

Report No. : FA261317

FCC SAR Test Report

APPLICANT: Sony Corporation

EQUIPMENT: Tablet Device

BRAND NAME : SONY

MODEL NAME : SGPT1311

FCC ID : AK8SGPT1311

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2003

FCC OET Bulletin 65 Supplement C (Edition 01-01)

The product was received on Jun. 04, 2012 and completely tested on Jun. 29, 2012. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 1 of 51
Report Issued Date : Aug. 01, 2012
Report Version : Rev. 02

Table of Contents

1. Statement of Compliance	
2. Administration Data	5
2.1 Testing Laboratory	5
2.2 Applicant	5
2.3 Manufacturer	5
2.4 Application Details	5
3. General Information	(
3.1 Description of Equipment Under Test (EUT)	
3.2 Product Photos	7
3.3 Applied Standard	7
3.4 Device Category and SAR Limits	
3.5 Test Conditions	8
4. Specific Absorption Rate (SAR)	12
4.1 Introduction	12
4.2 SAR Definition	
5. SAR Measurement System5.	13
5.1 E-Field Probe	
5.2 Data Acquisition Electronics (DAE)	
5.3 Robot	
5.4 Measurement Server	
5.5 Phantom	
5.6 Device Holder	
5.7 Data Storage and Evaluation	
5.8 Test Equipment List	
6. Tissue Simulating Liquids	
7. SAR Measurement Evaluation	
7.1 Purpose of System Performance check	
7.2 System Setup	
7.3 Validation Results	
8. EUT Testing Position	25
9. Measurement Procedures	
9.1 Spatial Peak SAR Evaluation	
9.2 Area & Zoom Scan Procedures	
9.3 Volume Scan Procedures	
9.4 SAR Averaged Methods	
9.5 Power Drift Monitoring	
10. SAR Test Configurations	
10.1 Exposure Positions Consideration	
10.2 Conducted Power (Unit: dBm)	
11. SAR Test Results	
11.1 Test Records for Body SAR Test	
11.2 Simultaneous Transmission SAR Analysis and Measurements	41
11.3 Simultaneous analysis - SPLSR calculation	
12. Uncertainty Assessment	
I.o. Meierences	

Appendix A. Plots of System Performance Check

Appendix B. Plots of SAR Measurement

Appendix C. DASY Calibration Certificate

Appendix D. Product Photos

Appendix E. Test Setup Photos

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 2 of 51 Report Issued Date: Aug. 01, 2012

Report No.: FA261317

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA261317	Rev. 01	Initial issue of report	Jul. 11, 2012
FA261317	Rev. 02	 Revise the GPRS 850 actual reduction levels results in page 10. Add reduction level results along side the power and SAR data in page 38 ~ 40. Update footnote page number. 	Aug. 01, 2012

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 3 of 51 Report Issued Date: Aug. 01, 2012

Report No. : FA261317

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **Sony Corporation Tablet Device SGPT1311** are as follows.

Highest 0cm 1-g SAR Summary

inghost com i g crat cummany		
Band	Position	SAR _{1g} (W/kg)
GSM850	Body (Bottom Face_0 cm Gap)	1.24
GSM1900	Body (Bottom Face_0 cm Gap)	1.39
WCDMA Band V	Body (Bottom Face_0 cm Gap)	0.982
WCDMA Band II	Body (Bottom Face_0 cm Gap)	1.21
WLAN 2.4G	Body (Bottom Face_0 cm Gap)	0.373
WLAN 5G	Body (Bottom Face_0 cm Gap)	0.76

Verification of SAR compliance

Band	Position	SAR _{1g} (W/kg)
GSM850	Body (Bottom Face_1.1 cm Gap)	0.41
GSM1900	Body (Bottom Face_1.1 cm Gap)	0.508
WCDMA Band V	Body (Bottom Face_1.1 cm Gap)	0.543
WCDMA Band II	Body (Secondary Landscape_0.9 cm Gap)	1.27

Note: The test records with distance 0.9 cm and 1.1 cm to the phantom are provided for verifying the SAR compliance when user is away from EUT and proximity sensor deactivated. 0.9 cm and 1.1 cm test results are for confirming operation of the power reduction scheme, and are not applicable for compliance demonstration for the FCC tablet PC SAR test procedures.

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003 and FCC OET Bulletin 65 Supplement C (Edition 01-01).

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 4 of 51
Report Issued Date : Aug. 01, 2012

Report No. : FA261317

2. Administration Data

2.1 Testing Laboratory

Test Site	SPORTON INTERNATIONAL INC.	
Test Site Location	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL: +886-3-327-3456 FAX: +886-3-328-4978	

2.2 Applicant

Company Name	Sony Corporation	
Address	1-7-1 Konan, Minato-ku Tokyo, 108-0075 Japan	

2.3 Manufacturer

Company Name	HON HAI PRECISION IND.CO., LTD.	
Address	3F., No. 2, , Ziyou St., Tucheng Dist., New Taipei City 236, Taiwan, R.O.C.	

2.4 Application Details

Date of Receipt of Application	Jun. 04, 2012
Date of Start during the Test	Jun. 04, 2012
Date of End during the Test	Jun. 29, 2012

 ${\it SPORTON\ INTERNATIONAL\ INC.}$

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 5 of 51
Report Issued Date : Aug. 01, 2012

Report No.: FA261317

3. General Information

3.1 <u>Description of Equipment Under Test (EUT)</u>

	Product Feature & Specification			
EUT	Tablet Device			
Brand Name	SONY			
Model Name	SGPT1311			
FCC ID	AK8SGPT1311			
Tx Frequency	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WLAN2.4G: 2412 MHz ~ 2462 MHz WLAN5G: 5180 MHz ~ 5240 MHz; 5260 MHz ~ 5320 MHz; 5500 MHz ~ 5700 MHz; 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz			
Rx Frequency	GSM850: 869.2 MHz ~ 893.8 MHz GSM1900: 1930.2 MHz ~ 1989.8 MHz WCDMA Band V: 871.4 MHz ~ 891.6 MHz WCDMA Band II: 1932.4 MHz ~ 1987.6 MHz WLAN2.4G: 2412 MHz ~ 2462 MHz WLAN5G: 5180 MHz ~ 5240 MHz; 5260 MHz ~ 5320 MHz; 5500 MHz ~ 5700 MHz; 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz			
Bluetooth: 2402 MHz ~ 2480 MHz GSM850: 33.22 dBm GSM1900: 29.92 dBm WCDMA Band V: 23.86 dBm WCDMA Band II: 23.87 dBm 802.11b: 13.57 dBm 802.11b: 13.57 dBm 802.11g: 13.44 dBm 802.11n (2.4GHz BW 20MHz): 13.43 dBm 802.11n (2.4GHz BW 40MHz): 13.42 dBm 802.11a: 9.53 dBm 802.11n (5GHz BW 20MHz): 9.83 dBm 802.11n (5GHz BW 40MHz): 10.21 dBm Bluetooth: 1.37 dBm				

Report No. : FA261317

: 6 of 51

: Rev. 02

Report Version

SPORTON INTERNATIONAL INC. Page Number TEL: 886-3-327-3456 Report Issued Date: Aug. 01, 2012

FAX: 886-3-328-4978 FCC ID: AK8SGPT1311

FCC SAR Test Report	FCC	SAR	Test	Report
---------------------	------------	-----	------	--------

Product Feature & Specification				
Antenna Type	WWAN: PIFA Antenna WLAN&BT: IFA Antenna			
HW Version	1.0			
SW Version	1.0			
Type of Modulation	GPRS: GMSK EDGE: GMSK / 8PSK WCDMA: QPSK (uplink) HSDPA: QPSK (uplink) HSUPA: QPSK (uplink) 802.11b: DSSS (BPSK / QPSK / CCK) 802.11a/g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM) Bluetooth (1Mbps): GFSK Bluetooth EDR (2Mbps): π/4-DQPSK Bluetooth EDR (3Mbps): 8-DPSK			
EUT Stage	Identical Prototype			

Remark:

- The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. Voice call is not supported. DTM not supported.
- 3. 5600MHz ~ 5650MHz is notched.

3.2 Product Photos

Please refer to Appendix D.

3.3 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- · IEEE 1528-2003
- FCC OET Bulletin 65 Supplement C (Edition 01-01)
- FCC KDB 447498 D01 v04
- FCC KDB 616217 D03 v01
- FCC KDB 941225 D01 v02
- FCC KDB 941225 D03 v01
- FCC KDB 248227 D01 v01r02

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 7 of 51
Report Issued Date : Aug. 01, 2012

Report No. : FA261317

3.5 Test Conditions

3.5.1 Ambient Condition

Ambient Temperature	20 to 24 ℃
Humidity	< 60 %

3.5.2 Test Configuration

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests.

For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal.

The EUT implements power reduction scheme for SAR compliance, for specific device configuration and orientations, as described below. The complete description of the implementation and functionality is provided in the "Operational Description" exhibit.

Power reduction applied for each wireless mode and orientation

Exposure Position / wireless mode	GPRS/EDGE (GMSK) 850	GPRS/EDGE (GMSK) 1900	UMTS Band 5	UMTS Band 2
Bottom Face	#	#	#	#
Primary Landscape	##	##	##	##
Secondary Landscape	#	#	#	#
Primary Portrait	##	##	##	##
Secondary Portrait	##	##	##	##
#: Reduced maximum limit a	pplied by activation	on of proximity ser	nsor.	

Remark:

- 1. WLAN, BT output power is not reduced for SAR compliance.
- 2. EDGE (8PSK) output power is not reduced for SAR compliance.

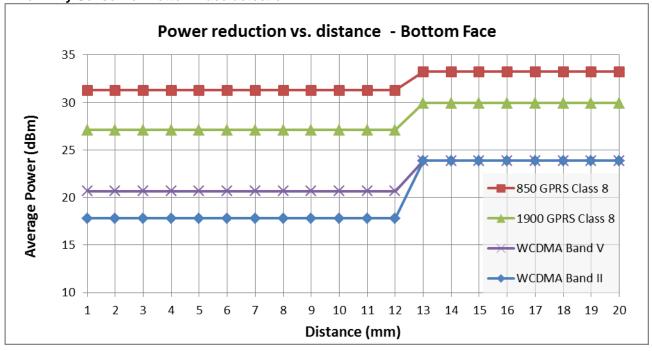
Target Power reduction specifications:

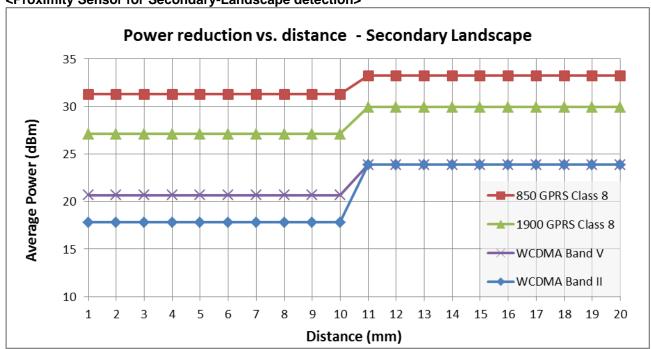
##: Normal output power without reduction

Mode(s) of Operation	GPRS/EDGE (GMSK) 850	(GMSK) (GMSK)		UMTS Band 2	
Reduction Levels	2dB	3dB	3dB	6dB	

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 8 of 51
Report Issued Date : Aug. 01, 2012


Report No. : FA261317



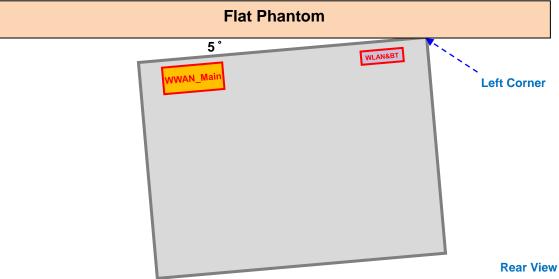
Report No. : FA261317

<Proximity Sensor for Secondary-Landscape detection>

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 9 of 51
Report Issued Date : Aug. 01, 2012
Report Version : Rev. 02

Remark:

1. GPRS 850 class 8, CH 251. Full power: 33.22dBm, Reduced power: 31.27dBm. The power reduction level is 1.95dB.


Report No. : FA261317

- 2. GPRS 1900 class 8, CH 661. Full power: 29.92dBm, Reduced power: 27.11dBm. The power reduction level is 2.81dB.
- 3. For WCDMA Band V, RMC12.2K, CH 4182. Full power: 23.86dBm, Reduced power: 20.66dBm. The power reduction level is 3.20dB.
- 4. For WCDMA Band II, RMC12.2K, CH 9262. Full power: 23.87dBm, Reduced power: 17.81dBm. The power reduction level is 6.06dB.

Proximity Sensor Status in EUT tilt operating condition - Secondary Landscape Left Corner

1		_	4	_	_		_	_	_			4.0	4.4	40	4.0
	Tilt angle (degree)	U	1	2	3	4	5	6	/	8	9	10	11	12	13
	Sensor status	ON	ON	ON	ON	ON	ON	OFF							

<Pre><Pre>cape Left Corners detection>

Page Number

Report Version

: 10 of 51

: Rev. 02

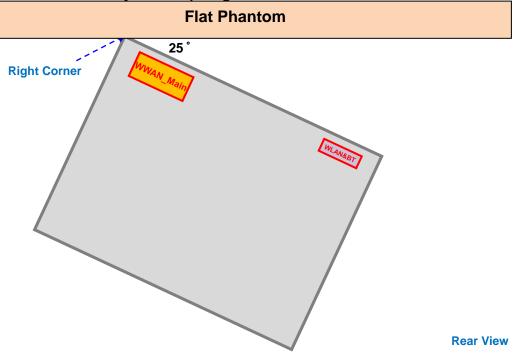
Report Issued Date: Aug. 01, 2012

Note:

- 1. The naming of Right / Left Corner is based on the Front View.
- 2. The angle at which proximity sensor start triggering is demonstrate as above drawing.

SPORTON INTERNATIONAL INC.

FAX: 886-3-328-4978 FCC ID: AK8SGPT1311


TEL: 886-3-327-3456

Proximity Sensor Status in EUT tilt operating condition - Secondary Landscape Right Corner

| Tilt angle (degree) | 0 | 5 | 10 | 15 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
|---------------------|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| Sensor status | ON | OFF | OFF | OFF | OFF |

<Proximity Sensor for Secondary-Landscape Right Corners detection>

Note:

- 1. The naming of Right / Left Corner is based on the Front View.
- 2. The angle at which proximity sensor start triggering is demonstrate as above drawing.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 11 of 51
Report Issued Date : Aug. 01, 2012

Report No. : FA261317

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA261317

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

Page Number

Report Version

: 12 of 51

: Rev. 02

Report Issued Date: Aug. 01, 2012

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311

5. SAR Measurement System

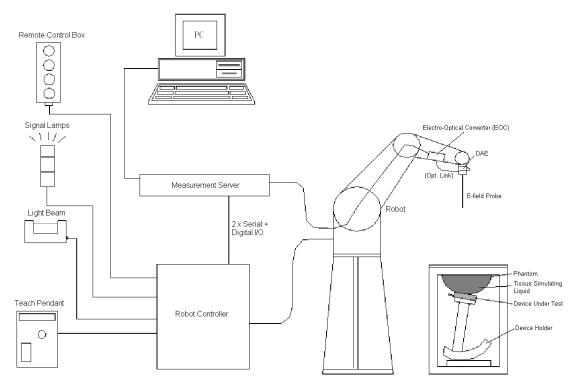


Fig 5.1 SPEAG DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- > A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- > Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- > Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 13 of 51
Report Issued Date : Aug. 01, 2012

Report No.: FA261317

5.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 E-Field Probe Specification

<ET3DV6 / ET3DV6R Probe >

| Construction | Symmetrical design with triangular core Built-in optical fiber for surface detection system. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | |
|---------------|---|------------------------------------|
| Frequency | 10 MHz to 3 GHz; Linearity: ± 0.2 dB | 1 |
| Directivity | ± 0.2 dB in HSL (rotation around probe axis)
± 0.4 dB in HSL (rotation normal to probe
axis) | |
| Dynamic Range | 5 μW/g to 100 mW/g; Linearity: ± 0.2 dB | |
| Dimensions | Overall length: 330 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm | Fig 5.2 Photo of
ET3DV6/ET3DV6R |

<EX3DV4 / ES3DV4 Probe>

| Construction | Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | |
|---------------|---|-----------------------------------|
| Frequency | 10 MHz to 6 GHz; Linearity: ± 0.2 dB | Ť |
| Directivity | ± 0.3 dB in HSL (rotation around probe axis)
± 0.5 dB in tissue material (rotation normal to
probe axis) | |
| Dynamic Range | 10 μW/g to 100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 μW/g) | 100 |
| Dimensions | Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | Fig 5.3 Photo of
EX3DV4/ES3DV4 |

5.1.2 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP), and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 14 of 51
Report Issued Date : Aug. 01, 2012

Report No.: FA261317

5.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Report No. : FA261317

Fig 5.4 Photo of DAE

5.3 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90BL; DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY4: CS7MB; DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- > Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

Fig 5.1 Photo of DASY4

Fig 5.2 Photo of DASY5

5.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128 MB), RAM (DASY4: 64 MB, DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Fig 5.1 Photo of Server for DASY4

Fig 5.2 Photo of Server for DASY5

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 15 of 51
Report Issued Date : Aug. 01, 2012
Report Version : Rev. 02

5.5 Phantom

<SAM Twin Phantom>

| SAM I WILL HALLOIN | | |
|--------------------|--|------------------------------|
| Shell Thickness | 2 ± 0.2 mm;
Center ear point: 6 ± 0.2 mm | |
| Filling Volume | Approx. 25 liters | THE THE |
| Dimensions | Length: 1000 mm; Width: 500 mm;
Height: adjustable feet | |
| Measurement Areas | Left Hand, Right Hand, Flat Phantom | Fig 5.3 Photo of SAM Phantom |

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

| Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | |
|-----------------|--|-------------------------------|
| Filling Volume | Approx. 30 liters | |
| Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | Fig 5.4 Photo of ELI4 Phantom |

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 16 of 51
Report Issued Date : Aug. 01, 2012
Report Version : Rev. 02

Report No.: FA261317

5.6 Device Holder

<Device Holder for SAM Twin Phantom>

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig 5.5 Device Holder

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

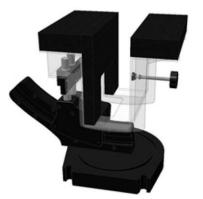


Fig 5.6 Laptop Extension Kit

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 17 of 51
Report Issued Date : Aug. 01, 2012

Report No.: FA261317

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

Report No.: FA261317

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

Media parameters:

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

Conversion factor
 Diode compression point
 ConvF_i
 dcp_i

Device parameters: - Frequency f

- Crest factor cf - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type, and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

Page Number

Report Version

: 18 of 51

: Rev. 02

Report Issued Date: Aug. 01, 2012

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 The formula for each channel can be given as :

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Report No.: FA261317

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

$$\text{E-field Probes}: E_i = \sqrt{\frac{V_i}{\text{Norm}_i \cdot \text{ConvF}}}$$

H-field Probes :
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i, (i = x, y, z)

Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Page Number

Report Version

: 19 of 51

: Rev. 02

Report Issued Date: Aug. 01, 2012

5.8 Test Equipment List

| Manufacturer | Name of Equipment | Tyme/Medal | Serial Number | Calib | ration |
|--------------|---|---------------|---------------|---------------|---------------|
| Manufacturer | Name of Equipment | Type/Model | Seriai Number | Last Cal. | Due Date |
| SPEAG | 835MHz System Validation Kit | D835V2 | 499 | Mar. 22, 2010 | Mar. 21, 2013 |
| SPEAG | 1900MHz System Validation Kit | D1900V2 | 5d041 | Mar. 23, 2010 | Mar. 22, 2013 |
| SPEAG | 2450MHz System Validation Kit | D2450V2 | 736 | Jul. 25, 2011 | Jul. 24, 2012 |
| SPEAG | 5GHz System Validation Kit | D5GHzV2 | 1006 | Jan. 18, 2012 | Jan. 17, 2013 |
| SPEAG | Data Acquisition Electronics | DAE3 | 495 | Apr. 23, 2012 | Apr. 22, 2013 |
| SPEAG | Data Acquisition Electronics | DAE4 | 778 | Nov. 22, 2011 | Nov. 21, 2012 |
| SPEAG | Data Acquisition Electronics | DAE4 | 1279 | May 03, 2012 | May 02, 2013 |
| SPEAG | Data Acquisition Electronics | DAE4 | 910 | Dec. 7, 2011 | Dec. 6, 2012 |
| SPEAG | Data Acquisition Electronics | DAE4 | 913 | Dec. 23, 2011 | Dec. 22, 2012 |
| SPEAG | Dosimetric E-Field Probe | ES3DV3 | 3071 | Jun. 22, 2011 | Jun. 21, 2012 |
| SPEAG | Dosimetric E-Field Probe | ET3DV6R | 1788 | Jan. 26, 2012 | Jan. 25, 2013 |
| SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3661 | Jan. 27, 2012 | Jan. 26, 2013 |
| SPEAG | Dosimetric E-Field Probe | ET3DV6 | 1787 | May. 29, 2012 | May. 28, 2013 |
| SPEAG | Device Holder | N/A | N/A | NCR | NCR |
| SPEAG | SAM Phantom | QD 000 P40 C | TP-1303 | NCR | NCR |
| SPEAG | SAM Phantom | QD 000 P40 C | TP-1383 | NCR | NCR |
| SPEAG | SAM Phantom | QD 000 P40 C | TP-1446 | NCR | NCR |
| SPEAG | SAM Phantom | QD 000 P40 C | TP-1478 | NCR | NCR |
| SPEAG | SAM Phantom | QD 000 P41 C | TP-1150 | NCR | NCR |
| SPEAG | SAM Phantom | QD 000 P40 CD | TP-1644 | NCR | NCR |
| SPEAG | SAM Phantom | SM 000 T01 DA | TP-1542 | NCR | NCR |
| SPEAG | ELI4 Phantom | QD 0VA 001 BB | 1026 | NCR | NCR |
| SPEAG | ELI4 Phantom | QD 0VA 001 BA | 1029 | NCR | NCR |
| SPEAG | ELI4 Phantom | QD 0VA 002 AA | TP-1127 | NCR | NCR |
| SPEAG | ELI4 Phantom | QD 0VA 002 AA | TP-1131 | NCR | NCR |
| Agilent | Network Analyzer | E5071C | MY46101588 | May 11, 2012 | May 10, 2013 |
| Agilent | ESG Vector Series Signal Generator | E4438C | MY49070755 | Oct. 17, 2011 | Oct. 16, 2012 |
| Anritsu | Power Meter | ML2495A | 0932001 | Sep. 21, 2011 | Sep. 20, 2012 |
| Anritsu | Radio Communication Analyzer | MT8820C | 6201074414 | Dec. 21, 2011 | Dec. 20, 2012 |
| Agilent | Wireless Communication Test Set | E5515C | MY48360820 | Jan. 05, 2012 | Jan. 04, 2014 |
| Agilent | Wireless Communication Test Set | E5515C | GB46311322 | Mar. 23, 2011 | Mar. 22, 2013 |
| Agilent | Wireless Communication Test Set | E5515C | MY50264370 | Apr. 19, 2011 | Apr. 18, 2013 |
| Agilent | Wireless Communication Test Set | E5515C | MY50266977 | Nov. 13, 2011 | Nov. 12, 2013 |
| R&S | Universal Digital Radiocommunication Tester | CMU200 | 117995 | Jul. 28, 2011 | Jul. 27, 2012 |
| R&S | Spectrum Analyzer | FSP7 | 101131 | Jul. 29, 2011 | Jul. 28, 2012 |

Report No. : FA261317

Table 5.1 Test Equipment List

Note:

- 1.
- The calibration certificate of DASY can be referred to appendix C of this report.

 Referring to KDB 450824 D02, the dipole calibration interval can be extended to 3 years with justification. The 2. dipoles are also not physically damaged, or repaired during the interval.
- 3. The justification data of dipole D835V2, SN: 499, D1900V2, SN: 5d041, can be found in appendix C. The return loss is < -20 dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration.

SPORTON INTERNATIONAL INC. Page Number : 20 of 51 TEL: 886-3-327-3456 Report Issued Date: Aug. 01, 2012 FAX: 886-3-328-4978 Report Version : Rev. 02

Report No. : FA261317

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.2.

Fig 6.1 Photo of Liquid Height for Head SAR

Fig 6.2 Photo of Liquid Height for Body SAR

The following table gives the recipes for tissue simulating liquid.

| Frequency | Water | Sugar | Cellulose | Salt | Preventol | DGBE | Conductivity | Permittivity | | |
|------------------|----------|-------|-----------|------|-----------|------|--------------|-------------------|--|--|
| (MHz) | (%) | (%) | (%) | (%) | (%) | (%) | (σ) | (ε _r) | | |
| | For Body | | | | | | | | | |
| 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | |
| 900 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 1.05 | 55.0 | | |
| 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | |
| 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | | |

Table 6.1 Recipes of Tissue Simulating Liquid

Simulating Liquid for 5G, Manufactured by SPEAG

| Ingredients | (% by weight) | | | | |
|--------------------|---------------|--|--|--|--|
| Water | 64~78% | | | | |
| Mineral oil | 11~18% | | | | |
| Emulsifiers | 9~15% | | | | |
| Additives and Salt | 2~3% | | | | |

 SPORTON INTERNATIONAL INC.
 Page Number
 : 21 of 51

 TEL: 886-3-327-3456
 Report Issued Date
 : Aug. 01, 2012

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Report No.: FA261317

The following table shows the measuring results for simulating liquid.

| Freq.
(MHz) | Liquid
Type | Temp.
(°C) | Conductivity (σ) | Permittivity (ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit
(%) | Date |
|----------------|----------------|---------------|------------------|--------------------------------|----------------------------|--|------------------|--------------------------------|--------------|---------------|
| 835 | Body | 21.4 | 0.963 | 54.5 | 0.97 | 55.2 | -0.72 | -1.27 | ±5 | Jun. 04, 2012 |
| 835 | Body | 21.5 | 0.993 | 54.7 | 0.97 | 55.2 | 2.37 | -0.91 | ±5 | Jun. 21, 2012 |
| 835 | Body | 21.5 | 0.996 | 55.4 | 0.97 | 55.2 | 2.68 | 0.36 | ±5 | Jun. 29, 2012 |
| 1900 | Body | 21.6 | 1.53 | 51.9 | 1.52 | 53.3 | 0.66 | -2.63 | ±5 | Jun. 04, 2012 |
| 1900 | Body | 21.3 | 1.55 | 52.9 | 1.52 | 53.3 | 1.97 | -0.75 | ±5 | Jun. 21, 2012 |
| 1900 | Body | 21.5 | 1.52 | 54.8 | 1.52 | 53.3 | 0.00 | 2.81 | ±5 | Jun. 29, 2012 |
| 2450 | Body | 21.4 | 1.973 | 54.161 | 1.95 | 52.7 | 1.18 | 2.77 | ±5 | Jun. 18, 2012 |
| 5200 | Body | 21.5 | 5.29 | 48.8 | 5.3 | 49 | -0.19 | -0.41 | ±5 | Jun. 17, 2012 |
| 5500 | Body | 21.5 | 5.73 | 48.2 | 5.65 | 48.6 | 1.42 | -0.82 | ±5 | Jun. 17, 2012 |
| 5800 | Body | 21.5 | 6.12 | 47.4 | 6 | 48.2 | 2.00 | -1.66 | ±5 | Jun. 17, 2012 |

Table 6.2 Measuring Results for Simulating Liquid

 SPORTON INTERNATIONAL INC.
 Page Number
 : 22 of 51

 TEL: 886-3-327-3456
 Report Issued Date
 : Aug. 01, 2012

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

Report No. : FA261317

7. SAR Measurement Evaluation

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom, and a corresponding distance holder.

7.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

7.2 System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

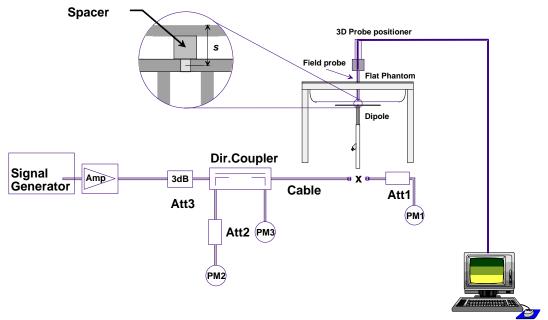


Fig 7.1 System Setup for System Evaluation

SPORTON INTERNATIONAL INC.

FAX: 886-3-328-4978 FCC ID: AK8SGPT1311

TEL: 886-3-327-3456

Page Number : 23 of 51
Report Issued Date : Aug. 01, 2012

- Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. Calibrated Dipole

The output power on dipole port must be calibrated to 24 dBm (250 mW) before dipole is connected.

Report No.: FA261317

Fig 7.2 Photo of Dipole Setup

7.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 7.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

| Measurement
Date | Frequency
(MHz) | Liquid
Type | Targeted
SAR _{1g}
(W/kg) | Measured
SAR _{1g}
(W/kg) | Normalized
SAR _{1g}
(W/kg) | Deviation
(%) |
|---------------------|--------------------|----------------|---|---|---|------------------|
| Jun. 04, 2012 | 835 | Body | 9.82 | 2.52 | 10.08 | 2.65 |
| Jun. 21, 2012 | 835 | Body | 9.82 | 2.54 | 10.16 | 3.46 |
| Jun. 29, 2012 | 835 | Body | 9.82 | 2.54 | 10.16 | 3.46 |
| Jun. 04, 2012 | 1900 | Body | 40 | 10 | 40.00 | 0.00 |
| Jun. 21, 2012 | 1900 | Body | 40 | 10.6 | 42.40 | 6.00 |
| Jun. 29, 2012 | 1900 | Body | 40 | 9.3 | 37.20 | -7.00 |
| Jun. 18, 2012 | 2450 | Body | 52.3 | 13.5 | 54.00 | 3.25 |
| Jun. 17, 2012 | 5200 | Body | 72.6 | 19.3 | 77.20 | 6.34 |
| Jun. 17, 2012 | 5500 | Body | 78.8 | 19.8 | 79.20 | 0.51 |
| Jun. 17, 2012 | 5800 | Body | 73.1 | 17.4 | 69.60 | -4.79 |

Table 7.1 Target and Measurement SAR after Normalized

 SPORTON INTERNATIONAL INC.
 Page Number
 : 24 of 51

 TEL: 886-3-327-3456
 Report Issued Date
 : Aug. 01, 2012

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

8. EUT Testing Position

This EUT was tested in 4 different positions. They are Bottom Face of tablet PC, Secondary Landscape, Primary Portrait, and Secondary Portrait. In these positions, the surface of EUT is touching with phantom 0 cm gap. Please refer to Appendix E for the test setup photos.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 25 of 51
Report Issued Date : Aug. 01, 2012

Report No.: FA261317

9. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the highest power channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as Appendix E demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR results for the highest power channel on each testing position.
- (g) Find out the largest SAR result on these testing positions of each band
- (h) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

Report No.: FA261317

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

9.2 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 300 MHz to 3 GHz, and 8x8x8 points with step size 4, 4 and 2.5 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 26 of 51

 TEL: 886-3-327-3456
 Report Issued Date
 : Aug. 01, 2012

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

9.3 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.4 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

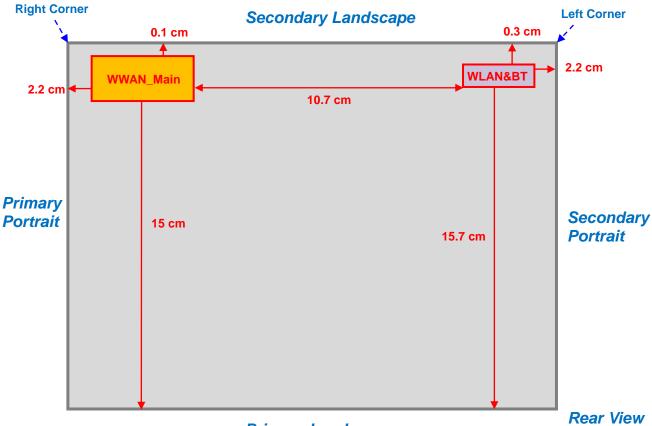
Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

9.5 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 27 of 51
Report Issued Date : Aug. 01, 2012


Report No.: FA261317

Report No. : FA261317

10. SAR Test Configurations

10.1 Exposure Positions Consideration

Primary Landscape

Note: The naming of Right / Left Corner is based on the Front View.

| Antennas | Wireless Interface |
|-------------------|--|
| WWAN Main (Tx/Rx) | GSM850
GSM1900
WCDMA Band V
WCDMA Band II |
| WLAN&BT (Tx/Rx) | WLAN2.4G
WLAN5G
Bluetooth |

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 28 of 51 Report Issued Date: Aug. 01, 2012 Report Version : Rev. 02

Note:

- 1. Per KDB 941225 D07, the EUT diagonal > 20 cm, Mini-Tablet procedure is not applied. Therefore, SAR tests follow the Tablet Mode in KDB 447498.
- There is no screen orientation limitation in EUT; that is 4 orientations are supported. The power reduction for SAR compliance is not triggered by the screen orientation, but triggered by proximity sensor when the user is 12 mm or closer to the EUT. Therefore, SAR test setup and test result is conservative for real life usage.
- 3. As in (1), according to KDB 447498, the test distance is 0 mm to the flat phantom; SAR evaluation is required for Bottom Face and each applicable Edge with the antenna within 5 cm to the user, summary as following table:

| | Sides for SAR tests; Tablet mode | | | | | | | | | | |
|-----------|----------------------------------|-------------------|------------------|----|---------------|---------------|--|--|--|--|--|
| Antennas | Front
Face | | | | | | | | | | |
| WWAN Main | No | Yes
(0, 11 mm) | Yes
(0, 9 mm) | No | No | Yes
(0 mm) | | | | | |
| WLAN&BT | No | Yes
(0 mm) | Yes
(0 mm) | No | Yes
(0 mm) | No | | | | | |

- 4. The test distance 11 mm at Bottom Face and 9 mm at Secondary Landscape are for verifying the conservative condition, whichever EUT proximity sensor maximum activated distance are 12 mm and 10 mm respectively. The EUT is set in full-power mode at 11 mm test distance to the phantom for Bottom Face and 9 mm test distance to the phantom for Secondary Landscape.
- 5. The proximity sensor is designed to be triggered for Bottom Face and Secondary-Landscape exposure positions. During SAR tests for EUT other edges, the sensor is disabled via software setting.
- 6. EUT does not support voice call function; therefore GSM SAR is not required.
- 7. Per KDB 447498 D01, the distance from WWAN Main antenna to the Secondary Portrait / Primary Landscape edge > 5 cm, therefore the stand-alone SAR in these configurations are not required.
- 8. Per KDB 447498 D01, the distance from WLAN&BT antenna to the Primary Portrait / Primary Landscape edge > 5 cm, therefore the stand-alone in these configurations SAR are not required.
- The exposure positions at Secondary Landscape corner of EUT are evaluated for verifying the conservative condition when the EUT is operated next to user with specific tilt angle, which the EUT resumes to normal WWAN full power.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 29 of 51
Report Issued Date : Aug. 01, 2012

Report No.: FA261317

10.2 Conducted Power (Unit: dBm)

<GPRS / EDGE without Power Reduction>

| COLINO/ EDGE WITHOUT I OWER REGUCTION/ | | | | | | | | | | | |
|---|---|---|---|--|--|---|--|--|--|--|--|
| | Burs | st Average Po | ower | | | | | | | | |
| Band | | GSM850 | | | GSM1900 | | | | | | |
| Channel | 128 | 189 | 251 | 512 | 661 | 810 | | | | | |
| Frequency (MHz) | 824.2 | 836.4 | 848.8 | 1850.2 | 1880.0 | 1909.8 | | | | | |
| GPRS 8 (GMSK, 1 Uplink) CS1 | 33.13 | 33.21 | 33.22 | 29.91 | 29.92 | 29.70 | | | | | |
| GPRS 10 (GMSK, 2 Uplink) CS1 | 30.40 | 30.46 | 30.47 | 26.88 | 26.91 | 26.71 | | | | | |
| GPRS 11 (GMSK, 3 Uplink) CS1 | 28.40 | 28.61 | 28.56 | 24.86 | 24.89 | 24.67 | | | | | |
| GPRS 12 (GMSK, 4 Uplink) CS1 | 27.35 | 27.46 | 27.48 | 23.83 | 23.86 | 23.64 | | | | | |
| EDGE 8 (8PSK, 1 Uplink) MCS9 | 26.96 | 27.21 | 27.23 | 25.93 | 26.01 | 25.81 | | | | | |
| EDGE 10 (8PSK, 2 Uplink) MCS9 | 25.04 | 25.16 | 25.18 | 23.97 | 24.00 | 23.80 | | | | | |
| EDGE 11 (8PSK, 3 Uplink) MCS9 | 23.99 | 24.10 | 24.12 | 21.94 | 22.09 | 22.00 | | | | | |
| EDGE 12 (8PSK, 4 Uplink) MCS9 | 22.90 | 23.04 | 23.09 | 20.91 | 21.07 | 20.99 | | | | | |
| Source-Based Time-Averaged Power | | | | | | | | | | | |
| | Source-Base | ed Time-Aver | aged Power | | | | | | | | |
| Band | Source-Base | ed Time-Aver
GSM850 | aged Power | | GSM1900 | | | | | | |
| Band
Channel | Source-Base | | raged Power
251 | 512 | GSM1900
661 | 810 | | | | | |
| | | GSM850 | | | | 810
1909.8 | | | | | |
| Channel | 128 | GSM850
189 | 251 | 512 | 661 | | | | | | |
| Channel
Frequency (MHz) | 128
824.2 | GSM850
189
836.4 | 251
848.8 | 512
1850.2 | 661
1880.0 | 1909.8 | | | | | |
| Channel Frequency (MHz) GPRS 8 (GMSK, 1 Uplink) CS1 | 128
824.2
24.13 | GSM850 189 836.4 24.21 | 251
848.8
24.22 | 512
1850.2
20.91 | 661
1880.0
20.92 | 1909.8 20.70 | | | | | |
| Channel Frequency (MHz) GPRS 8 (GMSK, 1 Uplink) CS1 GPRS 10 (GMSK, 2 Uplink) CS1 | 128
824.2
24.13
24.40 | GSM850 189 836.4 24.21 24.46 | 251
848.8
24.22
24.47 | 512
1850.2
20.91
20.88 | 661
1880.0
20.92
20.91 | 1909.8
20.70
20.71 | | | | | |
| Channel Frequency (MHz) GPRS 8 (GMSK, 1 Uplink) CS1 GPRS 10 (GMSK, 2 Uplink) CS1 GPRS 11 (GMSK, 3 Uplink) CS1 | 128
824.2
24.13
24.40
24.14 | GSM850 189 836.4 24.21 24.46 24.35 | 251
848.8
24.22
24.47
24.30 | 512
1850.2
20.91
20.88
20.60 | 661
1880.0
20.92
20.91
20.63 | 1909.8
20.70
20.71
20.41 | | | | | |
| Channel Frequency (MHz) GPRS 8 (GMSK, 1 Uplink) CS1 GPRS 10 (GMSK, 2 Uplink) CS1 GPRS 11 (GMSK, 3 Uplink) CS1 GPRS 12 (GMSK, 4 Uplink) CS1 | 128
824.2
24.13
24.40
24.14
24.35 | GSM850 189 836.4 24.21 24.46 24.35 24.46 | 251
848.8
24.22
24.47
24.30
24.48 | 512
1850.2
20.91
20.88
20.60
20.83 | 661
1880.0
20.92
20.91
20.63
20.86 | 1909.8
20.70
20.71
20.41
20.64 | | | | | |
| Channel Frequency (MHz) GPRS 8 (GMSK, 1 Uplink) CS1 GPRS 10 (GMSK, 2 Uplink) CS1 GPRS 11 (GMSK, 3 Uplink) CS1 GPRS 12 (GMSK, 4 Uplink) CS1 EDGE 8 (8PSK, 1 Uplink) MCS9 | 128
824.2
24.13
24.40
24.14
24.35
17.96 | GSM850
189
836.4
24.21
24.46
24.35
24.46
18.21 | 251
848.8
24.22
24.47
24.30
24.48
18.23 | 512
1850.2
20.91
20.88
20.60
20.83
16.93 | 661
1880.0
20.92
20.91
20.63
20.86
17.01 | 1909.8
20.70
20.71
20.41
20.64
16.81 | | | | | |

Remark: The source-based time-averaged power is linearly scaled the maximum burst averaged power based on time slots. The calculated method are shown as below:

Source based time averaged power = Maximum burst averaged power (1 Uplink) - 9 dB

Source based time averaged power = Maximum burst averaged power (2 Uplink) - 6 dB

Source based time averaged power = Maximum burst averaged power (3 Uplink) - 4.26 dB

Source based time averaged power = Maximum burst averaged power (4 Uplink) - 3 dB

Note:

- 1. The table above shows the conducted power in GMSK and 8PSK modulation. GPRS/EDGE (GMSK) output powers were measured with CS1, EDGE (8-PSK) output powers were measured with MCS9.
- 2. Following KDB 941225 D03, for Body SAR testing, the EUT was set in GPRS 12 for GSM850 and set in GPRS 8 for GSM1900 due to its highest source-based time-average power.
- 3. Per KDB 447498, the maximum output power channel is used for SAR testing and for further SAR test reduction.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 30 of 51
Report Issued Date : Aug. 01, 2012

Report No.: FA261317

<GPRS / EDGE with Power Reduction>

| | Bui | rst Average P | ower | | | | |
|-------------------------------|------------|---------------|-------------|---------|---------|--------|--|
| Band | | GSM850 | | | GSM1900 | | |
| Channel | 128 | 189 | 251 | 512 | 661 | 810 | |
| Frequency (MHz) | 824.2 | 836.4 | 848.8 | 1850.2 | 1880.0 | 1909.8 | |
| GPRS 8 (GMSK, 1 Uplink) CS1 | 31.26 | 31.25 | 31.27 | 26.98 | 27.11 | 26.83 | |
| GPRS 10 (GMSK, 2 Uplink) CS1 | 28.23 | 28.26 | 28.28 | 23.98 | 24.08 | 23.78 | |
| GPRS 11 (GMSK, 3 Uplink) CS1 | 26.18 | 26.42 | 26.46 | 21.95 | 22.07 | 21.79 | |
| GPRS 12 (GMSK, 4 Uplink) CS1 | 25.14 | 25.28 | 25.29 | 20.91 | 21.04 | 20.77 | |
| EDGE 8 (8PSK, 1 Uplink) MCS9 | 26.94 | 27.20 | 27.18 | 25.92 | 26.00 | 25.82 | |
| EDGE 10 (8PSK, 2 Uplink) MCS9 | 25.04 | 25.16 | 25.16 | 23.97 | 24.00 | 23.82 | |
| EDGE 11 (8PSK, 3 Uplink) MCS9 | 23.97 | 24.08 | 24.12 | 21.93 | 22.12 | 22.02 | |
| EDGE 12 (8PSK, 4 Uplink) MCS9 | 22.92 | 23.04 | 23.12 | 20.88 | 21.06 | 20.99 | |
| | Source-Bas | sed Time-Ave | raged Power | | | | |
| Band | | GSM850 | | GSM1900 | | | |
| Channel | 128 | 189 | 251 | 512 | 661 | 810 | |
| Frequency (MHz) | 824.2 | 836.4 | 848.8 | 1850.2 | 1880.0 | 1909.8 | |
| GPRS 8 (GMSK, 1 Uplink) CS1 | 22.26 | 22.25 | 22.27 | 17.98 | 18.11 | 17.83 | |
| GPRS 10 (GMSK, 2 Uplink) CS1 | 22.23 | 22.26 | 22.28 | 17.98 | 18.08 | 17.78 | |
| GPRS 11 (GMSK, 3 Uplink) CS1 | 21.92 | 22.16 | 22.20 | 17.69 | 17.81 | 17.53 | |
| GPRS 12 (GMSK, 4 Uplink) CS1 | 22.14 | 22.28 | 22.29 | 17.91 | 18.04 | 17.77 | |
| EDGE 8 (8PSK, 1 Uplink) MCS9 | 17.94 | 18.20 | 18.18 | 16.92 | 17.00 | 16.82 | |
| EDGE 10 (8PSK, 2 Uplink) MCS9 | 19.04 | 19.16 | 19.16 | 17.97 | 18.00 | 17.82 | |
| EDGE 11 (8PSK, 3 Uplink) MCS9 | 19.71 | 19.82 | 19.86 | 17.67 | 17.86 | 17.76 | |
| EDGE 12 (8PSK, 4 Uplink) MCS9 | 19.92 | 20.04 | 20.12 | 17.88 | 18.06 | 17.99 | |

Remark: The source-based time-averaged power is linearly scaled the maximum burst averaged power based on time slots. The calculated method are shown as below:

Source based time averaged power = Maximum burst averaged power (1 Uplink) - 9 dB

Source based time averaged power = Maximum burst averaged power (2 Uplink) - 6 dB

Source based time averaged power = Maximum burst averaged power (3 Uplink) - 4.26 dB

Source based time averaged power = Maximum burst averaged power (4 Uplink) - 3 dB

Note:

- 1. The table above shows the conducted power with GMSK and 8PSK modulation. GPRS/EDGE (GMSK) output powers were measured with CS1, EDGE (8-PSK) output powers were measured with MCS9.
- Following KDB 941225 D03, for Body SAR testing, the EUT was set in GPRS 12 for GSM850 and set in GPRS 8 for GSM1900 due to its highest source-based time-average power.
- 3. Per KDB 447498, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 4. Power Reduction is not applied to EDGE (8PSK) mode.

SPORTON INTERNATIONAL INC.

FAX: 886-3-328-4978 FCC ID: AK8SGPT1311

TEL: 886-3-327-3456

Page Number : 31 of 51
Report Issued Date : Aug. 01, 2012

Report No.: FA261317

Power Reduction Delta Level - Full power and reduction power level

| Band | | GSI | M850 | <u>.</u> | | GSM | 11900 | |
|-------------------------------|-------|-------|-------|----------|--------|-------|--------|--------|
| Channel | 128 | 189 | 251 | Target | 512 | 661 | 810 | Target |
| Frequency (MHz) | 824.2 | 836.4 | 848.8 | (dB) | 1850.2 | 1880 | 1909.8 | (dB) |
| GPRS 8 (1 Uplink) - CS1 | 1.87 | 1.96 | 1.95 | 2 | 2.93 | 2.81 | 2.87 | 3 |
| GPRS 10 (2 Uplink) - CS1 | 2.17 | 2.20 | 2.19 | 2 | 2.90 | 2.83 | 2.93 | 3 |
| GPRS 11 (3 Uplink) - CS1 | 2.22 | 2.19 | 2.10 | 2 | 2.91 | 2.82 | 2.88 | 3 |
| GPRS 12 (4 Uplink) - CS1 | 2.21 | 2.18 | 2.19 | 2 | 2.92 | 2.82 | 2.87 | 3 |
| EDGE 8 (8PSK, 1 Uplink) MCS9 | 0.02 | 0.01 | 0.05 | 0 | 0.01 | 0.01 | -0.01 | 0 |
| EDGE 10 (8PSK, 2 Uplink) MCS9 | 0.00 | 0.00 | 0.02 | 0 | 0.00 | 0.00 | -0.02 | 0 |
| EDGE 11 (8PSK, 3 Uplink) MCS9 | 0.02 | 0.02 | 0.00 | 0 | 0.01 | -0.03 | -0.02 | 0 |
| EDGE 12 (8PSK, 4 Uplink) MCS9 | -0.02 | 0.00 | -0.03 | 0 | 0.03 | 0.01 | 0.00 | 0 |

Note:

- 1. Burst average output power here
- 2. The deviation of power reduction from the specification is due to the tolerance in the measurement.

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 32 of 51
Report Issued Date : Aug. 01, 2012
Report Version : Rev. 02

Report No.: FA261317

<WCDMA without Power Reduction>

| Band | V | WCDMA Band V | | | VCDMA Band | II |
|-----------------|-------|--------------------|-------|--------------|------------|--------|
| Channel | 4132 | 4182 | 4233 | 9262 | 9400 | 9538 |
| Frequency (MHz) | 826.4 | 836.4 | 846.6 | 1852.4 | 1880.0 | 1907.6 |
| RMC 12.2K | 23.61 | <mark>23.86</mark> | 23.76 | 23.87 | 23.71 | 23.68 |
| HSDPA Subtest-1 | 23.15 | 23.32 | 23.28 | 23.34 | 23.17 | 23.18 |
| HSDPA Subtest-2 | 23.11 | 23.30 | 23.25 | 23.33 | 23.16 | 23.14 |
| HSDPA Subtest-3 | 22.61 | 22.91 | 22.78 | 23.01 | 22.76 | 22.88 |
| HSDPA Subtest-4 | 22.57 | 22.87 | 22.76 | 22.96 | 22.73 | 22.76 |
| HSUPA Subtest-1 | 23.34 | 23.52 | 23.13 | 23.04 | 23.21 | 23.46 |
| HSUPA Subtest-2 | 21.81 | 21.99 | 21.64 | 22.18 | 22.41 | 22.63 |
| HSUPA Subtest-3 | 22.15 | 22.34 | 22.06 | 22.37 | 22.60 | 22.82 |
| HSUPA Subtest-4 | 21.88 | 22.06 | 21.71 | 22.05 | 22.30 | 22.52 |
| HSUPA Subtest-5 | 23.44 | 23.61 | 23.27 | 23.02 | 23.25 | 23.54 |

| | MPR (dB) | | | | | | | | | | |
|-------------|------------------------|--------------|------|------|---------------|------|------|--|--|--|--|
| 3GPP
MPR | Subtest | WCDMA Band V | | | WCDMA Band II | | | | | | |
| 0 | HSDPA Subtest-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | |
| 0 | HSDPA Subtest-2 | 0.04 | 0.02 | 0.03 | 0.01 | 0.01 | 0.04 | | | | |
| ≤ 0.5 | HSDPA Subtest-3 | 0.54 | 0.41 | 0.50 | 0.33 | 0.41 | 0.30 | | | | |
| ≤ 0.5 | HSDPA Subtest-4 | 0.58 | 0.45 | 0.52 | 0.38 | 0.44 | 0.42 | | | | |
| 0 | HSUPA Subtest-1 | 0.10 | 0.09 | 0.14 | -0.02 | 0.04 | 0.08 | | | | |
| ≤ 2 | HSUPA Subtest-2 | 1.63 | 1.62 | 1.63 | 0.84 | 0.84 | 0.91 | | | | |
| ≤1 | HSUPA Subtest-3 | 1.29 | 1.27 | 1.21 | 0.65 | 0.65 | 0.72 | | | | |
| ≤ 2 | HSUPA Subtest-4 | 1.56 | 1.55 | 1.56 | 0.97 | 0.95 | 1.02 | | | | |
| 0 | HSUPA Subtest-5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | |

Note:

- Per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA subset-1 and HSUPA subset-5 output power is < 1/4 dB higher than RMC, or SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA and HSUPA SAR evaluation can be excluded.
- 2. EUT is designed to follow the MPR of 3GPP Table 5.2B.1 specification. In production units, MPR result deviation from 3GPP is expected; the implementation and expected deviation is detailed in tune-up procedure exhibit.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 33 of 51
Report Issued Date : Aug. 01, 2012

Report No. : FA261317

<WCDMA with Power Reduction>

| Band | V | WCDMA Band V | | | VCDMA Band | II |
|-----------------|-------|--------------|-------|--------|------------|--------|
| Channel | 4132 | 4182 | 4233 | 9262 | 9400 | 9538 |
| Frequency (MHz) | 826.4 | 836.4 | 846.6 | 1852.4 | 1880.0 | 1907.6 |
| RMC 12.2K | 20.54 | 20.66 | 20.61 | 17.81 | 17.62 | 17.51 |
| HSDPA Subtest-1 | 20.46 | 20.59 | 20.59 | 17.79 | 17.62 | 17.55 |
| HSDPA Subtest-2 | 20.26 | 20.57 | 20.56 | 17.76 | 17.59 | 17.56 |
| HSDPA Subtest-3 | 20.02 | 20.34 | 20.16 | 17.46 | 17.22 | 17.23 |
| HSDPA Subtest-4 | 20.04 | 20.26 | 20.24 | 17.47 | 17.16 | 17.13 |
| HSUPA Subtest-1 | 19.93 | 20.25 | 20.23 | 17.13 | 17.02 | 17.03 |
| HSUPA Subtest-2 | 19.35 | 19.47 | 19.45 | 16.86 | 16.70 | 16.70 |
| HSUPA Subtest-3 | 19.36 | 19.57 | 19.52 | 17.05 | 16.95 | 16.80 |
| HSUPA Subtest-4 | 19.26 | 19.45 | 19.31 | 16.81 | 16.71 | 16.68 |
| HSUPA Subtest-5 | 20.48 | 20.55 | 20.53 | 17.64 | 17.59 | 17.39 |

Report No. : FA261317

| | MPR (dB) | | | | | | | | | | | |
|-------------|-----------------|--------------|------|------|---------------|------|-------|--|--|--|--|--|
| 3GPP
MPR | Subtest | WCDMA Band V | | | WCDMA Band II | | | | | | | |
| 0 | HSDPA Subtest-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | |
| 0 | HSDPA Subtest-2 | 0.20 | 0.02 | 0.03 | 0.03 | 0.03 | -0.01 | | | | | |
| ≤ 0.5 | HSDPA Subtest-3 | 0.44 | 0.25 | 0.43 | 0.33 | 0.40 | 0.32 | | | | | |
| ≤ 0.5 | HSDPA Subtest-4 | 0.42 | 0.33 | 0.35 | 0.32 | 0.46 | 0.42 | | | | | |
| 0 | HSUPA Subtest-1 | 0.55 | 0.30 | 0.30 | 0.51 | 0.57 | 0.36 | | | | | |
| ≤ 2 | HSUPA Subtest-2 | 1.13 | 1.08 | 1.08 | 0.78 | 0.89 | 0.69 | | | | | |
| ≤1 | HSUPA Subtest-3 | 1.12 | 0.98 | 1.01 | 0.59 | 0.64 | 0.59 | | | | | |
| ≤ 2 | HSUPA Subtest-4 | 1.22 | 1.10 | 1.22 | 0.83 | 0.88 | 0.71 | | | | | |
| 0 | HSUPA Subtest-5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | |

Note:

- Per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If HSPDA subset-1 and HSUPA subset-5 output power is < 1/4 dB higher than RMC, or SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA and HSUPA SAR evaluation can be excluded.
- EUT is designed to follow the MPR of 3GPP Table 5.2B.1 specification. In production units, MPR result deviation 2. from 3GPP is expected; the implementation and expected deviation is detailed in tune-up procedure exhibit.

Power Reduction Delta Level - Full power and reduction power level

| Band | | | Band V | | | WCDMA | Band II | |
|-----------------|-------|-------|--------|-----------------------------|--------|-------|---------|-------------------|
| | | | | | | | | |
| Channel | 4132 | 4182 | 4233 | Target
Reduction
(dB) | 9262 | 9400 | 9538 | Target |
| Frequency (MHz) | 826.4 | 836.4 | 846.6 | | 1852.4 | 1880 | 1907.6 | Reduction
(dB) |
| RMC 12.2K | 3.07 | 3.20 | 3.15 | 3 | 6.06 | 6.09 | 6.17 | 6 |
| HSDPA Subtest-1 | 2.69 | 2.73 | 2.69 | 3 | 5.55 | 5.55 | 5.63 | 6 |
| HSDPA Subtest-2 | 2.85 | 2.73 | 2.69 | 3 | 5.57 | 5.57 | 5.58 | 6 |
| HSDPA Subtest-3 | 2.59 | 2.57 | 2.62 | 3 | 5.55 | 5.54 | 5.65 | 6 |
| HSDPA Subtest-4 | 2.53 | 2.61 | 2.52 | 3 | 5.49 | 5.57 | 5.63 | 6 |
| HSUPA Subtest-1 | 3.41 | 3.27 | 2.90 | 3 | 5.91 | 6.19 | 6.43 | 6 |
| HSUPA Subtest-2 | 2.46 | 2.52 | 2.19 | 3 | 5.32 | 5.71 | 5.93 | 6 |
| HSUPA Subtest-3 | 2.79 | 2.77 | 2.54 | 3 | 5.32 | 5.65 | 6.02 | 6 |
| HSUPA Subtest-4 | 2.62 | 2.61 | 2.40 | 3 | 5.24 | 5.59 | 5.84 | 6 |
| HSUPA Subtest-5 | 2.96 | 3.06 | 2.74 | 3 | 5.38 | 5.66 | 6.15 | 6 |

Note:

1. The deviation of power reduction from the specification is due to the tolerance in the measurement.

SPORTON INTERNATIONAL INC.

Page Number : 34 of 51 TEL: 886-3-327-3456 Report Issued Date: Aug. 01, 2012 FAX: 886-3-328-4978 Report Version : Rev. 02 FCC ID: AK8SGPT1311

<WLAN 2.4G - Without Power Reduction>

| | | _ | | Average po | ower (dBm) | | | |
|---------|---------|--------------------|--------------------|------------|------------|-------|--|--|
| Mode | Channel | Frequency
(MHz) | Data Rate (bps) | | | | | |
| | | (IVITIZ) | 1M | 2M | 5.5M | 11M | | |
| | CH 01 | 2412 | <mark>13.57</mark> | 13.37 | 13.49 | 13.43 | | |
| 802.11b | CH 06 | 2437 | 12.97 | 12.77 | 12.89 | 12.83 | | |
| | CH 11 | 2462 | 13.01 | 12.87 | 12.99 | 12.93 | | |

| Mode | Channel | Frequency
(MHz) | Average power (dBm) | | | | | | | | |
|---------|---------|--------------------|---------------------|-------|-------|-------|-------|-------|-------|-------|--|
| | | | Data Rate (bps) | | | | | | | | |
| | | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | |
| 802.11g | CH 01 | 2412 | 12.34 | 12.21 | 12.08 | 12.23 | 12.10 | 12.15 | 12.02 | 12.09 | |
| | CH 06 | 2437 | <mark>13.44</mark> | 13.28 | 13.28 | 13.30 | 13.28 | 13.23 | 13.29 | 13.04 | |
| | CH 11 | 2462 | 12.10 | 11.98 | 11.88 | 11.89 | 11.93 | 11.98 | 12.02 | 12.06 | |

| Mode | Channel | Frequency
(MHz) | Average power (dBm) | | | | | | | | |
|----------------|---------|--------------------|---------------------|-------|-------|-------|-------|-------|-------|-------|--|
| | | | Data Rate (bps) | | | | | | | | |
| | | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | |
| 802.11n
20M | CH 01 | 2412 | 10.83 | 10.65 | 10.62 | 10.72 | 10.71 | 10.66 | 10.68 | 10.76 | |
| | CH 06 | 2437 | 13.43 | 13.15 | 13.31 | 13.24 | 13.3 | 13.19 | 13.33 | 13.25 | |
| | CH 11 | 2462 | 10.85 | 10.72 | 10.69 | 10.75 | 10.69 | 10.74 | 10.66 | 10.68 | |

| Mode | Channel | Frequency
(MHz) | Average power (dBm) | | | | | | | | |
|----------------|---------|--------------------|---------------------|-------|-------|-------|-------|-------|------|------|--|
| | | | Data Rate (bps) | | | | | | | | |
| | | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | |
| 802.11n
40M | CH 03 | 2422 | 11.15 | 10.95 | 10.96 | 10.89 | 9.05 | 8.84 | 8.64 | 8.44 | |
| | CH 06 | 2437 | 13.42 | 13.34 | 13.36 | 13.35 | 11.99 | 11.56 | 9.87 | 9.80 | |
| | CH 09 | 2452 | 10.86 | 10.77 | 10.72 | 10.73 | 8.56 | 8.32 | 7.23 | 7.20 | |

Note:

- 1. Per KDB 248227, choose the highest output power channel to test SAR and determine further SAR exclusion
- 2. Per KDB 248227, 11g and 11n output power is less than 1/4 dB higher than 11b mode, thus the SAR can be excluded.
- 3. For each frequency band, testing at higher data rates and higher order modulations is not requirement when the maximum average output power for each of these configurations is less than 1/4 dB higher than those measured at the lowest data rate.

<Bluetooth>

| 1Didologii P | | | | | | | | | |
|---------------------|-----------|-------------|-------|--|--|--|--|--|--|
| Band | Bluetooth | | | | | | | | |
| Channel | 0 | 39 | 78 | | | | | | |
| Frequency (MHz) | 2402 | 2441 | 2480 | | | | | | |
| Average Power (dBm) | -1.36 | 1.37 | -0.43 | | | | | | |

Note:

 Per KDB 447498, Bluetooth SAR is excluded due to highest output power ≤ 60/f (GHz) mW, where 60/f (GHz) = 24mW = 13.8dBm.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 35 of 51
Report Issued Date : Aug. 01, 2012
Report Version : Rev. 02

Report No. : FA261317

<WLAN 5G - Without Power Reduction>

| | Channel | Frequency (MHz) | Average Power (dBm) | | | | | | | | |
|---------|---------|-----------------|---------------------|------|------|---------|----------|------|------|------|--|
| Mode | | | | | | Data Ra | te (bps) | | | | |
| | | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | |
| | CH 036 | 5180 | 6.90 | 6.81 | 6.86 | 6.72 | 6.75 | 6.79 | 6.70 | 6.82 | |
| | CH 040 | 5200 | 7.34 | 7.21 | 7.16 | 7.26 | 7.22 | 7.29 | 7.17 | 7.14 | |
| | CH 044 | 5220 | 7.03 | 7.00 | 6.96 | 6.88 | 6.90 | 6.95 | 6.84 | 6.80 | |
| | CH 048 | 5240 | 7.91 | 7.71 | 7.59 | 7.75 | 7.65 | 7.67 | 7.63 | 7.69 | |
| | CH 052 | 5260 | 8.04 | 8.00 | 7.98 | 7.90 | 7.96 | 7.89 | 7.85 | 7.82 | |
| | CH 056 | 5280 | 8.39 | 8.29 | 8.31 | 8.32 | 8.29 | 8.35 | 8.22 | 8.31 | |
| | CH 060 | 5300 | 8.90 | 8.88 | 8.82 | 8.78 | 8.76 | 8.80 | 8.72 | 8.75 | |
| | CH 064 | 5320 | <mark>9.53</mark> | 9.17 | 9.23 | 9.48 | 9.36 | 9.38 | 9.43 | 9.43 | |
| | CH 100 | 5500 | 9.43 | 9.16 | 9.05 | 9.22 | 9.20 | 9.14 | 9.23 | 8.93 | |
| | CH 104 | 5520 | 9.11 | 9.02 | 8.98 | 8.92 | 8.96 | 8.99 | 9.06 | 9.02 | |
| 802.11a | CH 108 | 5540 | 8.72 | 8.60 | 8.68 | 8.70 | 8.54 | 8.70 | 8.62 | 8.68 | |
| | CH 112 | 5560 | 8.77 | 8.67 | 8.64 | 8.55 | 8.58 | 8.51 | 8.63 | 8.72 | |
| | CH 116 | 5580 | 8.76 | 8.62 | 8.69 | 8.70 | 8.65 | 8.61 | 8.72 | 8.68 | |
| | CH 132 | 5660 | 7.34 | 7.24 | 7.16 | 7.28 | 7.17 | 7.26 | 7.29 | 7.22 | |
| | CH 136 | 5680 | 7.20 | 6.95 | 6.98 | 7.06 | 7.16 | 7.09 | 7.05 | 7.16 | |
| | CH 140 | 5700 | 6.98 | 6.90 | 6.81 | 6.86 | 6.89 | 6.90 | 6.88 | 6.92 | |
| | CH 149 | 5745 | 7.23 | 7.12 | 7.07 | 7.11 | 7.08 | 7.04 | 7.03 | 6.97 | |
| | CH 153 | 5765 | 6.91 | 6.87 | 6.79 | 6.76 | 6.80 | 6.79 | 6.82 | 6.88 | |
| | CH 157 | 5785 | 6.95 | 6.92 | 6.78 | 6.81 | 6.83 | 6.79 | 6.78 | 6.83 | |
| | CH 161 | 5805 | 7.14 | 7.03 | 7.08 | 6.95 | 6.98 | 6.91 | 6.99 | 7.06 | |
| | CH 165 | 5825 | 7.10 | 7.02 | 7.00 | 6.98 | 6.92 | 7.06 | 6.92 | 7.05 | |

Note:

- 1. Per KDB 248227, choose the highest output power channel to test SAR and determine further SAR exclusion
- 2. For each frequency band, testing at higher data rates and higher order modulations is not requirement when the maximum average output power for each of these configurations is less than 1/4 dB higher than those measured at the lowest data rate.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 36 of 51
Report Issued Date : Aug. 01, 2012
Report Version : Rev. 02

Report No.: FA261317

| | | _ | | | P | Average Po | ower (dBm | 1) | | |
|---------|---------|--------------------|-------------------|------|------|------------|-----------|------|------|------|
| Mode | Channel | Frequency
(MHz) | | | | Data Ra | te (bps) | | | |
| | | (1411 12) | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 |
| | CH 036 | 5180 | 7.07 | 7.02 | 6.98 | 6.92 | 6.98 | 7.03 | 7.00 | 6.99 |
| | CH 040 | 5200 | 7.29 | 7.21 | 7.18 | 7.26 | 7.15 | 7.20 | 7.13 | 7.18 |
| | CH 044 | 5220 | 7.03 | 6.96 | 6.92 | 6.88 | 6.87 | 6.81 | 6.99 | 6.89 |
| | CH 048 | 5240 | 8.19 | 8.07 | 8.11 | 8.07 | 8.09 | 8.09 | 8.02 | 8.06 |
| | CH 052 | 5260 | 8.53 | 8.34 | 8.46 | 8.42 | 8.38 | 8.50 | 8.41 | 8.49 |
| | CH 056 | 5280 | 8.26 | 8.19 | 8.24 | 8.09 | 8.05 | 8.20 | 8.08 | 8.16 |
| | CH 060 | 5300 | 8.94 | 8.79 | 8.88 | 8.76 | 8.84 | 8.80 | 8.91 | 8.78 |
| | CH 064 | 5320 | 9.54 | 9.43 | 9.36 | 9.08 | 9.39 | 9.37 | 9.53 | 9.44 |
| | CH 100 | 5500 | <mark>9.83</mark> | 9.60 | 9.40 | 9.67 | 9.69 | 9.60 | 9.72 | 9.76 |
| 802.11n | CH 104 | 5520 | 9.57 | 9.50 | 9.45 | 9.52 | 9.41 | 9.55 | 9.48 | 9.43 |
| 20M | CH 108 | 5540 | 9.12 | 9.06 | 8.99 | 8.92 | 9.05 | 8.95 | 8.98 | 9.02 |
| 20101 | CH 112 | 5560 | 9.11 | 9.04 | 9.01 | 8.94 | 8.98 | 8.92 | 8.99 | 9.06 |
| | CH 116 | 5580 | 8.84 | 8.73 | 8.76 | 8.79 | 8.81 | 8.72 | 8.73 | 8.80 |
| | CH 132 | 5660 | 7.48 | 7.38 | 7.32 | 7.42 | 7.40 | 7.35 | 7.38 | 7.44 |
| | CH 136 | 5680 | 7.12 | 6.99 | 7.00 | 7.09 | 6.95 | 6.98 | 7.09 | 7.03 |
| | CH 140 | 5700 | 7.00 | 6.95 | 6.89 | 6.82 | 6.92 | 6.79 | 6.78 | 6.88 |
| | CH 149 | 5745 | 7.09 | 6.70 | 6.84 | 6.80 | 6.77 | 6.86 | 6.81 | 6.79 |
| | CH 153 | 5765 | 6.89 | 6.84 | 6.83 | 6.80 | 6.74 | 6.83 | 6.79 | 6.73 |
| | CH 157 | 5785 | 6.92 | 6.88 | 6.85 | 6.91 | 6.82 | 6.80 | 6.78 | 6.72 |
| | CH 161 | 5805 | 7.06 | 6.92 | 7.02 | 6.99 | 6.88 | 6.81 | 6.92 | 6.89 |
| | CH 165 | 5825 | 7.02 | 7.00 | 6.98 | 6.92 | 6.85 | 6.88 | 6.82 | 6.96 |

| | Channel | Fraguency | Average Power (dBm) Data Rate (bps) | | | | | | | | | |
|---------|---------|--------------------|--------------------------------------|-------|-------|-------|-------|-------|-------|------|--|--|
| Mode | | Frequency
(MHz) | | | | | | | | | | |
| | | (1411 12) | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | |
| | CH 038 | 5190 | 7.47 | 7.43 | 7.37 | 7.31 | 7.42 | 7.35 | 7.38 | 7.33 | | |
| | CH 046 | 5230 | 8.92 | 8.87 | 8.91 | 8.71 | 8.63 | 8.65 | 8.62 | 7.82 | | |
| | CH 054 | 5270 | 8.88 | 8.84 | 8.80 | 8.76 | 8.74 | 8.76 | 8.82 | 8.77 | | |
| 802.11n | CH 062 | 5310 | 10.21 | 10.04 | 10.09 | 10.16 | 10.14 | 10.09 | 10.09 | 9.30 | | |
| 40M | CH 102 | 5510 | 10.18 | 10.10 | 10.16 | 10.10 | 10.12 | 10.04 | 9.86 | 9.17 | | |
| | CH 134 | 5670 | 7.18 | 7.10 | 7.05 | 7.12 | 7.02 | 7.06 | 7.11 | 7.08 | | |
| | CH 151 | 5755 | 7.12 | 7.10 | 7.02 | 7.02 | 7.08 | 7.06 | 7.09 | 5.90 | | |
| | CH 159 | 5795 | 7.05 | 7.01 | 6.98 | 6.94 | 7.00 | 6.99 | 6.91 | 6.92 | | |

Note:

- 1. Per KDB 248227, choose the highest output power channel to test SAR and determine further SAR exclusion
- Per KDB 248227, if 11n average output power is higher than 1/4 dB higher than 11a mode, SAR will be verified.
- As in (2), 11n 20MHz in band 5.2GHz / 5.5GHz, and 11n 40MHz in band 5.2GHz / 5.3GHz / 5.5GHz, are higher than 3. 1/4 dB higher than 11a, therefore 11n SAR were verified in these bands.
- For each frequency band, testing at higher data rates and higher order modulations is not requirement when the maximum average output power for each of these configurations is less than 1/4 dB higher than those measured at the lowest data rate.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 37 of 51 Report Issued Date: Aug. 01, 2012

Report No. : FA261317

11. SAR Test Results

11.1 Test Records for Body SAR Test

<GSM>

| Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Output
Power
(dBm) | Power
Back-off | Reduction
Levels
(dB) | Power
Drift
(dB) | SAR _{1g}
(W/kg) |
|-------------|---------|--------|---|-------------|-----|----------------|--------------------------|-------------------|-----------------------------|------------------------|-----------------------------|
| 1 | GSM850 | GPRS12 | Bottom Face | 0 | 251 | 848.8 | 25.29 | Yes | 2.19 | 0.166 | 1.23 |
| 3 | GSM850 | GPRS12 | Bottom Face | 0 | 128 | 824.2 | 25.14 | Yes | 2.21 | 0.118 | 1.24 |
| 4 | GSM850 | GPRS12 | Bottom Face | 0 | 189 | 836.4 | 25.28 | Yes | 2.18 | 0.135 | <mark>1.24</mark> |
| 2 | GSM850 | GPRS12 | Secondary Landscape | 0 | 251 | 848.8 | 25.29 | Yes | 2.19 | -0.165 | 0.607 |
| 36 | GSM850 | GPRS12 | Primary Portrait | 0 | 251 | 848.8 | 27.48 | No | 0 | -0.138 | 0.677 |
| 34 | GSM850 | GPRS12 | Bottom Face | 1.1 | 251 | 848.8 | 27.48 | No | 0 | 0.122 | 0.41 |
| 35 | GSM850 | GPRS12 | Secondary Landscape | 0.9 | 251 | 848.8 | 27.48 | No | 0 | -0.027 | 0.227 |
| 60 | GSM850 | GPRS12 | Secondary Landscape
Left Corner at 4° | 0 | 251 | 848.8 | 27.48 | No | 0 | -0.103 | 0.134 |
| 61 | GSM850 | GPRS12 | Secondary Landscape
Right Corner at 24 ° | 0 | 251 | 848.8 | 27.48 | No | 0 | -0.093 | 0.186 |
| 18 | GSM1900 | GPRS8 | Bottom Face | 0 | 661 | 1880 | 27.11 | Yes | 2.81 | -0.137 | <mark>1.39</mark> |
| 19 | GSM1900 | GPRS8 | Bottom Face | 0 | 512 | 1850.2 | 26.98 | Yes | 2.93 | 0.191 | 1.26 |
| 20 | GSM1900 | GPRS8 | Bottom Face | 0 | 810 | 1909.8 | 26.83 | Yes | 2.87 | -0.116 | 1.26 |
| 21 | GSM1900 | GPRS8 | Secondary Landscape | 0 | 661 | 1880 | 27.11 | Yes | 2.81 | 0.155 | 0.845 |
| 22 | GSM1900 | GPRS8 | Secondary Landscape | 0 | 512 | 1850.2 | 26.98 | Yes | 2.93 | -0.114 | 0.815 |
| 23 | GSM1900 | GPRS8 | Secondary Landscape | 0 | 810 | 1909.8 | 26.83 | Yes | 2.87 | -0.171 | 0.868 |
| 26 | GSM1900 | GPRS8 | Primary Portrait | 0 | 661 | 1880 | 29.92 | No | 0 | -0.149 | 0.383 |
| 24 | GSM1900 | GPRS8 | Bottom Face | 1.1 | 661 | 1880 | 29.92 | No | 0 | -0.049 | 0.508 |
| 25 | GSM1900 | GPRS8 | Secondary Landscape | 0.9 | 661 | 1880 | 29.92 | No | 0 | -0.081 | 0.491 |
| 66 | GSM1900 | GPRS8 | Secondary Landscape
Left Corner at 4° | 0 | 661 | 1880 | 29.92 | No | 0 | -0.188 | 0.243 |
| 67 | GSM1900 | GPRS8 | Secondary Landscape
Right Corner at 24 ° | 0 | 661 | 1880 | 29.92 | No | 0 | -0.099 | 0.29 |

Note:

- 1.1 cm and 0.9 cm test results are for confirming operation of the power reduction scheme, and are not applicable for
- compliance demonstration for the FCC tablet PC SAR test procedures

 Per KDB 447498, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests 2. are not necessary.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 38 of 51 Report Issued Date: Aug. 01, 2012

Report No. : FA261317

<WCDMA>

| Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Output
Power
(dBm) | Power
Back-off | Reduction
Levels
(dB) | Power
Drift
(dB) | SAR _{1g}
(W/kg) |
|-------------|----------|----------|---|-------------|------|----------------|--------------------------|-------------------|-----------------------------|------------------------|-----------------------------|
| 5 | WCDMA V | RMC12.2K | Bottom Face | 0 | 4182 | 836.4 | 20.66 | Yes | 3.20 | 0.095 | 0.982 |
| 7 | WCDMA V | RMC12.2K | Bottom Face | 0 | 4132 | 826.4 | 20.54 | Yes | 3.07 | 0.188 | 0.957 |
| 8 | WCDMA V | RMC12.2K | Bottom Face | 0 | 4233 | 846.6 | 20.61 | Yes | 3.15 | 0.156 | 0.944 |
| 6 | WCDMA V | RMC12.2K | Secondary Landscape | 0 | 4182 | 836.4 | 20.66 | Yes | 3.20 | -0.129 | 0.435 |
| 33 | WCDMA V | RMC12.2K | Primary Portrait | 0 | 4182 | 836.4 | 23.86 | No | 0 | -0.119 | 0.501 |
| 31 | WCDMA V | RMC12.2K | Bottom Face | 1.1 | 4182 | 836.4 | 23.86 | No | 0 | -0.022 | 0.543 |
| 32 | WCDMA V | RMC12.2K | Secondary Landscape | 0.9 | 4182 | 836.4 | 23.86 | No | 0 | 0.171 | 0.267 |
| 62 | WCDMA V | RMC12.2K | Secondary Landscape
Left Corner at 4° | 0 | 4182 | 836.4 | 23.86 | No | 0 | -0.065 | 0.169 |
| 63 | WCDMA V | RMC12.2K | Secondary Landscape
Right Corner at 24 ° | 0 | 4182 | 836.4 | 23.86 | No | 0 | 0.108 | 0.201 |
| 12 | WCDMA II | RMC12.2K | Bottom Face | 0 | 9262 | 1852.4 | 17.81 | Yes | 6.06 | 0.137 | 1.11 |
| 13 | WCDMA II | RMC12.2K | Bottom Face | 0 | 9400 | 1880 | 17.62 | Yes | 6.09 | 0.129 | 1.15 |
| 14 | WCDMA II | RMC12.2K | Bottom Face | 0 | 9538 | 1907.6 | 17.51 | Yes | 6.17 | 0.136 | 1.21 |
| 15 | WCDMA II | RMC12.2K | Secondary Landscape | 0 | 9262 | 1852.4 | 17.81 | Yes | 6.06 | 0.103 | 0.989 |
| 16 | WCDMA II | RMC12.2K | Secondary Landscape | 0 | 9400 | 1880 | 17.62 | Yes | 6.09 | -0.131 | 0.95 |
| 17 | WCDMA II | RMC12.2K | Secondary Landscape | 0 | 9538 | 1907.6 | 17.51 | Yes | 6.17 | -0.133 | 0.924 |
| 28 | WCDMA II | RMC12.2K | Primary Portrait | 0 | 9262 | 1852.4 | 23.87 | No | 0 | -0.188 | 0.719 |
| 9 | WCDMA II | RMC12.2K | Bottom Face | 1.1 | 9262 | 1852.4 | 23.87 | No | 0 | -0.137 | 1.15 |
| 10 | WCDMA II | RMC12.2K | Bottom Face | 1.1 | 9400 | 1880 | 23.71 | No | 0 | -0.105 | 1.16 |
| 11 | WCDMA II | RMC12.2K | Bottom Face | 1.1 | 9538 | 1907.6 | 23.68 | No | 0 | -0.137 | 1.19 |
| 27 | WCDMA II | RMC12.2K | Secondary Landscape | 0.9 | 9262 | 1852.4 | 23.87 | No | 0 | 0.126 | 1.1 |
| 29 | WCDMA II | RMC12.2K | Secondary Landscape | 0.9 | 9400 | 1880 | 23.71 | No | 0 | -0.108 | 1.22 |
| 30 | WCDMA II | RMC12.2K | Secondary Landscape | 0.9 | 9538 | 1907.6 | 23.68 | No | 0 | -0.117 | 1.27 |
| 64 | WCDMA II | RMC12.2K | Secondary Landscape
Left Corner at 4° | 0 | 9538 | 1907.6 | 23.68 | No | 0 | -0.112 | 0.665 |
| 65 | WCDMA II | RMC12.2K | Secondary Landscape
Right Corner at 24 ° | 0 | 9538 | 1907.6 | 23.68 | No | 0 | -0.116 | 0.741 |

Note:

- 1.1 cm and 0.9 cm test results are for confirming operation of the power reduction scheme, and are not applicable for compliance demonstration for the FCC tablet PC SAR test procedures
- 2. Per KDB 447498, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 39 of 51
Report Issued Date : Aug. 01, 2012
Report Version : Rev. 02

Report No.: FA261317

<WLAN>

| Plot
No. | Band | Mode | Test
Position | Gap
(cm) | | Freq.
(MHz) | Output
Power
(dBm) | Power
Back-off | Reduction
Levels
(dB) | Power
Drift
(dB) | SAR _{1g}
(W/kg) |
|-------------|-----------|-------------|---------------------|-------------|-----|----------------|--------------------------|-------------------|-----------------------------|------------------------|-----------------------------|
| 54 | WLAN 2.4G | 802.11b | Bottom Face | 0 | 1 | 2412 | 13.57 | No | 0 | 0.05 | 0.366 |
| 55 | WLAN 2.4G | 802.11b | Secondary Landscape | 0 | 1 | 2412 | 13.57 | No | 0 | 0.165 | 0.373 |
| 56 | WLAN 2.4G | 802.11b | Secondary Portrait | 0 | 1 | 2412 | 13.57 | No | 0 | -0.06 | 0.049 |
| 37 | WLAN 5G | 802.11a | Bottom Face | 0 | 48 | 5240 | 7.91 | No | 0 | 0.01 | 0.058 |
| 38 | WLAN 5G | 802.11a | Secondary Landscape | 0 | 48 | 5240 | 7.91 | No | 0 | 0.164 | 0.353 |
| 40 | WLAN 5G | 802.11n 20M | Secondary Landscape | 0 | 48 | 5240 | 8.19 | No | 0 | 0.148 | 0.383 |
| 41 | WLAN 5G | 802.11n 40M | Secondary Landscape | 0 | 46 | 5230 | 8.92 | No | 0 | -0.106 | 0.405 |
| 39 | WLAN 5G | 802.11a | Secondary Portrait | 0 | 48 | 5240 | 7.91 | No | 0 | 0.02 | 0.02 |
| 42 | WLAN 5G | 802.11a | Bottom Face | 0 | 64 | 5320 | 9.53 | No | 0 | 0.08 | 0.227 |
| 43 | WLAN 5G | 802.11a | Secondary Landscape | 0 | 64 | 5320 | 9.53 | No | 0 | 0.045 | 0.416 |
| 45 | WLAN 5G | 802.11n 40M | Secondary Landscape | 0 | 62 | 5310 | 10.21 | No | 0 | -0.069 | 0.538 |
| 44 | WLAN 5G | 802.11a | Secondary Portrait | 0 | 64 | 5320 | 9.53 | No | 0 | -0.01 | 0.023 |
| 46 | WLAN 5G | 802.11a | Bottom Face | 0 | 100 | 5500 | 9.43 | No | 0 | 0.12 | 0.238 |
| 48 | WLAN 5G | 802.11a | Secondary Portrait | 0 | 100 | 5500 | 9.43 | No | 0 | -0.13 | 0.016 |
| 47 | WLAN 5G | 802.11a | Secondary Landscape | 0 | 100 | 5500 | 9.43 | No | 0 | 0.155 | 0.65 |
| 49 | WLAN 5G | 802.11n 20M | Secondary Landscape | 0 | 100 | 5500 | 9.83 | No | 0 | -0.029 | 0.662 |
| 50 | WLAN 5G | 802.11n 40M | Secondary Landscape | 0 | 102 | 5510 | 10.18 | No | 0 | 0.154 | <mark>0.76</mark> |
| 51 | WLAN 5G | 802.11a | Bottom Face | 0 | 149 | 5745 | 7.23 | No | 0 | -0.101 | 0.104 |
| 52 | WLAN 5G | 802.11a | Secondary Landscape | 0 | 149 | 5745 | 7.23 | No | 0 | 0.04 | 0.327 |
| 53 | WLAN 5G | 802.11a | Secondary Portrait | 0 | 149 | 5745 | 7.23 | No | 0 | 0.011 | 0.024 |

Note:

1. Per KDB 447498, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

SPORTON INTERNATIONAL INC.

FAX: 886-3-328-4978 FCC ID: AK8SGPT1311

TEL: 886-3-327-3456

Page Number : 40 of 51
Report Issued Date : Aug. 01, 2012
Report Version : Rev. 02

Report No. : FA261317

11.2 Simultaneous Transmission SAR Analysis and Measurements

| Position | Applicable Simultaneous Transmission Combination |
|----------|--|
| | GPRS/EDGE (data) + WLAN |
| Body | UMTS (data) + WLAN |
| Бойу | GPRS/EDGE (data) + BT |
| | UMTS (data) + BT |

Note:

- 1. GPRS/EDGE and UMTS share the same antenna, and cannot transmit simultaneously.
- 2. WLAN2.4G and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 3. EUT will choose either WLAN2.4G or WLAN5G according to the network signal condition; therefore, they will not transmit simultaneously.

<Sum of maximum 1-g SAR for each applicable exposure conditions>

| | ٧ | VWAN | l | W | /LAN2.4G | | | Scaled | WWAN | | Scaled |
|-----------------------|-----------|------------|----------------------------|------------|----------------------------|-----------------------|--------------------------|---------------------------|-------------------|--------------------------|-------------------|
| Position | WWAN Band | Plot
No | Max.
WWAN SAR
(W/kg) | Plot
No | Max.
WLAN SAR
(W/kg) | Max. SAR
Summation | Output
Power
(dBm) | Tune-up
Limit
(dBm) | Scaling
Factor | Scaled
WWAN
(W/kg) | WWAN
+
WLAN |
| | GSM850 | 4 | 1.24 | 54 | 0.366 | 1.61 | 25.28 | 25.5 | 1.052 | 1.304 | <mark>1.67</mark> |
| Bottom Face | GSM1900 | 18 | 1.39 | 54 | 0.366 | <mark>1.76</mark> | 27.11 | 27.5 | 1.094 | 1.521 | <mark>1.89</mark> |
| At 0cm | WCDMA V | 5 | 0.982 | 54 | 0.366 | 1.35 | 20.66 | 21.5 | 1.213 | 1.192 | 1.56 |
| | WCDMA II | 14 | 1.21 | 54 | 0.366 | 1.58 | 17.51 | 18.5 | 1.256 | 1.520 | <mark>1.89</mark> |
| | GSM850 | - | 0 | 56 | 0.049 | 0.05 | - | - | - | 0 | 0.05 |
| Secondary
Portrait | GSM1900 | - | 0 | 56 | 0.049 | 0.05 | - | - | - | 0 | 0.05 |
| At 0cm | WCDMA V | - | 0 | 56 | 0.049 | 0.05 | - | - | - | 0 | 0.05 |
| | WCDMA II | - | 0 | 56 | 0.049 | 0.05 | - | - | - | 0 | 0.05 |
| | GSM850 | 36 | 0.677 | - | 0 | 0.68 | 27.48 | 27.5 | 1.005 | 0.680 | 0.68 |
| Primary
Portrait | GSM1900 | 26 | 0.383 | - | 0 | 0.38 | 29.92 | 30.5 | 1.143 | 0.438 | 0.44 |
| At 0cm | WCDMA V | 33 | 0.501 | - | 0 | 0.50 | 23.86 | 24.5 | 1.159 | 0.581 | 0.58 |
| | WCDMA II | 28 | 0.719 | - | 0 | 0.72 | 23.87 | 24.5 | 1.156 | 0.831 | 0.83 |
| | GSM850 | 2 | 0.607 | 55 | 0.373 | 0.98 | 25.29 | 25.5 | 1.050 | 0.637 | 1.01 |
| Secondary | GSM1900 | 23 | 0.868 | 55 | 0.373 | 1.24 | 26.83 | 27.5 | 1.167 | 1.013 | 1.39 |
| Landscape
At 0cm | WCDMA V | 6 | 0.435 | 55 | 0.373 | 0.81 | 20.66 | 21.5 | 1.213 | 0.528 | 0.90 |
| | WCDMA II | 15 | 0.989 | 55 | 0.373 | 1.36 | 17.81 | 18.5 | 1.172 | 1.159 | 1.53 |
| | GSM850 | 34 | 0.41 | 54 | 0.366 | 0.78 | 27.48 | 27.5 | 1.005 | 0.412 | 0.78 |
| Bottom Face | GSM1900 | 24 | 0.508 | 54 | 0.366 | 0.87 | 29.92 | 30.5 | 1.143 | 0.581 | 0.95 |
| At 1.1cm | WCDMA V | 31 | 0.543 | 54 | 0.366 | 0.91 | 23.86 | 24.5 | 1.159 | 0.629 | 1.00 |
| | WCDMA II | 11 | 1.19 | 54 | 0.366 | 1.56 | 23.68 | 24.5 | 1.208 | 1.437 | <mark>1.80</mark> |
| | GSM850 | 35 | 0.227 | 55 | 0.373 | 0.60 | 27.48 | 27.5 | 1.005 | 0.228 | 0.60 |
| Secondary | GSM1900 | 25 | 0.491 | 55 | 0.373 | 0.86 | 29.92 | 30.5 | 1.143 | 0.561 | 0.93 |
| Landscape
At 0.9cm | WCDMA V | 32 | 0.267 | 55 | 0.373 | 0.64 | 23.86 | 24.5 | 1.159 | 0.309 | 0.68 |
| | WCDMA II | 30 | 1.27 | 55 | 0.373 | <mark>1.64</mark> | 23.68 | 24.5 | 1.208 | 1.534 | <mark>1.91</mark> |

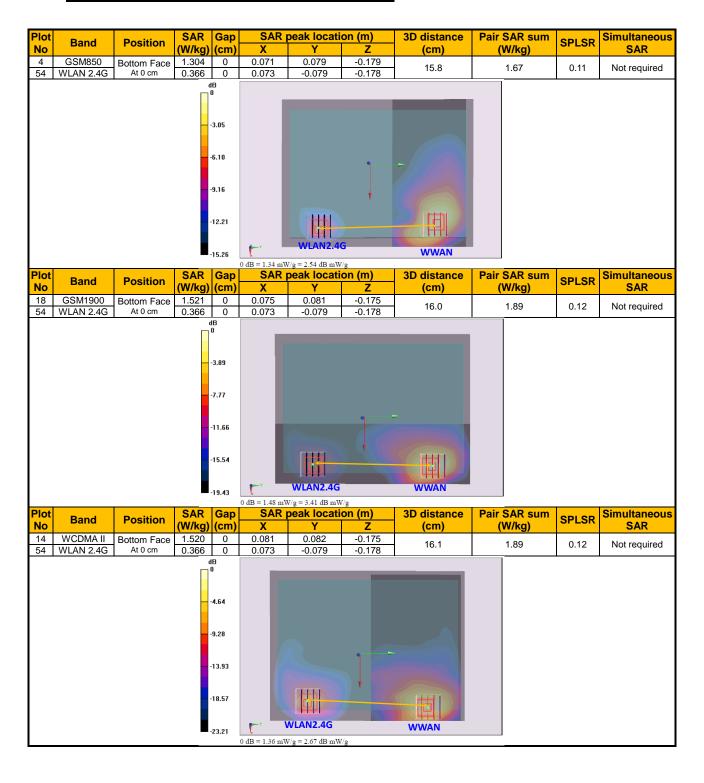
SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 41 of 51
Report Issued Date : Aug. 01, 2012

Report No. : FA261317

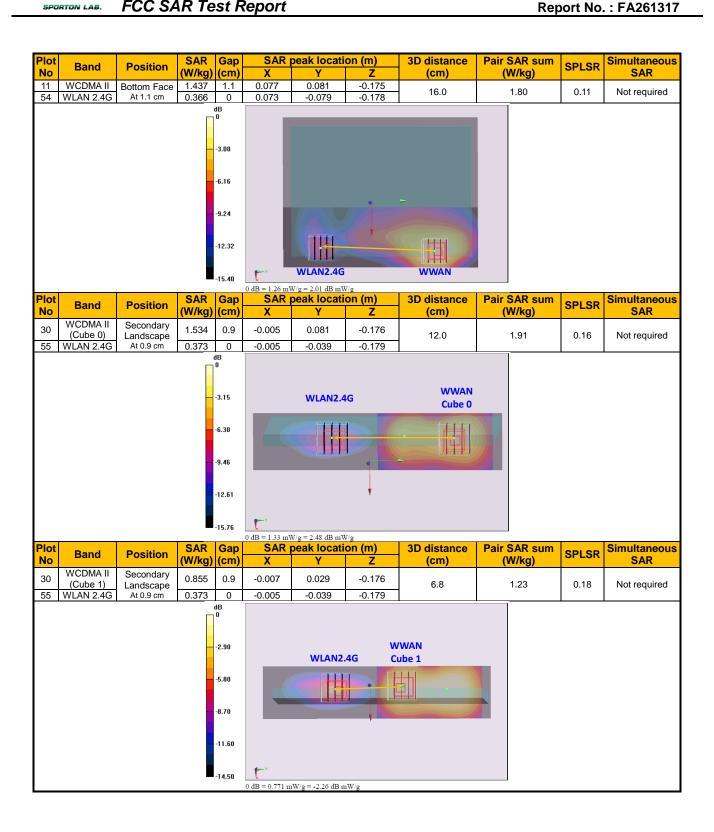
| | ٧ | VWAN | | ١ | WLAN5G | | | Scaled | WWAN | | Scaled |
|-----------------------|-----------|------------|----------------------------|------------|----------------------------|-----------------------|--------------------------|---------------------------|-------------------|--------------------------|-------------------|
| Position | WWAN Band | Plot
No | Max.
WWAN SAR
(W/kg) | Plot
No | Max.
WLAN SAR
(W/kg) | Max. SAR
Summation | Output
Power
(dBm) | Tune-up
Limit
(dBm) | Scaling
Factor | Scaled
WWAN
(W/kg) | WWAN
+
WLAN |
| | GSM850 | 4 | 1.24 | 46 | 0.238 | 1.48 | 25.28 | 25.5 | 1.052 | 1.304 | 1.54 |
| Bottom Face | GSM1900 | 18 | 1.39 | 46 | 0.238 | <mark>1.63</mark> | 27.11 | 27.5 | 1.094 | 1.521 | <mark>1.76</mark> |
| At 0cm | WCDMA V | 5 | 0.982 | 46 | 0.238 | 1.22 | 20.66 | 21.5 | 1.213 | 1.192 | 1.43 |
| | WCDMA II | 14 | 1.21 | 46 | 0.238 | 1.45 | 17.51 | 18.5 | 1.256 | 1.520 | 1.76 |
| | GSM850 | - | 0 | 53 | 0.024 | 0.02 | - | - | - | 0 | 0.02 |
| Secondary
Portrait | GSM1900 | - | 0 | 53 | 0.024 | 0.02 | - | - | - | 0 | 0.02 |
| At 0cm | WCDMA V | - | 0 | 53 | 0.024 | 0.02 | - | - | - | 0 | 0.02 |
| | WCDMA II | - | 0 | 53 | 0.024 | 0.02 | - | - | - | 0 | 0.02 |
| | GSM850 | 36 | 0.677 | - | 0 | 0.68 | 27.48 | 27.5 | 1.005 | 0.680 | 0.68 |
| Primary | GSM1900 | 26 | 0.383 | - | 0 | 0.38 | 29.92 | 30.5 | 1.143 | 0.438 | 0.44 |
| Portrait
At 0cm | WCDMA V | 33 | 0.501 | - | 0 | 0.50 | 23.86 | 24.5 | 1.159 | 0.581 | 0.58 |
| | WCDMA II | 28 | 0.719 | - | 0 | 0.72 | 23.87 | 24.5 | 1.156 | 0.831 | 0.83 |
| | GSM850 | 2 | 0.607 | 50 | 0.76 | 1.37 | 25.29 | 25.5 | 1.050 | 0.637 | 1.40 |
| Secondary | GSM1900 | 23 | 0.868 | 50 | 0.76 | 1.63 | 26.83 | 27.5 | 1.167 | 1.013 | <mark>1.77</mark> |
| Landscape
At 0cm | WCDMA V | 6 | 0.435 | 50 | 0.76 | 1.20 | 20.66 | 21.5 | 1.213 | 0.528 | 1.29 |
| | WCDMA II | 15 | 0.989 | 50 | 0.76 | <mark>1.75</mark> | 17.81 | 18.5 | 1.172 | 1.159 | 1.92 |
| | GSM850 | 34 | 0.41 | 46 | 0.238 | 0.65 | 27.48 | 27.5 | 1.005 | 0.412 | 0.65 |
| Bottom Face | GSM1900 | 24 | 0.508 | 46 | 0.238 | 0.75 | 29.92 | 30.5 | 1.143 | 0.581 | 0.82 |
| At 1.1cm | WCDMA V | 31 | 0.543 | 46 | 0.238 | 0.78 | 23.86 | 24.5 | 1.159 | 0.629 | 0.87 |
| | WCDMA II | 11 | 1.19 | 46 | 0.238 | 1.43 | 23.68 | 24.5 | 1.208 | 1.437 | <mark>1.68</mark> |
| | GSM850 | 35 | 0.227 | 50 | 0.76 | 0.99 | 27.48 | 27.5 | 1.005 | 0.228 | 0.99 |
| Secondary | GSM1900 | 25 | 0.491 | 50 | 0.76 | 1.25 | 29.92 | 30.5 | 1.143 | 0.561 | 1.32 |
| Landscape
At 0.9cm | WCDMA V | 32 | 0.267 | 50 | 0.76 | 1.03 | 23.86 | 24.5 | 1.159 | 0.309 | 1.07 |
| | WCDMA II | 30 | 1.27 | 50 | 0.76 | 2.03 | 23.68 | 24.5 | 1.208 | 1.534 | <mark>2.29</mark> |

Note:

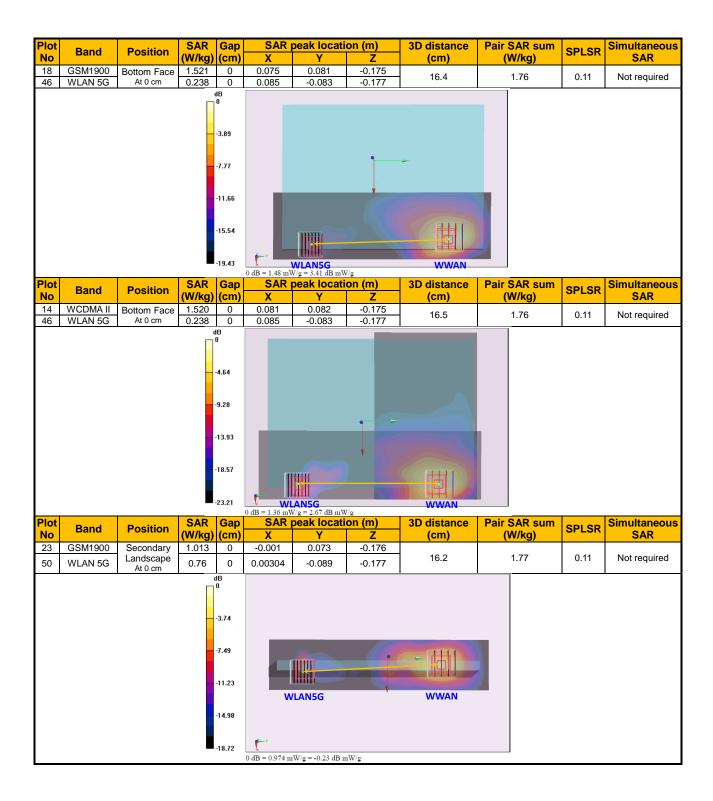

- 1. The maximum 1-g SAR summation is calculated based on the same configuration and test position.
- 2. Bluetooth stand-alone SAR tests are not required and are considered zero in the 1-g SAR summation.
- 3. When stand-alone 1-g SAR is not required for a transmitter or antenna, its SAR is considered zero in the 1-g SAR summing process to determine simultaneous transmission SAR evaluation requirements.
- 4. If 1g-SAR scalar summation < 1.6W/kg, simultaneous SAR measurement is not necessary.
- 5. If 1g-SAR scalar summation > 1.6W/kg, SPLSR calculation is necessary.
- 6. The WWAN scaling factor is calculated according to the difference between measured output power and maximum tolerance power on this device.
- 7. WLAN SAR data at 0mm is applied to distant SAR summation purposes, since it will represent more conservative situation than WLAN SAR data at 11mm and 9mm.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 42 of 51
Report Issued Date : Aug. 01, 2012

Report No. : FA261317

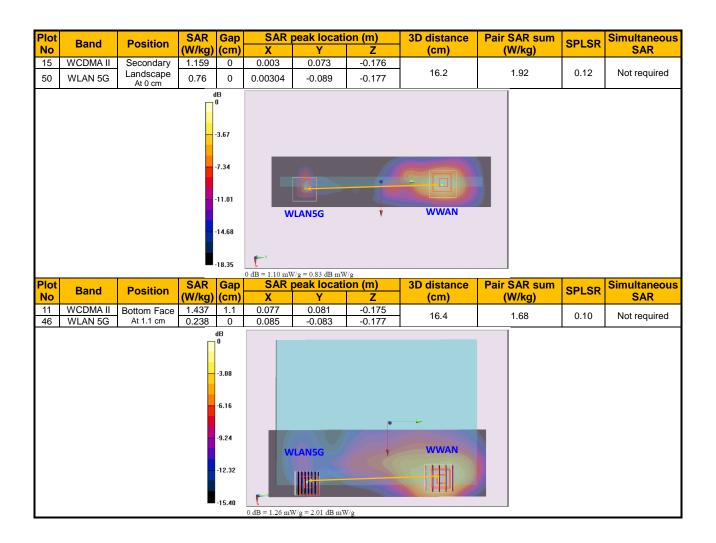


11.3 Simultaneous analysis - SPLSR calculation


TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 43 of 51
Report Issued Date : Aug. 01, 2012
Report Version : Rev. 02

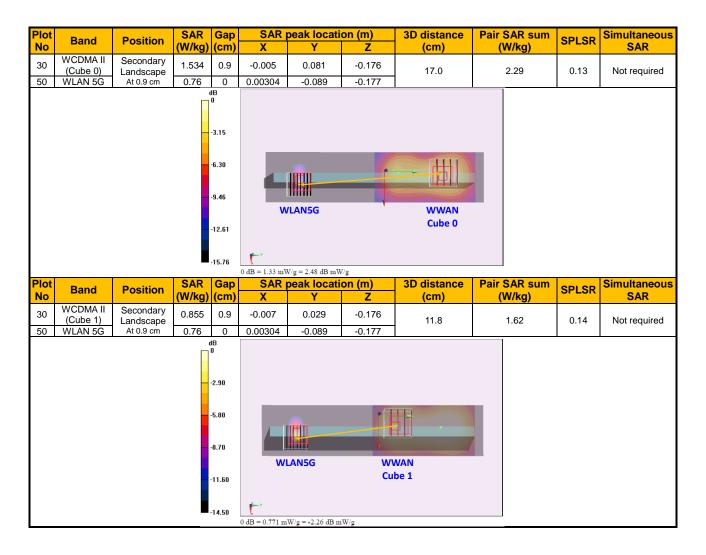
Report No.: FA261317

SPORTON INTERNATIONAL INC.


TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 44 of 51 Report Issued Date: Aug. 01, 2012 Report Version : Rev. 02

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 45 of 51
Report Issued Date : Aug. 01, 2012
Report Version : Rev. 02


Report No.: FA261317

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 46 of 51
Report Issued Date : Aug. 01, 2012
Report Version : Rev. 02

Report No. : FA261317

Report No.: FA261317

Note:

- Scaled WWAN SAR values are applied here. 1.
- 2. Per KDB 447498, if SPLSR < 0.3, simultaneously transmission SAR is not necessary.

Test Engineer: Vic Yang, Bevis Chang and Niels Ouyang

Page Number

Report Version

: 47 of 51

: Rev. 02

Report Issued Date: Aug. 01, 2012

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311

12. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 12.1

| Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape |
|------------------------------------|--------------------|-------------|------------|---------|
| Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 |

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 12.1 Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables:

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 48 of 51
Report Issued Date : Aug. 01, 2012

Report No.: FA261317

| CC SAR Test Report | Report No. : FA261317 |
|--------------------|-----------------------|
|--------------------|-----------------------|

| | Uncertainty | Probability | | Ci | Ci | Standard | Standard | |
|--------------------------------------|-------------|--------------|------------|------|-------|-------------|-------------|--|
| Error Description | Value | Distribution | Divisor | (1g) | (10g) | Uncertainty | Uncertainty | |
| | (±%) | | | | | (1g) | (10g) | |
| Measurement System | | | | | | | | |
| Probe Calibration | 6.0 | Normal | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | |
| Axial Isotropy | 4.7 | Rectangular | $\sqrt{3}$ | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | |
| Hemispherical Isotropy | 9.6 | Rectangular | $\sqrt{3}$ | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | |
| Boundary Effects | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | |
| Linearity | 4.7 | Rectangular | √3 | 1 | 1 | ± 2.7 % | ± 2.7 % | |
| System Detection Limits | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | |
| Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | |
| Response Time | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | |
| Integration Time | 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | |
| RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | |
| RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | |
| Probe Positioner | 0.4 | Rectangular | √3 | 1 | 1 | ± 0.2 % | ± 0.2 % | |
| Probe Positioning | 2.9 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | |
| Max. SAR Eval. | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | |
| Test Sample Related | | | | | | | | |
| Device Positioning | 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | |
| Device Holder | 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | |
| Power Drift | 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | |
| Phantom and Setup | | | | | | | | |
| Phantom Uncertainty | 4.0 | Rectangular | $\sqrt{3}$ | 1 | 1 | ± 2.3 % | ± 2.3 % | |
| Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | |
| Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | |
| Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | |
| Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | |
| Combined Standard Uncertainty | | | | | | ± 11.0 % | ± 10.8 % | |
| Coverage Factor for 95 % | | | | | | K=2 | | |
| Expanded Uncertainty | | | | | | ± 22.0 % | ± 21.5 % | |

Table 12.2 Uncertainty Budget of DASY for frequency range 300 MHz to 3 GHz

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 49 of 51 Report Issued Date: Aug. 01, 2012

| CC SAR Test Report | Report No. : FA261317 |
|--------------------|-----------------------|
|--------------------|-----------------------|

| | Uncertainty | Probability | | Ci | Ci | Standard | Standard |
|-------------------------------|-------------|--------------|------------|------|-------|-------------|-------------|
| Error Description | Value | Distribution | Divisor | (1g) | (10g) | Uncertainty | Uncertainty |
| | (±%) | | | | | (1g) | (10g) |
| Measurement System | | | | | | | |
| Probe Calibration | 6.55 | Normal | 1 | 1 | 1 | ± 6.55 % | ± 6.55 % |
| Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % |
| Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % |
| Boundary Effects | 2.0 | Rectangular | √3 | 1 | 1 | ± 1.2 % | ± 1.2 % |
| Linearity | 4.7 | Rectangular | √3 | 1 | 1 | ± 2.7 % | ± 2.7 % |
| System Detection Limits | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % |
| Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % |
| Response Time | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % |
| Integration Time | 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % |
| RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % |
| RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % |
| Probe Positioner | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % |
| Probe Positioning | 9.9 | Rectangular | √3 | 1 | 1 | ± 5.7 % | ± 5.7 % |
| Max. SAR Eval. | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % |
| Test Sample Related | | | | | | | |
| Device Positioning | 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % |
| Device Holder | 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % |
| Power Drift | 5.0 | Rectangular | $\sqrt{3}$ | 1 | 1 | ± 2.9 % | ± 2.9 % |
| Phantom and Setup | | | | | | | |
| Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % |
| Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % |
| Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % |
| Liquid Permittivity (Target) | 5.0 | Rectangular | $\sqrt{3}$ | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % |
| Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % |
| Combined Standard Uncertainty | | | | | | ± 12.8 % | ± 12.6 % |
| Coverage Factor for 95 % | | | | | | K=2 | |
| Expanded Uncertainty | | | | | | ± 25.6 % | ± 25.2 % |

Table 12.3 Uncertainty Budget of DASY for frequency range 3 GHz to 6 GHz

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311

: 50 of 51 Page Number Report Issued Date: Aug. 01, 2012

13. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", June 2001
- [5] SPEAG DASY System Handbook
- [6] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007
- [7] FCC KDB 447498 D01 v04, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", November 2009
- [8] FCC KDB 616217 D03 v01, "SAR Evaluation Considerations for Laptop/Notebook/Netbook and Tablet Computers", November 2009
- [9] FCC KDB 941225 D01 v02, "SAR Measurement Procedures for 3G Devices CDMA 2000 / Ev-Do / WCDMA / HSDPA / HSPA", October 2007
- [10] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS / EDGE", December 2008
- [11] FCC KDB 941225 D04 v01, "Evaluating SAR for GSM/(E)GPRS Dual Transfer Mode", January 27 2010
- [12] FCC KDB 941225 D05 v01, "SAR Test Considerations for LTE Handsets and Data Modems", December 2010
- [13] FCC KDB 941225 D07 01, "SAR Evaluation Procedure for UMPC Mini-Tablet Devices", April 2011
- [14] FCC KDB 388624 D02, "Permit But Ask List", December 2011.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : 51 of 51
Report Issued Date : Aug. 01, 2012

Report No. : FA261317

Appendix A. Plots of System Performance Check

The plots are shown as follows.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : A1 of A1
Report Issued Date : Aug. 01, 2012

Report No. : FA261317

Appendix B. Plots of SAR Measurement

The plots are shown as follows.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : B1 of B1
Report Issued Date : Aug. 01, 2012

Report No. : FA261317

Appendix C. DASY Calibration Certificate

The DASY calibration certificates are shown as follows.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: AK8SGPT1311 Page Number : C1 of C1
Report Issued Date : Aug. 01, 2012

Report No. : FA261317