)	40
2.1047(a)	Audio Frequency Response	43
2.1047(b)	Modulation Limiting	45
2.1055(a)(1)	Frequency Stability (Temperature Variation)	48
2.1055(b)(1)	Frequency Stability (Voltage Variation)	51
2.202(g)	Necessary Bandwidth and Emission Bandwidth	52

Page Number 1 of 52.

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

a) Test Report

b) Laboratory: M. Flom Associates, Inc.

(FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107

(Canada: IC 2044) Chandler, AZ 85225

c) Report Number: d0410011

d) Client: Kenwood USA Corporation

Communications Division

3975 Johns Creek Court, Suite 300

Suwanee, GA 30024

e) Identification: TKR-751

FCC ID: ALH35573110

EUT Description: VHF FM Repeater

f) EUT Condition: Not required unless specified in individual tests.

g) Report Date: January 13, 2004 EUT Received: December 18, 2003

h, j, k): As indicated in individual tests.

i) Sampling method: No sampling procedure used.

I) Uncertainty: In accordance with MFA internal quality manual.

m) Supervised by:

Morton Flom, P. Eng.

n) Results: The results presented in this report relate only to the item tested.

o) Reproduction: This report must not be reproduced, except in full, without written

permission from this laboratory.

Page Number

2 of 52.

List of General Information Required for Certification

In Accordance with FCC Rules and Regulations, Volume II, Part 2 and to

22, 74, 90, 90.210, Confidentiality

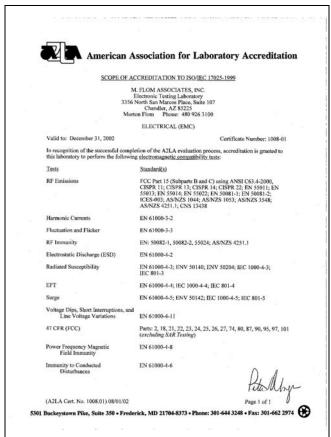
Sub-part 2.1033

 $\overline{(c)(1)}$: Name and Address of Applicant:

Kenwood USA Corporation Communications Division 3975 Johns Creek Court, Suite 300 Suwanee, GA 30024

Manufacturer:

Kenwood Electronics Technologies PTE Ltd. 1 Ang Mo Kio Street 63 Singapore 569110


(c)(2): FCC ID :	ALH35573110
Model Number:	TKR-751
(c)(3): Instruction Manual(s):	
Please see attached exhibits	
(c)(4): Type of Emission :	16K0F3E, 11K0F3E 16K0F1D, 11K0F1D
(c)(5): Frequency Range, MHz:	146 to 174
(c)(6): Power Rating, Watts : Switchable x Variable	1 to 25 N/A
FCC Grant Note:	BC – The output power is continuously variable from the value listed in this entry to 5%-10% of the value listed.
(c)(7): Maximum Power Rating, Watts :	300
<u>DUT Results</u> :	Passes <u>x</u> Fails

Page Number

3 of 52.

M. Flom Associates, Inc. is accredited by the American Association for Laboratory Association (A2LA) as shown in the scope below.

"This laboratory is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this report have been determined in accordance with the laboratory's terms of accreditation unless stated otherwise in the report."

Should this report contain any data for tests for which we are not accredited, or which have been undertaken by a subcontractor that is not A2LA accredited, such data would not covered by this laboratory's A2LA accreditation.

Page Number 4 of 52.

Subpart 2.1033 (continued)

(c)(8): Voltages & currents in all elements in final RF stage, <u>including final transistor or solid-state</u> <u>device</u>:

Collector Current, A = 8 Collector Voltage, Vdc = 13.6 Supply Voltage, Vdc = 13.8

(c)(9): **Tune-Up Procedure**:

Please see attached exhibits

(c)(10): **Circuit Diagram/Circuit Description**:

Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

Please see attached exhibits

(c)(11): **Label Information**:

Please see attached exhibits

(c)(12): **Photographs**:

Please see attached exhibits

(c)(13): **Digital Modulation Description**:

____ Attached Exhibits x N/A

(c)(14): **Test and Measurement Data**:

Follows

Page Number 5 of 52.

Sub-part

2.1033(c)(14): Test and Measurement Data

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts:

		21 - Domestic Public Fixed Radio Services
	Χ	22 – Public Mobile Services
		22 Subpart H - Cellular Radiotelephone Service
		22.901(d) - Alternative technologies and auxiliary services
		22.901(d) - Alternative technologies and auxiliary services 23 - International Fixed Public Radiocommunication services
		24 – Personal Communications Services
	Χ	74 Subpart H - Low Power Auxiliary Stations
_		80 – Stations in the Maritime Services
_		90 Subpart E Conoral Tochnical Standards
_		80 Subpart F - Equipment Authorization for Compulsory Ships
_		80 Subpart E - General Technical Standards 80 Subpart F - Equipment Authorization for Compulsory Ships 80 Subpart K - Private Coast Stations and Marine Utility Stations 80 Subpart S - Compulsory Radiotelephone Installations for Small Passenger Boats 80 Subpart T - Radiotelephone Installation Required for Vessels on the Great Lakes 80 Subpart U - Radiotelephone Installations Required by the Bridge-to-Bridge Act 80 Subpart V - Emergency Position Indicating Radio Beacons (EPIRB'S) 80 Subpart V - Global Maritime Distress and Safety System (GMDSS)
_		80 Subpart S - Compulsory Radiotelephone Installations for Small Passenger Boats
_		80 Subpart T - Radiotelephone Installation Required for Vessels on the Great Lakes
		80 Subpart U - Radiotelephone Installations Required by the Bridge-to-Bridge Act
_		80 Subpart V - Emergency Position Indicating Radio Beacons (EPIRB'S)
		80 Subpart W - Global Maritime Distress and Safety System (GMDSS)
_		80 Subpart X - Voluntary Radio Installations
		80 Subpart W - Global Maritime Distress and Safety System (GMDSS) 80 Subpart X - Voluntary Radio Installations 87 - Aviation Services
	V	90 – Private Land Mohile Radio Services
_		94 – Private Operational-Fixed Microwave Service
_		95 Subpart A - General Mobile Radio Service (GMRS)
_		95 Subpart C - Radio Control (R/C) Radio Service
_		95 Subpart D - Citizens Band (CB) Radio Service
_		95 Subpart E - Family Radio Service
_		94 - Private Operational-Fixed Microwave Service 95 Subpart A - General Mobile Radio Service (GMRS) 95 Subpart C - Radio Control (R/C) Radio Service 95 Subpart D - Citizens Band (CB) Radio Service 95 Subpart E - Family Radio Service 95 Subpart F - Interactive Video and Data Service (IVDS) 97 - Amateur Radio Service
_		97 - Amateur Radio Service
		101 - Fixed Microwave Services

Page Number 6 of 52.

Standard Test Conditions and Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-1992/2000 Draft, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40° C (50° to 104 °F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst-case measurements.

Page Number 7 of 52.

Name of Test: Carrier Output Power (Conducted)

Specification: 47 CFR 2.1046(a)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.1

Test Equipment: As per attached page

Measurement Procedure

- 1. The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the unmodulated output power was measured by means of an RF Power Meter.
- 2. Measurement accuracy is $\pm 3\%$.

Measurement Results

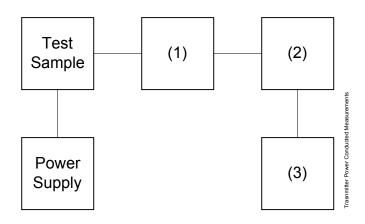
(Worst case)

Frequency of Carrier, MHz = 160, 146, 174 Ambient Temperature = 23°C \pm 3°C

Power Setting RF Power, Watts	
Low	1
High	25

Performed by:

Daniel M. Dillon, Test Engineer


David M. Oither

Page Number

8 of 52.

Transmitter Power Conducted Measurements

Test A. RF Power Output Test B. Frequency Stability

Asset Description s/n

(1) Coaxial Attenuator

X i00231/2 PASTERNACK PE7021-30 (30 dB) 231 or 232 i00122/3 NARDA 766 (10 dB) 7802 or 7802A

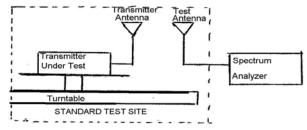
(2) **Power Meters**

X i00020 HP 8901A Power Mode 2105A01087

(3) Frequency Counter

X i00020 HP 8901A Frequency Mode 2105A01087

Page Number 9 of 52.


Name of Test: ERP Carrier Power (Radiated)

Specification: TIA/EIA 603A (Substitution Method)

2.2.17.1 Definition: The average radiated power of a licensed device is the equivalent power required, when delivered to a half-wave dipole or horn antenna, to produce at a distant point the same average received power as produced by the licensed device.

2.2.17.2 Method of Measurement:

a) Connect the equipment as illustrated. Place the transmitter to be tested on the turntable in the standard test site.

- b) Raise and lower the test antenna from 1m to 6 m with the transmitter facing the antenna and record the highest received signal in dB as LVL.
- c) Repeat step b) for seven additional readings at 45° interval positions of the turntable.
- d) Replace the transmitter under test with a half-wave or horn vertically polarized antenna. The center of the antenna should be at the same location as the transmitter under test. Connect the antenna to a signal generator with a known output power and record the path loss in dB or LOSS.
- e) Calculate the average radiated output power from the readings in step c) and d) by the following:

average radiated power = $10 \log_{10} \Sigma 10(LVL - LOSS)/10 (dBm)$

Results						
	146	6 MHz	16	0 MHz	174	4 MHz
	LVL,	Path Loss,	LVL,	Path Loss,	LVL,	Path Loss,
	dbm	db	dbm	db	dbm	db
0°	42.6	1.6	41.8	-2.2	39.8	0.7
45°	43.4	1.6	44.5	-2.2	41.2	0.7
90°	39.3	1.6	44.6	-2.2	40.4	0.7
135°	38.0	1.6	40.8	-2.2	40.9	0.7
180°	41.8	1.6	43.4	-2.2	40.3	0.7
225°	40.1	1.6	40.9	-2.2	40.3	0.7
270°	43.3	1.6	45.0	-2.2	41.7	0.7
315°	36.5	1.6	42.5	-2.2	40.8	0.7

 146 MHz
 160 MHz
 174 MHz

 Av. Radiated Power:
 42.23 dbm
 40.74 dbm
 41.38 dbm

Page Number 10 of 52.

Name of Test: Unwanted Emissions (Transmitter Conducted)

Specification: 47 CFR 2.1051

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.13

Test Equipment: As per attached page

Measurement Procedure

1. The emissions were measured for the worst case as follows:

- (a): within a band of frequencies defined by the carrier frequency plus and minus one channel.
- (b): from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40 GHz, whichever is lower.
- 2. The magnitude of spurious emissions that are attenuated more than 20 dB below the permissible value need not be specified.

3. Measurement Results: Attached for worst case

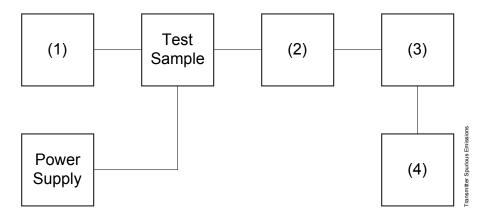
Frequency of carrier, MHz = 160, 146, 174

Spectrum Searched, GHz = $0 \text{ to } 10 \text{ x } F_C$

Maximum Response, Hz = 2820

All Other Emissions = ≥ 20 dB Below Limit

Performed by: Daniel M. Dillon, Test Engineer


David M. Oille

Page Number

11 of 52.

Transmitter Spurious Emission

Test A. Occupied Bandwidth (In-Band Spurious) Test B. Out-Of-Band Spurious

3213A00104

	Asset	Description	s/n
(1) X		cillator/Generator HP 8903A Audio Analyzer HP 3336B Synthesizer / Level Gen.	2216A01753 1931A01465
(2) X	Coaxial At i00231/2 i0012/3	tenuator PASTERNACK PE7021-30 (30 dB) NARDA 766 (10 dB)	231 or 232 7802 or 7802A
(3)	Filters; No i00126 i00125 i00124	Eagle TNF-1 Notch Filter Eagle TNF-1 Notch Filter Eagle TNF-1 Notch Filter Eagle TNF-1 Notch Filter	100-250 50-60 250-850
(4) X	Spectrum i00048	Analyzer HP 8566B Spectrum Analyzer	2511A01467

HP 8563E Spectrum Analyzer

i00029

Page Number 12 of 52.

Name of Test: Unwanted Emissions (Transmitter Conducted)

Limit(s), dBc

 $-(43+10 \times LOG P) = -43 (1 \text{ Watt})$ $-(43+10 \times LOG P) = -57 (25 \text{ Watts})$

g03c0007: 2003-Dec-30 Tue 15:17:00

Frequency Tuned, MHz	State: 1:Low Power		Ambient Temperature: 2	23°C ± 3°C
146,000000 292,232500 -41.1 -70.6 160,000000 320,000000 -49.3 -78.8 174,000000 348,017500 -42 -71.5 146,000000 394,433333 -39.8 -69.3 146,000000 437,792500 -41.5 -71 146,000000 442,050000 -40.3 -69.8 160,000000 479,797500 -49.1 -78.6 174,000000 522,002500 -41.3 -70.8 146,000000 583,83833 -40.3 -69.8 160,00000 644,616667 -40.3 -69.8 174,000000 651,858333 -40.3 -69.8 174,000000 678,75000 -40 -69.5 146,000000 684,441667 -39.8 -69.3 174,000000 684,441667 -39.8 -69.3 174,000000 729,956667 -41 -70.5 174,000000 853,641667 -40.3 -69.8 174,000000 869,826667 -39.6 -69.1 <td>Frequency Tuned,</td> <td>Frequency Emission,</td> <td>Level, dBm</td> <td>Level, dBc</td>	Frequency Tuned,	Frequency Emission,	Level, dBm	Level, dBc
160.000000 320.000000 -49.3 -78.8 174.000000 348.017500 -42 -71.5 146.000000 394.433333 -39.8 -69.3 146.000000 442.050000 -40.3 -69.8 160.000000 479.797500 -49.1 -78.6 174.000000 522.002500 -41.3 -70.8 146.000000 583.830833 -40.3 -69.8 160.00000 640.045000 -49.8 -79.3 146.000000 644.616667 -40.3 -69.8 174.000000 651.858333 -40.3 -69.8 174.000000 670.875000 -40 -69.5 146.000000 695.930833 -41.3 -70.8 146.000000 729.956667 -41 -70.5 174.000000 739.483333 -40.3 -69.8 174.000000 853.641667 -40.3 -69.8 174.000000 876.122500 -50 -79.5 174.000000 876.122500 -41.3 -70.8 146.000000 1022.191667 -41.3 -70.8	MHz	MHz		
174,000000 348,017500 -42 -71.5 146,000000 394,433333 -39.8 -69.3 146,000000 437,792500 -41.5 -71 146,000000 442,050000 -40.3 -69.8 160,000000 479,797500 -49.1 -78.6 174,000000 522,002500 -41.3 -70.8 146,000000 583,830833 -40.3 -69.8 160,000000 640,045000 -49.8 -79.3 146,000000 640,045000 -49.8 -79.3 146,000000 644,616667 -40.3 -69.8 174,000000 651,858333 -40.3 -69.8 174,000000 670,875000 -40 -69.5 146,000000 684,441667 -39.8 -69.3 174,000000 695,930833 -41.3 -70.8 146,000000 729,956667 -41 -70.5 174,000000 739,483333 -40.3 -69.8 160,000000 800,085000 -50 -79.5 174,000000 853,641667 -40.3 -69.8 160,000000 850,0085000 -50 -79.5 174,000000 869,826667 -39.6 -69.1 146,000000 876,122500 -41.3 -70.8 160,000000 960,140833 -50.3 -79.8 146,000000 1022,191667 -41.3 -70.8 174,000000 103,753333 -40.6 -70.1 146,000000 103,41667 -39.8 -69.3 174,000000 103,41667 -39.8 -69.3 174,000000 103,41667 -39.8 -69.3 174,000000 103,41667 -39.8 -69.3 174,000000 103,41667 -39.8 -69.3 174,000000 103,41667 -39.8 -69.3 174,000000 103,41667 -39.8 -69.3 160,000000 102,2956667 -41.3 -70.8 160,000000 103,41667 -39.8 -69.3 160,000000 102,2956667 -40.3 -69.8 174,000000 133,93667 -40.3 -69.8 146,000000 127,978333 -41.5 -69.6 146,000000 127,978333 -39.3 -68.8 146,000000 127,978333 -39.3 -68.8 146,000000 127,978333 -39.3 -68.8 146,000000 127,978333 -39.3 -68.8 146,000000 127,978333 -39.3 -68.8 146,000000 127,978333 -39.3 -68.8 146,000000 127,9786667 -40.1 -69.6 146,000000 127,9786667 -40.1 -69.6 146,000000 127,9786667 -40.1 -69.6 146,000000 127,9786667 -40.1 -69.6 146,000000 127,9786667 -40.1 -69.6 146,000000 127,9786667 -40.1 -69.6 146,000000 127,9786667 -40.1 -69.6 146,000000 127,9786667 -40.5 -40.6 146,000000 127,9786667 -40.6 -71.1 146,000000 127,9786667 -40.6 -71.1 146,000000 127,9786667 -40.6 -71.1 146,000000 1313,936667 -40.1 -69.6 146,000000 1313,936667 -40.1 -69.6 146,000000 1313,936667 -40.6 -71.1 146,000000 1313,936667 -40.6 -71.1 146,000000 1313,936667 -40.6 -71.1 146,000000 1313,936667 -40.6 -71.1 146,000000 1313,936667 -40.6 -71.1 146,0	146.000000	292.232500	-41.1	-70.6
146,000000 394,433333 -39.8 -69.3 146,000000 437.792500 -41.5 -71 146,000000 442,050000 -40.3 -69.8 160,000000 522,002500 -41.3 -70.8 146,000000 583,830833 -40.3 -69.8 160,000000 640,045000 -49.8 -79.3 146,000000 644,616667 -40.3 -69.8 174,000000 651,858333 -40.3 -69.8 174,000000 670,875000 -40 -69.5 146,000000 684,441667 -39.8 -69.3 174,000000 695,930833 -41.3 -70.8 146,000000 729,956667 -41 -70.5 174,000000 729,956667 -41 -70.5 174,000000 853,641667 -40.3 -69.8 160,000000 876,122500 -41.3 -70.8 160,000000 876,122500 -41.3 -70.8 160,000000 1043,753333 -40.6 -70.1 146,000000 1043,753333 -40.6 -70.1 <t< td=""><td>160.000000</td><td>320.000000</td><td>-49.3</td><td>-78.8</td></t<>	160.000000	320.000000	-49.3	-78.8
146,000000 437,792500 -41.5 -71 146,000000 442,050000 -40.3 -69.8 160,000000 479,797500 -49.1 -78.6 174,000000 522,02500 -41.3 -70.8 146,000000 640,045000 -49.8 -79.3 146,000000 644,616667 -40.3 -69.8 174,000000 651,858333 -40.3 -69.8 174,000000 670,875000 -40 -69.5 146,000000 684,441667 -39.8 -69.3 174,000000 695,930833 -41.3 -70.8 146,000000 729,956667 -41 -70.5 174,000000 739,483333 -40.3 -69.8 160,000000 800,085000 -50 -79.5 174,000000 853,641667 -40.3 -69.8 174,000000 876,122500 -41.3 -70.8 146,000000 960,140833 -50.3 -79.8 146,000000 1022,191667 -41.3 -70.8 146,000000 1043,753333 -40.3 -69.8 <tr< td=""><td>174.000000</td><td>348.017500</td><td>-42</td><td>-71.5</td></tr<>	174.000000	348.017500	-42	-71.5
146,000000 442,050000 -40,3 -69,8 160,000000 479,797500 -49,1 -78.6 174,000000 522,002500 -41,3 -70,8 146,000000 640,045000 -49,8 -79,3 146,000000 644,616667 -40,3 -69,8 174,000000 651,858333 -40,3 -69,8 174,000000 670,875000 -40 -69,5 146,000000 684,441667 -39,8 -69,3 174,000000 695,930833 -41,3 -70,8 160,000000 729,956667 -41 -70,5 174,000000 739,483333 -40,3 -69,8 160,000000 800,085000 -50 -79,5 174,000000 853,641667 -40,3 -69,8 174,000000 876,122500 -41,3 -70,8 160,000000 876,122500 -41,3 -70,8 160,000000 1043,753333 -40,6 -70,1 146,000000 1043,753333 -40,6 -70,1 146,000000 1103,391667 -40,3 -69,8	146.000000	394.433333	-39.8	-69.3
160.00000 479.797500 -49.1 -78.6 174.000000 522.002500 -41.3 -70.8 146.000000 583.830833 -40.3 -69.8 160.000000 640.045000 -49.8 -79.3 146.000000 651.858333 -40.3 -69.8 174.000000 670.875000 -40 -69.5 146.000000 684.441667 -39.8 -69.3 174.000000 695.930833 -41.3 -70.8 146.000000 729.956667 -41 -70.5 174.000000 739.483333 -40.3 -69.8 160.000000 800.885000 -50 -79.5 174.000000 869.826667 -39.6 -69.1 146.000000 869.826667 -39.6 -69.1 146.000000 960.140833 -50.3 -79.8 160.000000 1022.191667 -41.3 -70.8 174.000000 134.753333 -40.6 -70.1 146.000000 110.341667 -39.8 -69.3 160.000000 1139.391667 -40.3 -69.8 <	146.000000	437.792500	-41.5	-71
174,000000 522,002500 -41.3 -70.8 146,000000 583,830833 -40.3 -69.8 160,000000 640,045000 -49.8 -79.3 146,000000 644,616667 -40.3 -69.8 174,000000 651,858333 -40.3 -69.8 174,000000 670,875000 -40 -69.5 146,000000 684,441667 -39.8 -69.3 174,000000 695,930833 -41.3 -70.8 146,000000 729,956667 -41 -70.5 174,000000 739,483333 -40.3 -69.8 160,000000 800,085000 -50 -79.5 174,000000 853,641667 -40.3 -69.8 174,000000 876,122500 -41.3 -70.8 146,000000 876,122500 -41.3 -70.8 146,000000 1043,753333 -40.6 -70.1 146,000000 1043,753333 -40.6 -70.1 146,000000 119,987500 -50.5 -80 146,000000 1153,916667 -40.3 -69.8 <	146.000000	442.050000	-40.3	-69.8
146.000000 583.830833 -40.3 -69.8 160.000000 640.045000 -49.8 -79.3 146.000000 644.616667 -40.3 -69.8 174.000000 651.858333 -40.3 -69.8 174.000000 6670.875000 -40 -69.5 146.000000 684.441667 -39.8 -69.3 174.000000 729.956667 -41 -70.5 174.000000 739.483333 -40.3 -69.8 160.000000 800.085000 -50 -79.5 174.000000 853.641667 -40.3 -69.8 174.000000 869.826667 -39.6 -69.1 146.000000 876.122500 -41.3 -70.8 160.000000 960.140833 -50.3 -79.8 146.000000 1043.753333 -40.6 -70.1 146.000000 110.341667 -39.8 -69.3 160.000000 119.987500 -50.5 -80 146.000000 1153.916667 -40.1 -69.6 146.000000 120.85000 -40.1 -69.6 <t< td=""><td>160.000000</td><td>479.797500</td><td>-49.1</td><td>-78.6</td></t<>	160.000000	479.797500	-49.1	-78.6
160.000000 640.045000 -49.8 -79.3 146.000000 644.616667 -40.3 -69.8 174.000000 651.858333 -40.3 -69.8 174.000000 670.875000 -40 -69.5 146.000000 684.441667 -39.8 -69.3 174.000000 695.930833 -41.3 -70.8 146.000000 729.956667 -41 -70.5 174.000000 739.483333 -40.3 -69.8 160.000000 800.085000 -50 -79.5 174.000000 853.641667 -40.3 -69.8 174.000000 869.826667 -39.6 -69.1 146.000000 876.122500 -41.3 -70.8 160.000000 960.140833 -50.3 -79.8 146.000000 1043.753333 -40.6 -70.1 146.000000 1043.753333 -40.6 -70.1 146.000000 1139.391667 -40.3 -69.8 146.000000 1153.916667 -40.3 -69.8 146.000000 120.85000 -40.1 -69.6	174.000000	522.002500	-41.3	-70.8
146.000000 644.616667 -40.3 -69.8 174.000000 651.858333 -40.3 -69.8 174.000000 670.875000 -40 -69.5 146.000000 684.441667 -39.8 -69.3 174.000000 695.930833 -41.3 -70.8 146.000000 729.956667 -41 -70.5 174.000000 739.483333 -40.3 -69.8 160.000000 800.085000 -50 -79.5 174.000000 853.641667 -40.3 -69.8 174.000000 869.826667 -39.6 -69.1 146.000000 876.122500 -41.3 -70.8 160.000000 960.140833 -50.3 -79.8 146.000000 1022.191667 -41.3 -70.8 174.000000 103.753333 -40.6 -70.1 146.000000 119.987500 -50.5 -80 146.000000 1153.916667 -40.3 -69.8 146.000000 120.85000 -40.1 -69.6 174.000000 1220.85000 -40.1 -69.6 <tr< td=""><td>146.000000</td><td>583.830833</td><td></td><td></td></tr<>	146.000000	583.830833		
174,000000 651.858333 -40.3 -69.8 174,000000 670.875000 -40 -69.5 146,000000 684.441667 -39.8 -69.3 174,000000 695.930833 -41.3 -70.8 146,000000 729.956667 -41 -70.5 174,000000 800.085000 -50 -79.5 174,000000 853.641667 -40.3 -69.8 174,000000 853.641667 -40.3 -69.8 174,000000 869.826667 -39.6 -69.1 146,000000 876.122500 -41.3 -70.8 160,000000 960.140833 -50.3 -79.8 146,000000 1022.191667 -41.3 -70.8 174,000000 1103.341667 -39.8 -69.3 160,000000 1119.987500 -50.5 -80 146,000000 1139.391667 -40.3 -69.8 146,000000 1167.97333 -41 -70.5 174,000000 120.850000 -40.1 -69.6 174,000000 1223.625000 -39.6 -69.1 <	160.000000	640.045000	-49.8	-79.3
174.000000 670.875000 -40 -69.5 146.000000 684.441667 -39.8 -69.3 174.000000 695.930833 -41.3 -70.8 146.000000 729.956667 -41 -70.5 174.000000 739.483333 -40.3 -69.8 160.000000 800.085000 -50 -79.5 174.000000 853.641667 -40.3 -69.8 174.000000 869.826667 -39.6 -69.1 146.000000 876.122500 -41.3 -70.8 160.000000 960.140833 -50.3 -79.8 146.000000 1022.191667 -41.3 -70.8 174.000000 1043.753333 -40.6 -70.1 146.000000 1119.987500 -50.5 -80 146.000000 1153.916667 -40.1 -69.6 146.000000 1167.973333 -41 -70.5 174.000000 1208.850000 -40.1 -69.6 174.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8	146.000000	644.616667		
146.000000 684.441667 -39.8 -69.3 174.000000 695.930833 -41.3 -70.8 146.000000 729.956667 -41 -70.5 174.000000 739.483333 -40.3 -69.8 160.000000 800.085000 -50 -79.5 174.000000 853.641667 -40.3 -69.8 174.000000 869.826667 -39.6 -69.1 146.000000 876.122500 -41.3 -70.8 160.000000 960.140833 -50.3 -79.8 146.000000 1022.191667 -41.3 -70.8 174.000000 1043.753333 -40.6 -70.1 146.000000 1109.341667 -39.8 -69.3 160.000000 119.987500 -50.5 -80 146.000000 1153.916667 -40.1 -69.6 146.000000 1167.973333 -41 -70.5 174.000000 1200.85000 -40.1 -69.6 174.000000 1221.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8	174.000000	651.858333	-40.3	-69.8
174.000000 695.930833 -41.3 -70.8 146.000000 729.956667 -41 -70.5 174.000000 739.483333 -40.3 -69.8 160.000000 800.085000 -50 -79.5 174.000000 853.641667 -40.3 -69.8 174.000000 869.826667 -39.6 -69.1 146.000000 876.122500 -41.3 -70.8 160.000000 960.140833 -50.3 -79.8 146.000000 1022.191667 -41.3 -70.8 174.000000 1043.753333 -40.6 -70.1 146.000000 110.341667 -39.8 -69.3 160.000000 119.987500 -50.5 -80 146.000000 1153.916667 -40.3 -69.8 146.000000 1167.973333 -41 -70.5 174.000000 1208.850000 -40.1 -69.6 174.000000 12218.097500 -41.3 -70.8 146.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8	174.000000	670.875000	-40	-69.5
146.000000 729.956667 -41 -70.5 174.000000 739.483333 -40.3 -69.8 160.000000 800.085000 -50 -79.5 174.000000 853.641667 -40.3 -69.8 174.000000 869.826667 -39.6 -69.1 146.000000 876.122500 -41.3 -70.8 160.000000 960.140833 -50.3 -79.8 146.000000 1022.191667 -41.3 -70.8 174.000000 1043.753333 -40.6 -70.1 146.000000 1100.341667 -39.8 -69.3 160.000000 1119.987500 -50.5 -80 146.000000 1153.916667 -40.3 -69.8 146.000000 1157.973333 -41 -70.5 174.000000 120.850000 -40.1 -69.6 174.000000 1218.097500 -41.3 -70.8 146.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8 146.000000 1279.786667 -49.6 -79.1 <td>146.000000</td> <td>684.441667</td> <td>-39.8</td> <td>-69.3</td>	146.000000	684.441667	-39.8	-69.3
174.000000 739.483333 -40.3 -69.8 160.000000 800.085000 -50 -79.5 174.000000 853.641667 -40.3 -69.8 174.000000 869.826667 -39.6 -69.1 146.000000 876.122500 -41.3 -70.8 160.000000 960.140833 -50.3 -79.8 146.000000 1022.191667 -41.3 -70.8 174.00000 1043.753333 -40.6 -70.1 146.000000 1109.341667 -39.8 -69.3 160.000000 1119.987500 -50.5 -80 146.000000 1153.916667 -40.3 -69.8 146.000000 1157.973333 -41 -70.5 174.000000 1200.850000 -40.1 -69.6 174.000000 1218.097500 -41.3 -70.8 146.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8 146.000000 1279.786667 -49.6 -79.1 146.000000 1333.891667 -49.6 -79.1 <	174.000000	695.930833	-41.3	-70.8
160.000000 800.085000 -50 -79.5 174.000000 853.641667 -40.3 -69.8 174.000000 869.826667 -39.6 -69.1 146.000000 876.122500 -41.3 -70.8 160.000000 960.140833 -50.3 -79.8 146.000000 1022.191667 -41.3 -70.8 174.000000 1043.753333 -40.6 -70.1 146.000000 1100.341667 -39.8 -69.3 160.000000 1119.987500 -50.5 -80 146.000000 1139.391667 -40.3 -69.8 146.000000 1153.916667 -40.1 -69.6 146.000000 1167.973333 -41 -70.5 174.000000 1218.097500 -41.3 -70.8 146.000000 1223.625000 -40.1 -69.6 174.000000 1241.958333 -39.3 -68.8 146.000000 1253.825000 -40 -69.5 160.000000 1313.936667 -49.6 -79.1 146.000000 1332.608333 -40.3 -69.8 <	146.000000	729.956667	-41	-70.5
174.000000 853.641667 -40.3 -69.8 174.000000 869.826667 -39.6 -69.1 146.000000 876.122500 -41.3 -70.8 160.000000 960.140833 -50.3 -79.8 146.000000 1043.753333 -40.6 -70.1 146.000000 1100.341667 -39.8 -69.3 160.000000 1119.987500 -50.5 -80 146.000000 1153.916667 -40.3 -69.8 146.000000 1153.916667 -40.1 -69.6 146.000000 1167.973333 -41 -70.5 174.000000 120.850000 -40.1 -69.6 174.000000 1218.097500 -41.3 -70.8 146.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8 146.000000 1253.825000 -40 -69.5 160.000000 1313.936667 -41.6 -71.1 146.000000 1333.891667 -39.3 -68.8 174.000000 1333.891667 -39.3 -68.8	174.000000	739.483333	-40.3	-69.8
174.000000 869.826667 -39.6 -69.1 146.000000 876.122500 -41.3 -70.8 160.000000 960.140833 -50.3 -79.8 146.000000 1022.191667 -41.3 -70.8 174.000000 1043.753333 -40.6 -70.1 146.000000 1100.341667 -39.8 -69.3 160.000000 1119.987500 -50.5 -80 146.000000 1153.916667 -40.3 -69.8 146.000000 1167.973333 -41 -70.5 174.000000 1200.850000 -40.1 -69.6 174.000000 1218.097500 -41.3 -70.8 146.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8 146.000000 1279.786667 -49.6 -79.1 146.000000 1313.936667 -41.6 -71.1 146.000000 1332.608333 -40.3 -69.8 174.000000 1333.891667 -39.3 -68.8 174.000000 1391.854167 -42 -71.5	160.000000	800.085000	-50	-79.5
146.000000 876.122500 -41.3 -70.8 160.00000 960.140833 -50.3 -79.8 146.000000 1022.191667 -41.3 -70.8 174.000000 1043.753333 -40.6 -70.1 146.000000 1100.341667 -39.8 -69.3 160.000000 1119.987500 -50.5 -80 146.000000 1139.391667 -40.3 -69.8 146.000000 1153.916667 -40.1 -69.6 146.000000 1200.850000 -40.1 -69.6 174.000000 1218.097500 -41.3 -70.8 146.000000 1218.097500 -41.3 -70.8 146.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8 146.000000 1253.825000 -40 -69.5 160.000000 1313.936667 -49.6 -79.1 146.000000 1332.608333 -40.3 -68.8 174.000000 1333.891667 -39.3 -68.8 174.000000 1391.854167 -42 -71.5	174.000000	853.641667	-40.3	-69.8
160.000000 960.140833 -50.3 -79.8 146.000000 1022.191667 -41.3 -70.8 174.000000 1043.753333 -40.6 -70.1 146.000000 1100.341667 -39.8 -69.3 160.000000 1119.987500 -50.5 -80 146.000000 1139.391667 -40.3 -69.8 146.000000 1153.916667 -40.1 -69.6 146.000000 1200.850000 -40.1 -69.6 174.000000 1218.097500 -41.3 -70.8 146.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8 146.000000 1253.825000 -40 -69.5 160.000000 1279.786667 -49.6 -79.1 146.000000 1333.891667 -41.6 -71.1 146.000000 1333.891667 -39.3 -68.8 174.000000 1391.854167 -42 -71.5 146.000000 1440.212500 -50.5 -80 146.000000 1449.783333 -40.1 -69.6	174.000000	869.826667	-39.6	
146.000000 1022.191667 -41.3 -70.8 174.000000 1043.753333 -40.6 -70.1 146.000000 1100.341667 -39.8 -69.3 160.00000 1119.987500 -50.5 -80 146.000000 1139.391667 -40.3 -69.8 146.000000 1167.973333 -41 -70.5 174.000000 1200.850000 -40.1 -69.6 174.000000 1218.097500 -41.3 -70.8 146.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8 146.000000 1253.825000 -40 -69.5 160.000000 1279.786667 -49.6 -79.1 146.000000 1313.936667 -41.6 -71.1 146.000000 1332.608333 -40.3 -69.8 174.000000 1391.854167 -42 -71.5 146.000000 1409.783333 -40.1 -69.6 160.000000 1440.212500 -50.5 -80 146.000000 1459.874167 -41.6 -71.1	146.000000	876.122500	-41.3	-70.8
174.000000 1043.753333 -40.6 -70.1 146.000000 1100.341667 -39.8 -69.3 160.000000 1119.987500 -50.5 -80 146.000000 1139.391667 -40.3 -69.8 146.000000 1153.916667 -40.1 -69.6 146.000000 1167.973333 -41 -70.5 174.000000 1200.850000 -40.1 -69.6 174.000000 1218.097500 -41.3 -70.8 146.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8 146.000000 1279.786667 -49.6 -79.1 146.000000 1313.936667 -41.6 -71.1 146.000000 1332.608333 -40.3 -69.8 174.000000 1333.891667 -39.3 -68.8 174.000000 1391.854167 -42 -71.5 146.000000 1409.783333 -40.1 -69.6 160.000000 1440.212500 -50.5 -80 146.000000 1459.874167 -41.6 -71.1	160.000000	960.140833	-50.3	-79.8
146.000000 1100.341667 -39.8 -69.3 160.000000 1119.987500 -50.5 -80 146.000000 1139.391667 -40.3 -69.8 146.000000 1153.916667 -40.1 -69.6 146.000000 1200.850000 -40.1 -69.6 174.000000 1218.097500 -41.3 -70.8 146.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8 146.000000 1253.825000 -40 -69.5 160.000000 1279.786667 -49.6 -79.1 146.000000 1313.936667 -41.6 -71.1 146.000000 1332.608333 -40.3 -69.8 174.000000 1391.854167 -42 -71.5 146.000000 1409.783333 -40.1 -69.6 160.000000 1440.212500 -50.5 -80 146.000000 1459.874167 -41.6 -71.1 174.000000 1531.691667 -40 -69.5	146.000000	1022.191667	-41.3	-70.8
160.000000 1119.987500 -50.5 -80 146.000000 1139.391667 -40.3 -69.8 146.000000 1153.916667 -40.1 -69.6 146.000000 1167.973333 -41 -70.5 174.000000 1200.850000 -40.1 -69.6 174.000000 1218.097500 -41.3 -70.8 146.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8 146.000000 1253.825000 -40 -69.5 160.000000 1279.786667 -49.6 -79.1 146.000000 1313.936667 -41.6 -71.1 146.000000 1332.608333 -40.3 -69.8 174.000000 1333.891667 -39.3 -68.8 174.000000 1391.854167 -42 -71.5 146.000000 1409.783333 -40.1 -69.6 160.000000 1459.874167 -41.6 -71.1 174.000000 1531.691667 -40 -69.5	174.000000	1043.753333	-40.6	-70.1
146.000000 1139.391667 -40.3 -69.8 146.000000 1153.916667 -40.1 -69.6 146.000000 1167.973333 -41 -70.5 174.000000 1200.850000 -40.1 -69.6 174.000000 1218.097500 -41.3 -70.8 146.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8 146.000000 1253.825000 -40 -69.5 160.000000 1279.786667 -49.6 -79.1 146.000000 1313.936667 -41.6 -71.1 146.000000 1332.608333 -40.3 -69.8 174.000000 1391.854167 -42 -71.5 146.000000 1409.783333 -40.1 -69.6 160.000000 1440.212500 -50.5 -80 146.000000 1459.874167 -41.6 -71.1 174.000000 1531.691667 -40 -69.5	146.000000	1100.341667	-39.8	-69.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160.000000	1119.987500	-50.5	-80
146.000000 1167.973333 -41 -70.5 174.000000 1200.850000 -40.1 -69.6 174.000000 1218.097500 -41.3 -70.8 146.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8 146.000000 1253.825000 -40 -69.5 160.000000 1279.786667 -49.6 -79.1 146.000000 1313.936667 -41.6 -71.1 146.000000 1332.608333 -40.3 -69.8 174.000000 1333.891667 -39.3 -68.8 174.000000 1391.854167 -42 -71.5 146.000000 1409.783333 -40.1 -69.6 160.000000 1440.212500 -50.5 -80 146.000000 1459.874167 -41.6 -71.1 174.000000 1531.691667 -40 -69.5				
174.000000 1200.850000 -40.1 -69.6 174.000000 1218.097500 -41.3 -70.8 146.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8 146.000000 1253.825000 -40 -69.5 160.000000 1279.786667 -49.6 -79.1 146.000000 1313.936667 -41.6 -71.1 146.000000 1332.608333 -40.3 -69.8 174.000000 1333.891667 -39.3 -68.8 174.000000 1391.854167 -42 -71.5 146.000000 1409.783333 -40.1 -69.6 160.000000 1440.212500 -50.5 -80 146.000000 1459.874167 -41.6 -71.1 174.000000 1531.691667 -40 -69.5	146.000000	1153.916667		
174.000000 1218.097500 -41.3 -70.8 146.000000 1223.625000 -39.6 -69.1 174.000000 1241.958333 -39.3 -68.8 146.000000 1253.825000 -40 -69.5 160.000000 1279.786667 -49.6 -79.1 146.000000 1313.936667 -41.6 -71.1 146.000000 1332.608333 -40.3 -69.8 174.000000 1333.891667 -39.3 -68.8 174.000000 1391.854167 -42 -71.5 146.000000 1409.783333 -40.1 -69.6 160.000000 1440.212500 -50.5 -80 146.000000 1459.874167 -41.6 -71.1 174.000000 1531.691667 -40 -69.5		1167.973333		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	174.000000	1200.850000		
174.000000 1241.958333 -39.3 -68.8 146.000000 1253.825000 -40 -69.5 160.000000 1279.786667 -49.6 -79.1 146.000000 1313.936667 -41.6 -71.1 146.000000 1332.608333 -40.3 -69.8 174.000000 1333.891667 -39.3 -68.8 174.000000 1391.854167 -42 -71.5 146.000000 1409.783333 -40.1 -69.6 160.000000 1440.212500 -50.5 -80 146.000000 1459.874167 -41.6 -71.1 174.000000 1531.691667 -40 -69.5				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	146.000000	1253.825000		
146.000000 1332.608333 -40.3 -69.8 174.000000 1333.891667 -39.3 -68.8 174.000000 1391.854167 -42 -71.5 146.000000 1409.783333 -40.1 -69.6 160.000000 1440.212500 -50.5 -80 146.000000 1459.874167 -41.6 -71.1 174.000000 1531.691667 -40 -69.5	160.000000		-49.6	
174.000000 1333.891667 -39.3 -68.8 174.000000 1391.854167 -42 -71.5 146.000000 1409.783333 -40.1 -69.6 160.000000 1440.212500 -50.5 -80 146.000000 1459.874167 -41.6 -71.1 174.000000 1531.691667 -40 -69.5				
174.000000 1391.854167 -42 -71.5 146.000000 1409.783333 -40.1 -69.6 160.000000 1440.212500 -50.5 -80 146.000000 1459.874167 -41.6 -71.1 174.000000 1531.691667 -40 -69.5				
146.000000 1409.783333 -40.1 -69.6 160.00000 1440.212500 -50.5 -80 146.00000 1459.874167 -41.6 -71.1 174.000000 1531.691667 -40 -69.5				
160.000000 1440.212500 -50.5 -80 146.000000 1459.874167 -41.6 -71.1 174.000000 1531.691667 -40 -69.5				
146.000000 1459.874167 -41.6 -71.1 174.000000 1531.691667 -40 -69.5				
174.000000 1531.691667 -40 -69.5				
174.000000 1566.119167 -41.8 -71.3				
	174.000000	1566.119167	-41.8	-71.3

Page Number 13 of 52.

Name of Test: Unwanted Emissions (Transmitter Conducted)

Limit(s), dBc

 $-(43+10 \times LOG P) = -43 (1 \text{ Watt})$ $-(43+10 \times LOG P) = -57 (25 \text{ Watts})$

g03c0007: 2003-Dec-30 Tue 15:17:00

State: 1:Low Power (Continued)		Ambient Temperature: 23°C ± 3°C	
Frequency Tuned,	Frequency Emission,	Level, dBm	Level, dBc
MHz	MHz		
146.000000	1570.600000	-40.3	-69.8
160.000000	1600.035833	-49.3	-78.8
146.000000	1606.050833	-41.3	-70.8
174.000000	1657.491667	-40.3	-69.8
146.000000	1698.191667	-40.1	-69.6
174.000000	1739.805000	-41.1	-70.6
146.000000	1752.160000	-42	-71.5
160.000000	1759.814167	-50.3	-79.8
146.000000	1763.450000	-39.6	-69.1
174.000000	1865.100000	-40.3	-69.8
146.000000	1897.924167	-41.3	-70.8
174.000000	1914.165833	-41.1	-70.6
146.000000	1919.041667	-40.3	-69.8
160.000000	1919.791667	-49.8	-79.3
146.000000	1971.516667	-39.8	-69.3
146.000000	2043.989167	-40.3	-69.8
160.000000	2080.030833	-49	-78.5
174.000000	2088.162500	-39.6	-69.1
146.000000	2189.816667	-41.5	-71
160.000000	2240.226667	-50	-79.5
174.000000	2261.761667	-40.8	-70.3
160.000000	2400.054167	-49.6	-79.1
174.000000	2435.790833	-40.1	-69.6
174.000000	2610.004167	-40.5	-70

Performed by:

Daniel M. Dillon, Test Engineer

Page Number 14 of 52.

Unwanted Emissions (Transmitter Conducted) Name of Test:

Limit(s), dBc: $-(43+10 \times LOG P) = -43 (1 \text{ Watt})$ $-(43+10 \times LOG P) = -57 (25 \text{ Watts})$ g0410028: 2004-Jan-05 Mon 16:18:00

State: 2:High Power	15 MOU 10:18:00	Ambient Temperature: 2)30C + 30C
Frequency Tuned,	Frequency Emission,	Level, dBm	Level, dBc
MHz	MHz	Level, dbill	Level, ubc
146.000000	292.227000	-31.8	-78.5
160.000000	319.795000	-31.7	-78.4
174.000000	348.000500	-31.2	-77.9
146.000000	437.894000	-31.9	-78.6
160.000000	479.953500	-31.5	-78.2
174.000000	521.987500	-31.3	-78
146.000000	583.880500	-31.6	-78.3
160.000000	639.798500	-31	-77.7
174.000000	696.238500	-31.8	-78.5
146.000000	729.766000	-32.1	-78.8
160.000000	800.183500	-32.1	-78.8
174.000000	870.131500	-31	-77.7
146.000000	876.033000	-31.5	-78.2
160.000000	960.065000	-31.7	-78.4
146.000000	1022.177000	-31.9	-78.6
174.000000	1043.909000	-31.4	-78.1
160.000000	1120.149500	-31.9	-78.6
146.000000	1168.134500	-31.7	-78.4
174.000000	1218.114000	-31.2	-77.9
160.000000	1279.888000	-31.8	-78.5
146.000000	1313.991000	-31.2	-77.9
174.000000	1392.174000	-31.2	-77.9
160.000000	1440.208000	-30.4	-77.1
146.000000	1460.124000	-30.8	-77.5
174.000000	1565.961000	-30.4	-77.1
160.000000	1600.088500	-31.5	-78.2
146.000000	1605.913000	-30.9	-77.6
174.000000	1739.977500	-31.3	-78
146.000000	1751.825500	-30	-76.7
160.000000	1759.954000	-29.3	-76
146.000000	1898.172000	-30.8	-77.5
174.000000	1913.782500	-29.3	-76
160.000000	1920.106000	-31.2	-77.9
146.000000	2043.980500	-30.2	-76.9
160.000000	2079.876000	-29.7	-76.4
174.000000	2087.961500	-30.9	-77.6
146.000000	2190.120000	-28.6	-75.3
160.000000	2239.850000	-29.8	-76.5
174.000000	2262.004500	-28.8	-75.5
160.000000	2399.943500	-28.7	-75.4
174.000000	2436.036500	-29.3	-76
174.000000	2609.895000	-32.6	-79.3
			- <i>4</i>

Performed by:

Daniel M. Dillon, Test Engineer

Page Number

15 of 52.

Name of Test:

Field Strength of Spurious Radiation

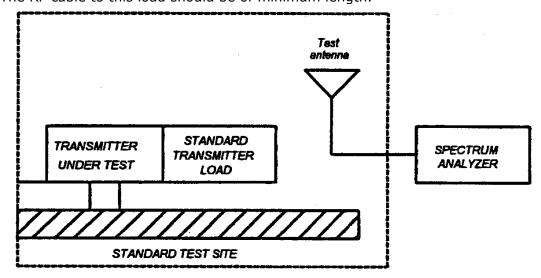
Specification:

47 CFR 2.1053(a)

Guide:

ANSI/TIA/EIA-603-1992/2001, Paragraph 1.2.12 and Table 16, 47

CFR 22.917

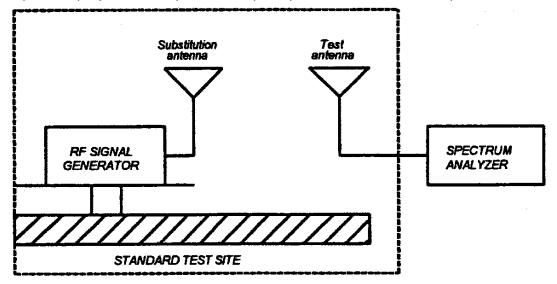

Measurement Procedure

1.2.12.1 Definition: Radiated spurious emissions are emissions

from the equipment when transmitting into a non-radiating load on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.

1.2.12.2 Method of Measurement

- A) Connect the equipment as illustrated
- B) Adjust the spectrum analyzer for the following settings:
 - 1) Resolution Bandwidth 100 kHz (<1 GHZ), 1 MHZ (> 1GHz).
 - 2) Video Bandwidth ≥ 3 times Resolution Bandwidth, or 30 kHz (22.917)
 - 3) Sweep Speed ≤2000 Hz/second
 - 4) Detector Mode = Mean or Average Power
- C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load which is placed on the turntable. The RF cable to this load should be of minimum length.


Page Number

16 of 52.

Name of Test:

Field Strength of Spurious Radiation (Cont.)

- D) For each spurious measurement the test antenna should be adjusted to the correct length for the frequency involved. This length may be determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to \pm the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.
- F) Repeat step E) for each spurious frequency with the test antenna polarized vertically.

- G) Reconnect the equipment as illustrated.
- H) Keep the spectrum analyzer adjusted as in step B).
- I) Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.

FCC ID: ALH35573110

Page Number 17 of 52.

Name of Test: Field Strength of Spurious Radiation (Cont.)

- J) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- K) Repeat step J) with both antennas vertically polarized for each spurious frequency.
- L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps J) and K) by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.
- M) The levels recorded in step L) are absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:

Radiated spurious emissions dB =

 $10\log_{10}(TX \text{ power in watts}/0.001)$ – the levels in step I)

NOTE: It is permissible that other antennas provided can be referenced to a dipole.

100+				
Test	EU		ше	
		P		

	Asset	Description	s/n	Cycle	Last Cal				
Tra	Transducer								
	i00088	EMCO 3109-B 25MHz-300MHz	2336	12 mo.	Sep-03				
Χ	i00089	Aprel 2001 200MHz-1GHz	001500	12 mo.	Sep-03				
Χ	i00103	EMCO 3115 1GHz-18GHz	9208-3925	12 mo.	Jan-03				
Am	plifier								
Χ	i00028	HP 8449A	2749A00121	12 mo.	May-03				
Spe	ectrum An	alyzer							
Χ	i00029	HP 8563E	3213A00104	12 mo.	May-03				
Χ	i00033	HP 85462A	3625A00357	12 mo.	Aug-03				
Substitution Generator									
Χ	i00067	HP 8920A Communication TS	3345U01242	12 mo.	Oct-03				
	i00207	HP 8753D Network Analyzer	3410A08514	12 mo.	Jul-03				

Microphone, Antenna Port, and Cabling

Microphone	Yes	Cable Length <u>1.0</u>	_ Meters
Antenna Port Terminated	Yes	Load N/A	Antenna Gain 0 dBd
All Ports Terminated by Load	Yes	Peripheral N/A	

Page Number 18 of 52.

Name of Test: Field Strength of Spurious Radiation

g03c0004: 2003-Dec-24 Wed 08:14:00

STATE: 2:High Power Ambient Temperature: 23°C ± 3°C

Frequency Tuned,	Frequency Emission,	ERP, dBm	ERP, dBc
MHz	MHz		
146.000000	292.008000	-39.7	≤ -58
160.000000	320.005000	-32.3	≤ -58
174.000000	348.005000	-27.4	≤ -58
146.000000	438.008000	-39.7	≤ -58
160.000000	480.005000	-52.7	≤ -58
174.000000	522.010000	-14	≤ -58
146.000000	584.008000	-16	≤ -58
160.000000	640.005000	-29.1	≤ -58
174.000000	696.010000	-23.7	≤ -58
146.000000	730.005000	-29.2	≤ -58
160.000000	800.003000	-36.6	≤ -58
174.000000	870.003000	-37.7	≤ -58
146.000000	876.015000	-39.5	≤ -58
160.000000	960.003000	-45.3	≤ -58
146.000000	1022.008000	-44.6	≤ -58
174.000000	1044.015000	-46	≤ -58
160.000000	1120.003000	-43.5	≤ -58
146.000000	1168.005000	-48.2	≤ -58
174.000000	1218.023000	-49.4	≤ -58
160.000000	1280.003000	-52	≤ -58
146.000000	1314.010000	-45.3	≤ -58
174.000000	1392.025000	-41.9	≤ -58
160.000000	1440.003000	-41.2	≤ -58
146.000000	1460.010000	-38.8	≤ -58
174.000000	1566.008000	-31.6	≤ -58
160.000000	1600.005000	-37.5	≤ -58
174.000000	1740.018000	-45.6	≤ -58

Performed by:

Daniel M. Dillon, Test Engineer

Omif M. O.M.

Page Number 19 of 52.

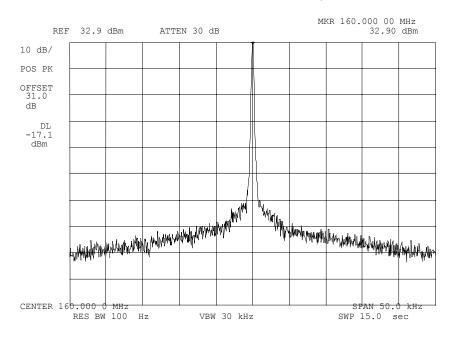
Name of Test: Emission Masks (Occupied Bandwidth)

Specification: 47 CFR 2.1049(c)(1)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.11

Test Equipment: As per previous page

Measurement Procedure


- 1. The EUT and test equipment were set up as shown on the following page, with the Spectrum Analyzer connected.
- 2. For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for $\pm 2.5/\pm 1.25$ kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- 3. For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- 4. The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.
- 5. Measurement Results: Attached

Page Number 20 of 52.

Name of Test: Emission Masks (Occupied Bandwidth)

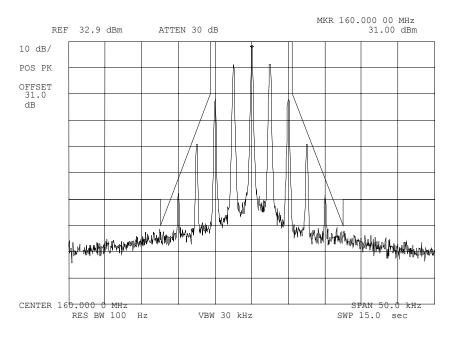
g03c0017: 2003-Dec-31 Wed 11:00:00

State: 1:Low Power Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

Power: LOW Modulation: NONE

Performed by:

Daniel M. Dillon, Test Engineer


Down M. O. Mr.

Page Number 21 of 52.

Name of Test: Emission Masks (Occupied Bandwidth)

g03c0021: 2003-Dec-31 Wed 11:09:00

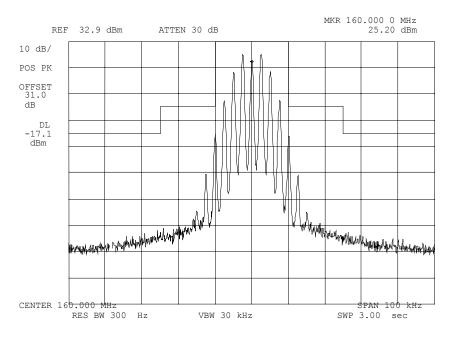
State: 1:Low Power Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

Power: LOW

Modulation: VOICE: 2500 Hz SINE WAVE MASK: D, VHF/UHF 12.5kHz BW

Daniel M. Dillon, Test Engineer

Osmif M. O. Mr.


Performed by:

Page Number 22 of 52.

Name of Test: Emission Masks (Occupied Bandwidth)

g03c0022: 2003-Dec-31 Wed 11:26:00

State: 1:Low Power Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

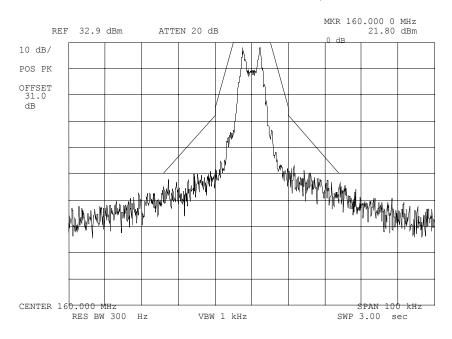
Power: LOW

Modulation: VOICE: 2500 Hz SINE WAVE

MASK: B, VHF/UHF 25kHz, w/LPF

Performed by:

Daniel M. Dillon, Test Engineer


Osmif M. O. Mr.

Page Number 23 of 52.

Name of Test: Emission Masks (Occupied Bandwidth)

g0410043: 2004-Jan-16 Fri 13:39:00

State: 1:Low Power Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

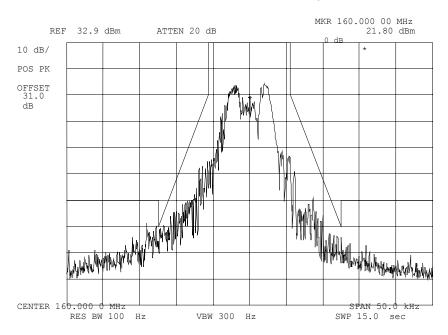
Power: LOW

Modulation: 19.2KBPS @5V PP

MASK: C, VHF/UHF 25kHz, no LPF

Performed by:

Daniel M. Dillon, Test Engineer


Down M. O. Mr.

Page Number 24 of 52.

Name of Test: Emission Masks (Occupied Bandwidth)

g0410044: 2004-Jan-16 Fri 13:47:00

State: 1:Low Power Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

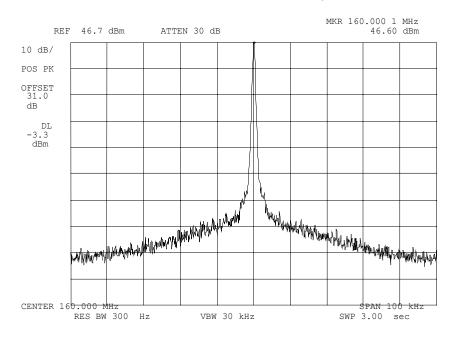
Power: LOW

Modulation: 9.6KBPS @5V PP

MASK: D, VHF/UHF 12.5kHz BW

Performed by:

Daniel M. Dillon, Test Engineer


Osmif M. O. Mr.

Page Number 25 of 52.

Name of Test: Emission Masks (Occupied Bandwidth)

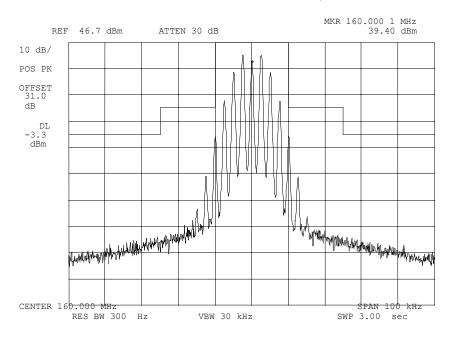
g03c0016: 2003-Dec-31 Wed 10:59:00

State: 2:High Power Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

Power: HIGH Modulation: NONE

Performed by:

Daniel M. Dillon, Test Engineer


Omif M. Oil

Page Number 26 of 52.

Name of Test: Emission Masks (Occupied Bandwidth)

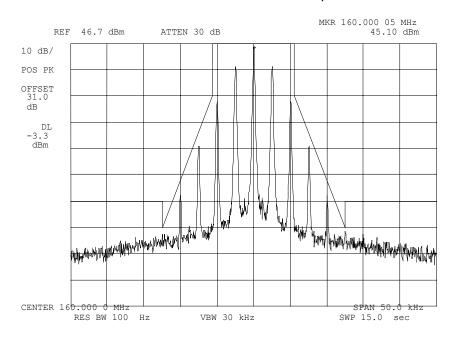
g03c0020: 2003-Dec-31 Wed 11:07:00

State: 2:High Power Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

Power: HIGH

Modulation: VOICE: 2500 Hz SINE WAVE MASK: B, VHF/UHF 25kHz, w/LPF

Performed by:


Daniel M. Dillon, Test Engineer

Page Number 27 of 52.

Name of Test: Emission Masks (Occupied Bandwidth)

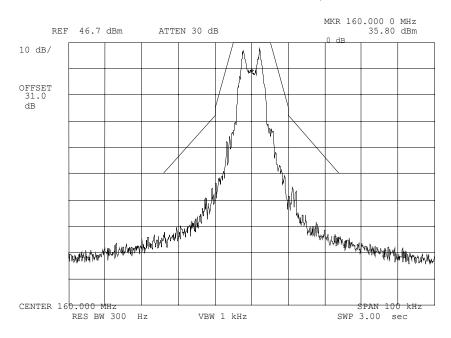
g03c0023: 2003-Dec-31 Wed 11:31:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C

Power: HIGH

Modulation: VOICE: 2500 Hz SINE WAVE MASK: D, VHF/UHF 12.5kHz BW

Performed by:


Daniel M. Dillon, Test Engineer

Page Number 28 of 52.

Name of Test: Emission Masks (Occupied Bandwidth)

g0410042: 2004-Jan-16 Fri 13:17:00

State: 2:High Power Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

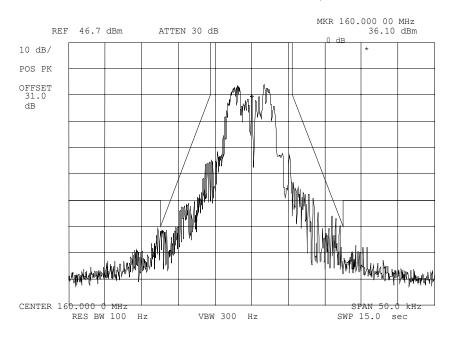
Power: HIGH

Modulation: 19.2KBPS @5V PP

MASK: C, VHF/UHF 25kHz, no LPF

Performed by:

Daniel M. Dillon, Test Engineer


Omif M. O.M.

Page Number 29 of 52.

Name of Test: Emission Masks (Occupied Bandwidth)

g0410045: 2004-Jan-16 Fri 13:51:00

State: 2:High Power Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

Power: HIGH

Modulation: 9.6KBPS @5V PP

MASK: D, VHF/UHF 12.5kHz BW

Performed by:

Daniel M. Dillon, Test Engineer

Osmif M. O. Mr.

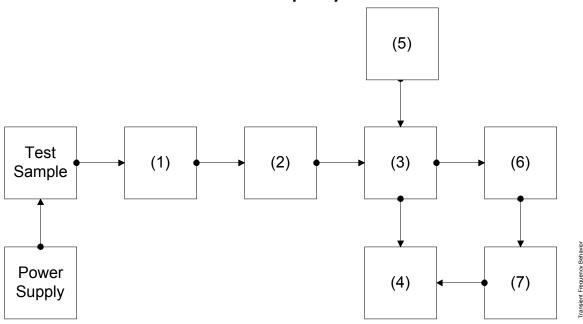
Page Number 30 of 52.

Name of Test: Transient Frequency Behavior

Specification: 47 CFR 90.214

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.19

Test Equipment: As per attached page


Measurement Procedure

- A) The EUT was setup as shown on the attached page, following TIA/EIA-603 steps a, b, and c as a *guide*.
- B) The transmitter was turned on.
- C) Sufficient attenuation was provided so that the transmitter carrier level measured at the output of the combiner was 40 dB below the maximum input level of the test receiver. This level was recorded.
- D) The transmitter was turned off.
- E) An RF signal generator (1) modulated with a 1 kHz tone at either 25, 12.5, or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -20 dB below the level recorded for step C) above, measured at the output of the combiner. This level was then fixed for the remainder of the test.
- F) The oscilloscope was setup using TIA/EIA-603 steps j and k as a guide, and to either 10 ms/div (UHF) or 5 ms/div (VHF).
- G) The 30 dB attenuator was removed, the transmitter was turned on, and the level of the carrier at the output of the combiner was recorded.
- H) The <u>carrier on-time</u> as referenced in TIA/EIA-603 steps m, n, and o was captured and plotted. The <u>carrier off-time</u> as referenced in TIA/EIA-603 steps p, q, r, and s was captured and plotted.

Page Number

31 of 52.

Transient Frequency Behavior

	Asset	Description	s/n		
(1) X		r (Removed after 1st step) PASTERNACK PE7021-30 (30 dB)	231 or 232		
(2) Attenuator					
Χ	•	PASTERNACK PE7021-30 (30 dB) NARDA 766 (10 dB)	231 or 232 7802 or 7802A		
(3)	Combiner				
Χ	i00154	4 x 25 Ω Combiner	154		
(4) Crystal Decoder					
X	i00159	HP 8470B Crystal Detector	1822A10054		
(5) RF Signal Generator					
X	_	HP 8920A Communication TS	3345U01242		
(6) Modulation Analyzer					
X	i00020	-	2105A01087		
(7) Oscilloscope					
X	i00030	-	2927A00209		

FCC ID: ALH35573110

Page Number 32 of 52.

Transient Frequency Behavior Name of Test:

g03c0008: 2003-Dec-31 Wed 09:30:00

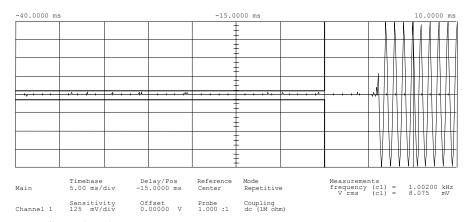
State: 0:General Ambient Temperature: 23°C ± 3°C

Trigger mode : Edge On Negative Edge Of Chan2 Trigger Level Chan2 = -50.000 mV (noise reject ON) Holdoff = 40.000 ns

Power: n/a

Modulation: Ref Gen=25 kHz Deviation

Description: CARRIER ON TIME


Osmif M. O. Mr. Performed by: Daniel M. Dillon, Test Engineer

Page Number 33 of 52.

Name of Test: Transient Frequency Behavior

g03c0009: 2003-Dec-31 Wed 09:35:00

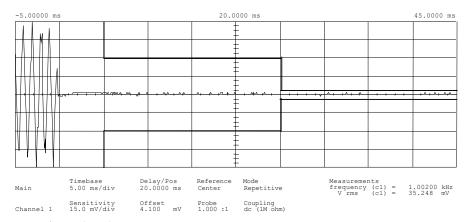
State: 0:General Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

Trigger mode : Edge
On Positive Edge Of Chan2
Trigger Level
Chan2 = -3.32500 V (noise reject ON)
Holdoff = 40.000 ns

Power: n/a

Modulation: Ref Gen=25 kHz Deviation

Description: CARRIER OFF TIME


Performed by: Daniel M. Dillon, Test Engineer

Page Number 34 of 52.

Transient Frequency Behavior Name of Test:

g03c0011: 2003-Dec-31 Wed 09:59:00

State: 0:General Ambient Temperature: 23°C ± 3°C

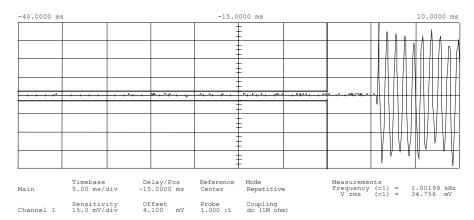
Trigger mode : Edge On Negative Edge Of Chan2 Trigger Level Chan2 = -25.000 mV (noise reject ON) Holdoff = 40.000 ns

Power: n/a

Ref Gen=12.5 kHz Deviation Modulation:

Description: CARRIER ON TIME

Performed by:


Daniel M. Dillon, Test Engineer

Page Number 35 of 52.

Name of Test: Transient Frequency Behavior

g03c0010: 2003-Dec-31 Wed 09:57:00

State: 0:General Ambient Temperature: 23°C ± 3°C

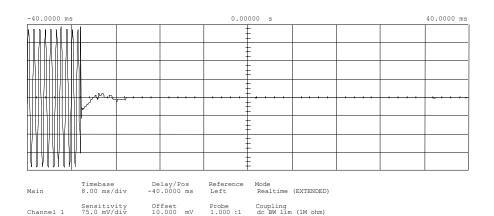
Trigger mode : Edge
On Positive Edge Of Chan2
Trigger Level
Chan2 = -400.000 mV (noise reject ON)
Holdoff = 40.000 ns

Power: n/a

Ref Gen=12.5 kHz Deviation Modulation:

Description: CARRIER OFF TIME

Performed by:


Daniel M. Dillon, Test Engineer

Page Number 36 of 52.

Name of Test: Transient Frequency Behavior

g0410057: 2004-Jan-19 Mon 14:19:00

State: 0:General Ambient Temperature: 23°C ± 3°C

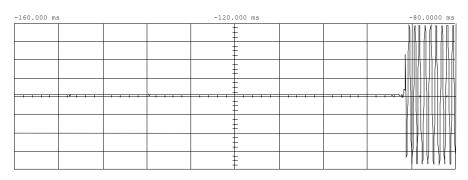
Trigger mode : Edge On Negative Edge Of Chan2 Trigger Level Chan2 = -140.000 mV (noise reject ON) Holdoff = 40.000 ns

Power: n/a

Modulation: Ref Gen=25 kHz Deviation

Description: CARRIER ON TIME

Performed by:


Daniel M. Dillon, Test Engineer

Page Number 37 of 52.

Name of Test: Transient Frequency Behavior

g0410054: 2004-Jan-19 Mon 14:12:00

State: 0:General Ambient Temperature: 23°C ± 3°C

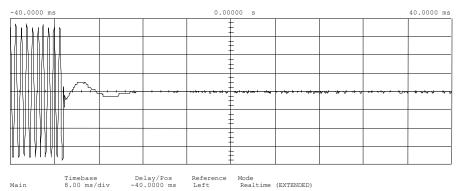
Trigger mode : Edge
On Positive Edge Of Chan2
Trigger Level
Chan2 = -175.000 mV (noise reject ON)
Holdoff = 40.000 ns

Power: n/a

Modulation: Ref Gen=25 kHz Deviation

Description: CARRIER OFF TIME

Performed by:


Daniel M. Dillon, Test Engineer

Page Number 38 of 52.

Name of Test: Transient Frequency Behavior

g0410056: 2004-Jan-19 Mon 14:18:00

State: 0:General Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

Sensitivity Offset Probe Coupling Channel 1 40.0 mV/div 10.000 mV 1.000:1 dc BW lim (1M ohm)

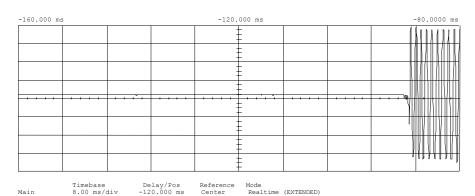
Trigger mode : Edge On Negative Edge Of Chan2 Trigger Level Chan2 = -140.000 mV (noise reject ON) Holdoff = 40.000 ns

Power: n/a

Modulation: Ref Gen=12.5 kHz Deviation

Description: CARRIER ON TIME

Performed by:


Daniel M. Dillon, Test Engineer

Page Number 39 of 52.

Name of Test: Transient Frequency Behavior

g0410055: 2004-Jan-19 Mon 14:14:00

State: 0:General Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

Main 8.00 ms/div -120.000 ms Center Realtime (EXTENDED

Sensitivity Offset Probe Coupling

Channel 1 40.0 mV/div 0.00000 V 1.000 :1 dc BW lim (1M ohm)

Trigger mode : Edge
On Positive Edge Of Chan2
Trigger Level
Chan2 = 175.000 mV (noise reject ON)
Holdoff = 40.000 ns

Power: n/a

Modulation: Ref Gen=12.5 kHz Deviation

Description: CARRIER OFF TIME

Performed by:

Daniel M. Dillon, Test Engineer

Page Number 40 of 52.

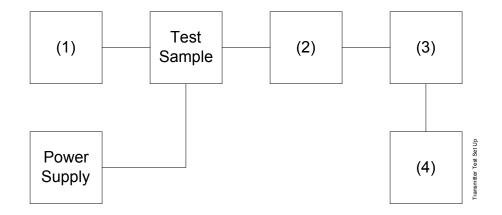
Name of Test: Audio Low Pass Filter (Voice Input)

Specification: 47 CFR 2.1047(a)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.15

Test Equipment: As per attached page

Measurement Procedure


- 1. The EUT and test equipment were set up such that the audio input was connected at the input to the modulation limiter, and the modulated stage.
- 2. The audio output was connected at the output to the modulated stage.
- 3. Measurement Results: Attached

Page Number

41 of 52.

Transmitter Test Set-Up

- Test A. Modulation Capability/Distortion
- Test B. Audio Frequency Response
- Test C. Hum and Noise Level
- Test D. Response of Low Pass Filter
- Test E. Modulation Limiting

Asset Description s/n

(1) Audio Oscillator

X i00002 HP 3336B Synthesizer / Level Gen. 1931A01465

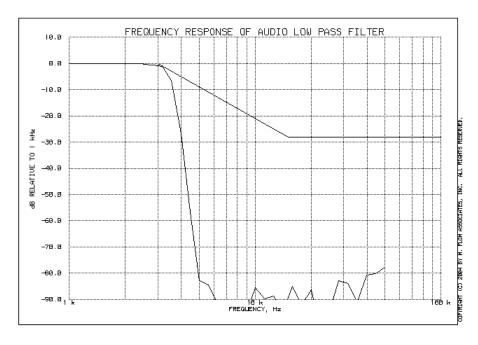
(2) Coaxial Attenuator

i00122/3 NARDA 766 (10dB)10 7802 or 7802A X i00231/2 PASTERNACK PE7021-30 (30 dB) 231 or 232

(3) Modulation Analyzer

X i00020 HP 8901A Modulation Meter 2105A01087

(4) Audio Analyzer


X i00001 HP 3586B Selective Level Meter 1928A01360

Page Number 42 of 52.

Name of Test: Audio Low Pass Filter (Voice Input)

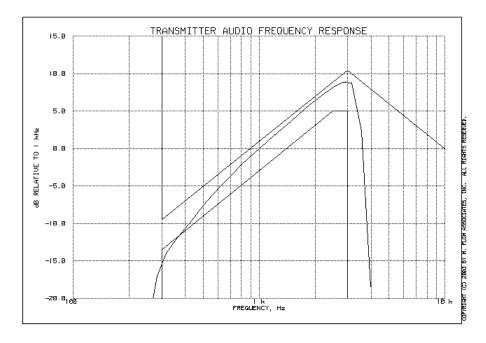
g03c0153: 2003-Dec-31 Wed 10:25:00

State: 0:General Ambient Temperature: 23°C ± 3°C

Performed by:

Daniel M. Dillon, Test Engineer

David M. O. Mr.


Page Number		43 of 52.			
Name of Test:		Audio Frequency Response			
Specification:		47 CFR 2.1047(a)			
Guide:		ANSI/TIA/EIA-603-1992, Paragraph 2.2.6			
Test Equipment:		As per previous page			
		Measurement	Procedure		
1.	The EUT and test equipment were set up as shown on the following page.				
2.	The audio signal generator was connected to the audio input circuit/microphone of the EUT.				
3.	The audio signal input was adjusted to obtain 20% modulation at 1 kHz, and this point was taken as the 0 dB reference level.				
4.	With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 100 Hz to 50 kHz.				
5.	The response in dB relative to 1 kHz was then measured, using the HP 8901A Modulatio Analyzer.				
6.	Measurement Results	::	Attached		

Page Number 44 of 52.

Name of Test: Audio Frequency Response

g03c0154: 2003-Dec-31 Wed 10:28:00

State: 0:General Ambient Temperature: 23°C ± 3°C

Frequency of Maximum Audio Response, Hz = 2820

Additional points:

Frequency, Hz	Level, dB	
300	-14.95	
20000	-34.30	
30000	-34.15	
50000	-34.26	

Performed by:

Daniel M. Dillon, Test Engineer

Omif M. O.M.

Page Number 45 of 52.

Name of Test: Modulation Limiting

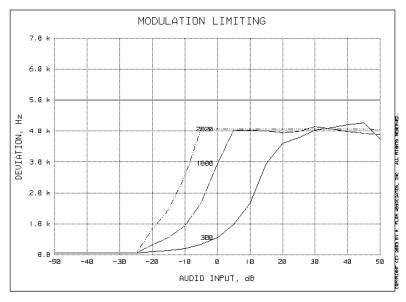
Specification: 47 CFR 2.1047(b)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.3

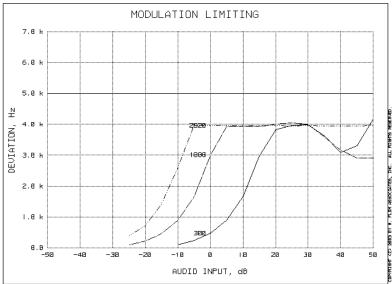
Test Equipment: As per previous page

Measurement Procedure

- 1. The signal generator was connected to the input of the EUT as for "Frequency Response of the Modulating Circuit."
- 2. The modulation response was measured for each of three frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
- 3. The input level was varied from 30% modulation (± 1.5 kHz deviation) to at least 20 dB higher than the saturation point.
- 4. Measurements were performed for both negative and positive modulation and the respective results were recorded.
- 5. Measurement Results: Attached


Page Number 46 of 52.

Name of Test: Modulation Limiting


g03c0155: 2003-Dec-31 Wed 10:31:00

State: 0:General Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

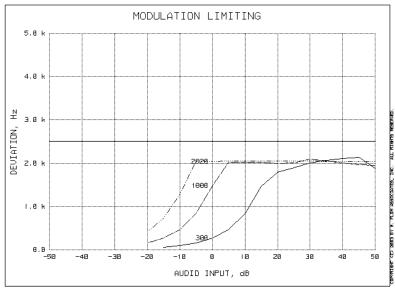
Positive Peaks:

Negative Peaks:

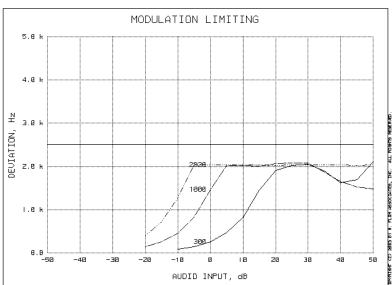
Performed by:

Daniel M. Dillon, Test Engineer

Down M. O. Mr.


Page Number 47 of 52.

Name of Test: Modulation Limiting


g03c0156: 2003-Dec-31 Wed 10:35:00

State: 0:General Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

Positive Peaks:

Negative Peaks:

Performed by:

Daniel M. Dillon, Test Engineer

Down M. O. Mr.

Page Number 48 of 52.

Name of Test: Frequency Stability (Temperature Variation)

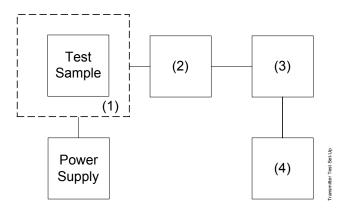
Specification: 47 CFR 2.1055(a)(1)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

Test Conditions: As Indicated

Test Equipment: As per previous page

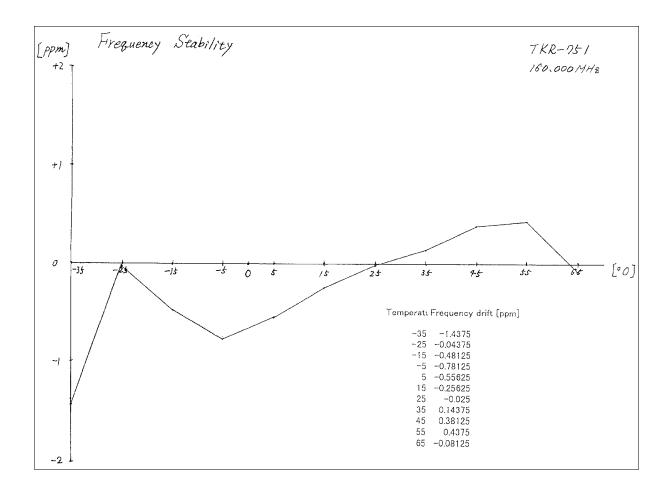
Measurement Procedure


- 1. The EUT and test equipment were set up as shown on the following page.
- 2. With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- 3. With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- 4. The temperature tests were performed for the worst case.
- 5. Measurement Results: Attached

Page Number

49 of 52.

Transmitter Test Set-Up


Frequency Stability: Temperature Variation Frequency Stability: Voltage Variation

	Asset	Description	s/n
(1) X	Temperat i00027	ure, Humidity, Vibration Tenney Temp. Chamber	9083-765-234
(2) X	•	ttenuator PASTERNACK PE7021-30 (30 dB) NARDA 766 (10 dB)	231 or 232 7802 or 7802A
(3) X	RF Power i00067	HP 8920A Communications TS	3345U01242
(4) X	Frequency i00067	y Counter HP 8920A Communications TS	3345U01242

Page Number 50 of 52.

Name of Test: Frequency Stability (Temperature Variation)

^{*} Data supplied by Applicant

Page Number 51 of 52.

Name of Test: Frequency Stability (Voltage Variation)

Specification: 47 CFR 2.1055(d)(1)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

Test Equipment: As per previous page

Measurement Procedure

- 1. The EUT was placed in a temperature chamber at 25±5°C and connected as for "Frequency Stability Temperature Variation" test.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

Results: Frequency Stability (Voltage Variation)

g03c0012: 2003-Dec-31 Wed 10:08:40

State: 0:General Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

Limit, ppm = 5Limit, Hz = 800Battery End Point (Voltage) = 8.4

% of STV	Voltage	Frequency, MHz	Change, Hz	Change, ppm
85	11.73	159.999990	-10	-0.06
100	13.8	160.000000	0	0.00
115	15.87	160.000010	10	0.06
61	8.4	160.000060	60	0.38

Performed by: Daniel M. Dillon, Test Engineer

Omil M. O.M.

Page Number 52 of 52.

Name of Test: Necessary Bandwidth and Emission Bandwidth

Specification: 47 CFR 2.202(g)

Modulation = 16K0F3E

Necessary Bandwidth Calculation:

Maximum Modulation (M), kHz = 3 Maximum Deviation (D), kHz = 5 Constant Factor (K) = 1

Necessary Bandwidth (B_N), kHz = (2xM)+(2xDxK)

= 16.0

Modulation = 11K0F3E

Necessary Bandwidth Calculation:

Maximum Modulation (M), kHz = 3 Maximum Deviation (D), kHz = 2.5 Constant Factor (K) = 1

Necessary Bandwidth (B_N), kHz = (2xM)+(2xDxK)

= 11.0

Performed by:

Daniel M. Dillon, Test Engineer

END OF TEST REPORT

Testimonial and Statement of Certification

This is to Certify:

- 1. **That** the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. **That** the technical data supplied with the application was taken under my direction and supervision.
- 3. **That** the data was obtained on representative units, randomly selected.
- 4. **That**, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

Certifying Engineer:

Morton Flom, P. Eng.