

Report No. SN228_0902 13th February 2009

INDEXSAR 2450 MHz Validation Dipole Type IXD-245 S/N 228

Performance measurements

Dr Tony Brinklow

Indexsar, Oakfield House, Cudworth Lane,
Newdigate, Surrey RH5 5BG. UK.

Tel: +44 (0) 1306 632 870 Fax: +44 (0) 1306 631 834

E-mail: enquiries@indexsar.com

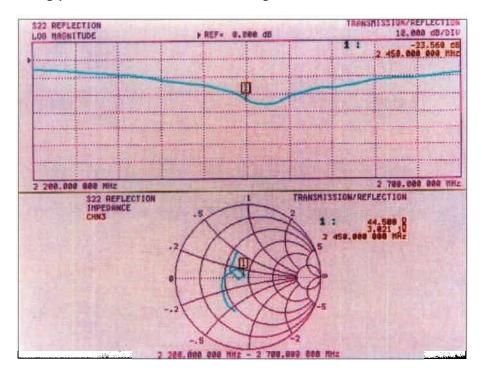
1. Measurement Conditions

Measurements were performed using a box-shaped phantom made of PMMA with dimensions designed to meet the accuracy criteria for reasonably-sized phantoms that do not have liquid capacities substantially in excess of the volume of liquid required to fill the Indexsar upright SAM phantoms used for SAR testing of handsets against the ear. The wall thickness was 2mm.

An Anritsu MS4623B vector network analyser was used for the return loss measurements. The dipole was placed in a special holder made of low-permittivity, low-loss materials. This holder enables the dipole to be positioned accurately in the centre of the wall of the Indexsar box-phantom used for flat-surface testing and validation checks.

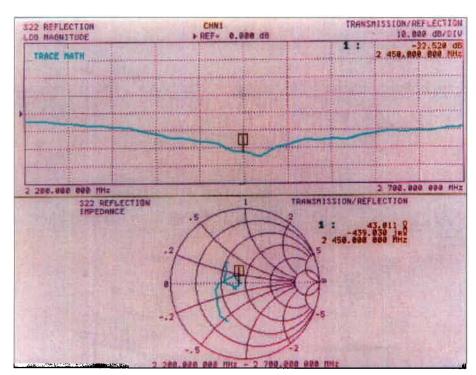
The validation dipoles are supplied with special spacers made from a low-permittivity, low-loss foam material. These spacers are fitted to the dipole arms to ensure that, when the dipole is offered up to the phantom surface, the spacing between the dipole and the liquid surface is accurately aligned according to the guidance in the relevant standards documentation [1]. The spacers are rectangular with a central hole equal to the dipole arm diameter and dimensioned so that the longer side can be used to ensure a spacing of 15mm from the liquid in the phantom (for tests at 1000MHz and below) and the shorter side can be used for tests at 1000MHz and above to ensure a spacing of 10mm from the liquid in the phantom. The spacers are made on a CNC milling machine with an accuracy of 1/40th mm but they may suffer wear and tear and need to be replaced periodically. The material used is Rohacell, which has a relative permittivity of approx. 1.05 and a negligible loss tangent.

The apparatus supplied by Indexsar for dipole validation tests thus includes:


Balanced dipoles for each frequency required are dimensioned according to the guidelines given in IEEE 1528 [1]. The dipoles are made from semi-rigid 50 Ohm co-ax, which is joined by soldering and is gold-plated subsequently. The constructed dipoles are easily deformed, if mis-handled, and periodic checks need to be made of their symmetry.

Rohacell foam spacers designed for presenting the dipoles to 2mm thick PMMA box phantoms. These components also suffer wear and tear and should be replaced when the central hole is a loose-fit on the dipole arms or if the edges are too worn to ensure accurate alignment. The standard spacers are dimensioned for use with 2mm wall thickness (additional spacers are available for 4mm wall thickness).

2. Dipole impedance and return loss


The dipoles are designed to have low return loss ONLY when presented against a lossy-phantom at the specified distance. A Vector Network Analyser (VNA) was used to perform a return loss measurement on the specific dipole when in the measurement-location against the box phantom. The distance was as specified in the standard i.e. 10mm from the liquid (for 2450MHz). The Indexsar foam spacers (described above) were used to ensure this condition during measurement.

The impedance was measured at the SMA-connector with the network analyser. The following parameters were measured against Head fluid:

Dipole impedance at 2450 MHz Re{Z} = 44.5 Ω Im{Z} = 3.0 Ω

Return loss at 2450MHz -23.6 dB

The measurements were also repeated against 2450MHz Body fluid:

Dipole impedance at 2450 MHz Re{Z} = 43.0 Ω Im{Z} = -0.4 Ω

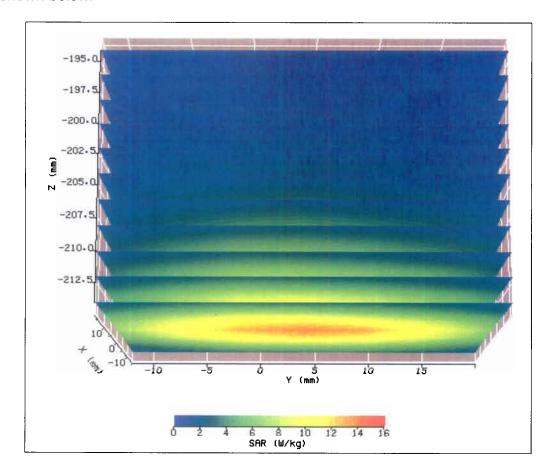
Return loss at 2450MHz -22.5 dB

3. SAR Validation Measurement in Brain Fluid

SAR validation checks have been performed using the dipole and the box-phantom located on the SARA2 phantom support base on the SARA2 robot system. Tests were then conducted at a feed power level of approx. 0.25W. The actual power level was recorded and used to normalise the results obtained to the standard input power conditions of 1W (forward power). A correction factor was also applied to account for transmission loss arising from the dipole's reflection coefficient.

The ambient temperature was 21°C +/- 1°C and the relative humidity was around 35% during the measurements.

The phantom was filled with a 2450MHz brain liquid using a recipe from [1], which has the following electrical parameters (measured using an Indexsar DiLine kit) at 2450MHz at the measurement temperature:


Relative Permittivity 37.96 (Target: 39.2)
Conductivity 1.86 S/m (Target: 1.80 S/m)

SAR specification EN62209-2(2007) [ref 2], in which the validation method is described, specifies how to adjust measured 1g & 10g volume-averaged SAR values to take into account the difference between the fluid's actual and target electrical properties. The correction factors for this combination of properties at 2450MHz equals:

1g: -2.3% 10g: -1.3%

The SARA2 software version 2.54 VPM was used with Indexsar IXP_050 probe Serial Number 0127 previously calibrated using waveguides.

The 3D measurement made using the dipole at the bottom of the phantom box is shown below:

SAR measurement standard 62209-1 [ref 2] tabulates the volume-averaged 1g and 10g SAR values over a range of frequencies up to 3000MHz. The following values are listed for 2450MHz:

	SAR values (W/kg) (Normalised to 1W feed power)
1g SAR	52.4
10g SAR	24.0

The validation results, also normalised to an input power of 1W (forward power) were:

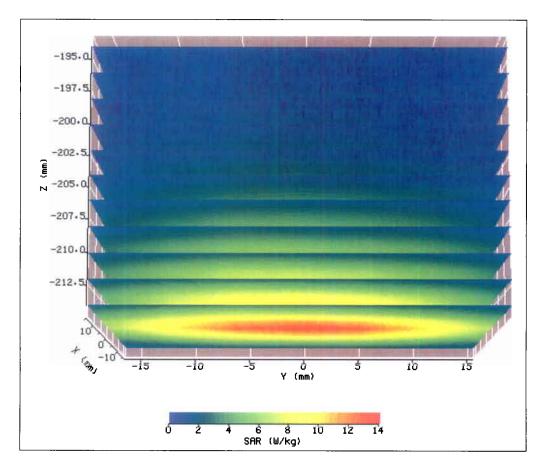
	Measured SAR values (W/kg) (Normalised to 1W feed power)	% Deviation from Standard
1g SAR	52.3	-0.3%
10g SAR	24.1	+0.5%

4. SAR Measurement in Body Fluid

SAR validation checks are only defined in the standard against brain simulant fluid. Nonetheless, it is possible to measure the effective volume-averaged SAR values against body fluid, simply to provide a reference value.

The ambient temperature was 21°C +/- 1°C and the relative humidity was around 32% during the measurements.

The phantom was filled with a 2450MHz body liquid using a recipe from [1], which has the following electrical parameters (measured using an Indexsar DiLine kit) at 2450MHz at the measurement temperature:


Relative Permittivity 52.55 (Target: 52.7)
Conductivity 2.10 S/m (Target: 1.95 S/m)

The correction factors for this combination of properties at 2450MHz equals:

1g: -3.6% 10g: -2.0%

The SARA2 software version 2.54 VPM was used with Indexsar IXP_050 probe Serial Number 0127 previously calibrated using waveguides.

The 3D measurement made using the dipole at the bottom of the phantom box is shown below:

The validation results, also normalised to an input power of 1W (forward power) were:

	Measured SAR values (W/kg) (Normalised to 1W feed power)	% Deviation from Standard
1g SAR	50.17	N/A
10g SAR	23.50	N/A

5. Dipole handling

The dipoles are made from standard, copper-sheathed coaxial cable. In assembly, the sections are joined using ordinary soft-soldering. This is necessary to avoid excessive heat input in manufacture, which would destroy the polythene dielectric used for the cable. The consequence of the construction material and the assembly technique is that the dipoles are fragile and can be deformed by rough handling. Conversely, they can be straightened quite easily as described in this report.

If a dipole is suspected of being deformed, a normal workshop lathe can be used as an alignment jig to restore the symmetry. To do this, the dipole is first placed in the headstock of the lathe (centred on the plastic or brass spacers) and the headstock is rotated by hand (do NOT use the motor). A marker (lathe tool or

similar) is brought up close to the end of one dipole arm and then the headstock is rotated by 0.5 rev. to check the opposing arm. If they are not balanced, judicious deformation of the arms can be used to restore the symmetry.

If a dipole has a failed solder joint, the dipole can be fixed down in such a way that the arms are co-linear and the joint re-soldered with a reasonably-powerful electrical soldering iron. Do not use gas soldering irons. After such a repair, electrical tests must be performed as described below.

Please note that, because of their construction, the dipoles are short-circuited for DC signals.

6. Tuning the dipole

The dipole dimensions are based on calculations that assumed specific liquid dielectric properties. If the liquid dielectric properties are somewhat different, the dipole tuning will also vary. A pragmatic way of accounting for variations in liquid properties is to 'tune' the dipole (by applying minor variations to its effective length). For this purpose, Indexsar can supply short brass tube lengths to extend the length of the dipole and thus 'tune' the dipole. It cannot be made shorter without removing a bit from the arm. An alternative way to tune the dipole is to use copper shielding tape to extend the effective length of the dipole. Do both arms equally.

It should be possible to tune a dipole as described, whilst in place in the measurement position as long as the user has access to a VNA for determining the return loss.

7. References

- [1] IEEE Std 1528-2003. IEEE recommended practice for determining the peak spatial-average specific absorption rate (SAR) in the human body due to wireless communications devices: Measurement Techniques Description.
- [2] BS EN 62209-1:2006 Human exposure to radio frequency fields from handheld and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- [3] BS EN 62209-2:2007 Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices Human models, Instrumentation, and Procedures Part 2: Procedure to determine the specific absorption rate (SAR) for mobile wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)