

TEST REPORT

Report Number: G100070164MPK-001

Project Number: G100070164

March 24, 2010

**Testing performed on the
Hand Held Scanning Receiver
Model Number: PSR-700
FCC ID: ADV0602901**

to

FCC Part 15, Subpart B

Class: B

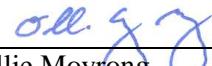
**for
GRE America**

Test Performed by:

Intertek
1365 Adams Court
Menlo Park, CA 94025

Test Authorized by:

GRE America
425 Harbor Blvd. Suite B
Belmont, CA 94002


Prepared by:

Arkadi Kaplan & Marcos Rodriguez

Date: March 24, 2010

Reviewed by:

Ollie Moyrong

Date: March 24, 2010

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

VERIFICATION OF COMPLIANCE

Report No. G100070164-001

Verification is hereby issued to the named APPLICANT and is VALID ONLY for the equipment identified hereon for use under the rules and regulations listed below.

Equipment Under Test:	Hand Held Scanning Receiver
Trade Name:	GRE America
Model No.:	PSR-700
Serial No.	000015
Applicant:	GRE America
Contact:	Mr. Teru Takahashi
Address:	425 Harbor Blvd. Suite B Belmont, CA 94002
Country	USA
Tel. number:	650-591-1400
Fax number:	650-591-2001
Applicable Regulation:	FCC Part 15, Subpart B
Equipment Class:	Class B
Date of Test:	August 11 and September 08, 2009 March 17, 2010

We attest to the accuracy of this report:

Arkadi Kaplan and Marcos Rodriguez
EMC Engineer

Ollie Moyrong
EMC Manager

TABLE OF CONTENTS

1.0	General Description.....	4
1.1.....	Product Description	4
1.2.....	Related Submittal(s) Grants.....	4
1.3.....	Test Methodology	4
1.4.....	Test Facility	4
1.5.....	Summary of Test Results	5
2.0	System Test Configuration.....	6
2.1.....	Justification.....	6
2.2.....	EUT Exercising Software	6
2.3.....	Mode of Operation.....	6
2.4.....	Support Equipment List and Description.....	7
2.5.....	Equipment Setup Block Diagram	7
2.6.....	Equipment Modification	7
3.0	Emission Test Results	8
3.1.....	Field Strength Calculation	9
3.2.....	Radiated Emission Data.....	10
3.3.....	Test Configuration	14
3.4.....	AC Line Conducted Emission Data.....	15
3.5.....	Test Configuration Photographs	18
3.6.....	Antenna Conducted Emission Data	20
4.0	List of Test Equipment	23
Appendix A	LO Frequency Calculation.....	24

1.0 General Description

1.1 Product Description

The Equipment under Test (EUT) is an Advanced Digital Scanning Receiver, model PSR-700

A pre-production version of the sample was received on August 11, 2009 and March 16, 2010 in good condition. As declared by the Applicant, it is identical to production units.

1.2 Related Submittal(s) Grants

This is a single application for certification of a scanning receiver.

1.3 Test Methodology

Both conducted (if applicable) and radiated emission measurements were performed according to the procedures in ANSI C63.4 (2003). All radiated measurements were performed in a semi-anechoic chamber. Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the **“Data Section”** of this Application.

1.4 Test Facility

The test site and conducted measurement facility used to collect the radiated data is Site 1, a 10 meter semi-anechoic chamber. This test facility and site measurement data have been fully placed on file with the FCC and A2LA accredited.

1.5 Summary of Test Results

Model: PSR-700
FCC ID: ADV0602901

TEST	REFERENCE	RESULTS
Radiated Emission	15.109	Complies
AC Line Conducted Emission	15.107	Complies
Antenna Conducted Emission	15.111	Complies
FCC Part 15.121 Requirement	15.121	Complies *

* Refer to file: "ADV0602901 REPORT FOR FCC RULE PART 15.121"

2.0 System Test Configuration

2.1 Justification

The tests were performed according to the test procedures as outlined in CFR47 Part 15.31 and in ANSI C63.4.

For emission testing, the equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst-case emissions.

For the measurements, the EUT is placed on top of a non-conductive table. If the EUT attaches to peripherals, they are connected and operational (as typical as possible).

For radiated emission measurements, the signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters or ten meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three meter or ten meter reading using inverse scaling with distance if measured at a closer distance.

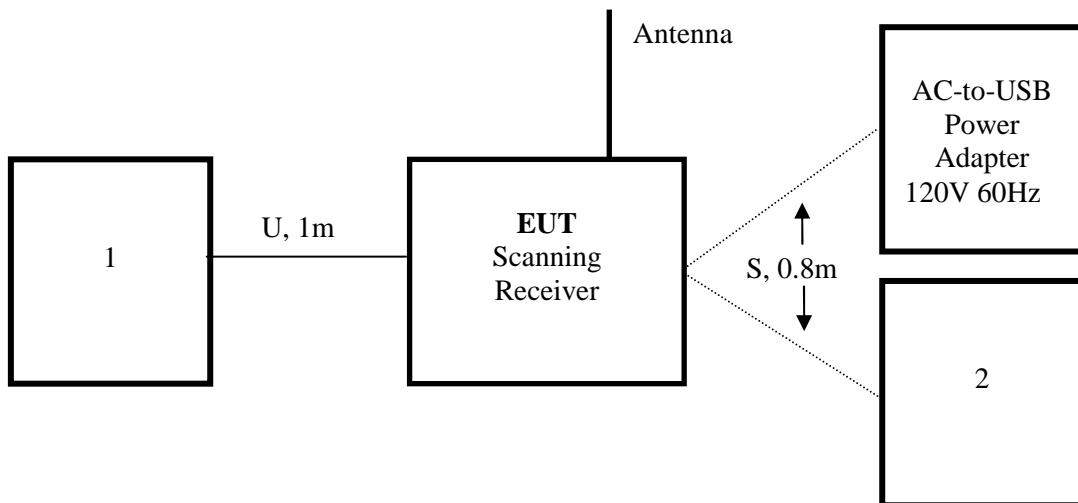
The EUT was tested in August and September of 2009, and certification was granted under FCC ID ADV0602 on September 29, 2009. The EUT was recently modified by changing the position of the key pad on the front panel of the EUT. The receiver circuitry has not been modified. This report contains data taken from the receiving circuit from the original report of FCC ID ADV0602. Limited testing was performed for radiated emissions in the band of 30 MHz – 5 GHz to ensure continued compliance of the device for the changes made to the position of the key pad.

2.2 EUT Exercising Software

None.

2.3 Mode of Operation

The EUT was tested in two modes:


Test Mode 1: The EUT was set to continuously receive at the low, middle and high channels of each band.

Test Mode 2: The EUT was set to continuously scan all bands.

2.4 Support Equipment List and Description

Item #	Description	Model No.	Serial No.
1	External headphones	KOSS	Not Labeled
2	Compaq	6901	X99312BJ7F001

2.5 Equipment Setup Block Diagram

Power Adapter: AC-to-USB, Enercell, Cat. #273-317

U: Unshielded

S: Shielded

m: meter

Note: The USB port of the EUT can either be connected to a AC-to-USB power adapter or to a USB port of a computer. The EUT was tested in both configurations.

2.6 Equipment Modification

Intertek Testing Services installed no modifications.

Any modifications installed previous to testing by GRE will be incorporated in each production model sold/leased in the United States.

3.0 Emission Test Results

Radiated emission measurements were performed from 30 MHz to 5000 MHz. Antenna conducted emission measurements performed from 30 MHz to 10000 MHz. Analyzer resolution is 100 kHz or greater for frequencies from 30 MHz to 1000 MHz, 1 MHz – for frequencies above 1000 MHz.

Tests were performed with the EUT tuned to the low, middle and high channels of each band and with the EUT setup in scanning mode. The final recorded data reflects the worst-case results.

A sample calculation and data tables of the emissions are included.

All measurements were performed with peak detection unless otherwise specified.

Limits for Electromagnetic Radiated Disturbance, FCC Section 15.109(b)

Frequency (MHz)	Class B at 3m dB(μ V/m)
30-88	40.0
88-216	43.5
216-960	46.0
Above 960	54.0

3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG + DF$$

Where FS = Field Strength in dB(μ V/m)

RA = Receiver Amplitude (including preamplifier) in dB(μ V)

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB(1/m)

AG = Amplifier Gain in dB

DF = Distance Factor in dB

Assume a receiver reading of 52.0 dB(μ V) is obtained. The antennas factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB(μ V/m). This value in dB(μ V/m) was converted to its corresponding level in μ V/m.

$$RA = 52.0 \text{ dB}(\mu\text{V})$$

$$AF = 7.4 \text{ dB}(1/\text{m})$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$DF = 0 \text{ dB}$$

$$FS = 52 + 7.4 + 1.6 - 29.0 + 0 = 32 \text{ dB}(\mu\text{V}/\text{m})$$

$$\text{Level in } \mu\text{V}/\text{m} = \text{Common Antilogarithm} [(32 \text{ dB}(\mu\text{V}/\text{m})/20)] = 39.8 \mu\text{V}/\text{m}$$

3.2 Radiated Emission Data

Tested By:	Arkadi Kaplan & Marcos Rodriguez
Test Date:	August 11, 2009 & March 17, 2010

The results on the following page(s) were obtained when the device was tested in the condition described in Section 2.

Results:	Complies
-----------------	----------

3.2 Test Data (Continued)

FCC Part 15.109 Class B Radiated Emissions Data

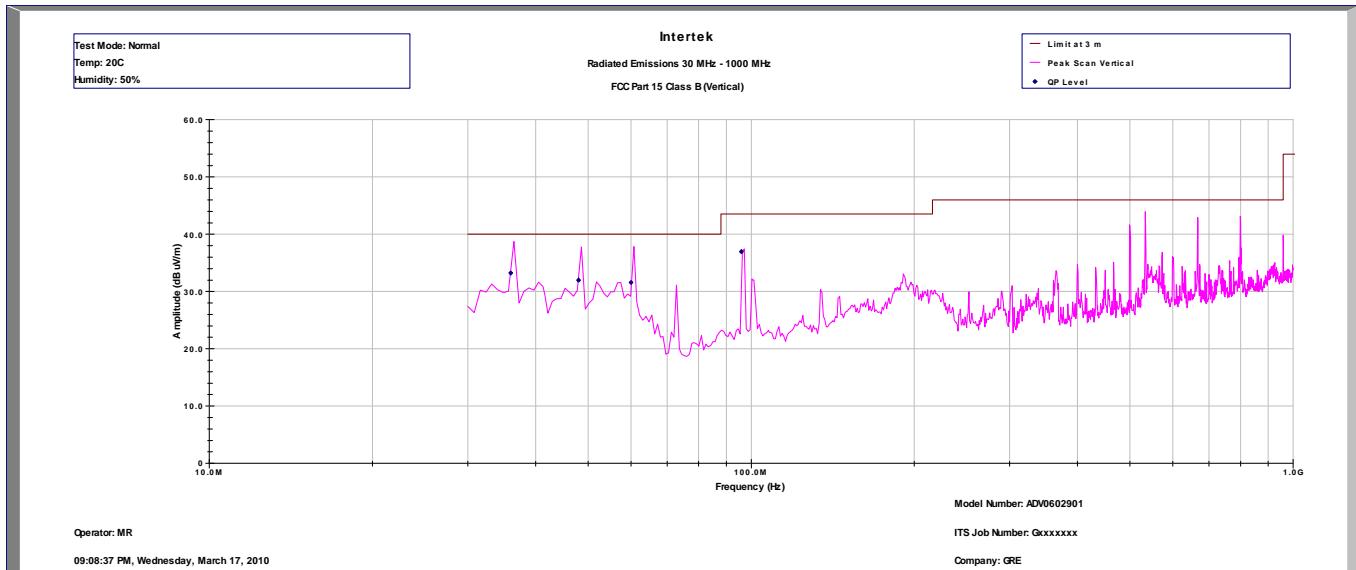
Test Mode: Tuned Frequency

Test distance: 3 m

Date of Test: August 11, 2009

Tuned Frequency	L.O. Frequency	Antenna Polarization	Quasi-PK FS	Limit @3m	RA	AG	CF	AF	Margin
MHz	MHz	H/V	dB(uV/m)	dB(uV/m)	dB(uV)	dB	dB	dB(1/m)	dB
25	405.8	V	21.4	46	34.5	32.1	2.1	16.9	-24.6
41	421.8	V	22.4	46	34.8	32.1	2.2	17.6	-23.6
54	434.8	V	21.2	46	33.5	32.2	2.2	17.6	-24.8
108	488.8	V	14.3	46	25.8	32.3	2.3	18.4	-31.7
124	504.8	V	16.3	46	27.6	32.3	2.4	18.6	-29.7
136	516.8	V	16.3	46	27.4	32.3	2.5	18.8	-29.7
137	517.8	V	15.3	46	26.4	32.3	2.5	18.8	-30.7
154	534.9	V	17.8	46	28.5	32.4	2.6	19.1	-28.2
174	554.8	V	17.9	46	28.2	32.4	2.7	19.3	-28.1
216.0025	596.0025	V	29.6	46	39.3	32.5	3	19.8	-16.4
225	605.8	V	30.1	46	38.2	32.5	3	21.3	-15.9
310	690.8	V	21.3	46	29.8	32.5	2.8	21.3	-24.7
406	786.8	V	23.9	46	31.4	32.4	3	21.9	-22.1
450	830.8	V	25.7	46	32.6	32.2	3.1	22.3	-20.3
512	892.8	V	37.6	46	42.8	31.9	3.2	23.5	-8.4
764	383.2	V	20.9	46	34.7	32	2.1	16.1	-25.1
806	425.2	V	23.6	46	35.7	32	2.2	17.7	-22.4
860	479.2	V	21.1	46	32.7	32.1	2.3	18.2	-24.9
960	579.2	V	20.7	46	31.1	32.3	2.6	19.3	-25.3
1240	859.2	V	17.2	46	22.9	31.8	3.1	23	-28.8
1270	889.2	V	25.9	46	30.6	31.6	3.2	23.7	-20.1
1300	919.2	V	23.5	46	28.2	31.3	3.2	23.4	-22.5

Notes: 1. Negative signs (-) in the Margin column signify levels below the limit.


2. All readings below 1 GHz are quasi-peak, above 1 GHz – average.

3. All other readings not reported are at least 20 dB below the limit.

4. For L.O. frequency calculation, see Appendix A.

5. Emissions in the “Scanning” mode were lower than the “Tuned Frequency” Mode .

3.2 Test Data (Continued)

Intertek Testing Services
Radiated Emissions 30 MHz – 1000 MHz
FCC Part 15 Class B (QP-Vertical)

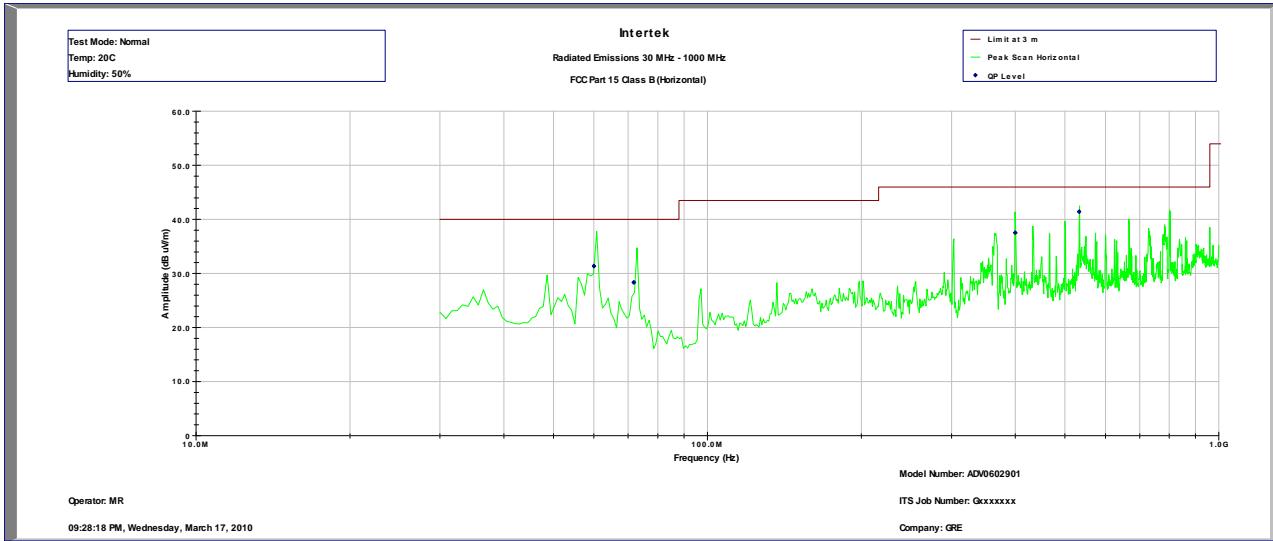
Operator: MR

Model Number: ADV0602901

Wednesday, March 17, 2010

Company: GRE

Frequency MHz	Quasi Pk FS dB(uV/m)	Limit@3m dB(uV/m)	Margin dB	RA dB(uV)	Cable dB	AG dB	DCF dB	AF dB(1/m)
359.901	33.2	40	-6.8	36.8	0.7	32.1	10.5	17.3
480.013	32	40	-8	37.9	0.8	32.1	10.5	14.8
599.939	31.6	40	-8.4	42.1	0.9	32.1	10.5	10.1
960.013	37	43.5	-6.5	47.3	1.1	32	10.5	10


Test Mode: Scanning Mode

Temp: 20C

Humidity: 50%

Frequency range of investigation was 30 MHz – 5 GHz. No emissions were detected above the noise floor above 1 GHz. The noise floor was at least 20 dB below the limit.

3.2 Test Data (Continued)

Intertek Testing Services
Radiated Emissions 30 MHz – 1000 MHz
FCC Part 15 Class B (QP-Horizontal)

Operator: MR

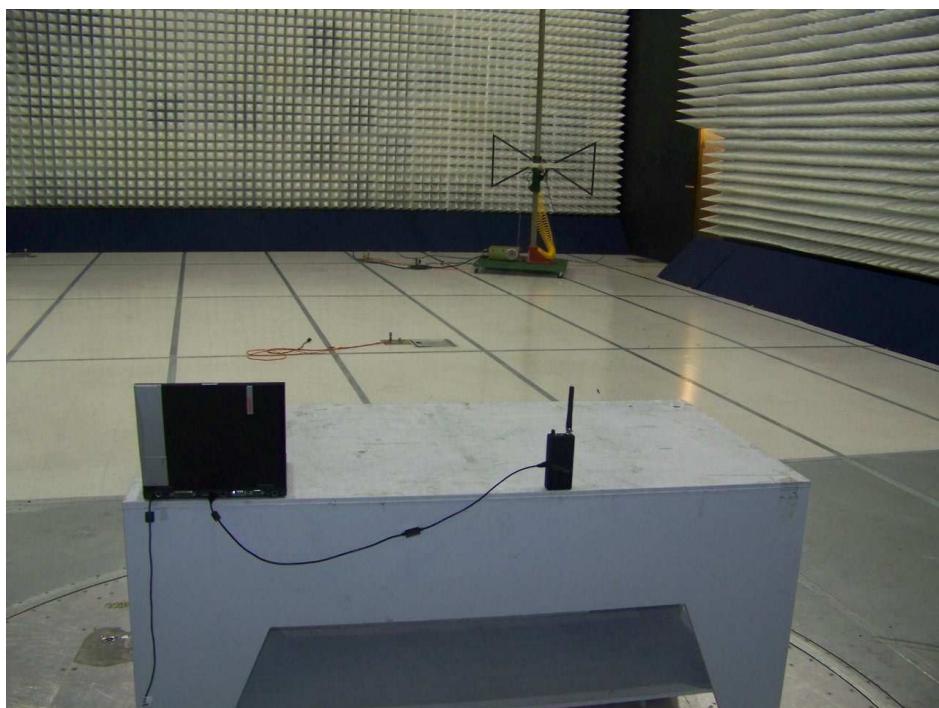
Model Number: ADV0602901

Wednesday, March 17, 2010

Company: GRE

Frequency MHz	Quasi Pk FS dB(uV/m)	Limit@3m dB(uV/m)	Margin dB	RA dB(uV)	CF dB	AG dB	DCF dB	AF dB(1/m)
60.011	31.3	40	-8.7	41.2	0.9	32.1	10.5	10.8
71.834	28.4	40	-11.6	41.8	1	32	10.5	7.2
399.784	37.5	46	-8.5	41	2.4	32	10.5	15.7
533.006	41.4	46	-4.6	42.5	2.7	32.2	10.5	17.9

Test Mode: Scanning Mode

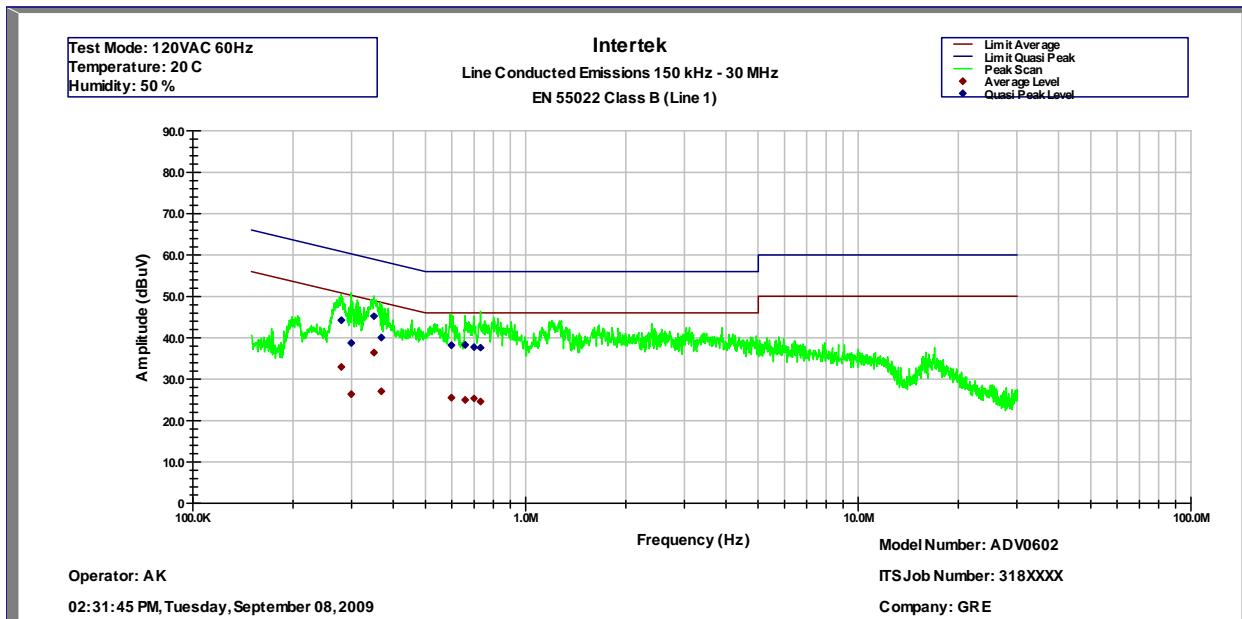

Temp: 20C

Humidity: 50%

Frequency range of investigation was 30 MHz – 5 GHz. No emissions were detected above the noise floor above 1 GHz. The noise floor was at least 20 dB below the limit.

3.3 Test Configuration

The following photographs show the testing configurations used.


3.4 AC Line Conducted Emission Data

Tested By:	Arkadi Kaplan
Test Date:	September 8, 2009

The results on the following page(s) were obtained when the device was tested in the condition described in Section 2.

Results:	Complies by 13.9 dB
-----------------	---------------------

3.4 Test Data (Continued)

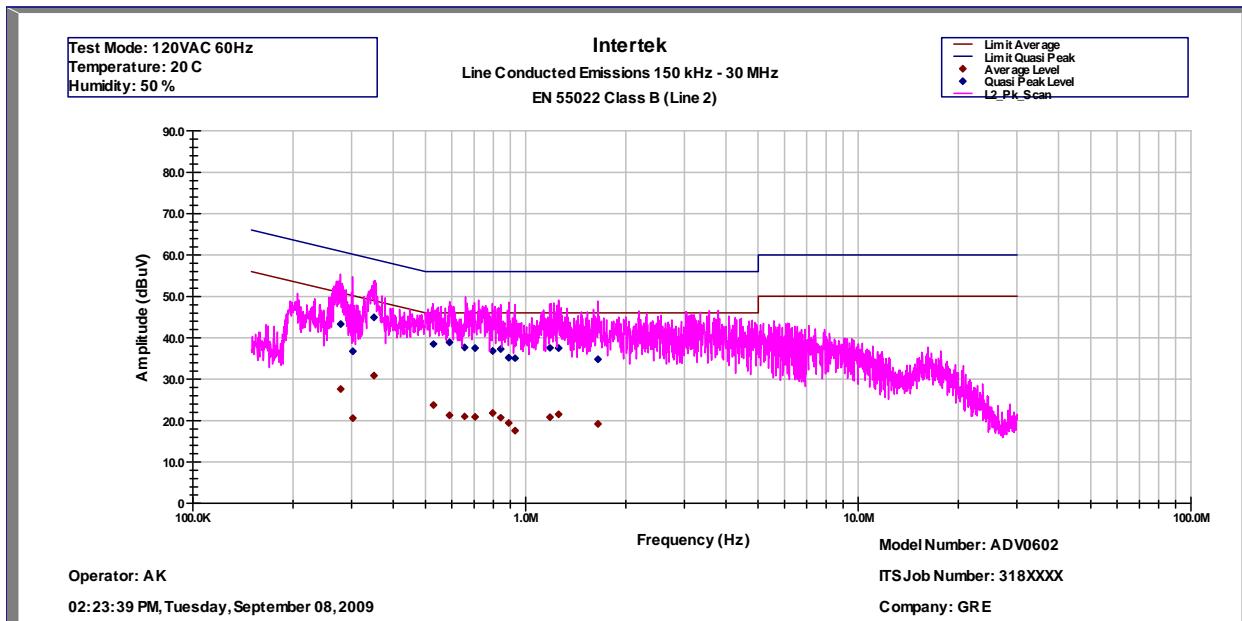
Intertek
Line Conducted Emissions 150 kHz – 30 MHz
EN 55022 Class B (Line 1)

Operator: AK

Model Number: ADV0602

02:31:45 PM, Tuesday, September 08, 2009

Company: GRE


Frequency MHz	Av Level (dBuV)	QP Level (dBuV)	Av Limit (dBuV)	QP Limit (dBuV)	Av Margin (dB)	QP Margin (dB)
0.279	32.9	44.2	52.3	62.3	-19.4	-18.1
0.299	26.4	38.8	51.7	61.7	-25.3	-23.0
0.350	36.4	45.2	50.3	60.3	-13.9	-15.1
0.368	27.1	40.1	49.8	59.8	-22.7	-19.7
0.599	25.5	38.2	46.0	56.0	-20.5	-17.8
0.657	25.0	38.3	46.0	56.0	-21.0	-17.7
0.699	25.3	37.8	46.0	56.0	-20.7	-18.2
0.732	24.6	37.6	46.0	56.0	-21.4	-18.4

Test Mode: 120VAC 60Hz

Temperature: 20 C

Humidity: 50 %

3.4 Test Data (Continued)

Intertek
Line Conducted Emissions 150 kHz – 30 MHz
EN 55022 Class B (Line 2)

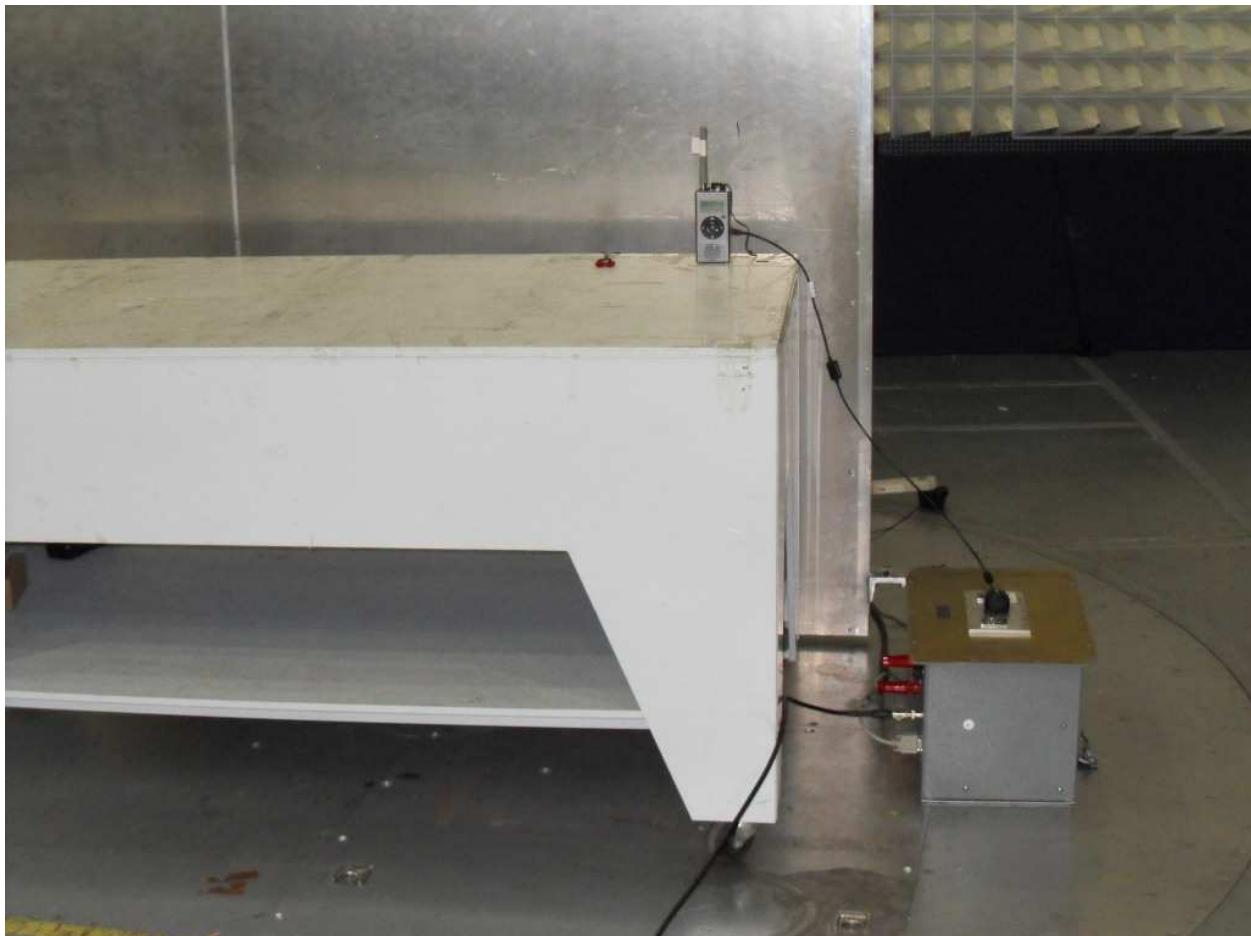
Operator: AK

Model Number: ADV0602

02:23:39 PM, Tuesday, September 08, 2009

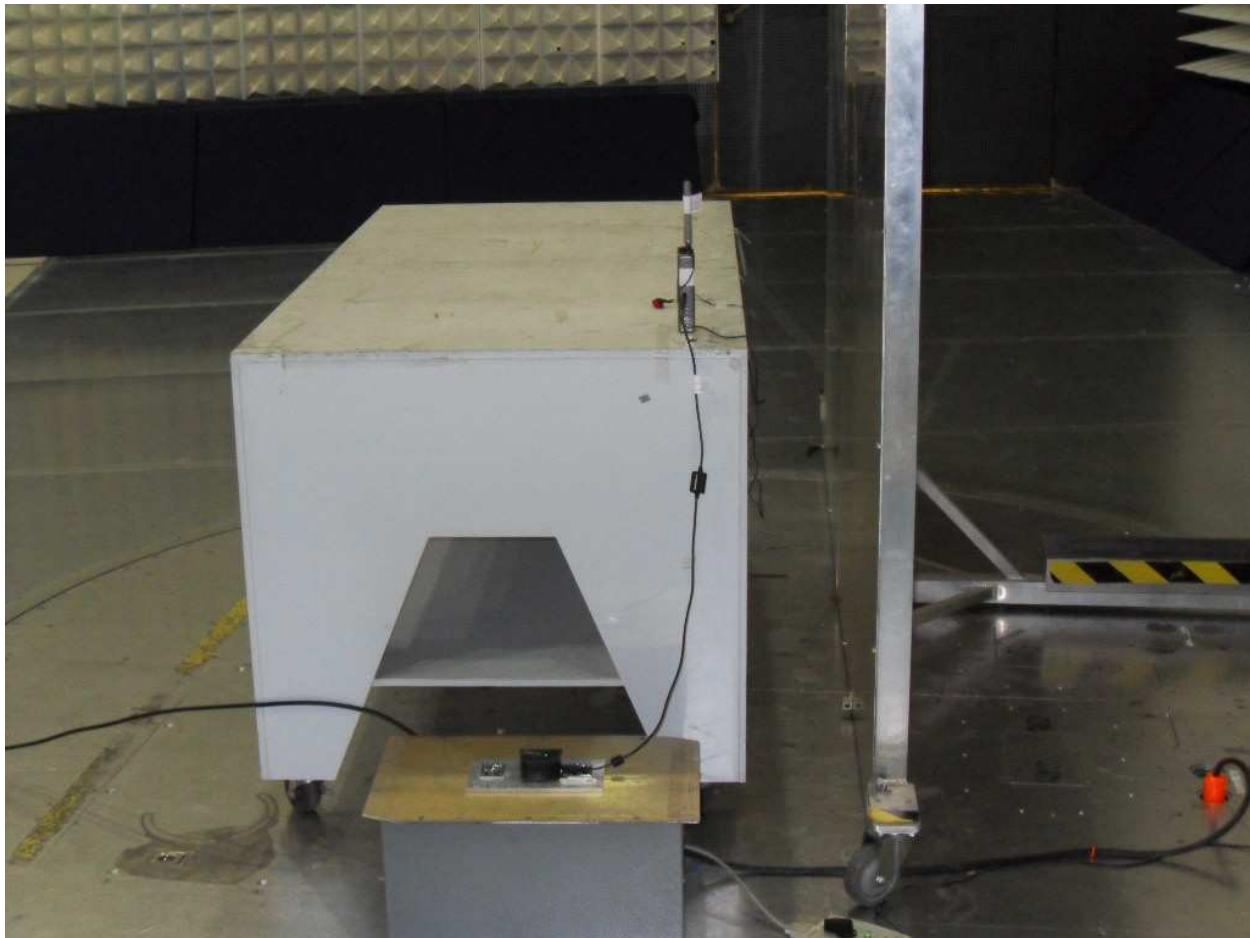
Company: GRE

Frequency MHz	Av Level (dBuV)	QP Level (dBuV)	Av Limit (dBuV)	QP Limit (dBuV)	Av Margin (dB)	QP Margin (dB)
0.278	27.6	43.3	52.3	62.3	-24.8	-19.0
0.302	20.6	36.7	51.7	61.7	-31.1	-24.9
0.350	30.8	44.9	50.3	60.3	-19.5	-15.3
0.528	23.7	38.5	46.0	56.0	-22.3	-17.5
0.591	21.3	38.9	46.0	56.0	-24.7	-17.1
0.656	21.0	37.6	46.0	56.0	-25.0	-18.4
0.705	20.9	37.5	46.0	56.0	-25.1	-18.5
0.796	21.8	36.8	46.0	56.0	-24.2	-19.2
0.842	20.7	37.3	46.0	56.0	-25.3	-18.7
0.889	19.4	35.2	46.0	56.0	-26.6	-20.8
0.930	17.5	35.1	46.0	56.0	-28.5	-20.9
1.180	20.8	37.6	46.0	56.0	-25.2	-18.4
1.260	21.5	37.5	46.0	56.0	-24.5	-18.5
1.650	19.2	34.8	46.0	56.0	-26.8	-21.2


Test Mode: 120VAC 60Hz

Temperature: 20 C

Humidity: 50 %

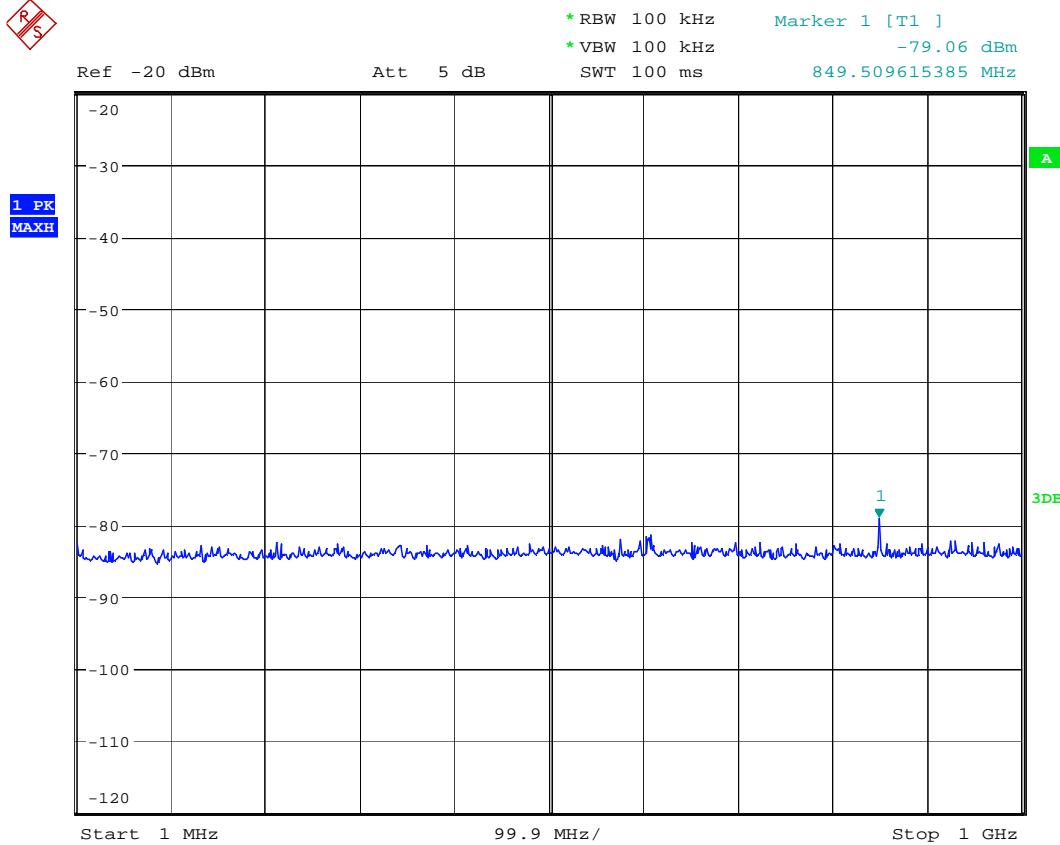

3.5 Test Configuration Photographs

The following photographs show the testing configurations used.

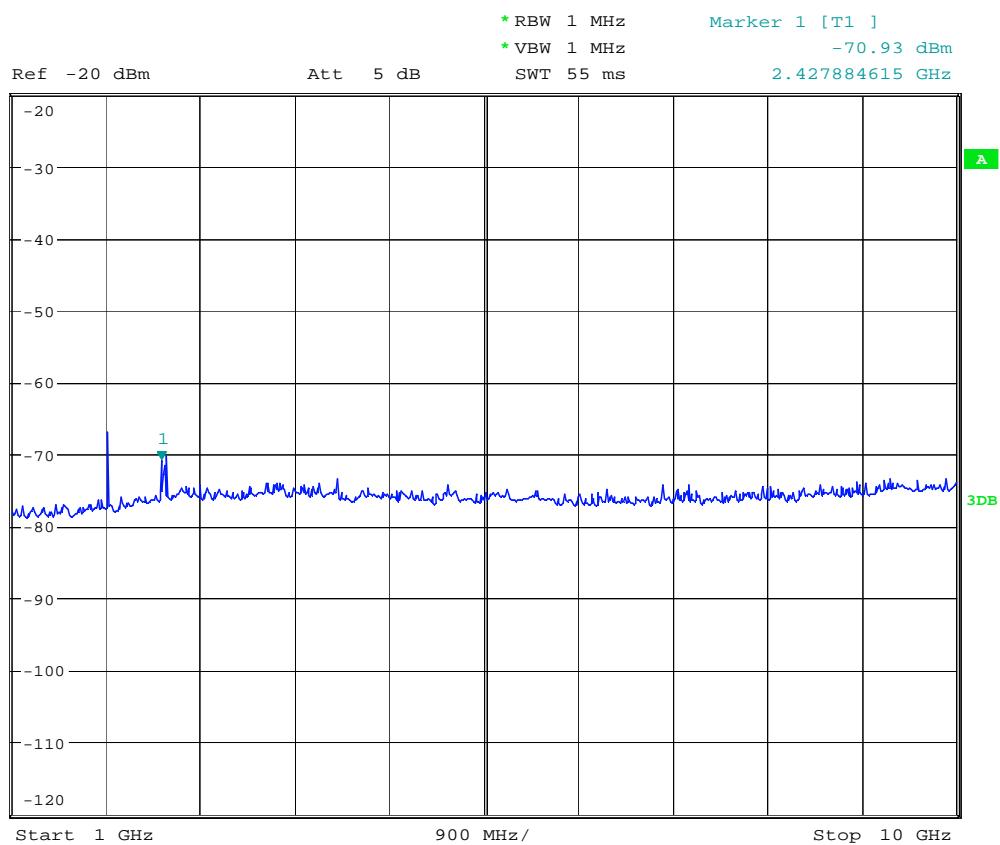
Electromagnetic Radiated Disturbance Setup Photograph

3.5 Test Configuration Photograph (Continued)

Electromagnetic Radiated Disturbance Setup Photograph


3.6 Antenna Conducted Emission Data

Tested By:	Arkadi Kaplan
Test Date:	August 27, 2009


The results on the following page(s) were obtained when the device was tested in the condition described in Section 2.

Results:	Complies
-----------------	-----------------

Note: Measurements were performed with the EUT tuned at 25 MHz, 512 MHz and 1300 MHz. Data for the worst-case tuned frequency was 512 MHz which is reported.

Antenna Port Conducted
Date: 27.AUG.2009 23:42:07

Antenna Port Conducted

Date: 27.AUG.2009 23:43:16

4.0 List of Test Equipment

Measurement equipment used for emission compliance testing utilized the equipment on the following list.

Test List for 2009 Test

Equipment	Manufacturer	Model/Type	Serial #	Cal Int	Cal Due
RF Filter Section	Hewlett Packard	85460A	3448A00267	12	10/01/09
EMI Receiver	Hewlett Packard	8546A	3710A00373	12	10/01/09
BI-Log Antenna	EMCO	3143	9509-1160	12	11/06/10
Pre-Amplifier	Sonoma	310N	185634	12	11/10/09
LISN	FCC	FCC-LISN-50-50-M-H	2011	12	09/19/09
Spectrum Analyzer	Rohde/Schwarz	FSP-40	100030	12	10/13/09

Test List for 2010 Test

Equipment	Manufacturer	Model/Type	Serial #	Cal Int	Cal Due
RF Filter Section	Hewlett Packard	85460A	3448A00267	12	12/04/10
EMI Receiver	Hewlett Packard	8546A	3710A00373	12	12/04/10
BI-Log Antenna	EMCO	3143	9509-1160	12	11/06/10
Pre-Amplifier	Sonoma	310N	185634	12	11/19/10
Spectrum Analyzer	Rohde/Schwarz	FSP-40	100030	12	10/13/09
Horn Antenna	EMCO	3115	9107-3712	12	11/03/10
Pre-Amplifier	Miteq	AMF-4D-001180-24-10P	799159	12	07/28/10

Appendix A LO Frequency Calculation

1 LOCAL OSC FREQUENCY CALCULATION

-1 FCC ID: ADV0602 formula for 1st, 2nd and 3rd Local oscillation frequencies are as follow :

RECEIVING BAND (FR STEP)	FREQ. STEP (kHz)	RECEIVING FREQ. FR (MHz)	1st LOCAL PLL 1 /VCO 1 or VCO 2 (MHz)	2nd LOCAL PLL 2 /VCO 3 (MHz)	3rd LOCAL X' TAL (MHz)
VHF Low	10	25.0000 ~ 27.4050	$A = (FR + 380.800) / 0.075$ $= A.xxx (Cut away decimal)$ 1st Local = $A \times 0.075$ 1st IF = 1st Local - FR	2nd Local = 1st IF - 21.4	20.9450
	5	27.4100 ~ 29.7000			
	10	29.7100 ~ 49.8300			
	5	49.8350 ~ 54.0000			
VHF High	8.33	108.0000 ~ 136.99166	FR DENOTES Frequency Received. $A = (FR + 380.800) / 0.075$ $= A.xxx (Cut away decimal)$ 1st Local = $A \times 0.075$ 1st IF = 1st Local - FR	2nd Local = 1st IF - 21.4	20.9450
	5	137.0000 ~ 137.9950			
	12.5	138.0000 ~ 143.9875			
	5	144.0000 ~ 147.9950			
	12.5	148.0000 ~ 150.7875			
	5	150.8000 ~ 150.8450			
	7.5	150.8525 ~ 154.4975			
	5	154.5150 ~ 154.6400			
	7.5	154.6500 ~ 156.2550			
	25	156.2750 ~ 157.4500			
	7.5	157.4700 ~ 161.5725			
	5	161.6000 ~ 161.9750			
	12.5	162.0000 ~ 174.0000			
	5	216.0025 ~ 224.9950			
UHF Low	6.25	225.0000 ~ 316.54375	$A = (FR + 380.700) / 0.075$ $= A.xxx (Cut away decimal)$ 1st Local = $A \times 0.075$ 1st IF = FR - 1st Local	2nd Local = 1st IF - 21.4	20.9450
	"	316.5500 ~ 316.79375			
	"	316.8000 ~ 337.89375			
	"	337.9000 ~ 338.09375			
	"	338.1000 ~ 359.29375			
	"	359.3000 ~ 359.49375			
	"	359.5000 ~ 379.99375			
	12.5	380.0000 ~ 380.7125			
	"	380.7250 ~ 380.8000			
	"	380.8125 ~ 400.0000			
	"	400.0125 ~ 405.9750			
	"	405.9875 ~ 419.9875			
	5	420.0000 ~ 450.0000			
	6.25	450.00625 ~ 469.99375			
	6.25	470.0000 ~ 512.0000			
UHF High	3.125	764.0000 ~ 781.996875	$A = (FR - 380.800) / 0.075$ $= A.xxx (Cut away decimal)$ 1st Local = $A \times 0.075$ 1st IF = FR - 1st Local	2nd Local = 1st IF - 21.4	20.9450
	"	791.0000 ~ 796.996875			
	12.5	806.0000 ~ 823.9875			
	"	849.0000 ~ 868.9875			
	"	894.0000 ~ 939.9875			
	6.25	940.0000 ~ 960.0000			
	"	1240.0000 ~ 1300.0000			

RECEIVING BAND (FR STEP)	FREQ. STEP (kHz)	RECEIVING FREQ. FR (MHz)	1st LOCAL PLL 1 /VCO 1 or VCO 2 (MHz)	2nd LOCAL PLL 2 /VCO 3 (MHz)	3rd LOCAL X' TAL (MHz)
UHF Low	6.25	310.0000	$9210.666 = (310.0000 + 380.800) / 0.075$ $= 9210.666 \text{ (Cut away decimal)}$ $690.750 = 9210 \times 0.075$ $380.750 = 690.750 - 310.0000$	359.350 = 380.750 - 21.4	20.9450
	12.5	406.0000	$10490.666 = (406.0000 + 380.800) / 0.075$ $= 10490.666 \text{ (Cut away decimal)}$ $786.750 = 10490 \times 0.075$ $380.750 = 786.750 - 406.0000$	359.350 = 380.750 - 21.4	20.9450
	5.0	450.0000	$11077.333 = (450.0000 + 380.800) / 0.075$ $= 11077.333 \text{ (Cut away decimal)}$ $830.775 = 11077 \times 0.075$ $380.775 = 830.775 - 450.0000$	359.375 = 380.775 - 21.4	20.9450
	6.25	512.0000	$11904.000 = (512.0000 + 380.800) / 0.075$ $= 11904.000 \text{ (Cut away decimal)}$ $892.800 = 11904 \times 0.075$ $380.800 = 892.800 - 512.0000$	359.400 = 380.800 - 21.4	20.9450
UHF High	3.125	764.0000	$5109.333 = (764.0000 - 380.800) / 0.075$ $= 5109.333 \text{ (Cut away decimal)}$ $383.175 = 5109 \times 0.075$ $380.825 = 764.000 - 383.175$	359.425 = 380.825 - 21.4	20.9450
	12.5	806.0000	$5669.333 = (806.0000 - 380.800) / 0.075$ $= 5669.333 \text{ (Cut away decimal)}$ $425.175 = 5669 \times 0.075$ $380.825 = 806.000 - 425.175$	359.425 = 380.825 - 21.4	20.9450
	12.5	860.0000	$6389.333 = (860.0000 - 380.800) / 0.075$ $= 6389.333 \text{ (Cut away decimal)}$ $479.175 = 6389 \times 0.075$ $380.825 = 860.000 - 479.175$	359.425 = 380.825 - 21.4	20.9450
	6.25	960.0000	$7722.666 = (960.0000 - 380.800) / 0.075$ $= 7722.666 \text{ (Cut away decimal)}$ $579.150 = 7722 \times 0.075$ $380.850 = 960.000 - 579.150$	359.450 = 380.850 - 21.4	20.9450
	6.25	12400.0000	$11456.000 = (12400.0000 - 380.800) / 0.075$ $= 11456.000 \text{ (Cut away decimal)}$ $859.200 = 11456 \times 0.075$ $380.800 = 12400.000 - 859.200$	359.400 = 380.800 - 21.4	20.9450
	6.25	1300.0000	$12256.000 = (1300.0000 - 380.800) / 0.075$ $= 12256.000 \text{ (Cut away decimal)}$ $919.200 = 12256 \times 0.075$ $380.800 = 1300.000 - 919.200$	359.400 = 380.800 - 21.4	20.9450