

Teddington Middlesex UK TW11 0LW Telephone +44 20 8977 3222

Certificate of Calibration

SAR PROBE

IndexSAR

Model: IXP-030 Serial number: M0024

This certificate provides traceability of measurement to recognised national standards, and to the units of measurement realised at the National Physical Laboratory or other recognised national standards laboratories. This certificate may not be reproduced other than in full, unless permission for the publication of an approved extract has been obtained in writing from the Managing Director. It does not of itself impute to the subject of calibration any attributes beyond those shown by the data contained herein.

FOR:.

CETECOM Inc.

411 Dixon Landing Road

Milpitas

California 95035

USA

Order number: PO000000000001200

DESCRIPTION:

An IndexSAR isotropic electric field probe for determining specific absorption rates (SAR) in dielectric liquids. The probe has three orthogonal sensors, and the output voltage of the sensors is converted to an optical signal by a meter unit containing an analogue to digital (AD) converter. Probe readings are obtained using software via the RS232 port. The probe was calibrated with IndexSAR amplifier

model IXA-010 S/N 036 belonging to NPL.

IDENTIFICATION:

The probe is marked with the manufacturer's serial number M0024

MEASUREMENTS COMPLETED ON:

11 March 2008

PREVIOUS NPL CERTIFICATE:

None

The reported uncertainty is based on a coverage factor k = 2, providing a level of confidence of approximately 95%

Reference: E08010103

Page 1 of 4

Date of Issue: 12 March 2008

Signed: DG Gentll (Authorised Signatory)

Checked by: Blek

Name: Mr D G Gentle

for Managing Director

Continuation Sheet

MEASUREMENT PROCEDURE

The calibration method is based on establishing a calculable specific absorption rate (SAR) using a matched waveguide cell [1]. The cell has a feed-section and a liquid-filled section separated by a matching window that is designed to minimise reflections at the interface. A TE_{01} mode is launched into the waveguide by means of a N-type-to-waveguide adapter. The power delivered to the liquid is calculated from the forward power and reflection coefficient measured at the input to the cell. At the centre of the cross-section of the waveguide cell, the volume specific absorption rate (SAR^{V}) in the liquid as a function of distance from the window is given by

$$SAR^{V} = \frac{4(P_{w})}{ab\delta}e^{-2Z/\delta} \tag{1}$$

where

a = the larger cross-sectional dimension of the waveguide.

b = the smaller cross-sectional dimension of the waveguide.

 δ = the skin depth for the liquid in the waveguide.

Z = the distance of the probe's sensors from the liquid to matching window boundary.

 P_w = the power delivered to the liquid.

Liquids having the properties specified by British and IEEE Standards [2, 3] and FCC guidelines [4] were used for the calibration. The value of δ for the liquid was obtained by measuring the electric field (E) at a number of distances from the matching window. The calibration was for continuous wave (CW) signals, and the axis of the probe was parallel to the direction of propagation of the incident field i.e. end-on to the incident radiation. The probe was rotated about its axis in 15-degree steps, and the ratio of the calibration factors for the three probe sensors X, Y, & Z were optimized to give the best axial isotropy.

The probe was calibrated with the linearisation and air-correction factors enabled. Comparing the measured values of E^2 in the liquid to those calculated for the waveguide cell allows the ratio, ConvF, of sensitivity for $(E^2_{LIQUID}) / (E^2_{AIR})$ to be determined, as required by the probe software.

ENVIRONMENT

Measurements were made in a temperature-controlled laboratory at 22 ± 1 °C. The temperature of the liquid used was measured at the beginning and end of each measurement.

Reference : E08010103 Page 2 of 4

Date of Issue: 12 March 2008

Checked by: BUL.

Continuation Sheet

UNCERTAINTIES

The estimated uncertainty in calibration for SAR (W kg⁻¹) is \pm 10 %. The reported uncertainty

is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of

confidence of approximately 95%.

This uncertainty is valid when the probe is used in a liquid with the same dielectric properties

as those used for the calibration. No estimate is made for the long-term stability of the device

calibrated or of the fluids used in the calibration.

When using the probe for SAR testing, additional uncertainties should be added to account for

the spherical isotropy of the probe, proximity effects, linearity, and response to pulsed fields.

There will be additional uncertainty if the probe is used in liquids having significantly

different electrical properties to those used for the calibration. The electrical properties of the

liquids will be related to temperature.

RESULTS

Table 1 gives the results for the calibration in liquid and the air factors.

These calibration factors are only correct when the values for sensitivity in free-space,

diode compression and sensor offset from the tip of the probe, as set in the probe

software, are the same as those given in the Table.

REFERENCES:

[1] Pokovic, KT, T.Schmid and N.Kuster, "Robust set-up for Precise Calibration of E-field

probes in Tissue Simulating Liquids at Mobile Phone Frequencies", Proceedings ICECOM

1997, pp 120 – 124, Dubrovnik, Croatia Oct 12-17, 1997.

[2] British Standard BS EN 503361:2001. "Basic standard for the measurement of specific

absorption rate related to human exposure to electromagnetic fields from mobile phones

(300 MHz - 3 GHz)".

[3] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-

Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless

Communications Devices: Measurement Techniques".

[4] FCC-OET Bulletin 65 (97-01) "Evaluating Compliance with FCC Guidelines for Human

Exposure to Radiofrequency Electromagnetic Fields", D. L. Means, K. W. Chan, June 2001.

Reference: E08010103

Page 3 of 4

Date of Issue: 12 March 2008

Checked by: 136/.

Continuation Sheet

Table 1 Sensitivity in Liquids. SAR probe: IXP-030

S/N M0024

Probe settings for calibration						
Sensitivity in free-space ⁽⁴⁾	Diode Compression ⁽¹⁾	Sensor offset from tip of probe ⁽¹⁾				
Lin X = $411.50 (V/m)^2/(V*200)$	$DCP_X = 20 (V*200)$					
Lin Y = $320.07 (V/m)^2/(V*200)$	$DCP_{Y} = 20 (V*200)$	1.7 mm				
Lin Z = $275.84 \text{ (V/m)}^2/\text{(V*200)}$	DCP $_{\rm Z}$ = 20 (V*200)					

Sensitivity in Liquid.

Calibration	Liquid ⁽²⁾		Calibration Factors for			Axial	
frequency				E ² Liquid / E ² Air			Isotropy
(MHz)	Identifier	ε' ⁽³⁾	σ (3)	$ConvF_{X}$	$ConvF_{Y}$	$ConvF_{Z}$	(dB)
			(Sm ⁻¹)				
850	TWS900B-1	56.8	0.97	2.35	2.57	3.24	±0.01
850	UOB900H-1	42.7	0.96	2.32	2.55	3.17	±0.04
900	TWS900B-1	56.6	1.00	2.34	2.58	3.25	±0.03
900	UOB900H-1	42.4	1.00	2.35	2.57	3.21	±0.13
1800	TWS1800B-2	53.7	1.58	2.69	3.00	3.74	±0.02
1800	TWS1800H-1	40.2	1.40	2.60	2.86	3.68	±0.03
1900	TWS1800B-2	53.3	1.68	2.69	3.02	3.76	±0.04
1900	NPL1950MHz	39.7	1.48	2.58	2.89	3.62	±0.06
2450	TWS2450B-1	53.5	2.02	2.90	3.21	4.05	±0.01
2450	TWS2450H-3	37.9	1.85	2.63	3.03	3.78	±0.03
5200	NPL5-6B-1	49.3	5.28	3.46	3.82	4.87	±0.14
5200	UOB5-6H-1	35.2	4.81	2.92	3.27	3.99	±0.11
5800	NPL5-6B-1	47.3	6.20	3.21	3.56	4.43	±0.12
5800	UOB5-6H-1	33.7	5.43	2.95	3.29	4.17	±0.08

Page 4 of 4

Notes.

Date of Issue: 12 March 2008

Checked by: Blok.

Reference : E08010103

⁽¹⁾ The manufacturer supplied these figures.

⁽²⁾ Head or Muscle Simulating Liquid supplied by NPL.

 $^{^{(3)}}$ Measured at NPL at 22 ± 1 °C.

 $^{^{\}rm (4)}$ Measured at NPL in a Field Strength of 30 V/m at 900 MHz.