ENGINEERING TEST REPORT

Communication Receiver Model Nos.: IC-R2500 & IC-PCR2500

FCC ID: AFJ287900

Applicant:

ICOM Incorporated

1-1-32, Kamiminami, Hirano-ku Osaka, Japan, 547-0003

Tested in Accordance With

Federal Communications Commission (FCC)
47 CFR, Part 15, Subpart B
Scanning Receivers Operating in the Frequency Band 0.495 to 3299.9999 MHz
(excluding cellular bands)

UltraTech's File No.: ICOM-129FCC15RX

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs

Date: April 10, 2006

Report Prepared by: Dharmajit Solanki

T.M. ALL

Tested by: Wayne Wu, EMI/RFI Technician

Issued Date: April 10, 2006

Test Dates: Mar.22 - Apr.03, 2006

- The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.
- This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4
Tel.: (905) 829-1570 Fax.: (905) 829-8050
Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, <a hr

Canada

31040/SIT

C-1376

46390-2049

200093-0

00-034

TABLE OF CONTENTS

EXHIBIT 1.	SUBMITTAL CHECK LIST	3
EXHIBIT 2.	INTRODUCTION	4
2.1. SCO	PE	4
	ATED SUBMITTAL(S)/GRANT(S)	
	MATIVE REFERENCES	
EXHIBIT 3.	PERFORMANCE ASSESSMENT	5
3.1. CLIE	ENT INFORMATION	5
	IPMENT UNDER TEST (EUT) INFORMATION	
	'S TECHNICAL SPECIFICATIONS	
3.4. LIST	OF EUT'S PORTS	6
3.5. ANC	ILLARY EQUIPMENT	6
3.6. DRA	WING OF TEST SETUP	7
EXHIBIT 4.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	2
4.1. CLIN	MATE TEST CONDITIONS	2
	RATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS	
EXHIBIT 5.	SUMMARY OF TEST RESULTS	7
5.1. LOC	ATION OF TESTS	7
5.2. APP	LICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	7
5.3. MOI	DIFICATIONS REQUIRED FOR COMPLIANCE	7
EXHIBIT 6.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	8
6.1. TES	Γ PROCEDURES	8
6.2. MEA	SUREMENT UNCERTAINTIES	8
	SUREMENT EQUIPMENT USED	
	POWER LINE CONDUCTED EMISSIONS [§ 15.107(A)]	
	LIMITS	
	METHOD OF MEASUREMENTS	
	TEST EQUIPMENT LIST	
	PHOTOS OF TEST SETUP	
	TEST DATA	
	EIVER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [§15.111(A)]	
	LIMITS METHOD OF MEASUREMENTS	
	TEST EQUIPMENT LIST	
	TEST ARRANGEMENT	
	TEST ARRANGEMENT	
	EIVER SPURIOUS/HARMONIC RADIATED EMISSIONS [§ 15.109(A)]	
	LIMITS	
	METHOD OF MEASUREMENTS	
	TEST EQUIPMENT LIST	
	PHOTOS OF TEST SETUP	
665	TEST DATA	27

ULTRATECH GROUP OF LABS

6.7.	RADIATED EMISSIONS FROM CLASS B UNINTENTIONAL RADIATORS (DIGITAL DE	EVICES) [§
	15.109(A)]	28
6.7.1		28
6.7.2	. METHOD OF MEASUREMENTS	28
6.7.3	. TEST EQUIPMENT LIST	
6.7.4		29
6.7.5	TEST DATA	29
6.8.	REQUIREMENTS FOR SCANNING RECEIVERS [47 CFR 15.121]	
6.8.1		
6.8.2	. DECLARATION FOR COMPLIANCE WITH FCC §15.121	32
6.9.	SCANNING RECEIVERS CELLULAR BAND REJECTION [47 CFR 15.121(B)]	
6.9.1		
6.9.2	. METHOD OF MEASUREMENTS	33
6.9.3	. TEST EQUIPMENT LIST	34
6.9.4		
EXHIBIT	77. MEASUREMENT UNCERTAINTY	35
7.1.	LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	35
	RADIATED EMISSION MEASUREMENT UNCERTAINTY	36

EXHIBIT 1. SUBMITTAL CHECK LIST

Annex No.	Fyhihit Tyne Description of Contents		Quality Check (OK)	
	Test Report	Exhibit 1: Submittal check lists Exhibit 2: Introduction Exhibit 3: Performance Assessment Exhibit 4: EUT Operation and Configuration during Tests Exhibit 5: Summary of test Results Exhibit 6: Measurement Data Exhibit 7: Measurement Uncertainty	OK	
1	Test Setup Photos	Radiated Emissions Test Setup Photos	OK	
2	External Photos of EUT	External EUT Photos	OK	
3	Internal Photos of EUT	Internal EUT Photos	OK	
4	Cover Letters	Cover Letter for Certification Request. Letter from the Applicant to appoint Ultratech to act as an agent Letter from the Applicant to request for Confidentiality Filing	OK	
5	Attestation Statements	Manufacturer Attestation Letter Part 2.1033(b)(10) for Scanning Receiver	OK	
6	ID Label/Location Info	ID Label Location of ID Label		
7	Block Diagrams	Block Diagram	OK	
8	Schematic Diagrams	Schematics	OK	
9	Operational Description	IC-R2500 & IC-PCR2500 Circuit Description	ОК	
10	RF Exposure Info	N/A	N/A	
11	Users Manual	IC-R2500 & IC-PCR2500 Instruction Manual	OK	

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050

EXHIBIT 2. INTRODUCTION

2.1. SCOPE

Reference:	FCC Part 15, Subpart B, Sections 15.107, 15.109, 15.111 & 15.121
Title:	Code of Federal Regulations (CFR), Title 47, Telecommunication, Part 15
Purpose of Test:	To gain FCC Certification Authorization for Scanning Receivers Operating in 0.495 to 3299.9999 MHz (excluding cellular bands) Band.
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	Commercial, Industrial or Business environment.

2.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

2.3. NORMATIVE REFERENCES

Publication	YEAR	Title	
FCC CFR 47	2005	Code of Federal Regulations – Telecommunication	
Parts 0-19, 80-End			
ANSI C63.4	2003	American National Standard for Methods of Measurement of Radio-Noise	
		Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	
CISPR 22	2003-04-10	Limits and Methods of Measurements of Radio Disturbance	
+A1	2004-10-14	Characteristics of Information Technology Equipment	
EN 55022	2003		
CISPR 16-1-1	2003	Specification for radio disturbance and immunity measuring apparatus	
		and methods.	
		Part 1-1: Measuring Apparatus	
CISPR 16-2-1	2003	Specification for radio disturbance and immunity measuring apparatus and methods.	
		Part 2-1: Conducted disturbance measurement	
CISPR 16-2-3	2003	Specification for radio disturbance and immunity measuring apparatus	
		and methods.	
		Part 2-3: Radiated disturbance measurement	

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050

April 10, 2006

File #: ICOM-129FCC15RX

EXHIBIT 3. PERFORMANCE ASSESSMENT

3.1. CLIENT INFORMATION

APPLICANT		
Name:	ICOM Incorporated	
Address:	1-1-32, Kamiminami Hirano-ku, Osaka Japan, 547-003	
Contact Person: Mr. Kenji Asano Phone #: +81-66-793-5302 Fax #: +81-66-793-0013 Email Address: export@icom.co.jp		

MANUFACTURER		
Name:	ICOM Incorporated	
Address: 1-1-32, Kamiminami Hirano-ku, Osaka Japan, 547-0003		
Contact Person: Mr. Kenji Asano Phone #: +81-66-793-5302 Fax #: +81-66-793-0013 Email Address: export@icom.co.jp		

3.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	ICOM Incorporated
Product Name:	Communication Receiver
Model Name or Number:	IC-R2500
Serial Number:	0000006
Type of Equipment:	Scanning Receiver
Accessories:	Icom AC/DC Power Supply, Model DFU105180, INPUT: 120VAC 60Hz, 29W, OUTPUT: 10.5 VDC, 1.8A.
Power input source:	10.5 VDC Adapter

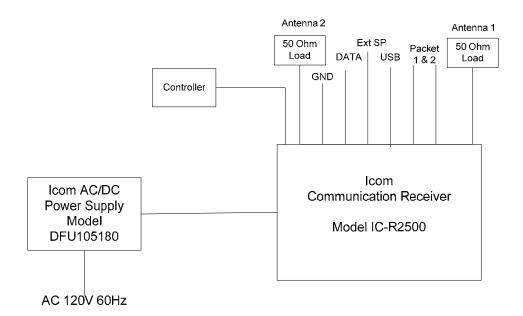
File #: ICOM-129FCC15RX

3.3. EUT'S TECHNICAL SPECIFICATIONS

RECEIVER		
Equipment Type:	Fixed or Mobile	
Power Supply Requirement:	12.0 VDC	
Operating Frequency Range:	0.495 to 3299.9999 MHz (excluding cellular bands)	
RF Input Impedance:	50 Ohms	

3.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non- shielded)
1	Antenna Connector	2	BNC Female	Shielded
2	External Speaker Jack	1	SP jack	Non-Shielded
3	DC IN	1	Single Pin male	Non-Shielded
4	Packet	2	Single Pin Female	Non-Shielded
5	Controller	1	RJ11	Non-Shielded
6	USB	1	USB	Non-Shielded
7	DATA	1	Single Pin Female	Non-Shielded
8	GND	1	GND Connector	Shielded


3.5. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1		
Description:	AC/DC Power Supply	
Brand name:	ICOM	
Model Name or Number:	DFU105180	
Serial Number:	1	
Cable Type:	Non-Shielded	

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050

3.6. DRAWING OF TEST SETUP

EXHIBIT 4. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

4.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	23°C
Humidity:	20%
Pressure:	102 kPa
Power input source:	10.5 VDC

4.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

Operating Modes:	The receiver was operated in the normal intended mode during testing		
Special Test Software:	None		
Special Hardware Used:	None		
Receiver Test Antenna:	The EUT's was tested with its antenna ports terminated with 50 Ohm Load		

Receiver Test Signals				
Frequency Band(s):	0.495 to 3299.9999 MHz (excluding cellular bands)			
Test Frequency(ies): (Near lowest, near middle & near highest frequencies in the frequency range of operation.)	0.495, 30, 1665 and 3299.9999 MHz			

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050

EXHIBIT 5. **SUMMARY OF TEST RESULTS**

LOCATION OF TESTS 5.1.

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Powerline Conducted Emissions were performed in UltraTech's shielded room, 16'(L) by 12'(W) by 12'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049-1). Last Date of Site Calibration: June. 20, 2005.

5.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Part 15, Subpart B	Test Requirements	Compliance (Yes/No)
15.107(a), Class B	AC Power Line Conducted Emissions Measurements	Yes
15.111(a)	Receiver Antenna Power Conducted Emissions for Non-Integral Antenna Port	Yes
15.109(a)	Radiated Emissions from Scanning Receivers & Class B Digital Device	Yes
15.121	Requirements for Scanning Receivers	Yes

5.3. MODIFICATIONS REQUIRED FOR COMPLIANCE

None.

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050

Page 7

EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

6.1. TEST PROCEDURES

Please refer to Ultratech Test Procedures, File# ULTR-P001-2004 and for Test Procedures.

6.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document LAB 34 with a confidence level of 95%. Please refer to Exhibit 6 for Measurement Uncertainties.

6.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CIPSR 16-1-1.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel.: 905-829-1570, Fax.: 905-829-8050

File #: ICOM-129FCC15RX

April 10, 2006

Page 8

6.4. AC POWER LINE CONDUCTED EMISSIONS [§ 15.107(a)]

6.4.1. Limits

The equipment shall meet the limits of the following table:

Frequency of Emissions (MHz)	Class B Condu	ıcted Limit (dBμV)	Measuring Bandwidth
Frequency of Emissions (WHZ)	Quasi-Peak	Average	Measuring Bandwidth
0.15 to 0.5	66 to 56*	56 to 46*	RBW = 9 kHz
0.5 to 5	56	46	VBW ≥ 9 kHz for QP
5 to 30	60	50	VBW = 1 Hz for Average

^{*} Decreasing linearly with logarithm of frequency

6.4.2. Method of Measurements

Refer to Ultratech Test Procedures ULTR-P001-200 & ANSI C63.4 for method of measurements.

6.4.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
EMI Receiver System/Spectrum Analyzer with built-in Amplifier	Hewlett Packard	HP 8546A	3520A00248	9KHz-5.6GHz, 50 Ohms
Transient Limiter	Hewlett Packard	11947A		9 kHz – 200 MHz 10 dB attenuation
L.I.S.N.	EMCO	3825/2		9 kHz – 200 MHz 50 Ohms / 50 μH
12'x16'x12' RF Shielded Chamber	RF Shielding			

6.4.4. Photos of test Setup

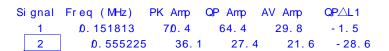
Please refer to Photos #1 and 2 in Annex 1 for details of test setup.

File #: ICOM-129FCC15RX

FCC ID: AFJ287900

6.4.5. Test Data

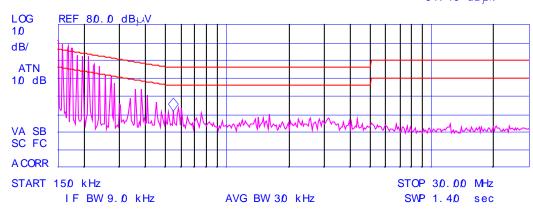
The emissions were scanned from 150 KHz to 30 MHz at AC mains Terminal via a LISN, and all emissions less than 20 dB below the limits were recorded.


emissions less than 20 db below the limits were recorded.							
	RF	RECEIVER	QP	AVG			LINE
FREQUENCY	LEVEL	DETECTOR	LIMIT	LIMIT	MARGIN	PASS/	TESTED
(MHz)	(dBuV)	(P/QP/AVG)	(dBuV)	(dBuV)	(dB)	FAIL	(L1/L2)
0.15	64.4	QP	66.0	56.0	-1.5	PASS	L1
0.15	29.8	AVG	66.0	56.0	-26.1	PASS	L1
0.56	27.4	QP	56.0	46.0	-28.6	PASS	L1
0.56	21.6	AVG	56.0	46.0	-24.4	PASS	L1
0.15	64.7	QP	66.0	56.0	-1.2	PASS	L2
0.15	30.3	AVG	66.0	56.0	-25.6	PASS	L2
0.34	36.9	QP	59.2	49.2	-22.3	PASS	L2
0.34	19.5	AVG	59.2	49.2	-29.7	PASS	L2

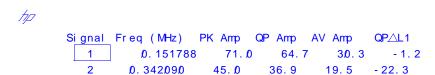
Conforms, Please refer to the Plots# 1 & 2 below for test results.

UltraTech	Group of Labs	AC POWER LINE CONDUCTED EMISS			oup of Labs AC POWER LINE CONDUCTED EMISSIONS MEASUREMENT PLOT	
Applicant:	ICOM America	Detector: [X] PEAK [X] QUASI-PEAK [X] AVERAGE			Temp: 23°C	Humidity:20%
Product:	Communications Receiver	Line Tested:1 Line Voltage :120VAC		AC	Test Tech: Will	Test Date: Mar 25, 2006
Model:	IC-R2500	Standard : FCC Part 15 Class B		Con	mments: : AF Max C	Output

Plot # 1:



ACTV DET: PEAK


MEAS DET: PEAK QP AVG

MKR 550 kHz 31.46 dBµV

UltraTech	Group of Labs	AC POWER LINE CONDUCTED EMISSI			ONS MEASUREME	NT PLOT
Applicant:	ICOM America	Detector: [X] PEAK [X] QUASI-PEAK [X] AVERAGE			Temp: 23°C	Humidity:20%
Product:	Communications Receiver	Line Tested:2 Line Voltage :120VAC		AC	Test Tech: Will	Test Date: Mar 25, 2006
Model:	IC-R2500	Standard : FCC Part 15 Class B		Con	mments: : AF Max C	Output

Plot # 2:

MKR 150 kHz 33. 38 dBµV LOG REF 80.0 dBUV 10 dB/ ATN 10 dB VA SB SC FC A CORR START 150 kHz STOP 30.00 MHz IF BW 9.0 kHz AVG BW 30 kHz SWP 1.40 sec

ACTV DET: PEAK

MEAS DET: PEAK QP AVG

6.5. RECEIVER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [§15.111(a)]

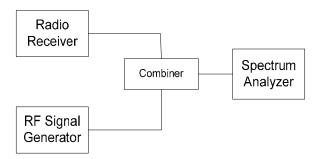
6.5.1. Limits

Receivers that operate (tune) in the frequency range 30 to 960 Mhz and CB receivers that provides terminals for the connection of an external antenna may be tested to demonstrate compliance with the provisions of @ 15.109 with the antenna terminals shielded and terminated with a resistive termination equal to the impedance specified for the antenna, provided these receivers also comply with the following:- *With the receiver antenna terminal connected to a resistive termination equal to the impedance specified or employed for the antenna, the power at the antenna terminal at frequency within the range from 30 Mhz to 5th harmonic of the highest frequency shall not exceed 2.0 nanowatts (or -57 dBm @ 50 Ohm).*

6.5.2. Method of Measurements

Refer to Ultratech Test Procedures ULTR-P001-200 & ANSI C63.4 for method of measurements.

The spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

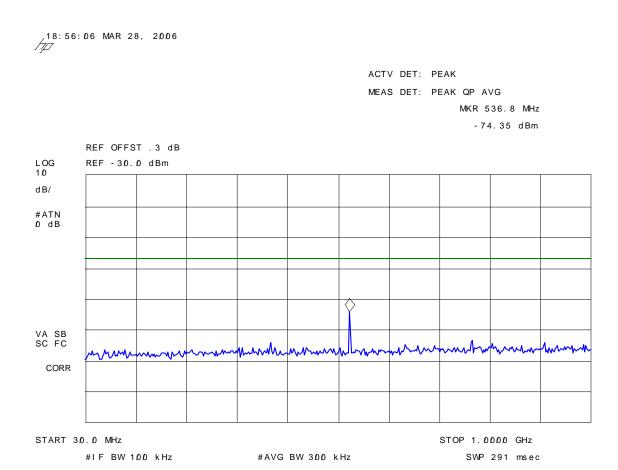

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705 - 108	1000
108 – 500	2000
500 -1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

6.5.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schawrz	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz with external mixer
RF Signal Generator	Hewlett Packard	HP 83752B	3610A00457	0.01 – 20 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050 File #: ICOM-129FCC15RX April 10, 2006

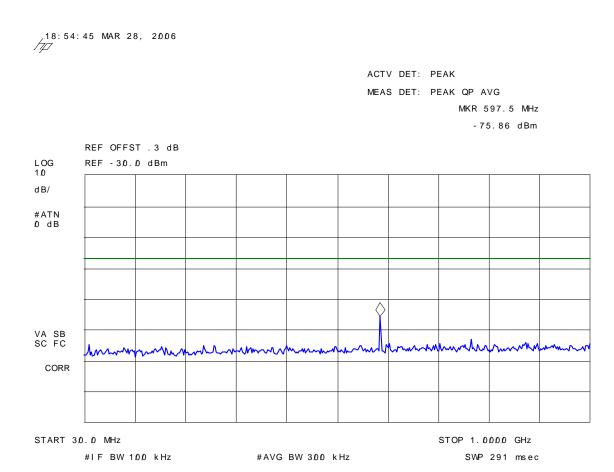
Page 13



6.5.5. Test Data

Conform. Please refer to Plot # 3 through # 6 for detailed measurement data.

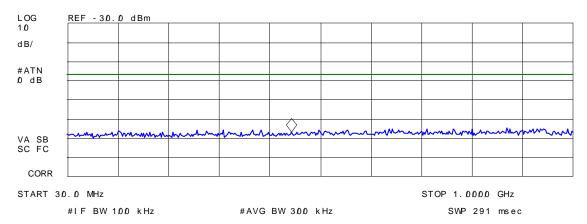
6.5.5.1. Plot # 3 - Receiver Conducted Emissions @ 0.495 MHz


The emissions were scanned from 30 MHz to 1.0 GHz and all emissions found were more than 20 dB below the limits.

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050

6.5.5.2. Plot # 4 - Receiver Conducted Emissions @ 30 MHz

The emissions were scanned from 30 MHz to 1.0 GHz and all emissions found were more than 20 dB below the limits.

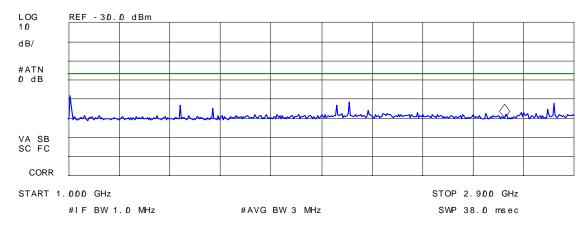

6.5.5.3. Plot # 5 - Receiver Conducted Emissions @ 1665 MHz

The emissions were scanned from 30 MHz to 10 GHz and all emissions found were more than 20 dB below the limits.

ACTV DET: PEAK

MEAS DET: PEAK QP AVG

MKR 459.2 MHz -86.79 dBm

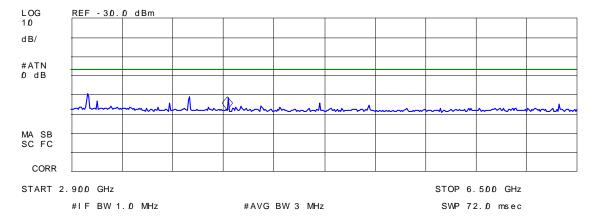

```
19:01:42 MAR 28, 2006
                                            PK△L1
       Signal Freq (MHz) PK Amp QP Amp AV Amp
         1 1001.040000
                       - 66.8
                              - 68.8
                                     -69. D
                                            - 9.8
         2 1412.946250
                                     - 74.6
                       -69.7 -73.9
                                            - 12. 7
                       -72.6 -78.5
         3 1535.820625
                                     - 80.6
                                            - 15.6
          4 2047.865110 -68.4 -72.8 -75.6 -11.4
               2637.510515 -76.4 -85.9 -89.2 -19.5
```

ACTV DET: PEAK

MEAS DET: PEAK QP AVG

MKR 2.639 GHz

-80.12 dBm

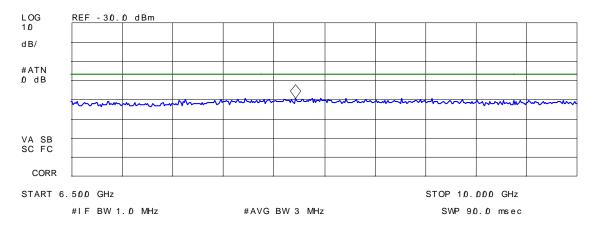



```
19:39:44 MAR 28, 2006
       Signal Freq (MHz) PK Amp QP Amp AV Amp
                                               PK△L1
          1 3003.008413
                        -68.0 -71.5
                                       -72. Ø
                                               - 11. D
          2 3072.082385
                         - 70.1
                                - 75.5
                                        - 76.6
                                               - 13. 1
            3722.854430 -68.1 -72.5
                                       - 73. 1 - 11. 1
               4004.082293 -69.4 -73.4 -74.1 -12.4
```

ACTV DET: PEAK

MEAS DET: PEAK QP AVG

MKR 4.007 GHz -78.15 dBm



19:12:40 MAR 28, 2006 PK△L1 Signal Freq (MHz) PK Amp QP Amp AV Amp

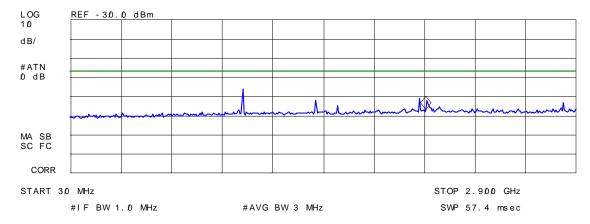
ACTV DET: PEAK

MEAS DET: PEAK QP AVG

MKR 8.049 GHz -69.33 dBm

6.5.5.4. Plot #6 - Receiver Conducted Emissions @ 3299.9999 MHz

The emissions were scanned from 30 MHz to 18 GHz and all emissions within 20 dB below the limits were recorded.

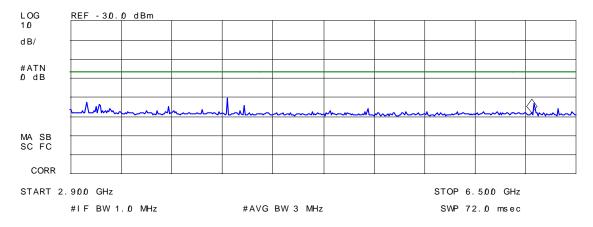

```
19:44:12 MAR 28, 2006
       Signal Freq (MHz) PK Amp QP Amp AV Amp
                                              PK△L1
         1 1001.032750
                       -65.7 -67.6
                                     - 67. 7
                                             - 8.7
         2 1412.898875
                       -70.0 -74.3
                                             - 13. D
                                      - 74.9
            2002.055934 -68.3 -71.9
                                     - 72.4 - 11.3
              2047.941493 -69.0 -75.1 -76.4 -12.0
```

ACTV DET: PEAK

MEAS DET: PEAK QP AVG

MKR 2.046 GHz

-77.02 dBm

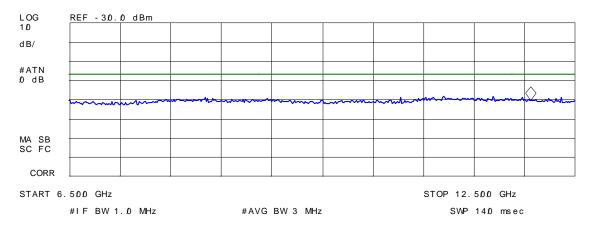



```
19:49:04 MAR 28, 2006
                                                PK△L1
       Signal Freq (MHz) PK Amp QP Amp AV Amp
                                         - 75.9
          1 3002.950250
                          -70.2 -74.9
                                                - 13. 2
          2 3584.448930
                         -72.0 -77.8
                                         - 79.3
                                                - 15. D
             4004.049010
                          - 68. 1
                                 - 71.5
                                         -72. D
                                                - 11. 1
                6187.495000 -69.6 -73.6 -74.3 -12.6
```

ACTV DET: PEAK

MEAS DET: PEAK QP AVG

MKR 6.185 GHz -78.33 dBm

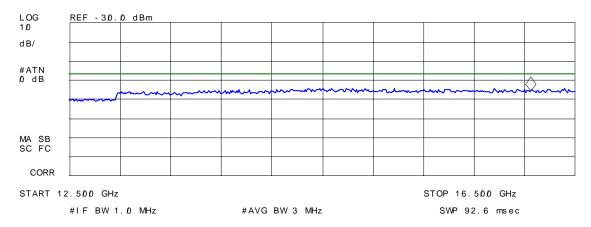

File #: ICOM-129FCC15RX

20:40:43 MAR 28, 2006 ///
//
Signal Freq (MHz) PK Amp QP Amp AV Amp PK△L1

ACTV DET: PEAK

MEAS DET: PEAK QP AVG

MKR 11.975 GHz -70.40 dBm


File #: ICOM-129FCC15RX

ACTV DET: PEAK

MEAS DET: PEAK QP AVG

MKR 16.150 GHz -65.84 dBm

6.6. RECEIVER SPURIOUS/HARMONIC RADIATED EMISSIONS [§ 15.109(a)]

6.6.1. Limits

The equipment shall meet the limits of the following table:

Test Frequency Range (MHz)	Class B Limits @ 3 m (dBμV/m)	EMI Detector Used	Measuring Bandwidth (kHz)
30 – 88	40.0	Quasi-Peak	RBW = 120 kHz, VBW <u>≥</u> 120 kHz
88 – 216	43.5	Quasi-Peak	RBW = 120 kHz, VBW <u>></u> 120 kHz
216 – 960	46.0	Quasi-Peak	RBW = 120 kHz, VBW <u>></u> 120 kHz
Above 960	54.0	Average	RBW = 1 MHz, VBW ≥ 1 Hz

6.6.2. Method of Measurements

Refer to Ultratech Test Procedures ULTR-P001-200 & ANSI C63.4 for method of measurements.

The spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705 - 108	1000
108 – 500	2000
500 -1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050

April 10, 2006

File #: ICOM-129FCC15RX

Page 25

6.6.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schawrz	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz with external mixer
Microwave Amplifier	Hewlett Packard	HP 83017A		1 GHz to 26.5 GHz
Biconilog Antenna	EMCO	3143	1029	20 MHz to 2 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz

6.6.4. Photos of test Setup

Please refer to Photos # 3 and 4 in Annex 1 for details of test setup

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050

Page 26

6.6.5. Test Data

6.6.5.1. Lowest Frequency (0.495 MHz)

The emissions were scanned from 30 MHz to 1.5 GHz and all emissions found were more than 20 dB below the limits.

6.6.5.2. Near Lowest Frequency (30 MHz)

The emissions were scanned from 30 MHz to 1.5 GHz and all emissions found were more than 20 dB below the limits.

6.6.5.3. Near Middle Frequency (1665 MHz)

The emissions were scanned from 30 MHz to 10 GHz and all emissions found were more than 20 dB below the limits.

6.6.5.4. Highest Frequency (3299.9999 MHz)

The emissions were scanned from 30 MHz to 18 GHz and all emissions found were more than 20 dB below the limits.

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050 Page 27

6.7. RADIATED EMISSIONS FROM CLASS B UNINTENTIONAL RADIATORS (DIGITAL DEVICES) [§ 15.109(a)]

6.7.1. Limits

The equipment shall meet the limits of the following table:

Test Frequency Range (MHz)	Class B Limits @3m (dBμV/m)	EMI Detector Used	Measuring Bandwidth (kHz)
30 – 88	40.0	Quasi-Peak	RBW = 120 kHz, VBW <u>></u> 120 kHz
88 – 216	43.5	Quasi-Peak	RBW = 120 kHz, VBW <u>></u> 120 kHz
216 – 960	46.0	Quasi-Peak	RBW = 120 kHz, VBW <u>></u> 120 kHz
Above 960	54.0	Average	RBW = 1 MHz, VBW <u>></u> 1 Hz

6.7.2. Method of Measurements

Refer to Ultratech Test Procedures ULTR-P001-200 & ANSI C63.4 for method of measurements.

The spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705 - 108	1000
108 – 500	2000
500 -1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050

Page 28

6.7.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schawrz	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz with external mixer
Microwave Amplifier	Hewlett Packard	HP 83017A		1 GHz to 26.5 GHz
Biconilog Antenna	EMCO	3143	1029	20 MHz to 2 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz

6.7.4. Photos of test Setup

Please refer to Photos # 3 and 4 in Annex 1 for details of test setup.

6.7.5. Test Data

The emissions were scanned from 30 MHz to 1000 MHz at 3 Meters distance and all emissions found were more than 20 dB below the limits.

6.8. REQUIREMENTS FOR SCANNING RECEIVERS [47 CFR 15.121]

6.8.1. FCC Rules

- a. Except as provided in paragraph (c) of this section, scanning receivers and frequency converters designed or marketed for use with scanning receivers, shall:
- (1) Be incapable of operating (tuning), or readily being altered by the user to operate, within the frequency bands allocated to the Cellular Radiotelephone Service in part 22 of this chapter (cellular telephone bands). Scanning receivers capable of ``readily being altered by the user" include, but are not limited to, those for which the ability to receive transmissions in the cellular telephone bands can be added by clipping the leads of, or installing, a simple component such as a diode, resistor or jumper wire; replacing a plug-in semiconductor chip; or programming a semiconductor chip using special access codes or an external device, such as a personal computer. Scanning receivers, and frequency converters designed for use with scanning receivers, also shall be incapable of converting digital cellular communication transmissions to analog voice audio.
- (2) Be designed so that the tuning, control and filtering circuitry is inaccessible. The design must be such that any attempts to modify the equipment to receive transmissions from the Cellular Radiotelephone Service likely will render the receiver inoperable.
- b. Except as provided in paragraph (c) of this section, scanning receivers shall reject any signals from the Cellular Radiotelephone Service frequency bands that are 38 dB or lower based upon a 12 dB SINAD measurement, which is considered the threshold where a signal can be clearly discerned from any interference that may be present.
- c. Scanning receivers and frequency converters designed or marketed for use with scanning receivers, are not subject to the requirements of paragraphs (a) and (b) of this section provided that they are manufactured exclusively for, and marketed exclusively to, entities described in 18 U.S.C. 2512(2), or are marketed exclusively as test equipment pursuant to Sec. 15.3(dd)
- d. Modification of a scanning receiver to receive transmissions from Cellular Radiotelephone Service frequency bands will be considered to constitute manufacture of such equipment. This includes any individual, individuals, entity or organization that modifies one or more scanners. Any modification to a scanning receiver to receive transmissions from the Cellular Radiotelephone Service frequency bands voids the certification of the scanning receiver, regardless of the date of manufacture of the original unit. In addition, the provisions of Sec. 15.23 shall not be interpreted as permitting modification of a scanning receiver to receiver Cellular Radiotelephone Service transmissions.
- e. Scanning receivers and frequency converters designed for use with scanning receivers shall not be assembled from kits or marketed in kit form unless they comply with the requirements in paragraph (a) through (c) of this section.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050

File #: ICOM-129FCC15RX April 10, 2006

Page 30

- Page 31 FCC ID: AFJ287900
- f. Scanning receivers shall have a label permanently affixed to the product, and this label shall be readily visible to the purchaser at the time of purchase. The label shall read as follows: WARNING: MODIFICATION OF THIS DEVICE TO RECEIVE CELLULAR RADIOTELEPHONE SERVICE SIGNALS IS PROHIBITED UNDER FCC RULES AND FEDERAL LAW.
- (3) "Permanently affixed" means that the label is etched, engraved, stamped, silkscreened, indelible printed or otherwise permanently marked on a permanently attached part of the equipment or on a nameplate of metal, plastic or other material fastened to the equipment by welding, riveting, or permanent adhesive. The label shall be designed to last the expected lifetime of the equipment in the environment in which the equipment may be operated and must not be readily detachable. The label shall not be a stick-on, paper label.
- (4) When the device is so small that it is not practicable to place the warning label on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user and shall also be placed on the container in which the device is marketed. However, the FCC identifier must be displayed on the device.

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050

6.8.2. Declaration for Compliance with FCC §15.121

• Comply with FCC 121(a)(1) – This Scanning Receiver is incapable of operating (tuning), or readily being altered by the user to operate, within the frequency bands allocated to the Cellular Radiotelephone Service in part 22 of this chapter (cellular telephone bands).

Please refer to manufacturer's declaration for compliance with this Rule.

Comply with FCC 121(a)(2) – This Scanning Receiver is designed so that the tuning, control and filtering
circuitry is inaccessible. The design is such that any attempts to modify the equipment to receive
transmissions from the Cellular Radiotelephone Service likely will render the receiver inoperable.

Please refer to manufacturer's declaration for compliance with this Rule.

- Comply with FCC 121(b) Please refer to the following Section of this Test Report for Scanning Receivers Cellular Band Rejection test.
- Comply with FCC 121(c) Not applicable.
- Comply with FCC 121(d) The Users Manual of this Scanning Receiver is provided with the Warning statement as below:

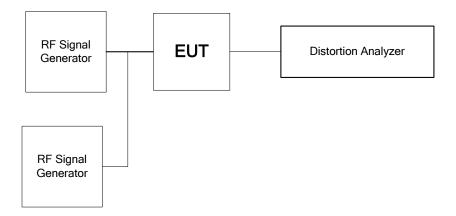
<u>Warning</u>: Changes or modifications to this device, not expressly approved by Icom Inc., could void your authority to operate this device under FCC regulations.

- Comply with FCC 121(e) This Scanning Receiver will not be assembled from kits or marketed in kit form.
- Comply with FCC 121(f) This Scanning Receiver has a label permanently affixed to the product and this
 label is readily visible to the purchaser at the time of purchase. The label reads as follows: WARNING:
 MODIFICATION OF THIS DEVICE TO RECEIVE CELLULAR RADIOTELEPHONE SERVICE SIGNALS IS
 PROHIBITED UNDER FCC RULES AND FEDERAL LAW.

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050

File #: ICOM-129FCC15RX April 10, 2006

Page 32


6.9. SCANNING RECEIVERS CELLULAR BAND REJECTION [47 CFR 15.121(b)]

6.9.1. Limits

Except as provided in paragraph (c) of this section, scanning receivers shall reject any signals from the Cellular Radiotelephone Service frequency bands that are 38 dB or lower based upon a 12 dB SINAD measurement, which is considered the threshold where a signal can be clearly discerned from any interference that may be present.

6.9.2. Method of Measurements

- (1) Connected the EUT as shown in the following block diagram
- (2) Apply a standard RF signal to the receiver input port
- (3) Adjust the audio output signal of the receiver to it's rated value with the distortion less than 10%
- (4) Adjust the RF Signal Generator Output Power to produce 12 dB SINAD without the audio output power dropping by more than 3 dB
- (5) Repeat step (4) at lowest, middle and highest channel frequencies across all cellular base station band to establish a reference sensitivity level. The reference sensitivity taken was the lowest or worse-case sensitivity for all of the bands.
- (6) Adjust the RF Signal Generator output to a level of +60 dB above the reference sensitivity obtained in step (5)
- (7) Set the Receiver squelch threshold (the signal required to open the squelch) no greater than +20 dB above the reference sensitivity level.
- (8) Put the receiver in a scanning mode and allow it to scan across it's complete receive range
- (9) If the receiver unsquelched or stopped on any frequency, the display frequency is recorded. The signal generator output level was then adjusted until 12 dB SINAD from the receiver was produced. The signal generator level associated with this response was also noted.
- (10) Repeat this procedure for 3 frequencies in the cellular base station transmit band.
- (11) The difference between the signal generator output for any response recorded and reference sensitivity is the rejection ratio

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050

6.9.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Distortion analyzer	Hewlett-Packard	8903E	3514A0146 0	20-100K Hz
RF Signal Generator	Fluke	6061A	4770301	10 kHz – 1050 MHz
RF Signal Generator	Fluke	6061A	5130586	10 kHz – 1050 MHz

6.9.4. Test Data

6.9.4.1. EUT's Operating Mode: FM

EUT's Scanning Frequency Band (MHz)	Cellular Transmitter Test Frequencies (MHz)	RF Input Signal Level @ Cellular Frequencies for 12 dB SINAD (dBm)	Reference Sensitivity dBm	Rejection Ratio (dB)	Maximum Rejection Ratio Limit (dB)
28.0 – 3000.0	824.04, 836.4, 848.97, 869.04, 880.62, 893.97	-40.0	-86 to -128	<-46	-38.0

There is no spurious response detected within the above frequency band with the Rejection Ratio of at least -46 dB.

6.9.4.2. EUT's Operating Mode: AM

EUT's Scanning Frequency Band (MHz)	Cellular Transmitter Test Frequencies (MHz)	RF Input Signal Level @ Cellular Frequencies for 12 dB SINAD (dBm)	Highest Reference Sensitivity dBm	Rejection Ratio (dB)	Maximum Rejection Ratio Limit (dB)
0.495 – 1299.99	824.04, 836.4, 848.97, 869.04, 880.62, 893.97	-30.0	-98 to -116	<-60	-38.0

There is no spurious response detected within the above frequency band with the Rejection Ratio of at least -60 dB.

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050

Page 34

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and LAB 34

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (dB)	
(Line Conducted)	DISTRIBUTION	9-150 kHz	0.15-30 MHz
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
LISN coupling specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
Cable and Input Transient Limiter calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5
Mismatch: Receiver VRC Γ_1 = 0.03 LISN VRC Γ_R = 0.8(9 kHz) 0.2 (30 MHz) Uncertainty limits 20Log(1± $\Gamma_1\Gamma_R$)	U-Shaped	<u>+</u> 0.2	<u>+</u> 0.3
System repeatability	Std. deviation	<u>+</u> 0.2	<u>+</u> 0.05
Repeatability of EUT			
Combined standard uncertainty	Normal	<u>+</u> 1.25	<u>+</u> 1.30
Expanded uncertainty U	Normal (k=2)	<u>+</u> 2.50	<u>+</u> 2.60

Sample Calculation for Measurement Accuracy in 150 kHz to 30 MHz Band:

$$u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)} = \ \pm \sqrt{(1.5^2 + 1.5^2)/3 + (0.5/2)^2 + (0.05/2)^2 + 0.35^2} \ = \ \pm 1.30 \ dB$$

$$U = 2u_c(y) = + 2.6 dB$$

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (<u>+</u> dB)	
(Radiated Emissions)	DISTRIBUTION	3 m	10 m
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
Antenna Directivity	Rectangular	+0.5	+0.5
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0
Mismatch: Receiver VRC Γ_1 = 0.2 Antenna VRC Γ_R = 0.67(Bi) 0.3 (Lp) Uncertainty limits 20Log(1± $\Gamma_1\Gamma_R$)	U-Shaped	+1.1	<u>+</u> 0.5
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k = 2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$$
 And $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ Db}$