

C-1376

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com Email: vic@ultratech-labs.com June 12, 2003

ICOM Incorporated

1-1-32, Kamiminami Hirano-ku, Osaka Japan, 547-0003

Attn.: Mr. Takahasi Aoki

Subject: Certification Testing in accordance with FCC CFR 47, Parts 2 and

90 (Subpart I) - Non-Broadcast Radio Transceivers Operating in the frequency bands 150 - 174 MHz (12.5 kHz and 25 kHz Channel

Spacings).

Product: VHF FM REPEATER

Model: IC-FR3000 FCC ID: AFJ236702

Dear Mr. Aoki,

The product sample has been tested in accordance with FCC CFR 47, Parts 2 and 90 (Subpart I) - Non-Broadcast Radio Transceivers Operating in the frequency bands 150 - 174 MHz (12.5 kHz and 25 kHz Channel Spacings), and the results and observation were recorded in the engineering report, Our File No.: ICOM-063FCC90

Enclosed you will find copy of the engineering report. If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, P.Eng Vice President - Engineering

Encl.

ENGINEERING TEST REPORT

VHF FM REPEATER (150 - 174 MHz) Model No.: IC-FR3000

FCC ID: AFJ236702

Applicant: **ICOM** Incorporated

> 1-1-32, Kamiminami Hirano-ku. Osaka Japan, 547-0003

Tested in Accordance With

Federal Communications Commission (FCC) CFR 47, PARTS 2 and 90 (Subpart I)

UltraTech's File No.: ICOM-063FCC90

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs

Date: June 12, 2003

Report Prepared by: Tri M. Luu, P.Eng.

Tested by: Wayne Wu, RFI Engineer

Issued Date: June 12, 2003

Test Dates: May 28 - June 10, 2003 The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

31040/SIT

C-1376

46390-2049

200093-0

SL2-IN-E-1119R

00-034

TABLE OF CONTENTS

EXHIBIT	I. SUBMITTAL CHECK LIST	3
EXHIBIT :	2. INTRODUCTION	4
2.1. S	COPE	
	ELATED SUBMITAL(S)/GRANT(S)	
	ORMATIVE REFERENCES.	
EXHIBIT :		
3.1. C	LIENT INFORMATION	
	QUIPMENT UNDER TEST (EUT) INFORMATION	
	UT'S TECHNICAL SPECIFICATIONS	
	IST OF EUT'S PORTS	
	NCILLARY EQUIPMENT	
	LOCK DIAGRAM	
EXHIBIT (4. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	9
4.1. C	LIMATE TEST CONDITIONS	9
4.2. O	PERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS	9
EXHIBIT :	5. SUMMARY OF TEST RESULTS	10
5.1. L	OCATION OF TESTS	10
5.2. A	PPLICABILITY & SUMMARY OF EMISSION TEST RESULTS	10
	ODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	
5.4. D	EVIATION OF STANDARD TEST PROCEDURES	10
EXHIBIT	6. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	11
6.1. T	EST PROCEDURES	11
6.2. M	EASUREMENT UNCERTAINTIES	11
	EASUREMENT EQUIPMENT USED:	
	SSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER:	
	F POWER OUTPUT @ FCC 2.1046 & 90.205	
6.5.1.	Limits @ FCC 90.205	
6.5.2.	Method of Measurements	
6.5.3.	Test Equipment List	
6.5.4.	Test Arrangement	
6.5.5.	Test Data	
6.5.6. 6.5.7.	Transmitter RF Power at the Antenna Port wrt. 117 V 60 Hz supply Transmitter RF Power at the Antenna Port wrt. 13.6 Vdc	13
	REQUENCY STABILITY @ FCC 2.1055 & 90.213	
6.6.1.	Limits @ FCC 90.213	
6.6.2.	Method of Measurements	
6.6.3.	Test Equipment List	
6.6.4.	Test Arrangement	
6.6.5.	Test Data	
6.7. A	udio Frequency Response @ FCC 2.1047(a) & 90.242(b)(8)	
6.7.1.	Limits @ FCC 2.1047(a) and 90.242(b)(8)	17

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

6.7.2.	Method of Measurements	17
6.7.3.	Test Equipment List	
6.7.4.	Test Arrangement	
6.7.5.	Test Data	
6.8. M	DDULATION LIMITING @, FCC 2.1047(B) & 90.210	
6.8.1.	Limits @ FCC 2.1047(b) and 90.210	
6.8.2.	Method of Measurements	
6.8.3.	Test Equipment List	
6.8.4.	Test Arrangement	
6.8.5.	Test Data	
6.9. El	MISSION MASK @ FCC 2.1049, 90.208 & 90.210	
6.9.1.	Limits @, FCC 90.209 & 90.210	
6.9.2.	Method of Measurements	
6.9.3.	Test Equipment List	
6.9.4.	Test Arrangement	
6.9.5.	Test Data	
6.10.	Transmitter Antenna Power Spurious/Harmonic Conducted Emissions @ FCC 90.210	
6.10.1.	Limits @ 90.210	
6.10.2.	Method of Measurements	
6.10.3.	Test Equipment List	
6.10.4.	Test Arrangement	
6.10.5.	Test Data	
6.11.	Transmitter Spurious/Harmonic RADIATED Emissions @ FCC 90.210	62
6.11.1.	Limits @, FCC 90.210	
6.11.2.	Method of Measurements	
6.11.3.	Test Equipment List	
6.11.4.	Test Setup	
6.11.5.	Test Data	
6.12.	Transient Frequency Behavior @ 90.214	
6.12.1.	Limits	
6.12.2.	Method of Measurements	65
6.12.3.	Test Equipment List	66
6.12.4.	Test Arrangement	66
6.12.5.	Test Data	
EXHIBIT 7	. MEASUREMENT UNCERTAINTY	75
	ADIATED EMISSION MEASUREMENT UNCERTAINTY	
EXHIBIT 8		
	ONDUCTED POWER MEASUREMENTS	
	ADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD	
8.2.1.	Maximizing RF Emission Level (E-Field)	
<i>8.2.2.</i>	Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method	
	EQUENCY STABILITY	
	IISSION MASK	
	URIOUS EMISSIONS (CONDUCTED)	
8.6. TI	ANSIENT FREQUENCY BEHAVIOR	82

EXHIBIT 1. SUBMITTAL CHECK LIST

Annex No.	nex No. Exhibit Type Description of Contents		
	Test Report	Exhibit 1: Submittal check lists	OK
		• Exhibit 2: Introduction	
		• Exhibit 3: Performance Assessment	
		• Exhibit 4: EUT Operation and Configuration	
		during Tests	
		• Exhibit 5: Summary of test Results	
		Exhibit 6: Measurement Data	
		Exhibit 7: Measurement Uncertainty	
1	Total Catana Diagram	Exhibit 8: Measurement Methods	OK
1	Test Setup Photos	Photos # 1 to 2	
2	External Photos of EUT	Photos # 1 to 7	OK
3	Internal Photos of EUT	Photos of 1 to 7	OK
4	Cover Letters	Cover Letters	OK
5	Attestation Statements	Letter from the Applicant to appoint	OK
		Ultratech to act as an agent	
		• Letter from the Applicant to request for	
		Confidentiality Filing	
6	ID Label/Location Info	ID Label	OK
7	Distriction	Location of ID Label	OK OK
7	Block Diagrams	Block diagrams # 1 of 1	
8	Schematic Diagrams	Schematic diagrams # 3 of 3	OK
9	Parts List/Tune Up Info	Parts List/Tune Up Info	OK
10	Operational Description	Operational Description	OK
11	RF Exposure Info	RF Exposure Info	OK
12	Users Manual	Users Manual	OK

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: ICOM-063FCC90 June 12, 2003

EXHIBIT 2. INTRODUCTION

2.1. SCOPE

Reference:	FCC Parts 2 and 90	
Title:	Telecommunication - Code of Federal Regulations, CFR 47, Parts 2 & 90	
Purpose of Test:	To gain FCC Certification Authorization for Radio operating in the Frequency Band 150 - 174 MHz (12.5 kHz and 25 kHz Channel Spacings).	
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.	

2.2. RELATED SUBMITAL(S)/GRANT(S)

None

2.3. NORMATIVE REFERENCES

Publication	Year	Title	
FCC CFR Parts 0- 19, 80-End	2002	Code of Federal Regulations – Telecommunication	
ANSI C63.4	1992	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	
CISPR 22 &	1997	Limits and Methods of Measurements of Radio Disturbance Characteristics of	
EN 55022	1998	Information Technology Equipment	
CISPR 16-1		Specification for Radio Disturbance and Immunity measuring apparatus and methods	

EXHIBIT 3. PERFORMANCE ASSESSMENT

3.1. CLIENT INFORMATION

APPLICANT		
Name: Icom Incorporated		
Address:	1-1-32, Kamiminami	
Hirano-ku, Oaska		
Japan, 547-0003		
Contact Person: Mr. Takashi Aoki		
Phone #: +81-66-793-5302		
Fax #: +81-66-793-0013		
	Email Address: export@icom.co.jp	

MANUFACTURER		
Name: Icom Incorporated		
Address:	1-1-32, Kamiminami	
Hirano-ku, Oaska		
Japan, 547-0003		
Contact Person: Mr. Takashi Aoki		
Phone #: +81-66-793-5302		
Fax #: +81-66-793-0013		
	Email Address: export@icom.co.jp	

3.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	ICOM Incorporated
Product Name:	VHF FM REPEATER
Model Name or Number:	IC-FR3000
Serial Number:	0000011
Type of Equipment:	Non-broadcast Radio Communication Equipment
External Power Supply:	N/A
Transmitting/Receiving Antenna Type:	Non-integral
Primary User Functions of EUT:	Fixed, base voice radio communication

Page 6 FCC ID: AFJ236702

3.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER		
Equipment Type:	Fixed, base station VHF Repeater	
Intended Operating Environment:	Commercial, Light Industry & Heavy Industry	
Power Supply Requirement:	117 V 60 Hz / 13.6 Vdc	
RF Output Power Rating:	50 Watts Hi and 10 Watts Lo	
Operating Frequency Range:	150 - 174 MHz	
Number of Channels	32	
Output Impedance (RF):	50 Ohms	
Channel Spacing:	12.5 kHz and 25 kHz	
Occupied Bandwidth (99%):	 9.3 kHz (for 12.5 kHz Channel Spacing) 13.9 kHz (for 25 kHz Channel Spacing) 	
Emission Designation*:	11K0F3E and 16K0F3E	
Input Impedance (MIC)	600 Ohms	
Antenna Connector Type:	BNC (female)	

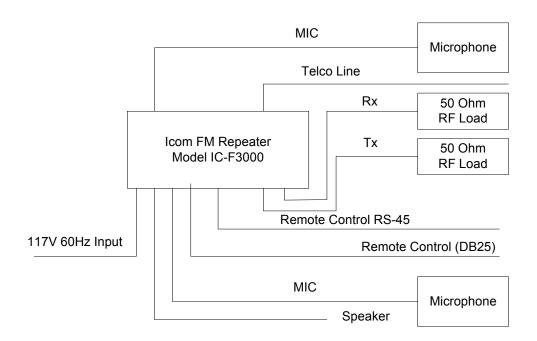
^{*} For an average case of commercial telephony, the Necessary Bandwidth is calculated as follows:

1. For FM Voice Modulation:

Channel Spacing = 12.5 KHz, D = 2.5 KHz max., K = 1, M = 3 KHz
$$B_n = 2M + 2DK = 2(3) + 2(2.5)(1) = 11 \text{ KHz}$$
 emission designation: 11K0F3E

Channel Spacing = 25 KHz, D = 5 KHz max., K = 1, M = 3 KHz
$$B_n = 2M + 2DK = 2(3) + 2(5)(1) = \underline{16 \text{ KHz}}$$
 emission designation: $16K0F3E$

RECEIVER		
Power Supply Requirement:	117 V 60 Hz / 13.6 Vdc	
Operating Frequency Range:	150 - 174 MHz	
Number of Channels	32	
RF Output Impedance (RF):	50 Ohms	
Input Impedance (SP)	600 Ohms	
Audio Output Power (Resistive Load)	2.5 W (4 ohms)	
Intermediate Frequencies:	1 st : 31.65 MHz and 2 nd : 455 kHz	


3.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	Transmit Antenna Port (TX/TX-RX)	1	N	Shielded
2	RF Receive Antenna RX Port (50 ohms)	1	N	Shielded
3	External Speaker (EXT SP) Port	1	Jack	Non-shielded
4	Remote Port	1	RJ-45	Non-shielded
5	ACC (Accessory/Remote Control))	1	DB25	Shielded
6	Microphone/Speaker [MIC/SP] Port	1	RJ-11	Non-shielded
7	Telco Line	1	RS-11	Non-shielded

3.5. ANCILLARY EQUIPMENT

2 x Microphones

3.6. BLOCK DIAGRAM

EXHIBIT 4. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

4.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	117 V 60 Hz

4.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

Operating Modes:	The transmitter was operated in a continuous transmission mode with the carrier modulated as specified in the Test Data.
Special Test Software:	N/A
Special Hardware Used:	N/A
Transmitter Test Antenna:	The EUT is tested with the transmitter antenna port terminated to a 50 Ohms RF Load.

Transmitter Test Signals	
Frequency Band(s):	Near lowest, near middle & near highest frequencies in each Frequency Band that the transmitter covers:
■ 150 - 174 MHz band:	■ 150.1, 162.5 and 173.9 MHz
Transmitter Wanted Output Test Signals:	
 RF Power Output (measured maximum output power): Normal Test Modulation Modulating signal source: 	 50 Watts Hi and 10 Watts Lo FM Voice external

EXHIBIT 5. SUMMARY OF TEST RESULTS

5.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

• Radiated Emissions were performed at the Ultratech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario.

The above sites have been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville Open Field Test Site has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049). Last Date of Site Calibration: Aug. 10, 2002.

5.2. APPLICABILITY & SUMMARY OF EMISSION TEST RESULTS

FCC PARAGRAPH.	TEST REQUIREMENTS	APPLICABILITY (YES/NO)
90.205 & 2.1046	RF Power Output	Yes
1.1307, 1.1310, 2.1091 & 2.1093	RF Exposure Limit	Not applicable for fixed, base station
90.213 & 2.1055	Frequency Stability	Yes
90.242(b)(8) & 2.1047(a)	Audio Frequency Response	Not applicable to new standard. However, tests are conducted under FCC's recommendation.
90.210 & 2.1047(b)	Modulation Limiting	Yes
90.210 & 2.1049	Emission Limitation & Emission Mask	Yes
90.210, 2.1057 & 2.1051	Emission Limits - Spurious Emissions at Antenna Terminal	Yes
90.210, 2.1057 & 2.1053	Emission Limits - Field Strength of Spurious Emissions	Yes
90.214	Transient Frequency Behavior	Yes

VHF FM REPEATER, Model No.: IC-FR3000, by ICOM Incorporated has also been tested and found to comply with FCC Part 15, Subpart B - Radio Receivers and Class B Digital Devices. The engineering test report has been documented and kept in file and it is available anytime upon FCC request.

5.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

5.4. DEVIATION OF STANDARD TEST PROCEDURES

None

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: ICOM-063FCC90

June 12, 2003

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

EMC EMISSIONS

Page 11

FCC ID: AFJ236702

6.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in Exhibit 8 of this report

EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR

6.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document NIS 81 with a confidence level of 95%. Please refer to Exhibit 7 for Measurement Uncertainties.

6.3. MEASUREMENT EQUIPMENT USED:

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4:1992 and CISPR 16-1.

6.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER:

The essential function of the EUT is to correctly communicate data to and from radios over RF link.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

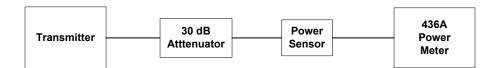
June 12, 2003

6.5. RF POWER OUTPUT @ FCC 2.1046 & 90.205

6.5.1. Limits @ FCC 90.205

Please refer to FCC CFR 47, Part 90, Subpart I, Para. 90.205 for specification details.

6.5.2. Method of Measurements


Refer to Exhibit 8, § 8.1 (Conducted) and 8.2 (Radiated) of this report for measurement details

6.5.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Hewlett Packard	HP 8546A		9 kHz to 5.6 GHz with built-in 30
EMI Receiver				dB Gain Pre-selector, QP, Average
				& Peak Detectors.
Attenuator(s)	Bird			DC – 22 GHz
Power Meter	Hewlett Packard	436A	1725A02249	10 kHz – 50 GHz, sensor dependent
Power Sensor	Hewlett Packard	8481A	2702A68983	10 MHz – 18 GHz

6.5.4. Test Arrangement

Power at RF Power Output Terminals

6.5.5. Test Data

6.5.6. Transmitter RF Power at the Antenna Port wrt. 117 V 60 Hz supply

Transmitter Channel Output	Fundamental Frequency (MHz)	Measured (Average) Power (Watts)	Power Rating (Watts)		
	Power sets	ing: High			
Lowest	150.1	54.8	50		
Middle	162.5	54.3	50		
Highest	173.9 52.8		50		
	Power setting: Low				
Lowest	150.1	11.2	10		
Middle	162.5	11.1	10		
Highest	173.9	11.0	10		

6.5.7. Transmitter RF Power at the Antenna Port wrt. 13.6 Vdc

Transmitter Channel Output	Fundamental Frequency (MHz)	Measured (Average) Power (Watts)	Power Rating (Watts)		
	Power sett	ting: High			
Lowest	150.1	54.3	50		
Middle	Middle 162.5		50		
Highest	Highest 173.9 52.5		50		
	Power setting: Low				
Lowest	150.1	11.1	10		
Middle	162.5	11.0	10		
Highest	173.9	10.9	10		

Remarks: Since there is no change in RF output powers with either AC or DC supplies, the following tests will be conducted with 117 V 60 Hz

6.6. FREQUENCY STABILITY @ FCC 2.1055 & 90.213

6.6.1. Limits @ FCC 90.213

Sec. 90.213 Frequency stability.

(a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in the following table.

Minimum Frequency Stability
 [Parts per million (ppm)]

		Mobile	stations
Frequency range (MHz)	Fixed and base stations	Over 2 watts output power	2 watts or less output power
150-174	^{5,11} 5	\6\ 5	^{4,6} 50

- \ $\$ In the 150-174 MHz band, fixed and base stations with a 12.5 kHz channel bandwidth must have a frequency stability of 2.5 ppm. Fixed and base stations with a 6.25 kHz channel bandwidth must have a frequency stability of 1.0 ppm.
- \6\ In the 150-174 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth or designed to operate on a frequency specifically designated for itinerant use or designed for low-power operation of two watts or less, must have a frequency stability of 5.0 ppm. Mobile stations designed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 2.0 ppm.
- (b) For the purpose of determining the frequency stability limits, the power of a transmitter is considered to be the maximum rated outputpower as specified by the manufacturer.

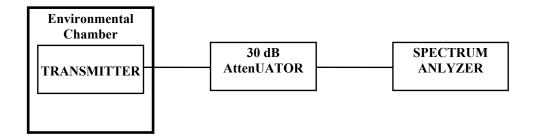
ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: ICOM-063FCC90

Page 14

FCC ID: AFJ236702


6.6.2. Method of Measurements

Refer to Exhibit 8, § 8.3 of this report for measurement details

6.6.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
EMI Receiver/ EMI Receiver	Hewlett Packard	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
Attenuator(s)	Bird			DC – 22 GHz
Temperature & Humidity Chamber	Tenney	T5	9723B	-40° to +60° C range

6.6.4. Test Arrangement

6.6.5. Test Data

Product Name:	VHF FM REPEATER
Model No.:	IC-FR3000
Center Frequency:	150.1 MHz
Full Power Level:	50.0 Watts
Frequency Tolerance Limit:	2.5 ppm or 375 Hz at 150.1 MHz as worst case
Max. Frequency Tolerance Measured:	+331 Hz or 2.2 ppm
Input Voltage Rating:	117 V 60 Hz

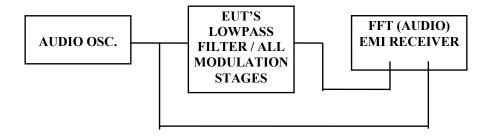
	CENTER FREQUENCY & RF POWER OUTPUT VARIATION					
Ambient Temperature	Supply Voltage (Nominal) 117 V 60 Hz	Supply Voltage (85% of Nominal) 99.5 V 60Hz	Supply Voltage (115% of Nominal) 134.5 V 60Hz			
(°C)	Hz	Hz	Hz			
-30	-15.1	N/A	N/A			
-20	+331	N/A	N/A			
-10	+263	N/A	N/A			
0	+130	N/A	N/A			
+10	+57	N/A	N/A			
+20	0	-1	-1			
+30	-36	N/A	N/A			
+40	-174	N/A	N/A			
+50	-287	N/A	N/A			

6.7. AUDIO FREQUENCY RESPONSE @ FCC 2.1047(A) & 90.242(B)(8)

6.7.1. Limits @ FCC 2.1047(a) and 90.242(b)(8)

Recommended audio filter attenuation characteristics are give below:

Audio band	Minimum Attenuation Rel. to 1 kHz Attenuation
3 –20 kHz	$60 \log_{10}(f/3)$ dB where f is in kHz
20 - 30 kHz	50dB


6.7.2. Method of Measurements

The rated audio input signal was applied to the input of the audio lowpass filter (or of all modulation stages) using an audio oscillator, this input signal level and its corresponding output signal were then measured and recorded using the FFT (Audio) EMI Receiver. Tests were repeated at different audio signal frequencies from 0 to 50 kHz.

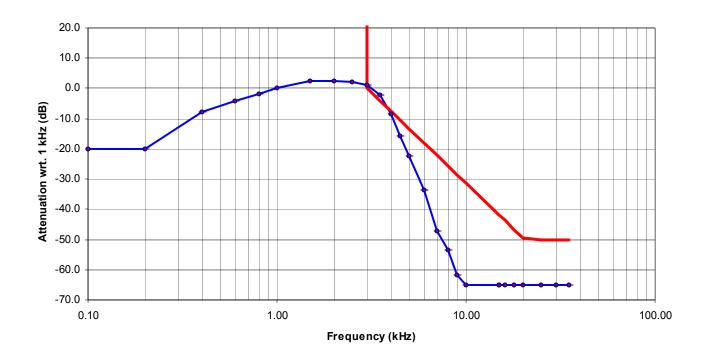
6.7.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
FFT (audio) EMI Receiver	Advantest	R9211E		10 mHz – 100 kHz, 1 MHz Input Impedance
Audio Oscillator	Hewlett Packard	HP 204C	0989A08798	DC to 1.2 MHz

6.7.4. Test Arrangement

6.7.5. Test Data

6.7.5.1. 12.5 kHz Channel Spacing, F3E, Frequency of All Modulation States*


Note: Because of the difficulty of measuring the Frequency Response of the internal lowpass filter, the Frequency Response of All Modulation States are performed to show the roll-off at 3 kHz in comparison with FCC Limit for audio lowpass filter.

	AUDIO	AUDIO	ATTEN.	ATTEN.		
FREQUENCY	IN	OUT	(OUT - IN)	wrt. 1 kHz	FCC LIMIT	PASS/
(kHz)	(dBV)	(dBV)	(dB)	(dB)	(dB)	FAIL
0.10	-47.9	-20.0	27.9	-22.6		PASS
0.20	-47.9	-20.0	27.9	-22.6		PASS
0.40	-47.9	-7.9	40.0	-10.5		PASS
0.60	-47.9	-4.3	43.6	-6.9		PASS
0.80	-47.9	-1.8	46.1	-4.4		PASS
1.00	-47.9	-0.1	47.8	-2.7		PASS
1.50	-47.9	2.3	50.2	-0.3		PASS
2.00	-47.9	2.5	50.4	-0.1		PASS
2.50	-47.9	2.0	49.9	-0.6		PASS
3.00	-47.9	0.9	48.8	-1.7	0.0	PASS
3.50	-47.9	-2.2	45.7	-4.8	-4.0	PASS
4.00	-47.9	-8.5	39.4	-11.1	-7.5	PASS
4.50	-47.9	-15.7	32.2	-18.3	-10.6	PASS
5.00	-47.9	-22.3	25.6	-24.9	-13.3	PASS
6.00	-47.9	-33.8	14.1	-36.4	-18.1	PASS
7.00	-47.9	-47.2	0.7	-49.8	-22.1	PASS
8.00	-47.9	-53.7	-5.8	-56.3	-25.6	PASS
9.00	-47.9	-61.7	-13.8	-64.3	-28.6	PASS
10.00	-47.9	<-65.0	<-17.1	<-67.6	-31.4	PASS
16.00	-47.9	<-65.0	<-17.1	<-67.6	-41.9	PASS
18.00	-47.9	<-65.0	<-17.1	<-67.6	-41.9	PASS
20.00	-47.9	<-65.0	<-17.1	<-67.6	-43.6	PASS
25.00	-47.9	<-65.0	<-17.1	<-67.6	-46.7	PASS
30.00	-47.9	<-65.0	<-17.1	<-67.6	-49.4	PASS
35.00	-47.9	<-65.0	<-17.1	<-67.6	-50.0	PASS
40.00	-47.9	<-65.0	<-17.1	<-67.6	-50.0	PASS
50.00	-47.9	<-65.0	<-17.1	<-67.6	-50.0	PASS

ULTRATECH GROUP OF LABS

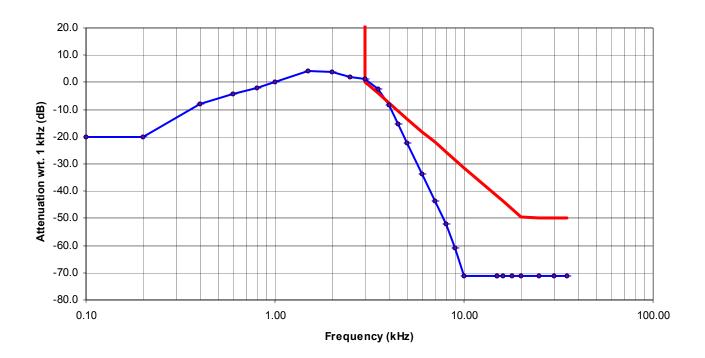
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

AUDIO FREQUENCY REPSONSE OF ALL MODULATION STAGES @ FCC 2.1047(a) and 90.242(b)(8) ICOM VHF FM REPEATER, Model IC-FR3000 [12.5 kHz Channel Spacing)

6.7.5.2. 25 kHz Channel Spacing, F3E, Frequency of All Modulation States*

Note: Because of the difficulty of measuring the Frequency Response of the internal lowpass filter, the Frequency Response of All Modulation States are performed to show the roll-off at 3 kHz in comparison with FCC Limit for audio lowpass filter.

	AUDIO	AUDIO	ATTEN.	ATTEN.	FCC LIMIT	
FREQUENCY	IN	OUT	(OUT - IN)	wrt. 1 kHz		PASS/
(kHz)	(dBV)	(dBV)	(dB)	(dB)	(dB)	FAIL
0.10	-47.9	-20.0	27.9	-19.9		PASS
0.20	-47.9	-20.0	27.9	-19.9		PASS
0.40	-47.9	-7.9	40.0	-7.8		PASS
0.60	-47.9	-4.3	43.6	-4.2		PASS
0.80	-47.9	-1.8	46.1	-1.7		PASS
1.00	-47.9	-0.1	47.8	0.0		PASS
1.50	-47.9	2.3	50.2	2.4		PASS
2.00	-47.9	2.5	50.4	2.6		PASS
2.50	-47.9	2.0	49.9	2.1		PASS
3.00	-47.9	0.9	48.8	1.0	0.0	PASS
3.50	-47.9	-2.2	45.7	-2.1	-4.0	PASS
4.00	-47.9	-8.5	39.4	-8.4	-7.5	PASS
4.50	-47.9	-15.7	32.2	-15.6	-10.6	PASS
5.00	-47.9	-22.3	25.6	-22.2	-13.3	PASS
6.00	-47.9	-33.8	14.1	-33.7	-18.1	PASS
7.00	-47.9	-47.2	0.7	-47.1	-22.1	PASS
8.00	-47.9	-53.7	-5.8	-53.6	-25.6	PASS
9.00	-47.9	-61.7	-13.8	-61.6	-28.6	PASS
10.00	-47.9	<-65.0	<-17.1	<-64.9	-31.4	PASS
16.00	-47.9	<-65.0	<-17.1	<-64.9	-41.9	PASS
18.00	-47.9	<-65.0	<-17.1	<-64.9	-41.9	PASS
20.00	-47.9	<-65.0	<-17.1	<-64.9	-43.6	PASS
25.00	-47.9	<-65.0	<-17.1	<-64.9	-46.7	PASS
30.00	-47.9	<-65.0	<-17.1	<-64.9	-49.4	PASS
35.00	-47.9	<-65.0	<-17.1	<-64.9	-50.0	PASS
40.00	-47.9	<-65.0	<-17.1	<-64.9	-50.0	PASS
50.00	-47.9	<-65.0	<-17.1	<-64.9	-50.0	PASS


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: ICOM-063FCC90

June 12, 2003

AUDIO FREQUENCY REPSONSE OF ALL MODULATION STAGES @ FCC 2.1047(a) and 90.242(b)(8) ICOM VHF FM REPEATER, Model IC-FR3000 [25 kHz Channel Spacing)

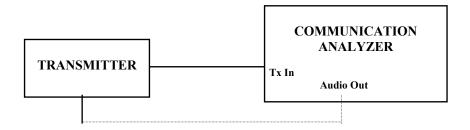
6.8. MODULATION LIMITING @ FCC 2.1047(B) & 90.210

6.8.1. Limits @ FCC 2.1047(b) and 90.210

Recommended frequency deviation characteristics are give below:

- 2.5 kHz for 12.5 kHz Channel Spacing
- 5 kHz for 25 kHz Channel Spacing System

6.8.2. Method of Measurements


For Audio Transmitter:- The carrier frequency deviation was measured with the tone input signal level varied from 0 Vp to audio input rating level plus 16 dB at frequencies 0.1, 0.5, 1.0, 3.0 and 5.0 kHz. The maximum deviation was recorded at each test condition.

For Data Transmitter with Maximum Frequency Deviation set by Factory:- The EUT was set at maximum frequency deviation, and its peak frequency deviation was then measured using EUT's internal random data source.

6.8.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Communication	Rohde &	SMF02	879988/057	400 kHz - 1000 MHz including AF &
Analyzer	Schawrz			RF Signal Generators, SINAD,
				DISTORTION, DEVIATION meters
				and etc

6.8.4. Test Arrangement

6.8.5. Test Data

6.8.5.1. Voice Modulation Limiting for 12.5 kHz Channel Spacing Operation:

MODULATING SIGNAL LEVEL	at the following modul		MAXIMUM LIMIT			
(mVrms)	0.1 kHz	0.5 kHz	1.0 kHz	3.0 kHz	5.0 kHz	(kHz)
2	1.0	1.0	1.0	1.7	0.7	2.5
4	1.0	1.0	1.3	1.7	0.5	2.5
6	0.9	1.1	1.5	1.7	0.3	2.5
8	0.9	1.2	1.7	1.7	0.3	2.5
10	0.9	1.3	1.9	1.7	0.3	2.5
12	0.9	1.4	2.0	1.7	0.3	2.5
14	0.9	1.6	2.1	1.7	0.3	2.5
16	0.9	1.7	2.2	1.7	0.3	2.5
18	0.9	1.8	2.2	1.7	0.3	2.5
20	0.9	1.8	2.2	1.7	0.3	2.5
25	0.9	2.1	2.2	1.7	0.3	2.5
30	0.9	2.1	2.3	1.7	0.3	2.5
35	0.9	2.1	2.3	1.7	0.3	2.5
40	0.9	2.1	2.3	1.7	0.3	2.5
45	0.9	2.1	2.3	1.7	0.3	2.5
50	0.9	2.1	2.3	1.7	0.3	2.5

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: ICOM-063FCC90

June 12, 2003

Voice Signal Input Level = STD MOD Level + 16 dB = 15 dBmVrms + 16 = 31 dBmVrms

MODULATING FREQUENCY (KHz)	PEAK FREQUENCY DEVIATION (KHz)	MAXIMUM LIMIT (KHz)
0.1	0.9	2.5
0.2	1.1	2.5
0.4	2.0	2.5
0.6	2.1	2.5
0.8	2.2	2.5
1.0	2.3	2.5
1.2	2.3	2.5
1.4	2.3	2.5
1.6	2.2	2.5
1.8	2.2	2.5
2.0	2.1	2.5
2.5	1.9	2.5
3.0	1.7	2.5
3.5	1.2	2.5
4.0	0.6	2.5
4.5	0.4	2.5
5.0	0.2	2.5
6.0	0.2	2.5
7.0	0.1	2.5
8.0	0.1	2.5
9.0	0.1	2.5
10.0	0.1	2.5

6.8.5.2. Voice Modulation Limiting for 25 kHz Channel Spacing Operation:

MODULATING SIGNAL LEVEL	at the following modul	MAXIMUM LIMIT				
(mVrms)	0.1 kHz	0.5 kHz	1.0 kHz	3.0 kHz	5.0 kHz	(kHz)
2	1.5	1.5	1.8	3.1	0.4	5.0
4	1.5	1.7	2.3	3.2	0.4	5.0
6	1.5	1.9	2.7	3.3	0.4	5.0
8	1.5	2.2	4.1	3.5	0.4	5.0
10	1.5	2.4	4.1	3.5	0.4	5.0
12	1.5	2.9	4.5	3.5	0.4	5.0
14	1.5	2.9	4.5	3.5	0.4	5.0
16	1.5	3.3	4.5	3.5	0.4	5.0
18	1.5	3.6	4.6	3.5	0.4	5.0
20	1.5	3.8	4.6	3.5	0.4	5.0
25	1.5	4.1	4.6	3.5	0.4	5.0
30	1.5	4.4	4.6	3.5	0.4	5.0
35	1.5	4.4	4.6	3.5	0.4	5.0
40	1.5	4.4	4.6	3.5	0.4	5.0
45	1.5	4.4	4.6	3.5	0.4	5.0
50	1.5	4.4	4.6	3.5	0.4	5.0

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Voice Signal Input Level = STD MOD Level + 16 dB = 16.8 dBmVrms + 16 = 32.8 dBmVrms

MODULATING FREQUENCY (KHz)	PEAK FREQUENCY DEVIATION (KHz)	MAXIMUM LIMIT (KHz)
0.1	1.5	5.0
0.2	2.2	5.0
0.4	4.4	5.0
0.6	4.4	5.0
0.8	4.6	5.0
1.0	4.6	5.0
1.2	4.7	5.0
1.4	4.6	5.0
1.6	4.5	5.0
1.8	4.4	5.0
2.0	4.3	5.0
2.5	4.0	5.0
3.0	3.5	5.0
3.5	2.4	5.0
4.0	1.3	5.0
4.5	0.6	5.0
5.0	0.4	5.0
6.0	0.2	5.0
7.0	0.2	5.0
8.0	0.1	5.0
9.0	0.1	5.0
10.0	0.1	5.0

FCC ID: AFJ236702

Page 27

EMISSION MASK @ FCC 2.1049, 90.208 & 90.210 6.9.

Limits @ FCC 90.209 & 90.210 6.9.1.

Emissions shall be attenuated below the mean output power of the transmitter as follows:

Frequency Range (MHz)	Maximum Authorized BW (KHz)	Channel Spacing (KHz)	Recommended Frequency Deviation (KHz)	FCC Applicable Mask
150 - 174	20.0	25.0	5.0	Mask B – VoiceMask C – Data
150 - 174	11.25	12.5	2.5	Mask D – Voice & Data
150 - 174	6.0	6.25	1.25	Mask E – Voice & Data

6.9.2. **Method of Measurements**

Refer to Exhibit 8, § 8.4 of this report for measurement details

6.9.3. **Test Equipment List**

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
EMI Receiver/ EMI Receiver	Hewlett Packard	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
Attenuator(s)	Bird		•••	DC – 22 GHz
Audio Oscillator	Hewlett Packard	HP 204C	0989A08798	DC to 1.2 MHz

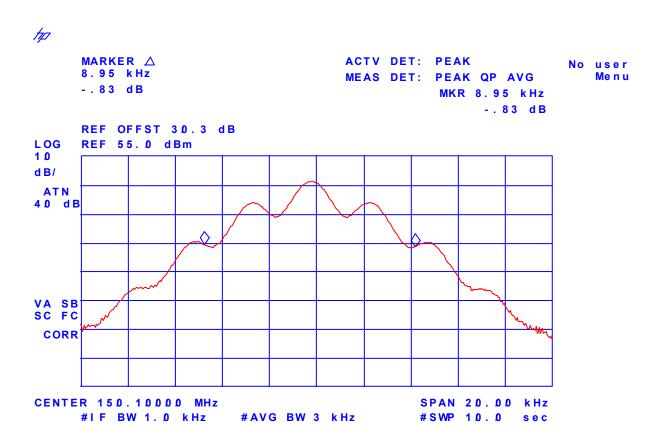
6.9.4. **Test Arrangement**

6.9.5. Test Data

6.9.5.1. 99% Occupied Bandwidth

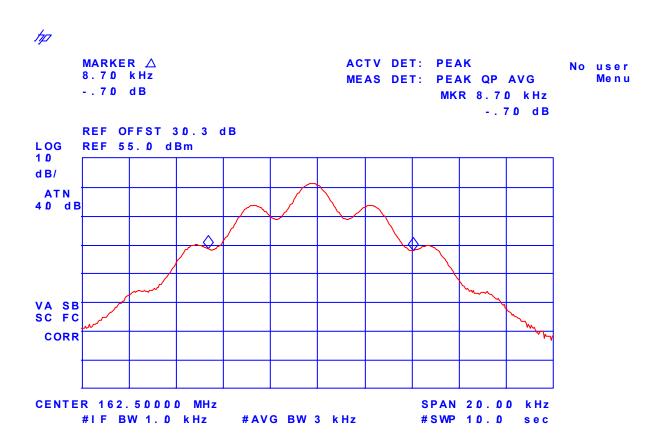
Conform. Please refer to Plots # 1 through # 6 for Details of measurements

Frequency (MHz)	Channel Spacing (kHz)	Measured 99% OBW (kHz)	Recommended Maximum 99% OBW (kHz)
150.1	12.5	9.0	11.25
162.5	12.5	8.7	11.25
173.9	12.5	9.3	11.25
150.1	25.0	13.4	20.0
162.5	25.0	13.0	20.0
173.9	25.0	13.9	20.0

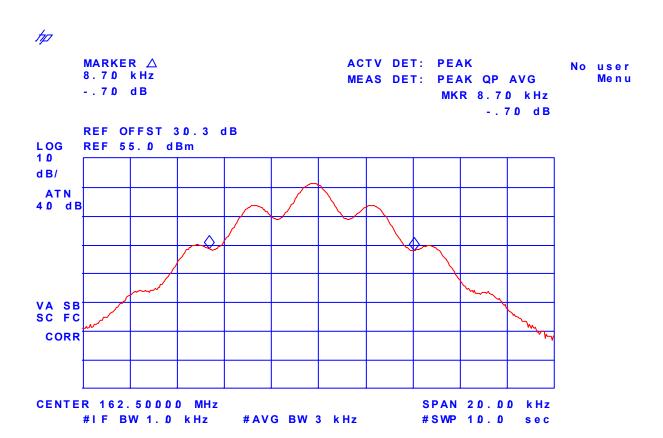

6.9.5.2. Emission Masks

Conform. Please refer to Plots # 7 through # 18 for Details of measurements

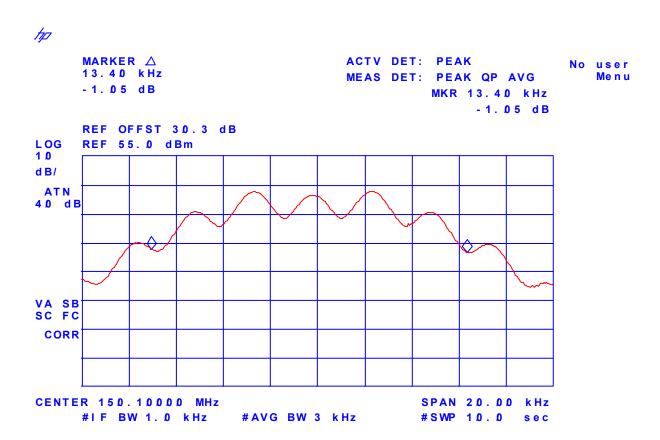
- Plots 7 to 9 show Emissions Masks D for operation at lowest, middle and highest channel frequencies at low power setting (10 Watts)
- Plots 10 to 12 show Emissions Masks D for operation at lowest, middle and highest channel frequencies at low power setting (50 Watts)
- Plots 13 to 15 show Emissions Masks B for operation at lowest, middle and highest channel frequencies at low power setting (10 Watts)
- Plots 16 to 18 show Emissions Masks B for operation at lowest, middle and highest channel frequencies at low power setting (50 Watts)


Plot # 1: 99% Occupied Bandwidth

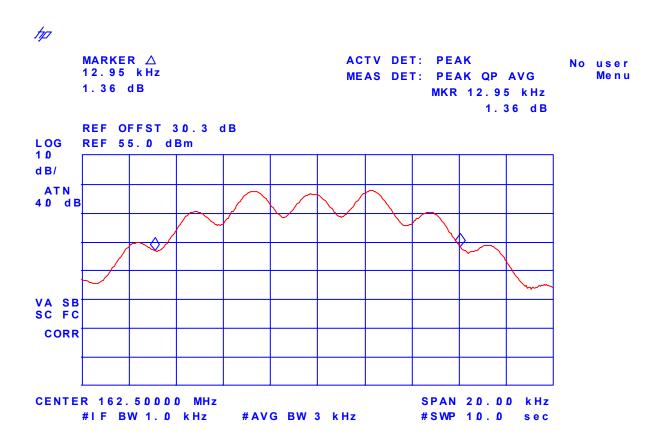
Tx Frequency: 150.1 MHz, Channel Spacing: 12.5 kHz, Output Power: 47.3 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz


Plot # 2: 99% Occupied Bandwidth

Tx Frequency: 162.5 MHz, Channel Spacing: 12.5 kHz, Output Power: 47.3 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz

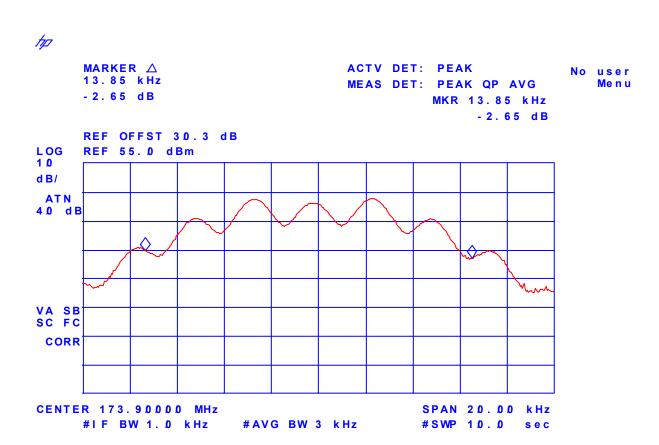

Plot # 3: 99% Occupied Bandwidth

Tx Frequency: 162.5 MHz, Channel Spacing: 12.5 kHz, Output Power: 47.3 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz


Plot # 4: 99% Occupied Bandwidth

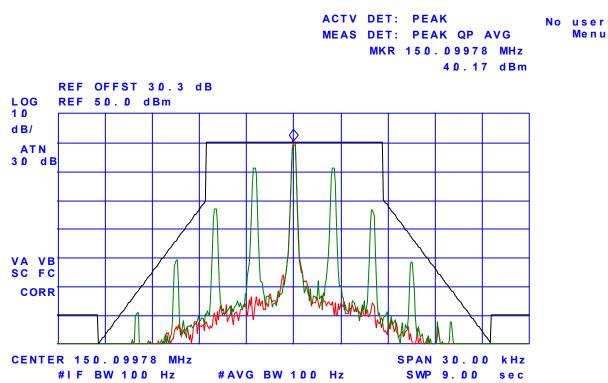
Tx Frequency: 150.1 MHz, Channel Spacing: 25 kHz, Output Power: 47.3 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 4.7 kHz

Plot # 5: 99% Occupied Bandwidth


Tx Frequency: 162.5 MHz, Channel Spacing: 25 kHz, Output Power: 47.3 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 4.7 kHz

Plot # 6: 99% Occupied Bandwidth

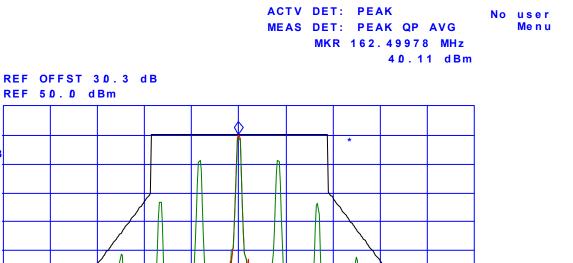
Tx Frequency: 173.9 MHz, Channel Spacing: 25 kHz, Output Power: 47.2 dBm


Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 4.7 kHz

Plot # 7: Emission Mask D

Tx Frequency: 150.1 MHz, Channel Spacing: 12.5 kHz, Output Power: 40.5 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz

Plot # 8: Emission Mask D


Tx Frequency: 162.5 MHz, Channel Spacing: 12.5 kHz, Output Power: 40.5 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz

LOG

VA VB SC FC CORR

1 D dB/ ATN 3 D dB

SPAN 30.00

SWP 9.00

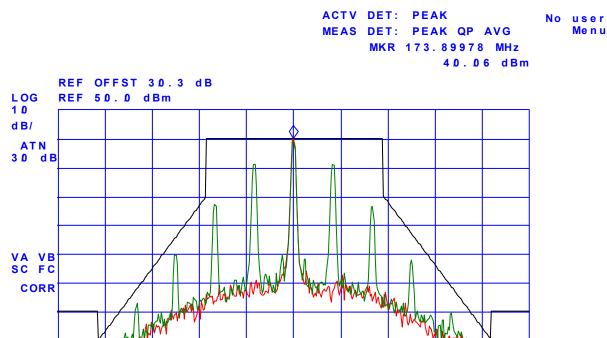
k Hz

sec

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

CENTER 162.49978 MHz


#IF BW 100 Hz

#AVG BW 100 Hz

Plot # 9: Emission Mask D

Tx Frequency: 173.9 MHz, Channel Spacing: 12.5 kHz, Output Power: 40.4 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz

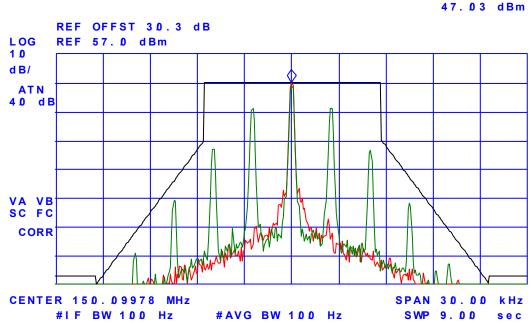
#AVG BW 100 Hz

CENTER 173.89978 MHz

#1 F BW 100 Hz

SPAN 30.00 kHz

sec

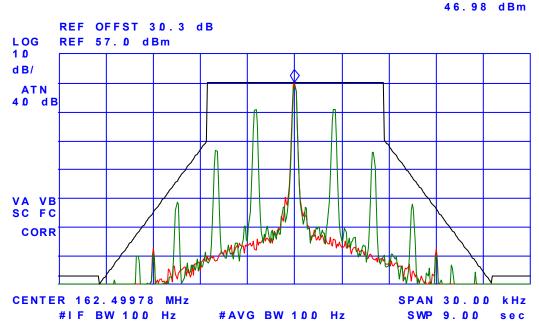

SWP 9.00

Plot # 10: Emission Mask D

Tx Frequency: 150.1 MHz, Channel Spacing: 12.5 kHz, Output Power: 47.3 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz

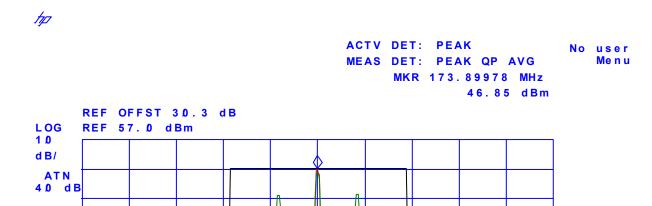
ħρ

ACTV DET: PEAK No user
MEAS DET: PEAK QP AVG Menu
MKR 150.09978 MHz

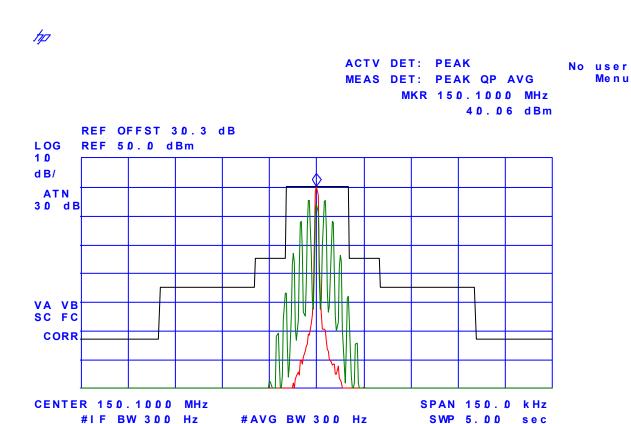


Plot # 11: Emission Mask D

Tx Frequency: 162.5 MHz, Channel Spacing: 12.5 kHz, Output Power: 47.3 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz


hρ

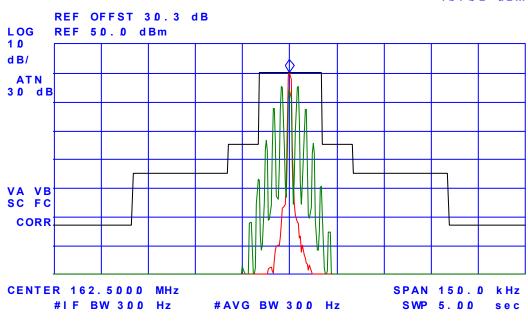
ACTV DET: PEAK No user
MEAS DET: PEAK QP AVG Menu
MKR 162.49978 MHz


Plot # 12: Emission Mask D

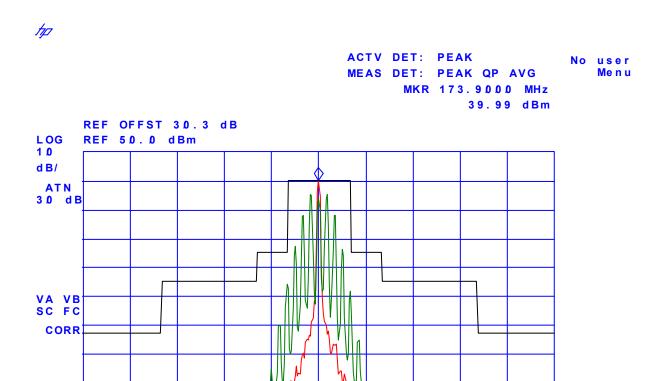
Tx Frequency: 173.9 MHz, Channel Spacing: 12.5 kHz, Output Power: 47.2 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz

Plot # 13: Emission Mask D

Tx Frequency: 150.1 MHz, Channel Spacing: 25 kHz, Output Power: 40.5 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 4.7 kHz


Plot # 14: Emission Mask D

Tx Frequency: 162.5 MHz, Channel Spacing: 25 kHz, Output Power: 40.5 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 4.7 kHz


ACTV DET: PEAK No user
MEAS DET: PEAK QP AVG Menu
MKR 162.5000 MHz

MKR 162.5000 MHz 40.02 dBm

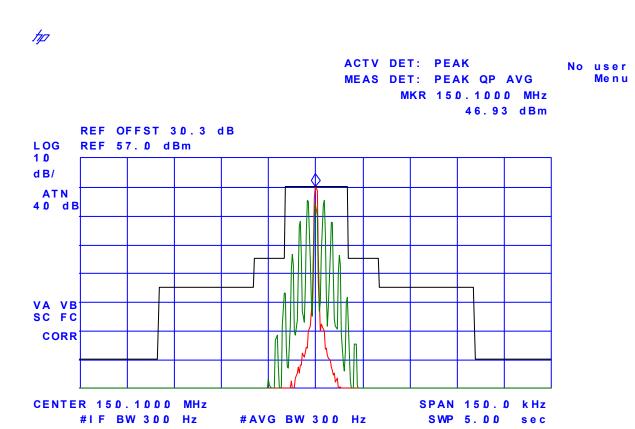
Plot # 15: Emission Mask D

Tx Frequency: 173.9 MHz, Channel Spacing: 25 kHz, Output Power: 40.4 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 4.7 kHz

#AVG BW 300 Hz

SPAN 150.0 kHz

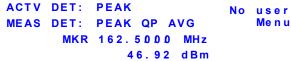
sec

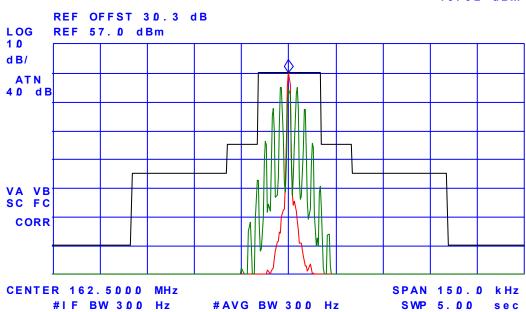

SWP 5.00

CENTER 173.9000 MHz

#1 F BW 300 Hz

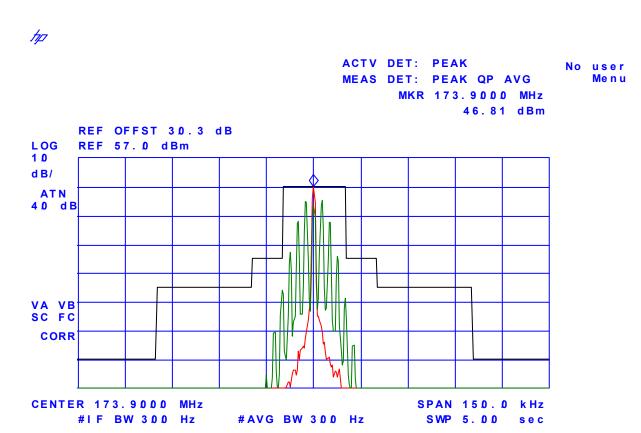
Plot # 16: Emission Mask D


Tx Frequency: 150.1 MHz, Channel Spacing: 25 kHz, Output Power: 47.3 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 4.7 kHz



Plot # 17: Emission Mask D

Tx Frequency: 162.5 MHz, Channel Spacing: 25 kHz, Output Power: 47.3 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 4.7 kHz



Plot # 18: Emission Mask D

Tx Frequency: 173.9 MHz, Channel Spacing: 25 kHz, Output Power: 47.2 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 4.7 kHz

Page 47 FCC ID: AFJ236702

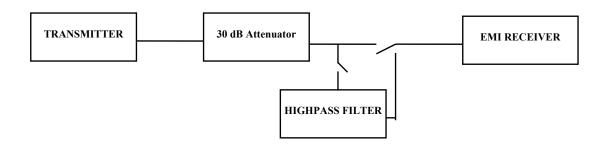
6.10. TRANSMITTER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS @ FCC 90.210

6.10.1. Limits @ 90.210

Emissions shall be attenuated below the mean output power of the transmitter as follows:

FCC Rules	Frequency Range	Attenuation Limit (dBc)	
90.210(b)&(c) – Voice & data	10 MHz to Lowest frequency of the radio to 10 th harmonic of the highest frequency of the radio	43+10*log(P) or -13 dBm	
90.210(d) – Voice & data	10 MHz to Lowest frequency of the radio to 10 th harmonic of the highest frequency of the radio	50+10*log(P) or -20 dBm or 70 dBc whichever is less	

Note; The most stringent limit of 50+10log(P) is applied for the worst case.


6.10.2. Method of Measurements

Refer to Exhibit 8 § 8.5 of this report for measurement details

6.10.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
EMI Receiver/ EMI Receiver Hewlett Packard		HP 8593EM	3412A00103	9 kHz – 26.5 GHz
Attenuator(s)	Bird		•••	DC – 22 GHz
Audio Oscillator	Hewlett Packard	HP 204C	0989A08798	DC to 1.2 MHz
Highpass Filter, Microphase	Microphase	CR220HID	IITI11000AC	Cut-off Frequency at 600 MHz, 1.3 GHz or 4 GHz

6.10.4. Test Arrangement

6.10.5. Test Data

Note: Since there was no difference in spurious/harmonic emissions based on our prescans, the rf spurious/harmonic emissions in this section would be performed for 12.5 kHz Channel Spacing and the lower Limit of 50 + 10*log(P) would be applied for worst case.

6.10.5.1. Lowest Frequency at Low Output Power (Tx Freq: 150.1 MHz, RF Output Power 40.5 dBm, Modulation: FM with 2.5 kHz Sine Wave Signal, Channel Spacing Setting: 12.5 kHz)

FREQUENCY	TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
150.1	40.5				
10 - 2000	**	**	-60.5	**	PASS

The emissions were scanned from 10 MHz to 2 GHz. All emissions less than 10 dB below the limits were found. Please refer to Plots 19 and 20 for detailed measurements.

6.10.5.2. Middle Frequency at Low Output Power (Tx Freq: 162.5 MHz, RF Output Power 40.5 dBm, Modulation: FM with 2.5 kHz Sine Wave Signal, Channel Spacing Setting: 12.5 kHz)

FREQUENCY	TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
162.5	40.5				
10 – 2000	**	**	-60.5	**	PASS

The emissions were scanned from 10 MHz to 2 GHz. All emissions less than 10 dB below the limits were found. Please refer to Plots 21 and 22 for detailed measurements.

6.10.5.3. Highest Frequency at Low Output Power (Tx Freq: 173.9 MHz, RF Output Power 40.4 dBm, Modulation: FM with 2.5 kHz Sine Wave Signal, Channel Spacing Setting: 12.5 kHz)

FREQUENCY	TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
173.9	40.4				
10 - 2000	**	**	-60.4	**	PASS

The emissions were scanned from 10 MHz to 2 GHz. All emissions less than 10 dB below the limits were found. Please refer to Plots 23 and 24 for detailed measurements.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: ICOM-063FCC90

June 12, 2003

6.10.5.4. Lowest Frequency at High Output Power (Tx Freq: 150.1 MHz, RF Output Power 47.3 dBm, Modulation: FM with 2.5 kHz Sine Wave Signal, Channel Spacing Setting: 12.5 kHz)

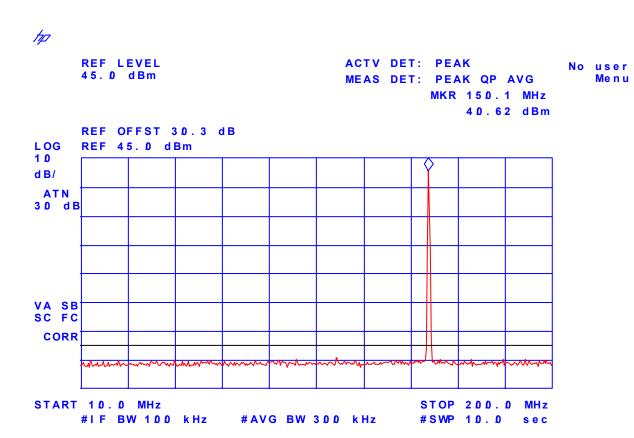
FREQUENCY	TRANSMITTER CONDUCTED		LIMIT	MARGIN	PASS/
(MIII.)	ANTENNA EMISSIONS		(ID.)	(ID)	EAH
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
150.1	47.3			-	
10 - 2000	**	**	-67.3	**	PASS

The emissions were scanned from 10 MHz to 2 GHz. All emissions less than 10 dB below the limits were found. Please refer to Plots 25 and 26 for detailed measurements.

6.10.5.5. Middle Frequency at High Output Power (Tx Freq: 162.5 MHz, RF Output Power 47.3 dBm, Modulation: FM with 2.5 kHz Sine Wave Signal, Channel Spacing Setting: 12.5 kHz)

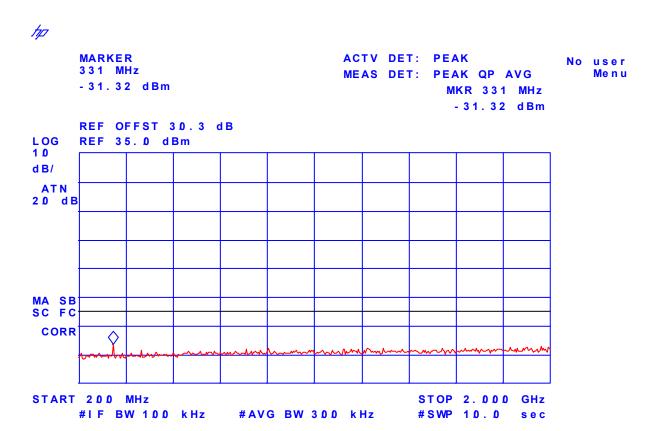
FREQUENCY	TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/
(MHz)	(dBm) (dBc)		(dBc)	(dB)	FAIL
162.5	47.3				
10 - 2000	**	**	-67.3	**	PASS

The emissions were scanned from 10 MHz to 2 GHz. All emissions less than 10 dB below the limits were found. Please refer to Plots 27 and 28 for detailed measurements.

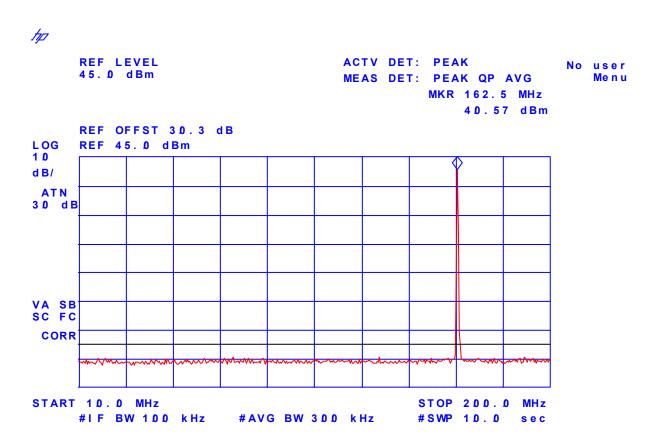

6.10.5.6. Highest Frequency at High Output Power (Tx Freq: 173.9 MHz, RF Output Power 47.2 dBm, Modulation: FM with 2.5 kHz Sine Wave Signal, Channel Spacing Setting: 12.5 kHz)

FREQUENCY	TRANSMITTER CONDUCTED ANTENNA EMISSIONS		LIMIT	MARGIN	PASS/
(MHz)	(dBm)	(dBc)	(dBc)	(dB)	FAIL
173.9	47.2				
347.8	-25.8	-73.0	-67.2	-5.8	PASS

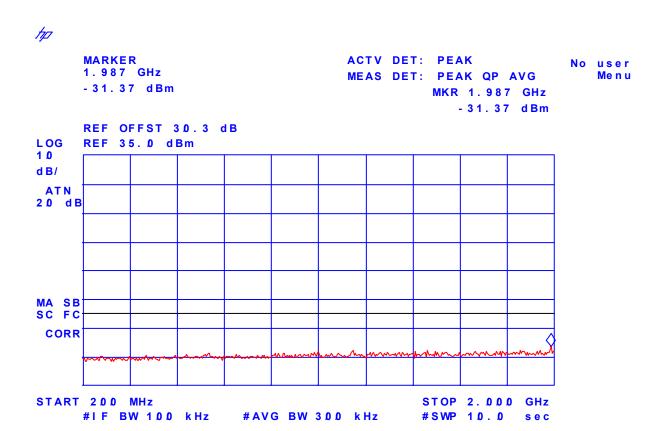
The emissions were scanned from 10 MHz to 2 GHz. All emissions less than 10 dB below the limits were found. Please refer to Plots 29 and 30 for detailed measurements.


Plot # 19: Transmitter Antenna Power Conducted Emissions

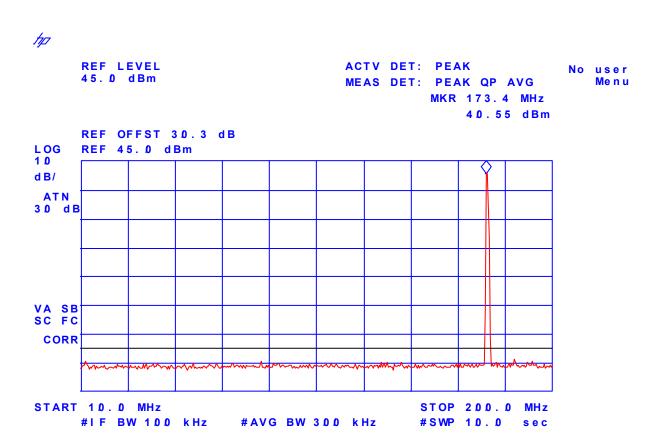
Tx Frequency: 150.1 MHz, Channel Spacing: 12.5 kHz, Output Power: 40.5 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz


Plot # 20: Transmitter Antenna Power Conducted Emissions

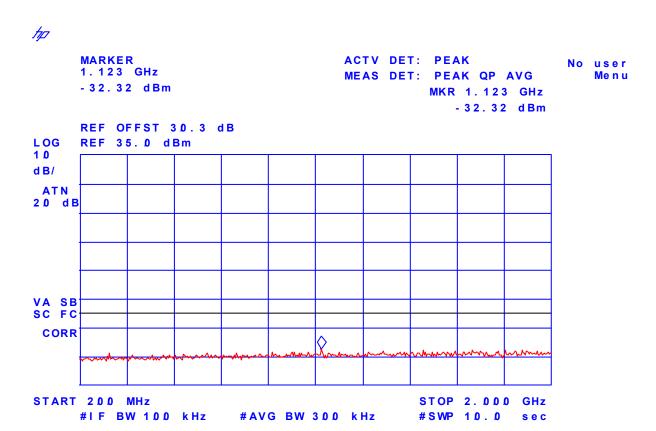
Tx Frequency: 150.1 MHz, Channel Spacing: 12.5 kHz, Output Power: 47.3 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz


Plot # 21: Transmitter Antenna Power Conducted Emissions

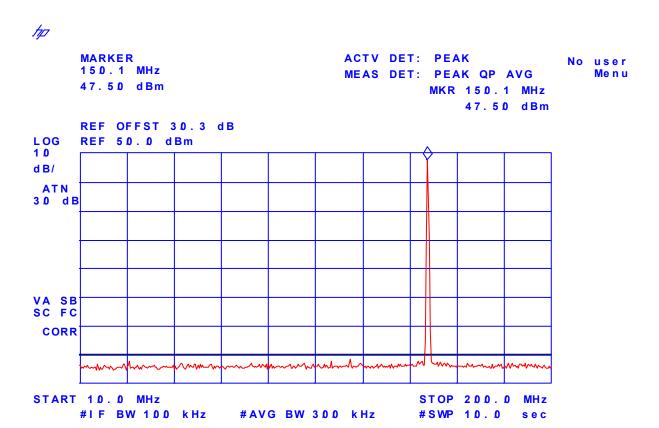
Tx Frequency: 162.5 MHz, Channel Spacing: 12.5 kHz, Output Power: 40.5 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz


Plot # 22: Transmitter Antenna Power Conducted Emissions

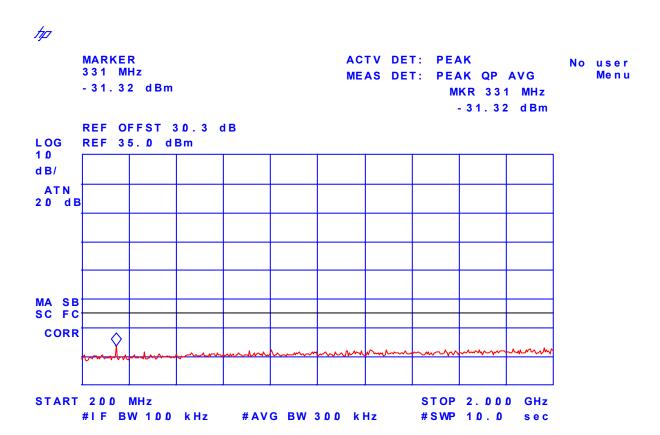
Tx Frequency: 162.5 MHz, Channel Spacing: 12.5 kHz, Output Power: 40.5 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz


Plot # 23: Transmitter Antenna Power Conducted Emissions

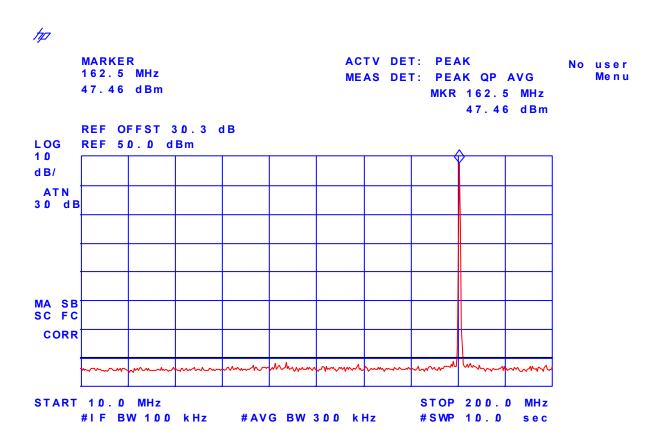
Tx Frequency: 173.9 MHz, Channel Spacing: 12.5 kHz, Output Power: 40.4 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz


Plot # 24: Transmitter Antenna Power Conducted Emissions

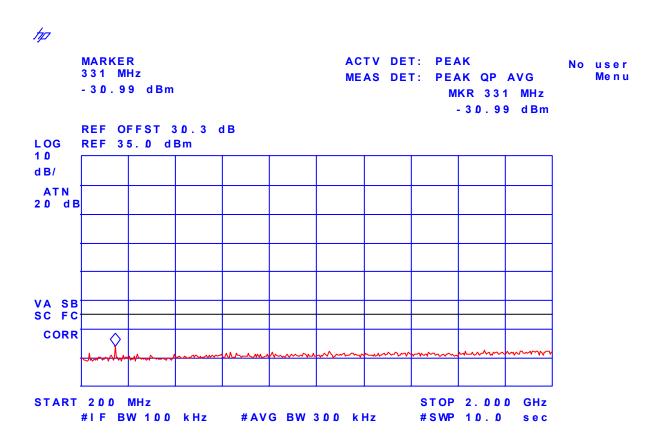
Tx Frequency: 173.9 MHz, Channel Spacing: 12.5 kHz, Output Power: 40.4 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz


Plot # 25: Transmitter Antenna Power Conducted Emissions

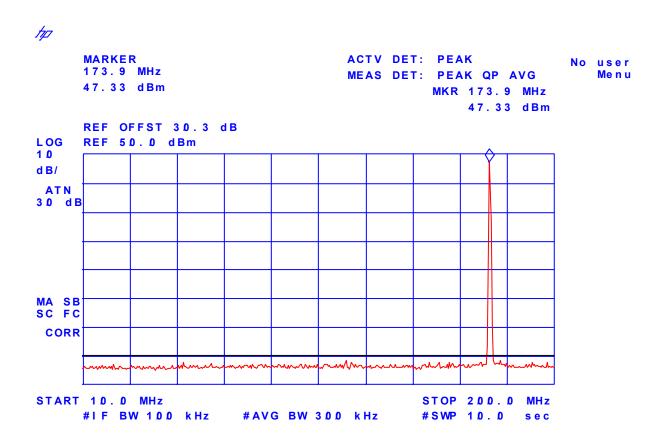
Tx Frequency: 150.1 MHz, Channel Spacing: 12.5 kHz, Output Power: 47.3 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz


Plot # 26: Transmitter Antenna Power Conducted Emissions

Tx Frequency: 150.1 MHz, Channel Spacing: 12.5 kHz, Output Power: 47.3 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz

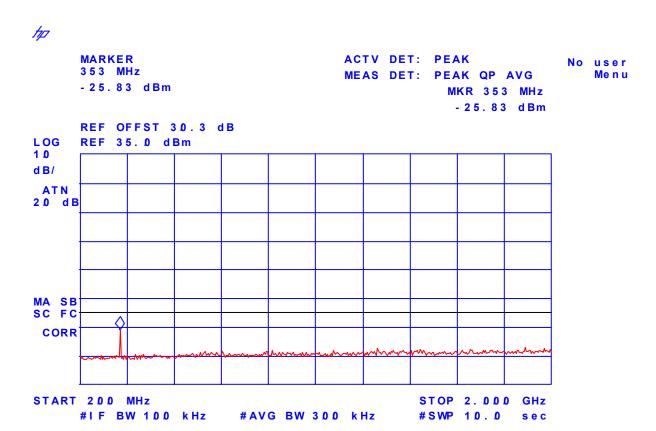

Plot # 27: Transmitter Antenna Power Conducted Emissions

Tx Frequency: 162.5 MHz, Channel Spacing: 12.5 kHz, Output Power: 47.3 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz


Plot # 28: Transmitter Antenna Power Conducted Emissions

Tx Frequency: 162.5 MHz, Channel Spacing: 12.5 kHz, Output Power: 47.3 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz

Plot # 29: Transmitter Antenna Power Conducted Emissions


Tx Frequency: 173.9 MHz, Channel Spacing: 12.5 kHz, Output Power: 47.2 dBm Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz

Plot # 30: Transmitter Antenna Power Conducted Emissions

Tx Frequency: 173.9 MHz, Channel Spacing: 12.5 kHz, Output Power: 47.2 dBm

Modulation: FM Modulation with 2.5 kHz Sine Wave signal, Frequency Deviation: 2.3 kHz

Page 62 FCC ID: AFJ236702

6.11. TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS @ FCC 90.210

6.11.1. Limits @ FCC 90.210

Emissions shall be attenuated below the mean output power of the transmitter as follows:

FCC Rules	Frequency Range	Attenuation Limit (dBc)	
90.210(b)&(c) – Voice & data	10 MHz to Lowest frequency of the radio to 10 th harmonic of the highest frequency of the radio	43+10*log(P) or -13 dBm	
90.210(d) – Voice & data	10 MHz to Lowest frequency of the radio to 10 th harmonic of the highest frequency of the radio	50+10*log(P) or -20 dBm or 70 dBc whichever is less	

6.11.2. Method of Measurements

The spurious/harmonic ERP measurements are using substitution method specified in Exhibit 8, § 8.2 of this report and its value in dBc is calculated as follows:

- (1) If the transmitter's antenna is an integral part of the EUT, the ERP is measured using substitution method.
- (2) If the transmitter's antenna is non-integral and diverse, the lowest ERP of the carrier with 0 dBi antenna gain is used for calculation of the spurious/harmonic emissions in dBc:

 Lowest ERP of the carrier = EIRP 2.15 dB = Pc + G 2.15 dB = xxx dBm (conducted) + 0 dBi 2.15 dB
- (3) Spurious /harmonic emissions levels expressed in dBc (dB below carrier) are as follows:

ERP of spurious/harmonic (dBc) = ERP of carrier (dBm) – ERP of spurious/harmonic emission (dBm)

6.11.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Hewlett Packard	HP 8546A		9 kHz to 5.6 GHz with
EMI Receiver				built-in 30 dB Gain Pre-
				selector, QP, Average &
				Peak Detectors.
RF Amplifier	Com-Power	PA-102		1 MHz to 1 GHz, 30 dB
				gain nomimal
Microwave Amplifier	Hewlett Packard	HP 83017A		1 GHz to 26.5 GHz, 30 dB
_				nominal
Biconilog Antenna	EMCO	3142	10005	30 MHz to 2 GHz
Dipole Antenna	EMCO	3121C	8907-434	30 GHz – 1 GHz
Dipole Antenna	EMCO	3121C	8907-440	30 GHz – 1 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz
Horn Antenna	EMCO	3155	9911-5955	1 GHz – 18 GHz
RF Signal Generator	Hewlett Packard	HP 83752B	3610A00457	0.01 – 20 GHz

Page 63 FCC ID: AFJ236702

6.11.4. Test Setup

Please refer to Photos # 1 and 2 in Annex 2 for detailed of test setup.

6.11.5. Test Data

Remarks:

- The rf spurious/harmonic emission characteristics between 2 different channel spacing operations are identical. Therefore, the following radiated emissions were performed on the radio set with 12.5 kHz Channel Spacing operation, and the results were compared with the lowest limit of 50+10*log(P in Watts) for the worst case.
- The Radiated emissions with High Power Settings were measured at 3 meters distance and represented the worst case

6.11.5.1. Lowest Frequency at High Output Power (Tx Freq: 150.1 MHz, RF Output Power 47.3 dBm, Modulation: FM with 2.5 kHz Sine Wave Signal, Channel Spacing Setting: 12.5 kHz)

FREQUENC (MHz)	Y E-FIELD @3m (dBuV/m)	ERP mea Substitution (dBm)	sured by on Method (dBc)	EMI DETECTOR (Peak/QP)	ANTENNA POLARIZATION (H/V)	LIMIT (dBc)	MARGIN (dB)	PASS/ FAIL
10 - 2000	**	**	**	PEAK	V/H	-67.3	**	PASS

^{**} The emissions were scanned from 10 MHz to 2 GHz at 3 meters and no emissions less than 20 dB below the limits were found and recorded.

6.11.5.2. Middle Frequency at High Output Power (Tx Freq: 162.5 MHz, RF Output Power 47.3 dBm, Modulation: FM with 2.5 kHz Sine Wave Signal, Channel Spacing Setting: 12.5 kHz)

FREQUENCY (MHz)	E-FIELD @3m (dBuV/m)	ERP mea Substitution (dBm)	sured by on Method (dBc)	EMI DETECTOR (Peak/QP)	ANTENNA POLARIZATION (H/V)	LIMIT (dBc)	MARGIN (dB)	PASS/ FAIL
10 - 2000	**	**	**	PEAK	V/H	-67.3	**	PASS

^{**} The emissions were scanned from 10 MHz to 2 GHz at 3 meters and no emissions less than 20 dB below the limits were found and recorded.

6.11.5.3. Highest Frequency at High Output Power (Tx Freq: 173.9 MHz, RF Output Power 47.2 dBm, Modulation: FM with 2.5 kHz Sine Wave Signal, Channel Spacing Setting: 12.5 kHz)

FREQUENCY (MHz)	E-FIELD @3m (dBuV/m)	ERP measured by Substitution Method (dBm) (dBc)		EMI DETECTOR (Peak/QP)	ANTENNA POLARIZATION (H/V)	LIMIT (dBc)	MARGIN (dB)	PASS/ FAIL
10 - 2000	**	**	**	PEAK	V/H	-67.2	**	PASS

^{**} The emissions were scanned from 10 MHz to 2 GHz at 3 meters and no emissions less than 20 dB below the limits were found and recorded.

Page 65 FCC ID: AFJ236702

6.12. TRANSIENT FREQUENCY BEHAVIOR @ 90.214

6.12.1. Limits

Transient frequencies must be within the maximum frequency difference limits during the time intervals indicated:

Time intervals ^{1, 2}	Maximum frequency	All equipment					
	difference ³	150 to 174 MHz					
Transient Frequ	Transient Frequency Behavior for Equipment Designed to Operate on 25 kHz Channels						
t ₁ ⁴ t ₂ t ₃ ⁴	± 25.0 kHz ± 12.5 kHz ± 25.0 kHz	5.0 ms 20.0 ms 5.0 ms					
Transient Frequency Behavior for Equipment Designed to Operate on 12.5 kHz Channels							
t ₁ ⁴ t ₂ t ₃ ⁴	± 12.5 kHz ± 6.25 kHz ± 12.5 kHz	5.0 ms 20.0 ms 5.0 ms					

¹ t_{on} is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing.

6.12.2. Method of Measurements

Refer to Exhibit 8, § 8.6 of this test report and ANSI/TIA/EIA - 603 - 1992, Sec. 2.2.19, Page 83

t₁ is the time period immediately following t_{on}.

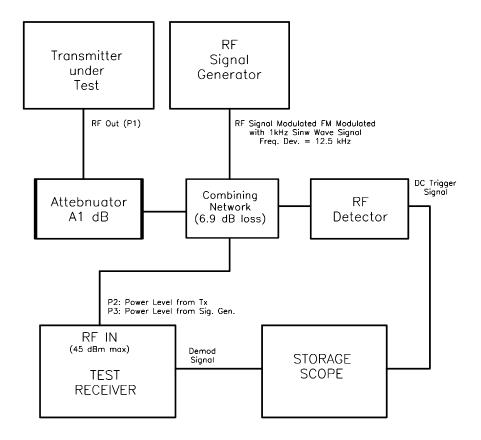
t₂ is the time period immediately following t₁.

 t_3 is the time period from the instant when the transmitter is turned off until $t_{\rm off}$.

 t_{off} is the instant when the 1 kHz test signal starts to rise.

² During the time from the end of t₂ to the beginning of t₃, the frequency difference must not exceed the limits specified in § 90.213.

³ Difference between the actual transmitter frequency and the assigned transmitter frequency.

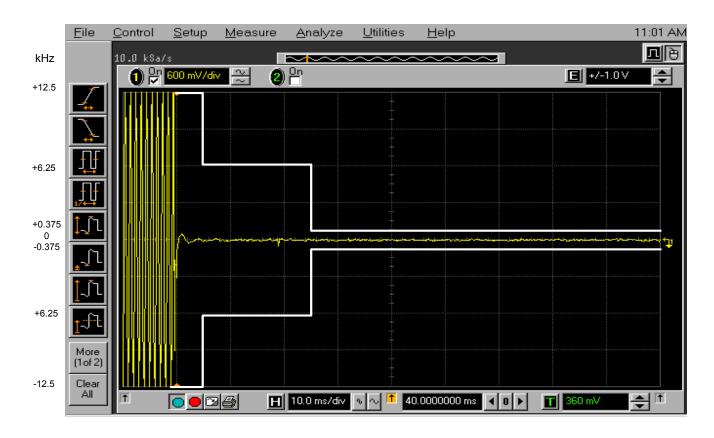

⁴ If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

6.12.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
RF Synthesized Signal Generator	Fluke	6061A		10 kHz – 1GHz 13 dBm output max. @ 50 Ohms
Communication Analyzer (Test Receiver)	Rohde & Schwarz	SMFP2	879988/057	GHz including SINAD, S/N, Modulation meters, AF & RF signal generators and etc
Network Combiner	Mini-circuit	15542		DC to 22 GHz (7 dB insertion loss)
Digital Storage Scope	Phillips	3320A	DQ 646	DC - 5 MHz
67297 RF Detector,	Herotex	DZ122-553	63400	

6.12.4. Test Arrangement

The following drawings show details of the test setup for radiated emissions measurements


6.12.5. Test Data

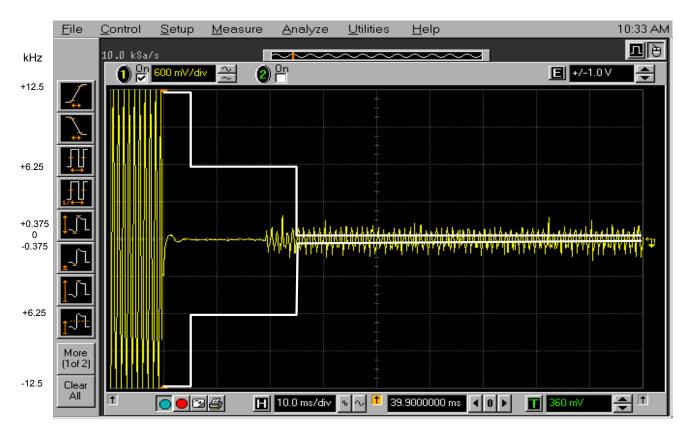
Conforms. Please refer to the following plots.

6.12.5.1. Un-modulated RF Output (12.5 kHz Channel Spacing) - Transmitter turned off

6.12.5.2. Un-modulated RF Output (12.5 kHz Channel Spacing) - Transmitter turned on

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

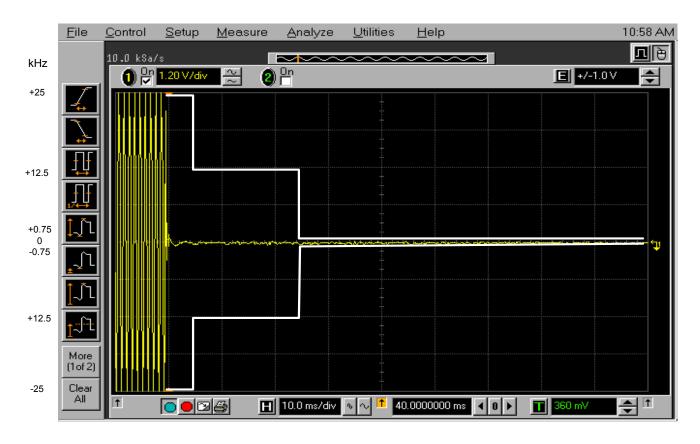
File #: ICOM-063FCC90 June 12, 2003


6.12.5.3. FM Voice Modulated RF Output (12.5 kHz Channel Spacing) - Transmitter turned off

Note: The purpose of Transient Frequency Behavior Tests with modulation is to show the symmetrical characteristics of the modulation during on/off transient per FCC additional request. There is criteria of pass/fail applied to this test configuration.

6.12.5.4. FM Voice Modulated RF Output (12.5 kHz Channel Spacing) - Transmitter turned on

Note: The purpose of Transient Frequency Behavior Tests with modulation is to show the symmetrical characteristics of the modulation during on/off transient per FCC additional request. There is criteria of pass/fail applied to this test configuration.

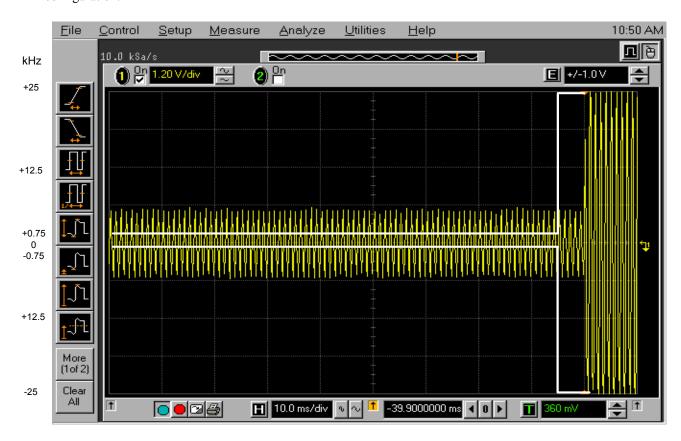

6.12.5.5. Un-modulated RF Output (25 kHz Channel Spacing) - Transmitter turned off

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: ICOM-063FCC90

6.12.5.6. Un-modulated RF Output (25 kHz Channel Spacing) - Transmitter turned on

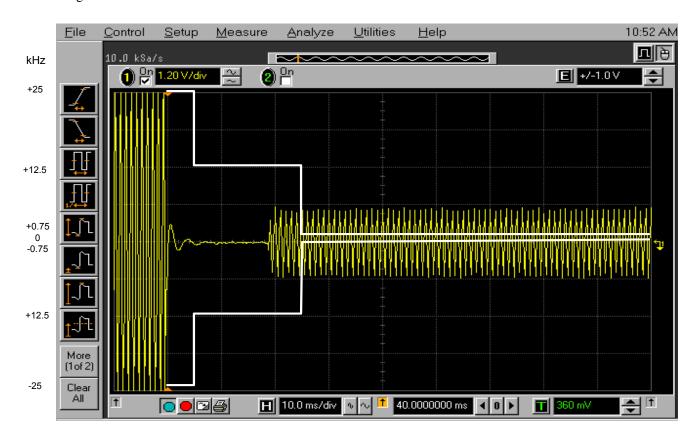
ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: ICOM-063FCC90

June 12, 2003

6.12.5.7. FM Voice Modulated RF Output (25 kHz Channel Spacing) - Transmitter turned off


Note: The purpose of Transient Frequency Behavior Tests with modulation is to show the symmetrical characteristics of the modulation during on/off transient per FCC additional request. There is criteria of pass/fail applied to this test configuration.

File #: ICOM-063FCC90

6.12.5.8. FM Voice RF Output (25 kHz Channel Spacing) - Transmitter turned on

Note: The purpose of Transient Frequency Behavior Tests with modulation is to show the symmetrical characteristics of the modulation during on/off transient per FCC additional request. There is criteria of pass/fail applied to this test configuration.

File #: ICOM-063FCC90

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY DISTRIBUTION	UNCERTAINTY (+ dB)	
(Radiated Emissions)		3 m	10 m
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
Antenna Directivit	Rectangular	+0.5	+0.5
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0
Mismatch: Receiver VRC $\Gamma_1 = 0.2$ Antenna VRC $\Gamma_R = 0.67(Bi) 0.3 (Lp)$ Uncertainty limits $20\text{Log}(1\pm\Gamma_1\Gamma_R)$	U-Shaped	+1.1	<u>+</u> 0.5
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k=2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \; dB \quad \ \ And \quad \ U = 2u_c(y) = 2x(-2.21) = -4.42 \; dB$$

Page 75

FCC ID: AFJ236702

EXHIBIT 8. MEASUREMENT METHODS

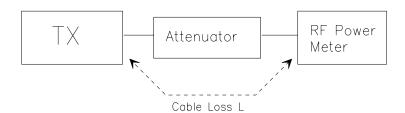
8.1. CONDUCTED POWER MEASUREMENTS

- The following shall be applied to the combination(s) of the radio device and its intended antenna(e).
- If the RF level is user adjustable, all measurements shall be made with the highest power level available to the user for that combination.
- The following method of measurement shall apply to both conducted and radiated measurements.
- The radiated measurements are performed at the Ultratech Calibrated Open Field Test Site.
- The measurement shall be performed using normal operation of the equipment with modulation.

Test procedure shall be as follows:

Step 1: Duty Cycle measurements if the transmitter's transmission is transient

- Using a EMI Receiver with the frequency span set to 0 Hz and the sweep time set at a suitable value to capture the envelope peaks and the duty cycle of the transmitter output signal;
- The duty cycle of the transmitter, x = Tx on / (Tx on + Tx off) with 0 < x < 1, is measure and recorded in the test report. For the purpose of testing, the equipment shall be operated with a duty cycle that is equal or more than 0.1.


Step 2: Calculation of Average EIRP. See Figure 1

- The average output power of the transmitter shall be determined using a wideband, calibrated RF average power meter with the power sensor with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);
- The e.i.r.p. shall be calculated from the above measured power output "A", the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

$$EIRP = A + G + 10\log(1/x)$$

 $\{ X = 1 \text{ for continuous transmission } => 10 \log(1/x) = 0 \text{ dB } \}$

Figure 1.

Page 77 FCC ID: AFJ236702

8.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION **METHOD**

Maximizing RF Emission Level (E-Field) 8.2.1.

- (a) The measurements was performed with full rf output power and modulation.
- (b) Test was performed at listed 3m open area test site (listed with FCC, IC, ITI, NVLAP, ACA & VCCI).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)(d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in ÉMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency Resolution BW: 100 kHz Video BW: same Detector Mode: positive Average: off

Span: 3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be
- (l) Repeat for all different test signal frequencies

Page 78 FCC ID: AFJ236702

8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

equal to the signal source Center Frequency:

Resolution BW: 10 kHz Video BW: same Detector Mode: positive off Average:

Span: 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

- (c) Select the frequency and E-field levels obtained in the Section 8.2.1 for ERP/EIRP measurements.
- (d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna):
 - DIPOLE antenna for frequency from 30-1000 MHz or
 - HORN antenna for frequency above 1 GHz }.
- (e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
- (f) Use one of the following antenna as a receiving antenna:
 - DIPOLE antenna for frequency from 30-1000 MHz or
- HORN antenna for frequency above 1 GHz }.
 (g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (k) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- (1) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
- (n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

Total Correction factor in EMI Receiver #2 = L2 - L1 + G1

- Where: P: Actual RF Power fed into the substitution antenna port after corrected.
 - P1: Power output from the signal generator
 - P2: Power measured at attenuator A input
 - Power reading on the Average Power Meter
 - EIRP: EIRP after correction ERP after correction ERP:
- (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)
- (p) Repeat step (d) to (o) for different test frequency
- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
- (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.:

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: ICOM-063FCC90 June 12 2003

Figure 2

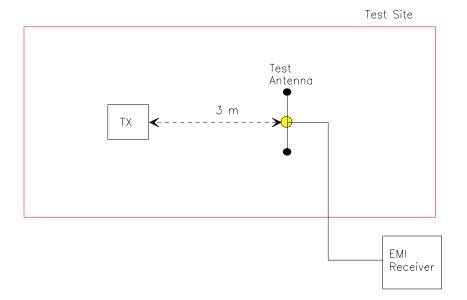
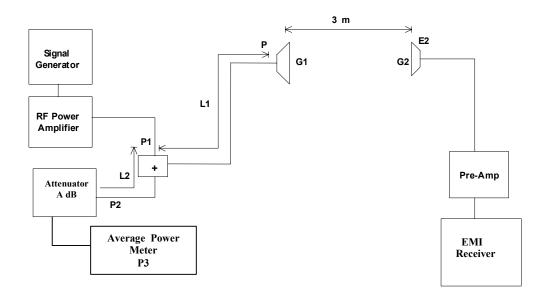



Figure 3

Page 80 FCC ID: AFJ236702

FREQUENCY STABILITY 8.3.

Refer to FCC @ 2.1055.

- The frequency stability shall be measured with variation of ambient temperature as follows: From -30 to +50 (a) centigrade except that specified in subparagraph (2) & (3) of this paragraph.
- Frequency measurements shall be made at extremes of the specified temperature range and at intervals of not more (b) than 10 centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short-term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stability circuitry need be subjected to the temperature variation
- (d) The frequency stability supply shall be measured with variation of primary supply voltage as follows:
 - (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
 - (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
 - (3) The supply voltage shall be measured at the input to the cable normally provide with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.
- (e) When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c) and (d) of this section. (For example, measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment).

8.4. EMISSION MASK

<u>Voice or Digital Modulation Through a Voice Input Port @ 2.1049(c)(i)</u>:- The transmitter was modulated by a 2.5 KHz tone signal at an input level 16 dB greater than that required to produce 50% modulation (e.g.: ±2.5 KHz peak deviation at 1 KHz modulating frequency). The input level was established at the frequency of maximum response of the audio modulating circuit.

<u>Digital Modulation Through a Data Input Port @ 2.1049(h)</u>:- Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the Emission Masks shall be shown for operation with any devices used for modifying the spectrum when such devices are operational at the discretion of the user.

The following EMI Receiver bandwidth shall be used for measurement of Emission Mask/Out-of-Band Emission Measurements:

- (1) For 25 kHz Channel Spacing: RBW = 300 Hz
- (2) For 12.5 kHz or 6.25 kHz Channel Spacings: RBW = 100 Hz

The all cases the Video Bandwidth shall be equal or greater than the measuring bandwidth.

8.5. SPURIOUS EMISSIONS (CONDUCTED)

With transmitter modulation characteristics described in Out-of-Band Emissions measurements @ 2.1049, the transmitter spurious and harmonic emissions were scanned. The spurious and harmonic emissions were measured with the EMI Receiver controls set as RBW = 30 kHz minimum, VBW \geq RBW and SWEEP TIME = AUTO). The transmitter was operated at a full rated power output, and modulated as follows:

FCC CFR 47, Para. 2.1057 - Frequency spectrum to be investigated:- The spectrum was investigated from the lowest radio generated in the equipment up to at least the 10th harmonic of the carrier frequency or to the highest frequency practicable in the present state of the art of measuring techniques, whichever is lower. Particular attention should be paid to harmonics and subharmonics of the carrier frequency. Radiation at the frequencies of multiplier stages should be checked. The

amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

FCC CFR 47, Para. 2.1051 - Spurious Emissions at Antenna Terminal:- The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of the harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

File #: ICOM-063FCC90

Page 81

FCC ID: AFJ236702

8.6. TRANSIENT FREQUENCY BEHAVIOR

- 1. Connect the transmitter under tests as shown in the above block diagram
- 2. Set the signal generator to the assigned frequency and modulate with a 1 kHz tone at ±12.5 kHz deviation and its output level to be 50 dB below the transmitter rf output at the test receiver end.
- 3. Set the horizontal sweep rate on the storage scope to 10 milliseconds per division and adjust the display to continuously view the 1000 Hz tone from the Demodulator Output Port (DOP) of the Test Receiver. Adjust the vertical scale amplitude control of the scope to display the 1000 Hz at +4 divisions vertical Center at the display.
- 4. Adjust the scope so it will trigger on an increasing magnitude from the RF trigger signal of the transmitter under test when the transmitter was turned on. Set the controls to store the display.
- 5. The output at the DOP, due to the change in the ratio of the power between the signal generator input power and transmitter output power will, because of the capture effect of the test receiver, produce a change in display: For the first part of the sweep it will show the 1 kHz test signal. Then once the receiver's demodulator has been captured by the transmitter power, the display will show the frequency difference from the assigned frequency to the actual transmitter frequency versus time. The instant when the 1 kHz test signal is completely suppressed (including any capture time due to phasing) is considered to be t_{on}. The trace should be maintained within the allowed divisions during the period t₁ and t₂.
- 6. During the time from the end of t₂ to the beginning of t₃ the frequency difference should not exceed the limits set by the FCC in Part 90.214 and the outlined in the Carrier Frequency Stability sections. The allowed limit is equal to FCC frequency tolerance limits specified in FCC 90.213.
- 7. Repeat the above steps when the transmitter was turned off for measuring t_3 .

File #: ICOM-063FCC90

Page 82

FCC ID: AFJ236702