

Test Report

Prepared for: Icom Inc

Model: IC-A220

Description: Aviation Radio

Serial Number: 6100302

FCC ID: AFJ297420 IC ID: 202D-297420

То

FCC Part 87

ISED RSS-141 Issue 2

Date of Issue: May 7, 2025

On the behalf of the applicant: Icom Incorporated

1-1-32 Kamiminami

Hirano-ku

Osaka, 547-0003

Japan

Attention of: Tatsuo Yano, General Manager of QA Department.

Ph: +81 66793-5301

E-Mail: isales@icom.com

Prepared by Compliance Testing, LLC 1724 S. Nevada Way Mesa, AZ 85204

(480) 926-3100 phone / (480) 926-3598 fax

www.compliancetesting.com

Project No: p1120005

John Michalowicz
Project Test Engineer

Test Results Summary

Specification		Test Name	Pass, Fail, N/A	Comments
2.1046, 87.131	RSS 141 Section 4.1	Carrier Output Power (Conducted)	Pass	
2.1051, 87.139(i)(1)	RSS 141 Section 5.2	Unwanted Emissions (Transmitter Conducted)	Pass	
2.1053	RSS 141 Section 5.2	Field Strength of Spurious Radiation	Pass	
2.1049, 87.139(i)(3)	RSS 141 Section 5.2	Emission Masks (Occupied Bandwidth)	Pass	
2.1047	NA	Audio Low Pass Filter (Voice Input)	Pass	
2.1047	NA	Audio Frequency Response	Pass	
2.1047	NA	Modulation Limiting	Pass	
2.1055, 87.133(a)	RSS 141 Section 5.1	Frequency Stability (Temperature Variation)	Pass	
2.1055, 87.133(a)	RSS 141 Section 5.1	Frequency Stability (Voltage Variation)	Pass	

Statements of conformity are reported as:

- Pass the measured value is below the acceptance limit, acceptance limit = test limit.
- Fail the measured value is above the acceptance limit, acceptance limit = test limit.

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	May 7, 2025	John Michalowicz	Original Document
2.0	May 27, 2025	John Michalowicz	Updated report with ISED Canda information

Table of Contents

<u>Description</u>	<u>Page</u>
Test Results Summary	2
Standard Test Conditions Engineering Practices	6
Carrier Output Power (Conducted)	8
Transmitter Antenna Power Spurious/Conduced Emissions	15
Emission Masks (Occupied Bandwidth)	19
Audio Low Pass Filter (Voice Input)	23
Audio Frequency Response	25
Modulation Limiting	27
Frequency Stability (Temperature Variation)	30
Frequency Stability (Voltage Variation)	31
Test Equipment Utilized	32

ANAB

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to the joint ISO-ILAC-IAF Communiqué dated January 2009).

The tests results contained within this test report all fall within our scope of accreditation, unless noted below.

Please refer to http://www.compliancetesting.com/labscope.html for current scope of accreditation.

FCC Site Reg. #349717

IC Site Reg. #2044A-2

Standard Test Conditions Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts: FCC Part 87.

Measurement results, unless otherwise noted, are worst-case measurements.

Environmental Conditions					
Temperature (ºC)	Humidity (%)	Pressure (mbar)			
24.6 – 27.4	23.6 – 28.0	963.1 - 972.3			

EUT Description Model: IC-A220

Description: Aviation Radio

Firmware: NA Software: NA

Serial Number: 6100302

Additional Information: The EUT was powered with a DC power supply with 27.5 Vdc. This report is intended

to support the C2PC that the manufacturer is pursuing.

EUT Operation during Tests

The EUT was placed into a constant transmit mode using the manufacturer supplied test board

Accessories:

Qty	Description	Manufacturer	Model	S/N
1	Test Board	Icom	NA	NA

Cables:

Qty	Description	Length (M)	Shielding Y/N	Shielded Hood Y/N	Termination
1	Multi pin	<1m	N	N	NA

Modifications: None

Carrier Output Power (Conducted)

Engineer: John Michalowicz

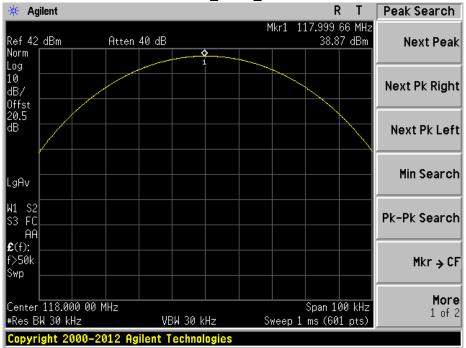
Test Date: 4/23/25

Test Procedure

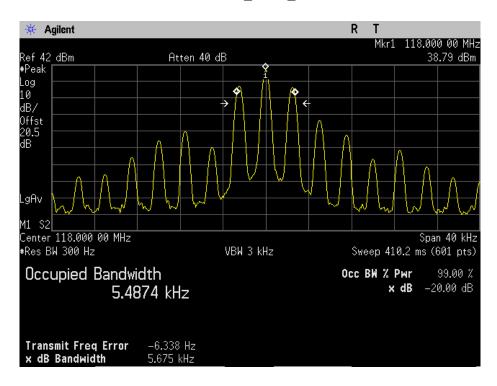
The Equipment Under Test (EUT) was connected directly to a spectrum analyzer with the RBW set to greater than the OBW and the VBW set to 3 X RBW which set the RBW greater than the transmit signal ensuring there was no signal suppression while measuring a modulated signal. The peak readings were taken for each channel spacing and the result was then compared to the limit.

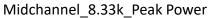
Test Setup

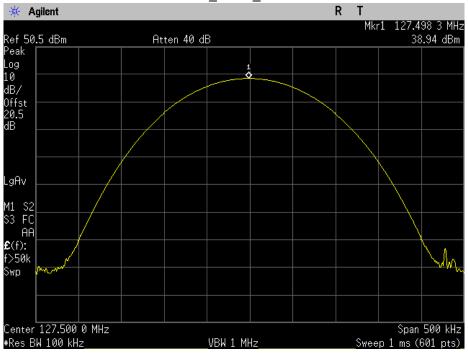
8.33k Transmitter Peak Output Power


Tuned Frequency (MHz)	OCBW (kHz)	Measured Power (dBm)	Measured Power (W)	Limit (W)	Result
118	5.487	38.87	7.709	60	Pass
127.5	5.480	38.94	7.834	60	Pass
136.99	5.483	38.94	7.834	60	Pass

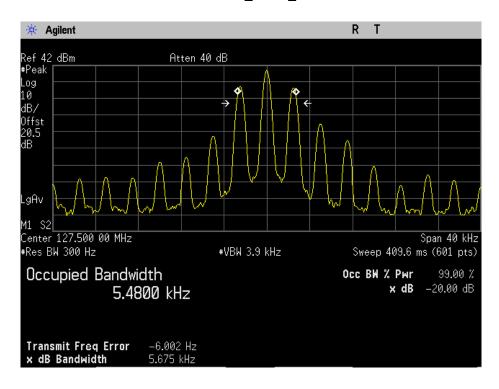
25k Transmitter Peak Output Power

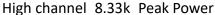

Tuned Frequency (MHz)	OCBW (kHz)	Measured Power (dBm)	Measured Power (W)	Limit (W)	Result
118.025	5.490	39.0	7.943	60	Pass
127.5	5.480	39.03	7.998	60	Pass
136.975	5.493	38.97	7.888	60	Pass

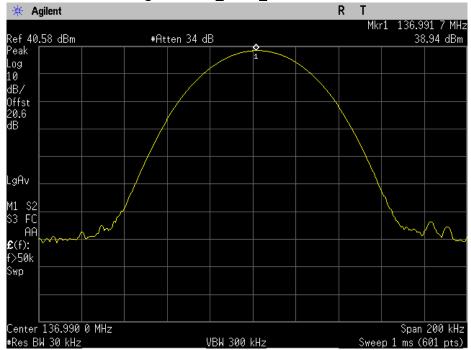

Low channel 8.33k Peak Power



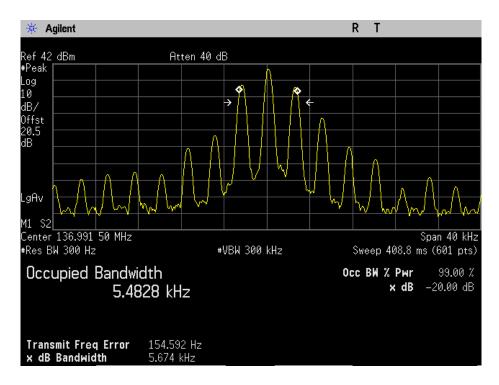
Low channel_8.33k_OCBW

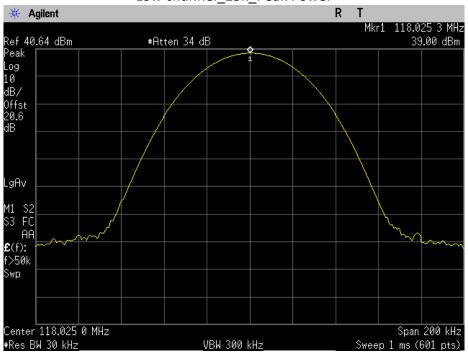




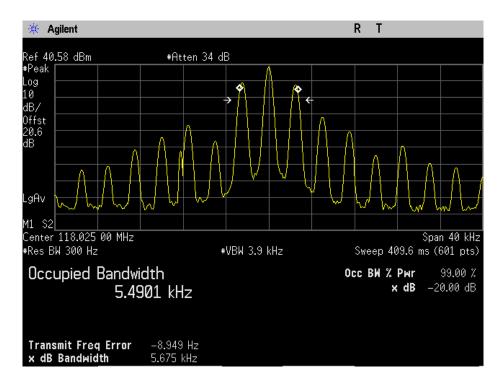


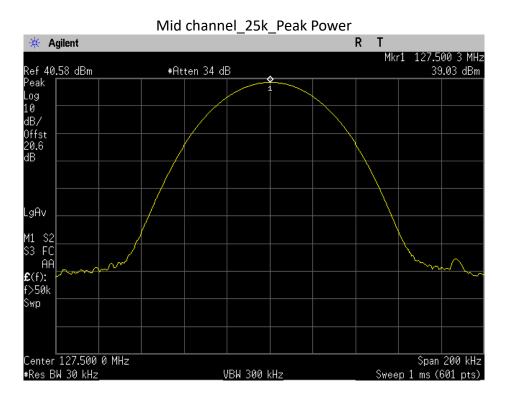
Mid channel_8.33k_OCBW

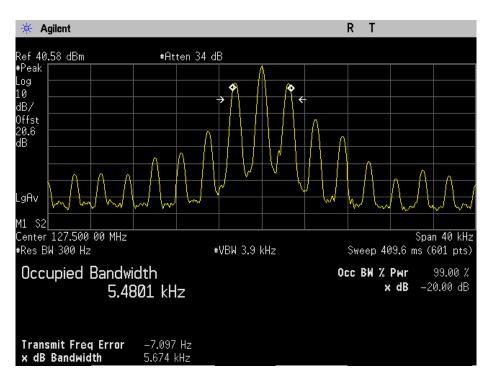


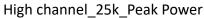


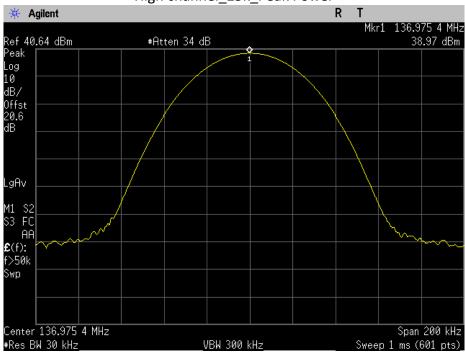
High channel_8.33k_OCBW



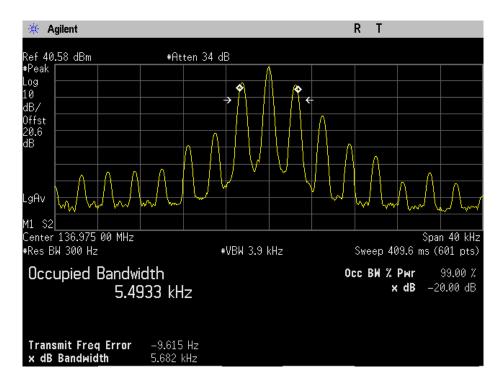



Low channel_25k_OCBW



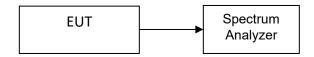


Mid channel_25k_OCBW

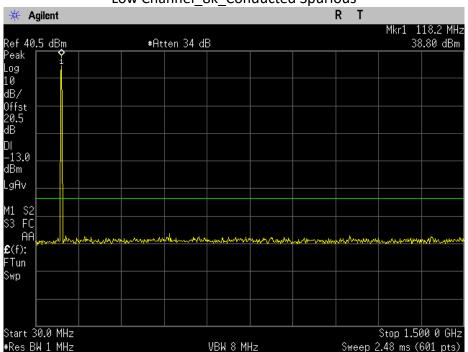


High channel_25k_OCBW

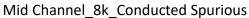
Transmitter Antenna Power Spurious/Conduced Emissions

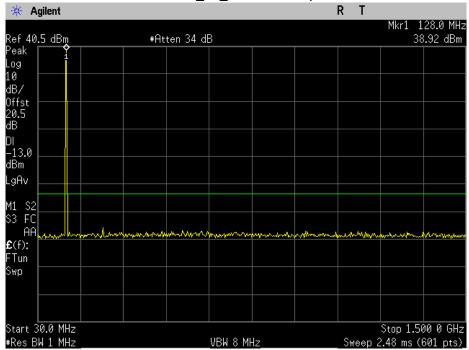

Engineer: John Michalowicz

Test Date: 4/23/25

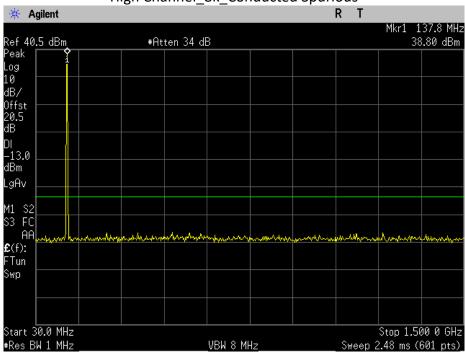

Test Procedure

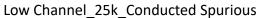
The EUT was connected directly to a spectrum analyzer to verify that the UUT met the requirements for spurious emissions. The RBW was set according to the requirements of 87.139 (a)(3).

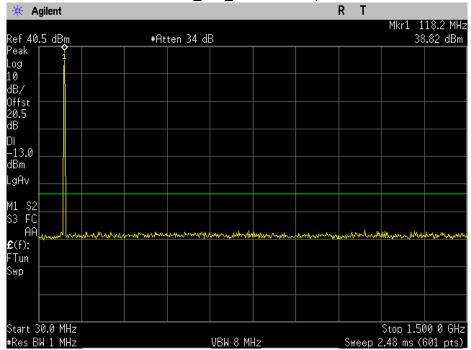

Test Setup



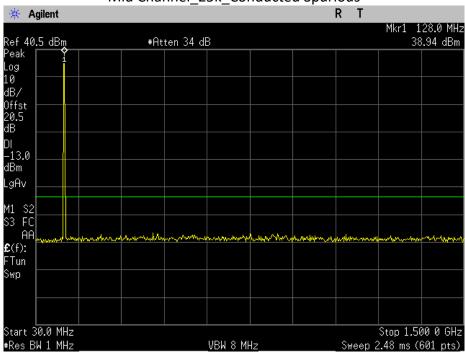
Low Channel_8k_Conducted Spurious

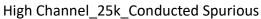


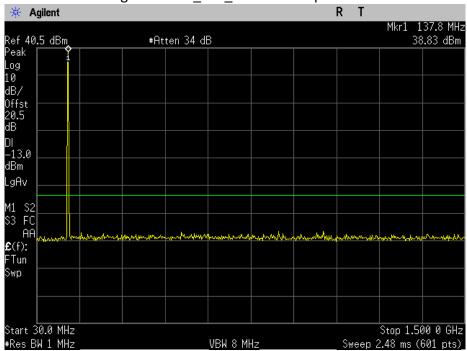




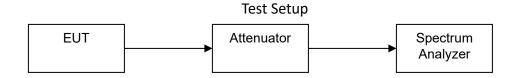
High Channel_8k_Conducted Spurious

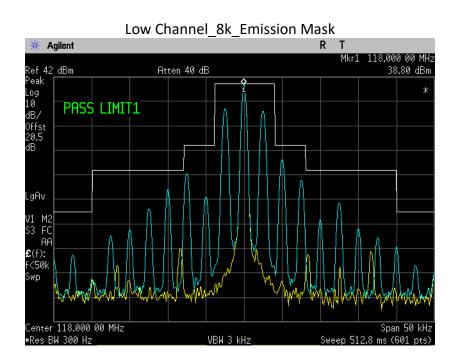




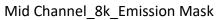


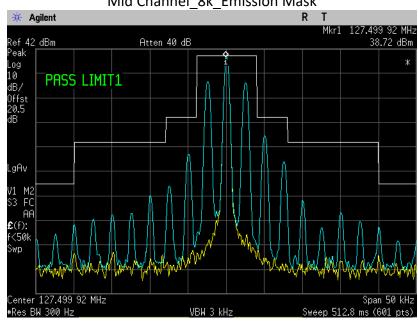
Mid Channel_25k_Conducted Spurious

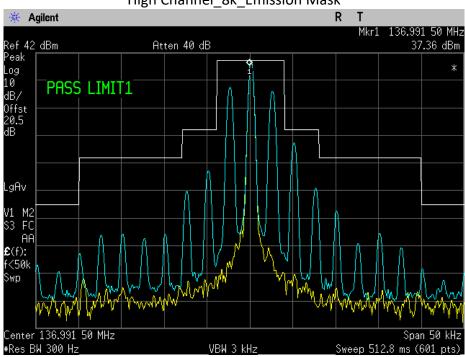

Emission Masks (Occupied Bandwidth)

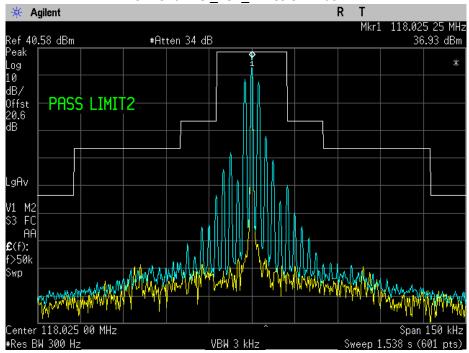

Engineer: John Michalowicz

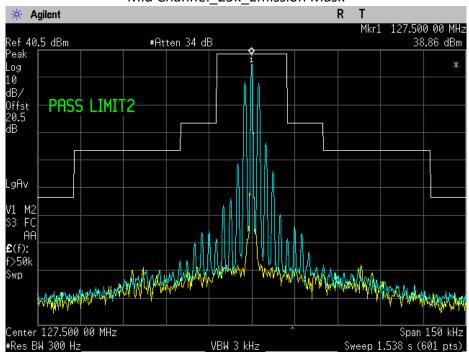
Test Date: 4/23/25


Test Procedure

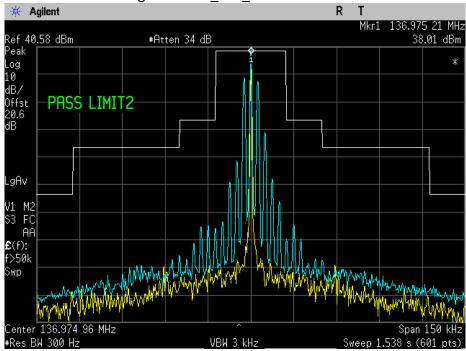

The EUT was connected directly to a spectrum analyzer to verify that the EUT meets the required emissions mask. A reference level plot is provided to verify that the peak power was established prior to testing the mask. The transmitter is digital modulation therefore no data input is required to measure the emission mask. The RBW was set as close as possible to 1% of the occupied bandwidth to ensure accurate readings.

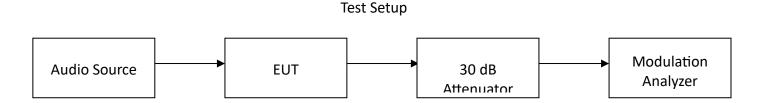




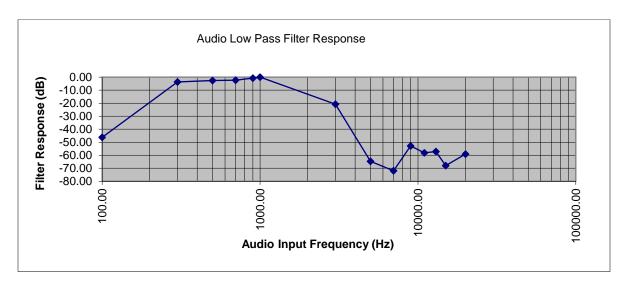


Low Channel_25k_Emission Mask

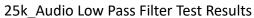



Audio Low Pass Filter (Voice Input)

Engineer: JohnMichalowicz


Test Date: 05/03/25

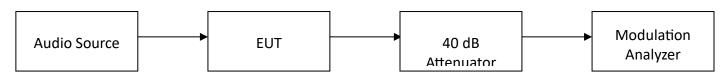
Measurement Procedure


The EUT was connected directly to a modulation analyzer through an attenuator. The audio source was tuned across the required audio frequency range and the audio low pass filter response was measured and plotted. The modulation analyzer is a real time spectrum analyzer with integrated demodulation, audio measurement capabilities, and timing analysis.

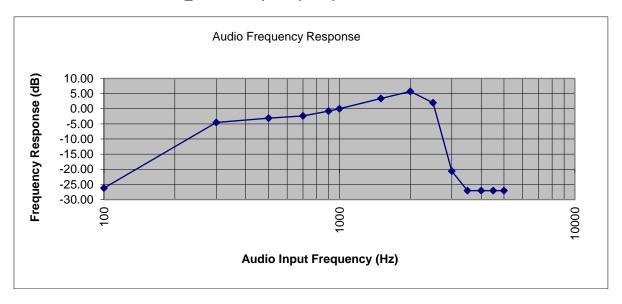


8.3k Audio Low Pass Filter Test Results

Audio Frequency Response

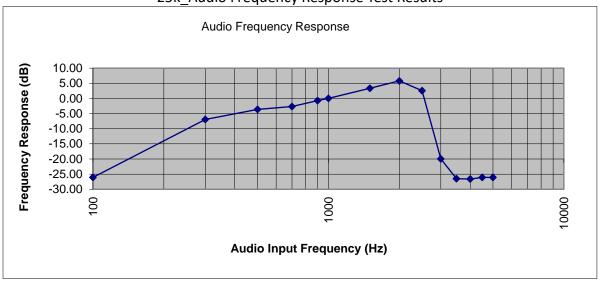

Engineer: John Michalowicz

Test Date: 05/03/25


Measurement Procedure

The EUT was connected directly to a modulation analyzer through an attenuator. The audio source was tuned across the required audio frequency range and the audio frequency response was measured and plotted. The modulation analyzer is a real time spectrum analyzer with integrated demodulation, audio measurement capabilities, and timing analysis.

Test Setup



8k_Audio Frequency Response Test Results

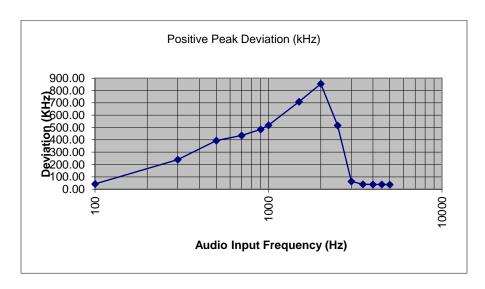
25k_Audio Frequency Response Test Results

Modulation Limiting

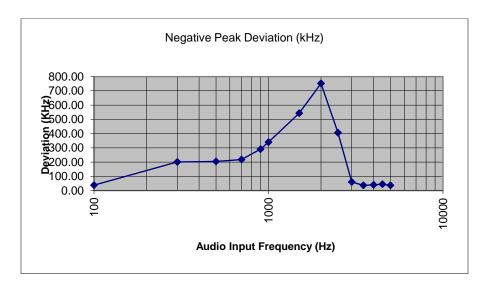
Engineer: John Michalowicz

Test Date: 05/03/25

Measurement Procedure

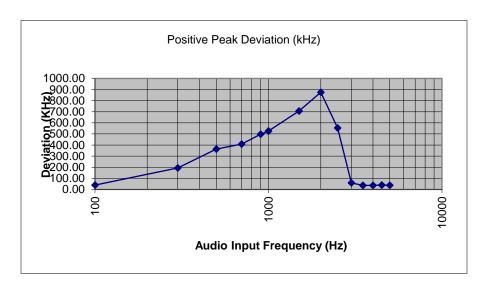

The EUT was connected directly to a modulation analyzer through an attenuator. The audio source was tuned across the required audio frequency range and the modulation limiting response was measured and plotted. The modulation analyzer is a real time spectrum analyzer with integrated demodulation, audio measurement capabilities, and timing analysis.

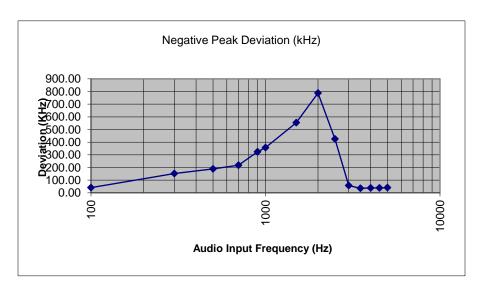
Audio Source EUT Attenuator Modulation Analyzer



8k_Modulation Limiting Test Results

Positive Peak Deviation


Negative Peak Deviation



25k_Modulation Limiting Test Results

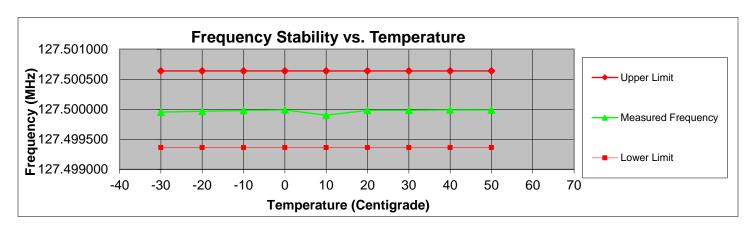
Positive Peak Deviation

Negative Peak Deviation

Frequency Stability (Temperature Variation)


Engineer: John Michalowicz

Test Date: 4/29/25


Test Procedure

The EUT was placed in an environmental test chamber and the RF output was connected directly to a frequency counter. The temperature was varied from -30°C to 50°C in 10°C increments. After a sufficient time for temperature stabilization the RF output frequency was measured.

Test Setup

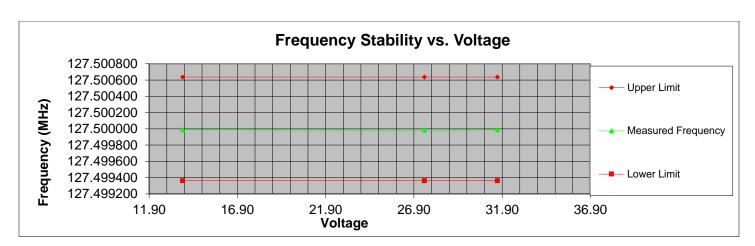
Measurement Results

Tuned Frequency	Frequency	Upper Limit	Lower Limit	Temperature	Measured	Upper	Lower
(MHz)	Tolerance	(MHz)	(MHz)	centigrade	Frequency	Margin	Margin
	PPM				(MHz)	(MHz)	(MHz)
127.500	5.0	127.500638	127.499363				
		127.500638	127.499363	-30	127.499950	-0.000684	0.000591
		127.500638	127.499363	-20	127.499966	-0.000671	0.000603
		127.500638	127.499363	-10	127.499980	-0.000658	0.000617
		127.500638	127.499363	0	127.499990	-0.000647	0.000627
		127.500638	127.499363	10	127.499900	-0.000737	0.000537
		127.500638	127.499363	20	127.499983	-0.000654	0.000620
		127.500638	127.499363	30	127.499983	-0.000654	0.000620
		127.500638	127.499363	40	127.499990	-0.000647	0.000627
		127.500638	127.499363	50	127.499987	-0.000650	0.000625

Frequency Stability (Voltage Variation)

Engineer: John Michalowicz

Test Date: 4/29/25


Test Procedure

The EUT was placed in a temperature chamber at 20±5°C and connected directly to a spectrum analyzer. The power supply voltage to the EUT was varied from 85% of the low mode nominal and to 115% of the high mode nominal value and the RF output was measured.

Test Setup

Test Results

Tuned Frequency (MHz)					Nominal Voltage	Voltage	Measured Frequency (MHz)	•	Lower Margin (MHz)
127	.500	5.0	127.500638	127.499363	27.50	13.80	127.499987	-0.000650	0.000625
			127.500638	127.499363		27.50	127.499983	-0.000654	0.000620
			127.500638	127.499363		31.63	127.499987	-0.000650	0.000625

Test Equipment Utilized

Description	Manufacturer	Model #	CT Asset #	Last Cal Date	Cal Due Date
Temperature Chamber	Tenney	Tenney Jr	i00027	NI	3
Function Generator	nction Generator HP 33120A		i00118	Verifie	d on:
Data Logger	Fluke	Hydra Data Bucket	i00343	6/19/2024	6/19/25
Spectrum Analyzer	Textronix	RSA5126A	i00424	6/25/2024	6/25/25
MXE EMI receiver	Keysight	N9038A	i00552	3/17/25	3/17/26
Temp./humidity/pressure monitor (rad. immunity)	Omega Engineering	iBTHX-W-5	i00629	1/25/25	1/25/26
Spectrum Analyzer	Keysight	E4448A	i00688	10/26/24	10/26/25

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

Measurement Uncertainty

Measurement Uncertainty (Ulab) for Compliance Testing is listed in the table below.

Measurement	U _{lab}		
Radio Frequency	± 3.3 x 10 ⁻⁸		
RF Power, conducted	± 1.5 dB		
RF Power Density, conducted	± 1.0 dB		
Conducted Emissions	± 1.8 dB		
Radiated Emissions	± 4.5 dB		
Temperature	± 1.5 deg C		
Humidity	± 4.3 %		
DC voltage	± 0.20 VDC		
AC Voltage	± 1.2 VAC		

The reported expanded uncertainty +/- U_{lab}(dB) has been estimated at a 95% confidence level (k=2)

 U_{lab} is less than or equal to U_{ETSI} therefore

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit
- Non-Compliance is deemed to occur if any measured disturbance exceeds the disturbance limit

END OF TEST REPORT.