

FCC Co-Location Test Report

FCC ID : ACQ-VIP5662W
Equipment : WiFi STB
Model No. : VIP5662W
Brand Name : ARRIS
Applicant : ARRIS Group, Inc.
Address : 101 Tournament Drive, Horsham,
Pennsylvania, United States, 19044
Standard : 47 CFR FCC Part 15.247
47 CFR FCC Part 15.407
Received Date : Oct. 02, 2015
Tested Date : Oct. 26 ~ Oct. 27, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information.....	5
1.2	The Equipment List	7
1.3	Test Standards	7
1.4	Measurement Uncertainty	7
2	TEST CONFIGURATION.....	8
2.1	Testing Condition	8
2.2	The Worst Test Modes and Channel Details	8
3	TRANSMITTER TEST RESULTS.....	9
3.1	Unwanted Emissions into Restricted Frequency Bands	9
4	TEST LABORATORY INFORMATION	15

Release Record

Report No.	Version	Description	Issued Date
FR500204CO	Rev. 01	Initial issue	Dec. 08, 2015

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.247(d)			
15.407(b)	Radiated Emissions	[dBuV/m at 3m]: 281.23MHz 43.98 (Margin -2.02dB) – PK	Pass
15.209			

1 General Description

1.1 Information

1.1.1 Specification of the Wireless Certified Modules

WLAN	
Operating Frequency	802.11a/n/ac: 5180 MHz ~ 5240 MHz; 5260 MHz ~ 5320 MHz; 5500 MHz ~ 5720 MHz, 5745~5825 MHz
Modulaton Type	802.11a/n/ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)
BT EDR / LE	
Operating Frequency	2402 MHz ~ 2480 MHz
Modulaton Type	Bluetooth 4.0 LE: GFSK Bluetooth BR(1Mbps): GFSK Bluetooth EDR (2Mbps): π/4-DQPSK Bluetooth EDR (3Mbps): 8-DPSK

1.1.2 Antenna Details

WLAN antenna

The device will be equipped with 2 brands of antennas (TSKY Ant. & Mag.Layers Ant.).

Ant. No.	Brand	Model	Type	Connector	Operating Frequencies (MHz) / Antenna Gain (dBi)			
					5150~5250	5250~5350	5470~5725	5725~5850
1	TSKY	A8-A006-00261 (180-100-0691R)	PCB	MHF PLUG	0.5	0.5	0.5	0.6
2	TSKY	A8-A006-00262 (180-100-0692R)	PCB	MHF PLUG	0.5	0.5	0.5	0.6
3	TSKY	A8-A006-00262 (180-100-0692R)	PCB	MHF PLUG	0.5	0.5	0.5	0.6
4	TSKY	A8-A006-00295 (180-100-0730R)	PCB	MHF PLUG	0.5	0.5	0.5	0.6
1	Mag.Layers	PCA-2108-5G0C1-A22 (180-101-0691R)	PCB	MHF PLUG	0.5	0.5	0.5	0.6
2	Mag.Layers	PCA-2108-5G0C1-A23 (180-101-0692R)	PCB	MHF PLUG	0.5	0.5	0.5	0.6
3	Mag.Layers	PCA-2108-5G0C1-A23 (180-101-0692R)	PCB	MHF PLUG	0.5	0.5	0.5	0.6
4	Mag.Layers	PCA-2108-5G0C1-A26 (180-100-0739R)	PCB	MHF PLUG	0.5	0.5	0.5	0.6

BT antenna

The device will be equipped with 2 brands of antennas (TSKY Ant. & Mag.Layers Ant.).

Ant. No.	Brand	Model	Type	Connector	Gain (dBi)	Remarks
1	TSKY	A8-A006-00260 (180-100-0694R)	PCB	MHF PLUG	2	---
1	Mag.Layers	PCA-5510-2G4C1-A3 (180-101-0694R)	PCB	MHF PLUG	2	---

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	12Vdc from AC adapter
-------------------	-----------------------

1.1.4 Accessories

Accessories		
No.	Equipment	Description
1	AC adapter	Brand Name: APD Model Name: WA-30J12FU Power Rating: I/P: 100-120Vac, 50-60Hz, 0.9A O/P: 12.0Vdc, 2.5A Power line: DC 1.8m non-shielded cable w/o core
2	AC adapter	Brand Name: Delta Model Name: ADP-30DW B Power Rating: I/P: 100-120Vac, 50-60Hz, 1.0A O/P: 12.0Vdc, 2.5A Power line: DC 1.8m non-shielded cable w/o core
3	AC adapter	Brand Name: LiteOn Model Name: PB-1300-3AR1 Power Rating: I/P: 100-120Vac, 60Hz, 1.0A O/P: 12.0Vdc, 2.5A Power line: DC 1.8m non-shielded cable w/o core
4	AC adapter	Brand Name: NetBit Model Name: NBS30E120250VU Power Rating: I/P: 100-120Vac, 60Hz, 0.9A O/P: 12.0Vdc, 2.5A Power line: DC 1.8m non-shielded cable w/o core
5	HDMI Cable	Brand: WEBB & WELLS; Model: HF1257; 1.83m shielded cable w/o core.
6	Internal HDD	Brand: TOSHIBA; Model name: MQ01ABD100V; Capacity: 1TB
7	Remote control	Brand: Ruwido; Model: 2761-529

1.2 The Equipment List

Test Item	Radiated Emission				
Test Site	966 chamber1 / (03CH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101498	Dec. 09, 2014	Dec. 08, 2015
Receiver	R&S	ESR3	101657	Jan. 15, 2015	Jan. 14, 2016
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Aug. 20, 2015	Aug. 19, 2016
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1095	Oct. 07, 2015	Oct. 06, 2016
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170508	Jan. 05, 2015	Jan. 04, 2016
Loop Antenna	TESEQ	HLA6120	24155	Mar. 12, 2015	Mar. 11, 2016
Preamplifier	Burgeon	BPA-530	SN:100219	Sep. 10, 2015	Sep. 09, 2016
Preamplifier	Agilent	83017A	MY39501308	Oct. 02, 2015	Oct. 01, 2016
Preamplifier	EMC	EMC184045B	980192	Sep. 01, 2015	Aug. 31, 2016
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 15, 2014	Dec. 14, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 15, 2014	Dec. 14, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 15, 2014	Dec. 14, 2015
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 15, 2014	Dec. 14, 2015
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 15, 2014	Dec. 14, 2015
Measurement Software	AUDIX	e3	6.120210g	NA	NA

Note: Calibration Interval of instruments listed above is one year.

1.3 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247

47 CFR FCC Part 15.407

ANSI C63.10-2013

FCC KDB 558074 D01 DTS Meas Guidance v03r03

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

FCC KDB 789033 D02 General UNII Test Procedures New Rules v01

FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01

FCC KDB 412172 D01 Determining ERP and EIRP v01r01

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	
Parameters	Uncertainty
Radiated emission ≤ 1GHz	±3.72 dB
Radiated emission > 1GHz	±5.65 dB

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
Radiated Emissions	03CH01-WS	24°C / 66%	Aska Huang Morgan Chen

➤ FCC site registration No.: 657002

➤ IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data Rate	Test Configuration
Radiated Emissions ≤1GHz	5G 11ac VHT40 + BLE	5230MHz + 2402MHz	MCS 0 + 1Mbps	---
Radiated Emissions >1GHz				

NOTE:

1. 4 Adapters had been pretested and found that **Adapter 1** was the worst case and was selected for final testing. (Adapter 1: APD; Adapter 2: Delta, Adapter 3: LiteOn Adapter 4: NetBit).
2. The device has two versions for different HDMI port numbers (Version 1: HDMI port *1; Version 2: HDMI port *2). 2 versions had been pretested and found that **Version 2** was the worst case and was selected for final testing.
3. Antenna 1 and Antenna 2 had been pretested and found that **Antenna1** was the worst case and was selected for final testing. (Antenna 1: TSKY; Antenna 2: Mag.Layers).
4. The selected channel is the maximum power channel of each Wi-Fi and BT module.

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit			
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

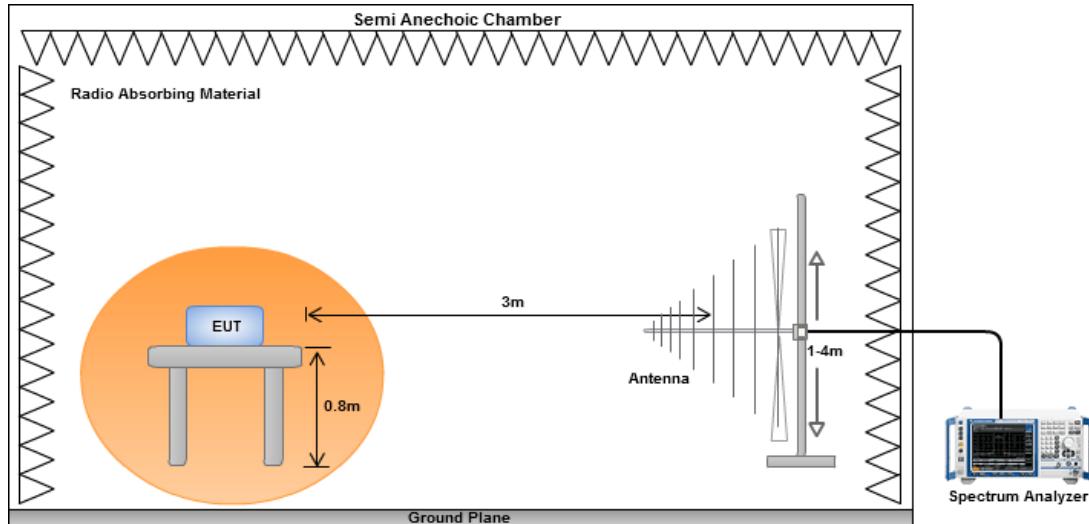
Note 1:

Quasi-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit

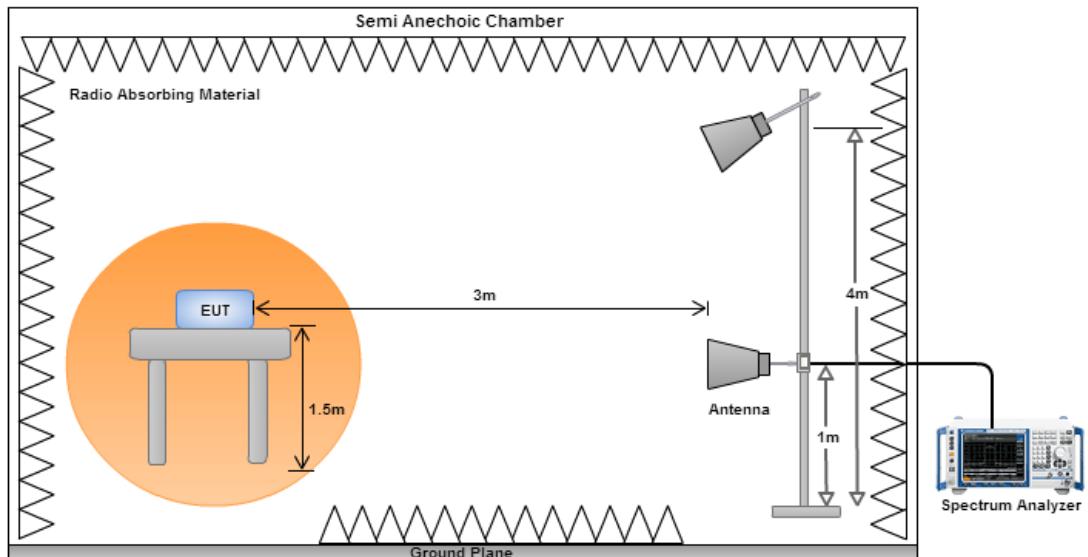
Note 2:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

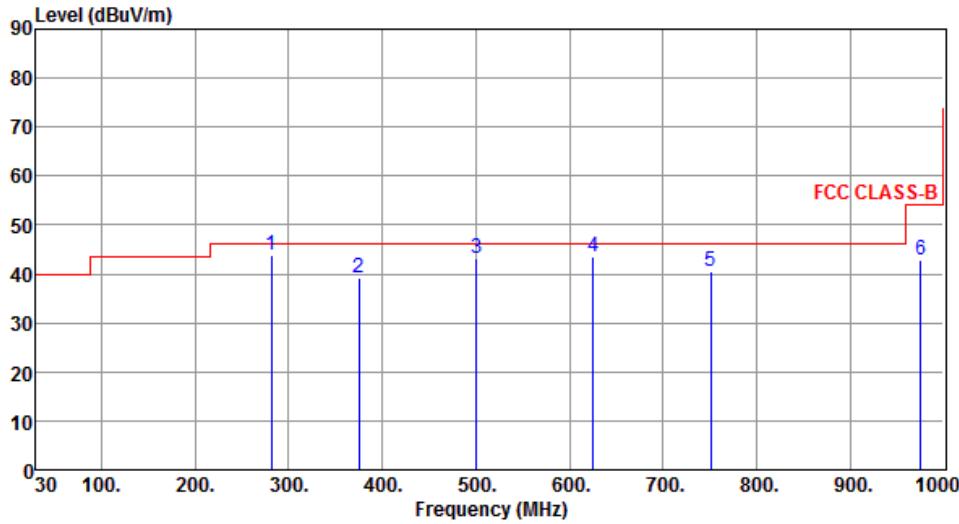
3.1.2 Test Procedures

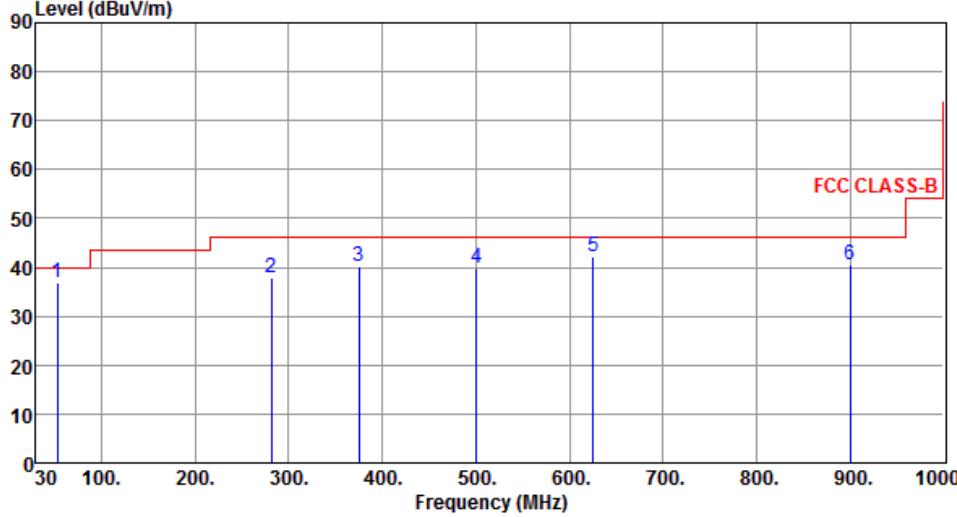

1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:


1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

3.1.3 Test Setup


Radiated Emissions below 1 GHz

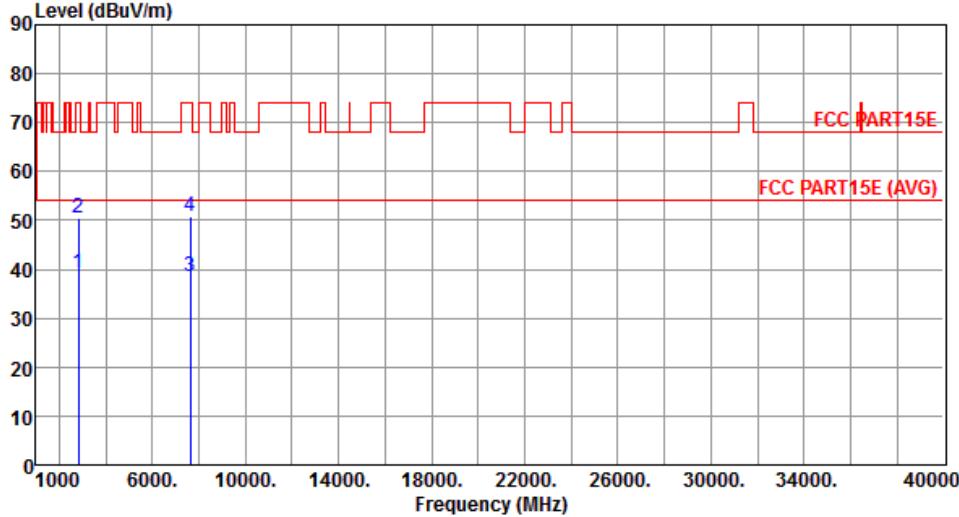


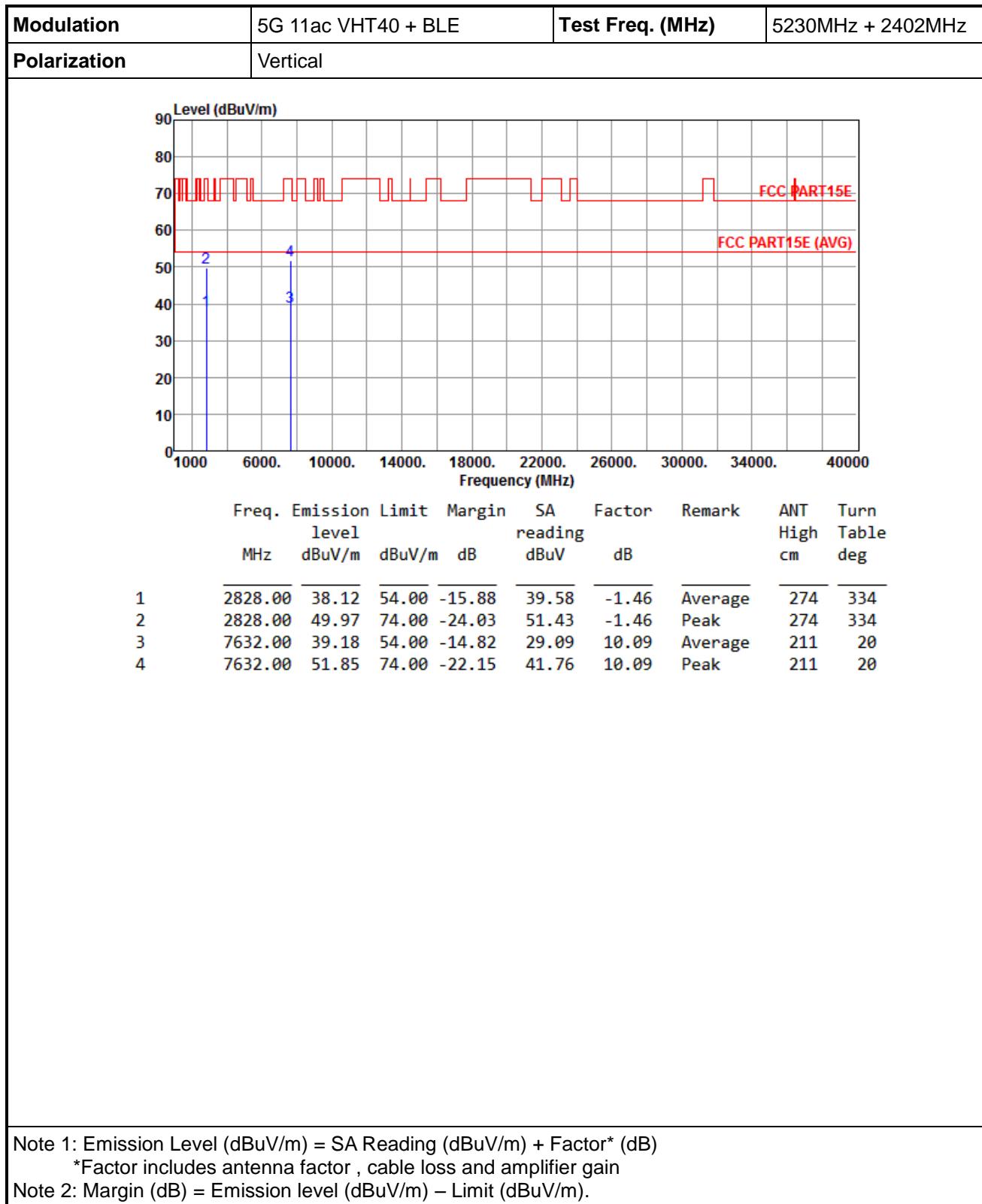
Radiated Emissions above 1 GHz

3.1.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Modulation	5G 11ac VHT40 + BLE	Test Freq. (MHz)	5230MHz + 2402MHz																																																																								
Polarization	Horizontal																																																																										
 FCC CLASS-B																																																																											
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">Freq.</th> <th style="text-align: left;">Emission</th> <th style="text-align: left;">Limit</th> <th style="text-align: left;">Margin</th> <th style="text-align: left;">SA</th> <th style="text-align: left;">Factor</th> <th style="text-align: left;">Remark</th> <th style="text-align: left;">ANT</th> <th style="text-align: left;">Turn</th> </tr> <tr> <th style="text-align: left;">MHz</th> <th style="text-align: left;">level</th> <th style="text-align: left;">dBuV/m</th> <th style="text-align: left;">dBuV/m</th> <th style="text-align: left;">dB</th> <th style="text-align: left;">reading</th> <th style="text-align: left;">dBiV</th> <th style="text-align: left;">High</th> <th style="text-align: left;">Table</th> </tr> </thead> <tbody> <tr> <td style="text-align: left;">1</td> <td style="text-align: left;">281.23</td> <td style="text-align: left;">43.98</td> <td style="text-align: left;">46.00</td> <td style="text-align: left;">-2.02</td> <td style="text-align: left;">60.44</td> <td style="text-align: left;">-16.46</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">---</td> </tr> <tr> <td style="text-align: left;">2</td> <td style="text-align: left;">375.32</td> <td style="text-align: left;">39.28</td> <td style="text-align: left;">46.00</td> <td style="text-align: left;">-6.72</td> <td style="text-align: left;">53.46</td> <td style="text-align: left;">-14.18</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">---</td> </tr> <tr> <td style="text-align: left;">3</td> <td style="text-align: left;">500.45</td> <td style="text-align: left;">43.23</td> <td style="text-align: left;">46.00</td> <td style="text-align: left;">-2.77</td> <td style="text-align: left;">54.44</td> <td style="text-align: left;">-11.21</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">---</td> </tr> <tr> <td style="text-align: left;">4</td> <td style="text-align: left;">625.58</td> <td style="text-align: left;">43.36</td> <td style="text-align: left;">46.00</td> <td style="text-align: left;">-2.64</td> <td style="text-align: left;">52.53</td> <td style="text-align: left;">-9.17</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">---</td> </tr> <tr> <td style="text-align: left;">5</td> <td style="text-align: left;">750.71</td> <td style="text-align: left;">40.57</td> <td style="text-align: left;">46.00</td> <td style="text-align: left;">-5.43</td> <td style="text-align: left;">47.65</td> <td style="text-align: left;">-7.08</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">---</td> </tr> <tr> <td style="text-align: left;">6</td> <td style="text-align: left;">975.75</td> <td style="text-align: left;">42.86</td> <td style="text-align: left;">54.00</td> <td style="text-align: left;">-11.14</td> <td style="text-align: left;">47.28</td> <td style="text-align: left;">-4.42</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">---</td> </tr> </tbody> </table>				Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn	MHz	level	dBuV/m	dBuV/m	dB	reading	dBiV	High	Table	1	281.23	43.98	46.00	-2.02	60.44	-16.46	Peak	---	2	375.32	39.28	46.00	-6.72	53.46	-14.18	Peak	---	3	500.45	43.23	46.00	-2.77	54.44	-11.21	Peak	---	4	625.58	43.36	46.00	-2.64	52.53	-9.17	Peak	---	5	750.71	40.57	46.00	-5.43	47.65	-7.08	Peak	---	6	975.75	42.86	54.00	-11.14	47.28	-4.42	Peak	---
Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn																																																																			
MHz	level	dBuV/m	dBuV/m	dB	reading	dBiV	High	Table																																																																			
1	281.23	43.98	46.00	-2.02	60.44	-16.46	Peak	---																																																																			
2	375.32	39.28	46.00	-6.72	53.46	-14.18	Peak	---																																																																			
3	500.45	43.23	46.00	-2.77	54.44	-11.21	Peak	---																																																																			
4	625.58	43.36	46.00	-2.64	52.53	-9.17	Peak	---																																																																			
5	750.71	40.57	46.00	-5.43	47.65	-7.08	Peak	---																																																																			
6	975.75	42.86	54.00	-11.14	47.28	-4.42	Peak	---																																																																			
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.																																																																											

Modulation	5G 11ac VHT40 + BLE	Test Freq. (MHz)	5230MHz + 2402MHz																																																												
Polarization	Vertical																																																														
 Freq. Emission Limit Margin SA Factor Remark ANT Turn level level reading reading MHz dBuV/m dBuV/m dB dB																																																															
<table> <tbody> <tr> <td>1</td><td>53.28</td><td>36.88</td><td>40.00</td><td>-3.12</td><td>53.58</td><td>-16.70</td><td>Peak</td><td>---</td><td>---</td></tr> <tr> <td>2</td><td>281.23</td><td>37.85</td><td>46.00</td><td>-8.15</td><td>54.31</td><td>-16.46</td><td>Peak</td><td>---</td><td>---</td></tr> <tr> <td>3</td><td>375.32</td><td>40.15</td><td>46.00</td><td>-5.85</td><td>54.33</td><td>-14.18</td><td>Peak</td><td>---</td><td>---</td></tr> <tr> <td>4</td><td>500.45</td><td>39.73</td><td>46.00</td><td>-6.27</td><td>50.94</td><td>-11.21</td><td>Peak</td><td>---</td><td>---</td></tr> <tr> <td>5</td><td>625.58</td><td>42.34</td><td>46.00</td><td>-3.66</td><td>51.51</td><td>-9.17</td><td>Peak</td><td>---</td><td>---</td></tr> <tr> <td>6</td><td>900.09</td><td>40.66</td><td>46.00</td><td>-5.34</td><td>46.00</td><td>-5.34</td><td>Peak</td><td>---</td><td>---</td></tr> </tbody> </table>				1	53.28	36.88	40.00	-3.12	53.58	-16.70	Peak	---	---	2	281.23	37.85	46.00	-8.15	54.31	-16.46	Peak	---	---	3	375.32	40.15	46.00	-5.85	54.33	-14.18	Peak	---	---	4	500.45	39.73	46.00	-6.27	50.94	-11.21	Peak	---	---	5	625.58	42.34	46.00	-3.66	51.51	-9.17	Peak	---	---	6	900.09	40.66	46.00	-5.34	46.00	-5.34	Peak	---	---
1	53.28	36.88	40.00	-3.12	53.58	-16.70	Peak	---	---																																																						
2	281.23	37.85	46.00	-8.15	54.31	-16.46	Peak	---	---																																																						
3	375.32	40.15	46.00	-5.85	54.33	-14.18	Peak	---	---																																																						
4	500.45	39.73	46.00	-6.27	50.94	-11.21	Peak	---	---																																																						
5	625.58	42.34	46.00	-3.66	51.51	-9.17	Peak	---	---																																																						
6	900.09	40.66	46.00	-5.34	46.00	-5.34	Peak	---	---																																																						


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

3.1.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)

Modulation	5G 11ac VHT40 + BLE	Test Freq. (MHz)	5230MHz + 2402MHz																																													
Polarization	Horizontal																																															
<table border="1"> <thead> <tr> <th></th> <th>Freq. level MHz</th> <th>Emission Limit dBuV/m</th> <th>Margin dB</th> <th>SA reading dBuV</th> <th>Factor dB</th> <th>Remark</th> <th>ANT High cm</th> <th>Turn Table deg</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>2828.00</td> <td>39.06</td> <td>54.00</td> <td>-14.94</td> <td>40.52</td> <td>-1.46</td> <td>Average</td> <td>129 284</td> </tr> <tr> <td>2</td> <td>2828.00</td> <td>50.57</td> <td>74.00</td> <td>-23.43</td> <td>52.03</td> <td>-1.46</td> <td>Peak</td> <td>129 284</td> </tr> <tr> <td>3</td> <td>7632.00</td> <td>38.45</td> <td>54.00</td> <td>-15.55</td> <td>28.36</td> <td>10.09</td> <td>Average</td> <td>211 0</td> </tr> <tr> <td>4</td> <td>7632.00</td> <td>50.86</td> <td>74.00</td> <td>-23.14</td> <td>40.77</td> <td>10.09</td> <td>Peak</td> <td>211 0</td> </tr> </tbody> </table>					Freq. level MHz	Emission Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg	1	2828.00	39.06	54.00	-14.94	40.52	-1.46	Average	129 284	2	2828.00	50.57	74.00	-23.43	52.03	-1.46	Peak	129 284	3	7632.00	38.45	54.00	-15.55	28.36	10.09	Average	211 0	4	7632.00	50.86	74.00	-23.14	40.77	10.09	Peak	211 0
	Freq. level MHz	Emission Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg																																								
1	2828.00	39.06	54.00	-14.94	40.52	-1.46	Average	129 284																																								
2	2828.00	50.57	74.00	-23.43	52.03	-1.46	Peak	129 284																																								
3	7632.00	38.45	54.00	-15.55	28.36	10.09	Average	211 0																																								
4	7632.00	50.86	74.00	-23.14	40.77	10.09	Peak	211 0																																								
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).																																																

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website <http://www.icertifi.com.tw>.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou
District, New Taipei City, Taiwan,
R.O.C.

Kwei Shan

Tel: 886-3-271-8666

No. 3-1, Lane 6, Wen San 3rd
St., Kwei Shan Hsiang, Tao Yuan
Hsien 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd
St., Kwei Shan Hsiang, Tao Yuan
Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666

Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==