

TEST REPORT

Report Number: 30760821 Project Number: 3076082 April 25, 2005

Testing performed on the Multi Trunk-Tracking Scanner Model Number: PRO-2054 FCC ID: ADV2000427

to

FCC Part 15, Subpart B ICES 003

Class: B
For
General Research of Electronics, Inc.

A2LA Certificate Number: 1755-01

Test Performed by:

Intertek
1365 Adams Court
Menlo Park, CA 94025

<u>Test Authorized by:</u>

General Research of Electronics, Inc. 425 Harbor Blvd. Suit B Belmont, CA 94002

15

Bruce Gordon

Reviewed by:

Prepared by:

Date: April 28, 2005

Date: April 28, 2005

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

VERIFICATION OF COMPLIANCE Report No. 30760821

Verification is hereby issued to the named APPLICANT and is VALID ONLY for the equipment identified hereon for use under the rules and regulations listed below.

Equipment Under Test: Multi Trunk-Tracking Scanner	
Trade Name : General Research of Electronics, Ir	ıc.
Model No.: PRO-2054	
Applicant: General Research of Electronics, In	ne
Contact: Mr. Teru Takahashi	10.
Address: 425 Harbor Blvd. Suite B	
Belmont, CA 94002	
Country USA	
Tel. number : 650-591-1400	
Fax number: 650-591-2001	
1 ux number. 030 371 2001	
Applicable Regulation : FCC Part 15, Subpart B	
Industry Canada ICES-003	
Equipment Class: Class B	
Data of That	
Date of Test: April 25 to 27, 2005	
We attest to the accuracy of this report:	
B Andr oll & X	
Bruce Gordon Ollie Moyrong	

TABLE OF CONTENTS

1.0	General Description	4
	1.1 Product Description	
	1.2 Related Submittal(s) Grants	
	1.3 Test Methodology	4
	1.4 Test Facility	
	1.5 Summary of Test Results	
2.0	System Test Configuration	6
	2.1 Justification	6
	2.2 EUT Exercising Software	6
	2.3 Mode of Operation	6
	2.4 Support Equipment List and Description	
	2.5 Equipment Setup Block Diagram	7
	2.6 Equipment Modification	8
3.0	Emission Test Results	9
	3.1 Field Strength Calculation	10
	3.2 Radiated Emission Data	11
	3.3 AC Line Conducted Emission Data	
	3.4 Antenna Conducted Emission Data	16
4.0	List of Test Equipment	19
Appe	endix A – EUT Specification	20
Appe	endix B – Local Oscillator Frequency calculation	21
Appe	endix C – Antenna Drawing	22
	<u>U</u>	

1.0 General Description

1.1 Product Description

The Equipment under Test (EUT) is Multi Trunk-Tracking Scanning Receiver, model PRO-2054

Please refer to the attached specifications sheets in Appendix A for more details.

A pre-production version of the sample was received on April 25, 2005 in good condition. As declared by the Applicant, it is identical to production units.

1.2 Related Submittal(s) Grants

This is a single application for certification of a scanning receiver.

1.3 Test Methodology

Both conducted (if applicable) and radiated emission measurements were performed according to the procedures in ANSI C63.4. All radiated measurements were performed in a semi-anechoic chamber. Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Data Section" of this Application.

1.4 Test Facility

The test site and conducted measurement facility used to collect the radiated data is Site 1, a 10 meter semi-anechoic chamber. This test facility and site measurement data have been fully placed on file with the FCC and A2LA accredited.

EMC Report for General Research of Electronics, Inc.on the model PRO-2054 File: 30760821

1.5 Summary of Test Results

Model: PRO-2054 FCC ID: ADV2000427

TEST	REFERENCE	RESULTS
Radiated Emission	15.109	Complies
AC Line Conducted Emission	15.107	Complies
Antenna Conducted Emission	15.111	Complies
FCC Part 15. 121 Requirement	15.121	Complies *

^{*} Refer to file: ADV2000427 REPORT FOR FCC RULE PART 15.121

2.0 System Test Configuration

2.1 Justification

The tests were performed according to the test procedure as outlined in CFR47 Part 15.31 and in ANSI C63.4.

For emission testing, the equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst-case emissions.

For the measurements, the EUT is placed on top of a non-conductive table. If the EUT attaches to peripherals, they are connected and operational (as typical as possible).

For radiated emission measurements, the signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance if measured at a closer distance.

2.2 EUT Exercising Software

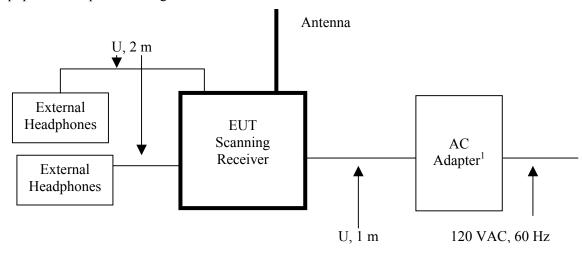
The unit was setup to receive continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing.

2.3 Mode of Operation

The EUT was tested in two modes:

Test Mode 1: The EUT was set to constantly receive at the low, middle and high channels of each band.

Test Mode 2: The EUT was set to constantly scan a particular band.


EMC Report for General Research of Electronics, Inc.on the model PRO-2054 File: 30760821

Support Equipment List and Description 2.4

Item # Description		Model No.	Serial No.	
1	External headphones	Avid	Not Labeled	
2	External headphones	LConcepts	Not Labeled	

2.5 Equipment Setup Block Diagram

U: Unshielded m: meter

File: 30760821 Page 7 of 22

¹ The AC adapter is manufactured by RadioShack®, Part number JOD(M)-48-A641

2.6 Equipment Modification

Any modifications installed previous to testing by GRE will be incorporated in each production model sold/leased in the United States.

Intertek Testing Services installed no modifications.

3.0 Emission Test Results

AC line conducted emission measurements were performed from 0.15 MHz to 30 MHz. Analyzer resolution is 10 kHz or greater.

Radiated emission measurements and antenna conducted emission measurements were performed from 30 MHz to 8000 MHz. Analyzer resolution is 100 kHz or greater for frequencies from 30 MHz to 1000 MHz, 1 MHz - for frequencies above 1000 MHz.

Preliminary tests were performed to determine the worst-case emission with the EUT tuned to the low, middle and high channels of each band. From these preliminary measurements the EUT was tuned to the frequency with the highest emission and the final scan was performed using the automated test software.

The same procedure was used to determine the worst-case emission level with the EUT setup in scanning mode for each band.

The final recorded data reflects the worst-case result

A sample calculation and data tables of the emissions are included.

All measurements were performed with peak detection unless otherwise specified.

3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

```
FS = RA + AF + CF - AG + DF
```

Where $FS = Field Strength in dB(\mu V/m)$

RA = Receiver Amplitude (including preamplifier) in $dB(\mu V)$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB(1/m)

AG = Amplifier Gain in dB

DF = Distance Factor in dB

Assume a receiver reading of 52.0 dB(μV) is obtained. The antennas factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 $dB(\mu V/m)$. This value in $dB(\mu V/m)$ was converted to its corresponding level in $\mu V/m$.

 $RA = 52.0 dB(\mu V)$

AF = 7.4 dB(1/m)

CF = 1.6 dB

AG = 29.0 dB

DF = 0 dB

 $FS = 52 + 7.4 + 1.6 - 29.0 + 0 = 32 dB(\mu V/m)$

Level in $\mu V/m = Common Antilogarithm [(32 dB<math>\mu V/m)/20] = 39.8 \mu V/m$

EMC Report for General Research of Electronics, Inc. on the model PRO-2054 File: 30760821

Page 10 of 22

3.2 Radiated Emission Data

Tested By:	Bruce Gordon
Test Date:	April 25 2005

Temperature	(°C)	20°C
Relative Humidity	(%)	50%

The results on the following page(s) were obtained when the device was tested in the condition described in Section 2.

D 14	G P 1 162 ID 4570 15 MI	
Results:	Complies by 16.3 dB at 579.15 MHz	

3.2 Test Data (Continued)

Model: PR-2054 Test Mode: Receiving Test distance: 3 m

FCC Part 15.109 Class B Radiated Emissions Data

Tuned	L.O.	Antenna	Corrected	Limit	Margin	SA	Amp	Cable	Ant
Frequency	Frequency	Polarization	Reading	at 3 m		Reading	Gain	Loss	
MHz	MHz	H/V	dB(uV/m)	dB(uV/m)	dB	dBuV	dB	dB	dB/m
28.0	408.75	Н	9.3	46.0	-33.7	22.4	32.3	3.1	16.1
41.0	421.80	Н	9.2	46.0	-33.8	21.4	32.3	3.1	170
54.0	434.775	Н	9.7	46.0	-33.3	22.4	32.3	3.1	16.5
108.0	488.775	Н	12.0	46.0	-31.0	23.3	32.4	3.3	17.8
122.5	503.25	Н	13.5	46.0	-29.5	24.4	32.4	3.4	18.1
137.0	517.80	Н	6.2	46.0	-36.8	17.3	32.4	3.5	17.8
155.5	536.25	Н	6.9	46.0	-36.1	17.3	32.4	3.5	18.5
174.0	554.775	Н	16.7	46.0	-26.3	26.6	32.5	3.6	18.9
406.0	786.75	Н	14.9	46.0	-28.1	21.7	32.5	4.3	21.4
438.0	818.775	Н	15.5	46.0	-27.5	21.7	32.4	4.5	21.7
470.0	850.80	Н	20.2	46.0	-22.8	25.5	32.2	4.8	22.1
491.0	871.80	Н	20.3	46.0	-22.7	25.3	32.1	4.8	22.3
512.0	892.80	Н	24.0	46.0	-19.0	28.0	320	4.8	23.1
806.0	425.175	Н	9.2	46.0	-33.8	21.3	32.3	3.1	17.1
823.0	442.20	Н	9.5	46.0	-33.5	22.1	32.3	3.1	16.6
849.0	468.15	Н	11.9	46.0	-31.1	23.6	32.4	3.3	17.4
869.0	488.175	Н	5.9	46.0	-37.1	17.2	32.4	3.3	17.7
894.0	513.15	Н	13.2	46.0	-29.8	24.4	32.4	3.4	17.7
939.0	558.15	Н	8.0	46.0	-35.0	18.0	32.5	3.7	18.8
960.0	579.15	Н	26.7	46.0	-16.3	36.2	32.5	3.7	19.2

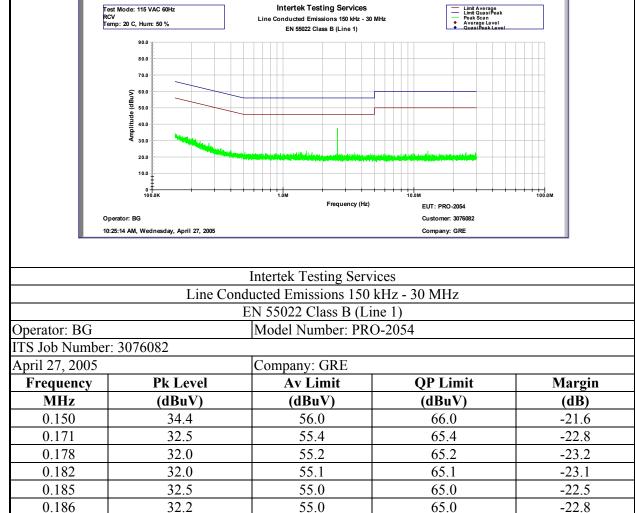
Notes:

- 1. Negative signs (-) in the Margin column signify levels below the limit.
- 2. All readings below 1 GHz are quasi-peak, above 1 GHz average.
- 3. All other readings not reported are at least 20 dB below the limit.
- 4. For L.O. frequency calculation, see Appendix B
- 5. The EUT was tested in two modes. The worst-case data is reported.

Page 12 of 22

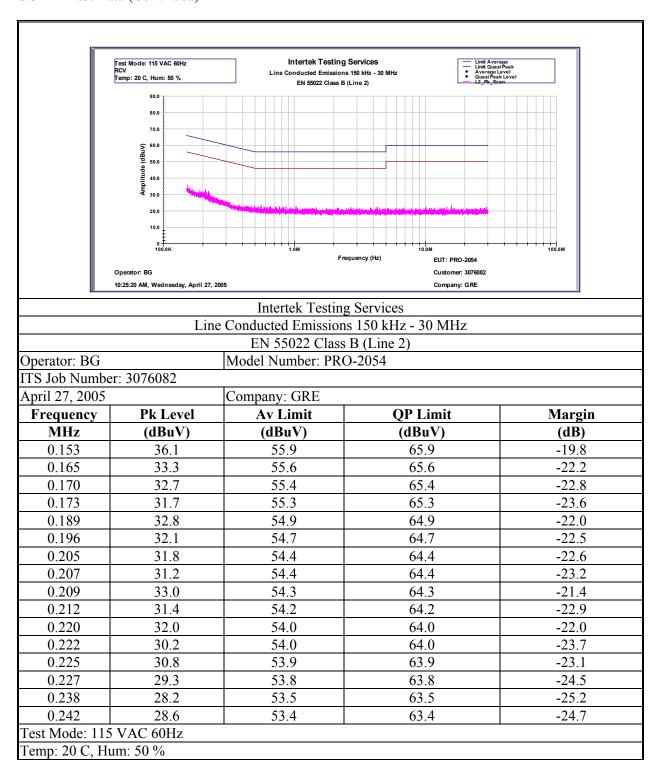
3.3 AC Line Conducted Emission Data

Tested By:	Bruce Gordon
Test Date:	April 27, 2005


Temperature	(°C)	20°C
Relative Humidity	(%)	50%

The results on the following page(s) were obtained when the device was tested in the condition described in Section 2.

Results:	Complies by more than 8.5 dB at 2.61 MHz
ixcourts.	Comples by more than 6.5 dD at 2.01 WHZ

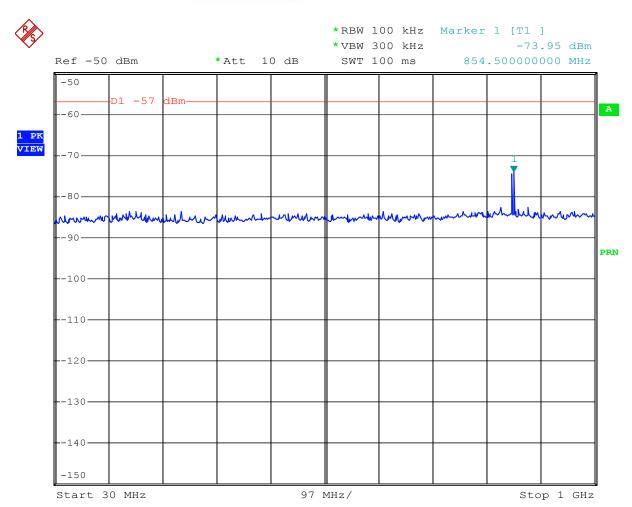

3.3 Test Data (Continued)

0.178	32.0	55.2	65.2	-23.2				
0.182	32.0	55.1	65.1	-23.1				
0.185	32.5	55.0	65.0	-22.5				
0.186	32.2	55.0	65.0	-22.8				
0.195	31.2	54.7	64.7	-23.6				
0.199	30.8	54.6	64.6	-23.8				
0.204	31.0	54.5	64.5	-23.5				
0.204	31.5	54.5	64.5	-23.0				
0.209	30.5	54.3	64.3	-23.8				
0.214	30.2	54.2	64.2	-23.9				
0.215	30.9	54.1	64.1	-23.2				
0.229	28.7	53.7	63.7	-25.1				
0.233	29.6	53.6	63.6	-24.1				
0.243	28.4	53.3	63.3	-24.9				
0.272	28.5	52.5	62.5	-24.0				
2.61	37.5	46.0	56.0	-8.5				
Test Mode: 115	Test Mode: 115 VAC 60Hz							
Temp: 20 C, Hu	um: 50 %							

3.3 Test Data (Continued)

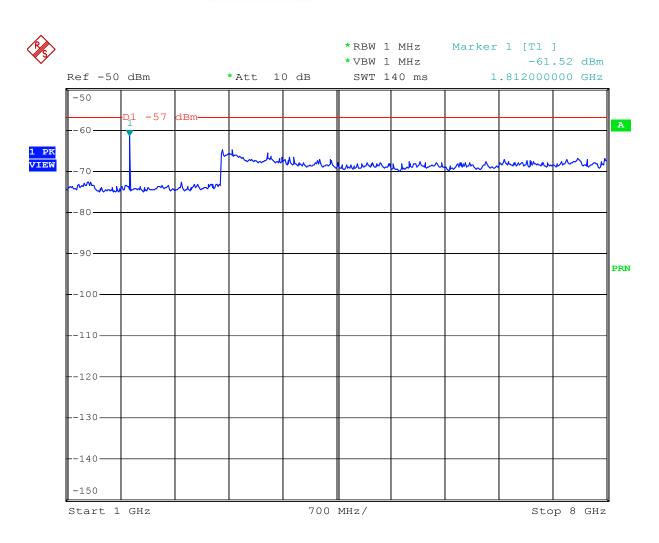
EMC Report for General Research of Electronics, Inc. on the model PRO-2054 File: 30760821

3.4 Antenna Conducted Emission Data


Tested By:	Bruce Gordon
Test Date:	April 26, 2005

Temperature	(°C)	20°C
Relative Humidity	(%)	50%

The results on the following page(s) were obtained when the device was tested in the condition described in Section 2.


Results:	Complies by 4.5 dB at 1.812 GHz	

Date: 26.APR.2005 20:02:41

Date: 26.APR.2005 19:44:32

4.0 List of Test Equipment

Measurement equipment used for emission compliance testing utilized the equipment on the following list

Equipment	Manufacturer	Model/Type	Serial #	Cal Int	Cal Due
Spectrum Analyzer	Rhode-Schwarz	FSP-40	100030	12	9/15/05
RF Filter Section	Hewlett Packard	85460A	3448A00267	12	9/10/05
EMI Receiver	Hewlett Packard	8546A	3710A00373	12	9/10/05
BI-Log Antenna	EMCO	3143	9509-1160	12	10/28/05
LISN	Fischer	FCC-LISN-	01005	12	7/2/05
		50/250-60-2-02			
Pre-Amplifier	Sonoma Inst.	310	185634	12	3/29/06

Appendix A – EUT Specification

Refer to file: ADV2000427 SPECIFICATION

$Appendix \ B-Local \ Oscillator \ Frequency \ calculation$

Refer to file: ADV2000427 LOCAL OSC FREQ CALCULATION

Appendix C – Antenna Drawing

Refer to file: ADV2000427 Telescopic ANT Drawing