

RF EXPOSURE REPORT

REPORT NO.: SA110617D07B

MODEL NO.: PCG-41218L

APPLICANT: SONY Corporation

ADDRESS: 1-7-1 Konan Minato-ku Tokyo, 108-0075 Japan

ISSUED BY: Bureau Veritas Consumer Products Services

(H.K.) Ltd., Taoyuan Branch

LAB LOCATION: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou

Hsiang, Taipei Hsien, 244 Taiwan

This test report consists of 6 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced, except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval or endorsement by any government agency. The test results in the report only apply to the tested sample.

Report No.: SA110617D07B 1 Report Format Version 4.0.0

TABLE OF CONTENTS

RELE	EASE CONTROL RECORD	3
	CERTIFICATION	
2.	RF EXPOSURE LIMIT	5
	MPE CALCULATION FORMULA	
	CLASSIFICATION	
	CALCULATION RESULT OF MAXIMUM CONDUCTED POWER	_

RELEASE CONTROL RECORD

ISSUE NO. REASON FOR CHANGE		DATE ISSUED	
SA110617D07B	Original release	Jul. 22, 2011	

1. CERTIFICATION

PRODUCT: Personal Computer

BRAND NAME: SONY

MODEL NO.: PCG-41218L

APPLICANT: SONY Corporation

TESTED: Jun. 22 ~ 30, 2011

TEST SAMPLE: FNGINFFRING SAMPLE

STANDARDS: FCC Part 2 (Section 2.1091)

FCC OET Bulletin 65, Supplement C (01-01)

IEEE C95.1

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Annie Chang, DATE: Jul. 22.2011

(Annie Chang / Senior Specialist)

Liu, DATE: Jul. 22.2011

2. RF EXPOSURE LIMIT

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

FREQUENCY RANGE (MHz)	ELECTRIC FIELD STRENGTH (V/m)	MAGNETIC FIELD STRENGTH (A/m)	POWER DENSITY (mW/cm²)	AVERAGE TIME (minutes)			
LIMITS FOR GENERAL POPULATION / UNCONTROLLED EXPOSURE							
300-1500			F/1500	30			
1500-100,000			1.0	30			

F = Frequency in MHz

3. MPE CALCULATION FORMULA

Pd = (Pout*G) / (4*pi*r2)

where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

4. CLASSIFICATION

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. So, this device is classified as **Mobile Device**.

5. CALCULATION RESULT OF MAXIMUM CONDUCTED POWER

FOR WLAN:

MODULATION MODE	FREQUENCY BAND (MHz)	MAX CONDUCTED POWER (dBm)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
802.11b	2412-2462	18.8	1.74	20	0.0225	1.00
802.11g	2412-2462	23.5	1.74	20	0.0665	1.00
802.11n (20MHz)	2412-2462	23.4	1.74	20	0.0650	1.00
802.11n (40MHz)	2422-2452	22.9	1.74	20	0.0579	1.00

FOR BLUETOOTH:

FREQUENCY BAND (MHz)	MAX POWER (dBm)	MAXIMUM ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
2402-2480	3.6	2.90	20	0.0009	1.00

FOR WiMax:

FREQUENCY BAND (MHz)	EIRP(dBm)	DISTANCE(cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
2498.5 ~ 2687.5	26.1	20	0.081	1.00

CONCULSION:

Both of the modules can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

1. WLAN (2.4G) + BLUETOOTH + WiMax = 0.0665/1 + 0.0009/1 + 0.081/1 = 0.1484

Therefore, the maximum calculation of this situation is 0.1584, which is less than the "1" limit.