

FCC EMC Test Report

FCC ID: ACLAPBP31

Project No. : 2312H027

Equipment: Microwave Oven

Brand Name : Panasonic
Test Model : NN-SN95HS
Serial No : PP10003

Series Model : NN-SD975S/ NN-SN97HS

Applicant: Panasonic Corporation of North America

Address : Two Riverfront Plaza, Newark New Jersey USA

Manufacturer: Panasonic Kitchen Appliances Technology (Jiaxing) Co., Ltd.

Address : No.369 Chenggong Road, Economic and Technological Development Z

one, Jiaxing, Zhejiang Province, China

Date of Receipt : Dec. 21, 2023

Date of Test : Dec. 22, 2023 ~ Jan. 12, 2024

Issued Date : Mar. 12, 2024

Report Version : R00

Test Sample : Engineering Sample No.: SH2024011111

Standard(s) : FCC Part 18

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.(Shanghai)

Devo.wang

Prepared by: Devo Wang

Approved by: Simon Jia

Add: No. 29, Jintang Road, Tangzhen Industry Park, Pudong New Area, Shanghai 201210, China.

Tel: +86-021-61765666 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	4
1. SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
1.3 TEST ENVIRONMENT CONDITIONS	6
2. GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	8
2.3 EUT OPERATING CONDITIONS	9
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.5 DESCRIPTION OF SUPPORT UNITS	9
3. EMC EMISSION TEST	10
3.1 AC POWER LINE CONDUCTED EMISSIONS TEST	10
3.1.1 LIMIT	10
3.1.2 MEASUREMENT INSTRUMENTS LIST 3.1.3 TEST PROCEDURE	11 11
3.1.4 DEVIATION FROM TEST STANDARD	11
3.1.5 TEST SETUP	12
3.1.6 TEST RESULTS	12
3.2 RADIATION HAZARD MEASUREMENT	15
3.2.1 MEASUREMENT INSTRUMENTS LIST	15
3.2.2 RADIATION HAZARD MEASUREMENT FOR MICROWAVE	15
3.2.3 INPUT POWER	16
3.2.4 LOAD FOR MICROWAVE OVENS 3.2.5 POWER OUTPUT MEASUREMENT FOR MICROWAVE OVENS	16 17
3.2.6 OPERATING FREQUENCY MEASUREMENT	18
3.3 RADIATED EMISSIONS	20
3.3.1 LIMITS	20
3.3.2 MEASUREMENT INSTRUMENTS LIST	21
3.3.3 TEST PROCEDURE	22
3.3.4 DEVIATION FROM TEST STANDARD	22
3.3.5 TEST SETUP	23
3.3.6 TEST RESULTS: Above 1 CHZ	24
3.3.7 TEST RESULTS- Above 1 GHZ	27
4. EUT TEST PHOTO	34
APPENDIX	38
DECLARATION LETTER	55

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCE-1-2312H027	R00	Original Report.	Mar. 12, 2024	Valid

1. SUMMARY OF TEST RESULTS

Emission		
Ref Standard(s)	Test Item	Result
FCC/OST MP-5 (1986)	AC Power Line Conducted Emissions	PASS
	Radiation hazard measurement	PASS
	Radiated emission between 30MHz and 1000MHz	PASS
	Radiated emission Above 1 GHz	PASS

NOTE:

(1) "N/A" denotes test is not applicable to this device.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report at the location of No. 29, Jintang Road, Tangzhen Industry Park, Pudong New Area, Shanghai 201210, China.

BTL's Test Firm Registration Number for FCC: 964234

BTL's Designation Number for FCC: CN1374

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U,(dB)
SH-C01	CISPR 16-4-2	150 kHz ~ 30 MHz	2.02

B. Radiation hazard measurement:

Test Site	Method	Measurement Frequency Range	U,(dB)
SH-CB02	CISPR	104- 604-	2.06
(3m)	16-4-2	1GHz ~ 6GHz	3.96

C. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
		30MHz ~ 200MHz	V	4.28
SH-CB08	CISPR	30MHz ~ 200MHz	Н	4.12
(10m)	16-4-2	200MHz ~ 1,000MHz	V	3.74
		200MHz ~ 1,000MHz	Η	4.00

Test Site	Method	Measurement Frequency Range	U,(dB)
		1GHz ~ 6GHz	4.70
SH-CB01	CISPR	6GHz ~ 18GHz	4.42
(3m)	16-4-2	18 ~ 26.5 GHz	3.22
		26.5 ~ 40 GHz	3.34

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Tested By
AC Power Line Conducted Emissions	18°C	45%	Hans Zheng
Radiation hazard measurement	19°C	46%	Devo Wang
Radiated emission between 30MHz and 1000MHz	20°C	51%	Toby Xiong
Radiated emission Above 1 GHz	19°C	43%	Gary Zhao

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Microwave Oven
Brand Name	Panasonic
Test Model	NN-SN95HS
Series Model	NN-SD975S/ NN-SN97HS
Model Difference(s)	explained in the attached declaration letter
Rate Voltage	AC 120V
RF output Power Rating	1250W
Connecting I/O Port(s)	1*AC Port
Highest Internal Frequency(Fx)	2450 MHz

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

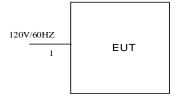
Pretest Mode	Description
Mode 1	Max Power

	Radiation hazard measurement
Final Test Mode	Description
Mode 1	Max Power

AC	Power Line Conducted Emissions test
Final Test Mode	Description
Mode 1	Max Power

Radiated Emission between 30MHz and 1000MHz				
Final Test Mode Description				
Mode 1	Max Power			

Radiated Emission Above 1 GHz				
Final Test Mode Description				
Mode 1 Max Power				



2.3 EUT OPERATING CONDITIONS

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use.

1. Microwave oven run at maximum power.

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	AC Cable	NO	NO	1.1m

3. EMC EMISSION TEST

3.1 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1.1 LIMIT

Frequency of Emission (MHz)	(dBu	V)
Frequency of Emission (MHZ)	Quasi-peak	Average
0.15 - 0.5	66 to 56 *	56 to 46 *
0.5 - 5.0	56.00	46.00
5.0 - 30.0	60.00	50.00

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

 Measurement Value = Reading Level + Correct Factor

 Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use)

 Margin Level = Measurement Value Limit Value

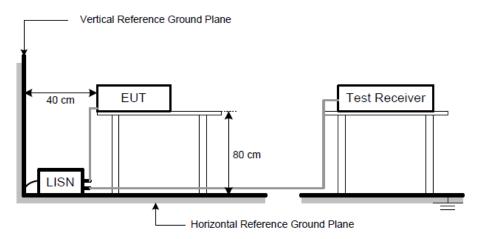
3.1.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Line Impedance	Schwarzbeck	NNLK 8121	8121-822	Mar. 17, 2024
'	Stabilisation Network	Scriwarzbeck	ININLIX 0121	0121-022	Mai. 17, 2024
2	Test Cable	emci	EMCRG400-B M-NM-10000	N/A	Mar. 16, 2024
3	EMI Test Receiver	R&S	ESCI	100082	Mar. 17, 2024
4	50Ω coaxial switch	Anritsu	MP59B	6201750902	Mar. 17, 2024
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1- 01	N/A	N/A

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

3.1.3 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- f. Measuring frequency range from 150KHz to 30MHz.

3.1.4 DEVIATION FROM TEST STANDARD

No deviation

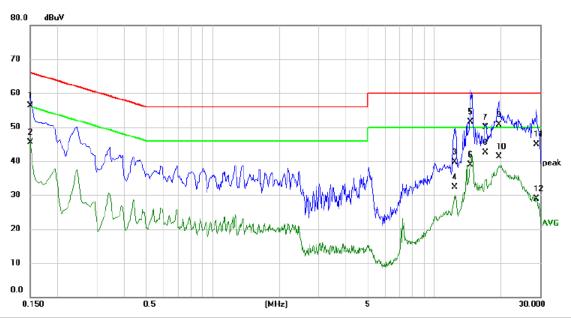
3.1.5 TEST SETUP

3.1.6 TEST RESULTS

Remark

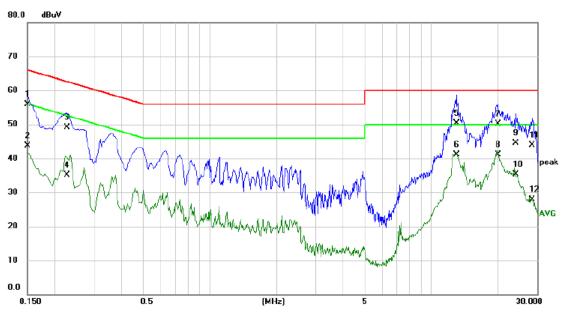
- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9 kHz; SPA setting in RBW=10 kHz, VBW =10 kHz, Swp. Time = 0.3 sec./MHz. Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10 kHz, VBW=10 kHz, Swp. Time =0.3 sec./MHz.
- (2) All readings are QP Mode value unless otherwise stated AVG in column of 『Note』. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a " * " marked in AVG Mode column of Interference Voltage Measured.

Test Result Summary


Accordings to the recorded date in following table, the EUT complied with the FCC PART18, the worst Over limit reading as below:

-7.42 dB at 16.9665 MHz in the Line conducted mode

-8.81 dB at 12.9750 MHz in the Neutral conducted mode


Test Voltage	AC 120V/60Hz	Phase	Line
Test Mode	Max Power		

No. Mk.	Readi Freq. Leve			Limit	Over		
	MHz dBi	ıV dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500 56.	20 0.08	56.28	66.00	-9.72	QP	
2	0.1500 45.	40 0.08	45.48	56.00	-10.52	AVG	
3	12.3900 39.	20 0.51	39.71	60.00	-20.29	QP	
4	12.3900 31.	80 0.51	32.31	50.00	-17.69	AVG	
5	14.5905 51.	10 0.45	51.55	60.00	-8.45	QP	
6	14.5905 38.	40 0.45	38.85	50.00	-11.15	AVG	
7	16.9665 49.	30 0.58	49.88	60.00	-10.12	QP	
8 *	16.9665 42.	00 0.58	42.58	50.00	-7.42	AVG	
9	19.5000 50.	00 0.76	50.76	60.00	-9.24	QP	
10	19.5000 40.	60 0.76	41.36	50.00	-8.64	AVG	
11	28.8015 44.	00 0.81	44.81	60.00	-15.19	QP	
12	28.8015 28.	00 0.81	28.81	50.00	-21.19	AVG	

Test Voltage	AC 120V/60Hz	Phase	Neutral
Test Mode	Max Power		

No. Mk.		ading evel	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	55.80	0.12	55.92	66.00	-10.08	QP	
2	0.1500	43.60	0.12	43.72	56.00	-12.28	AVG	
3	0.2265	49.00	0.07	49.07	62.58	-13.51	QP	
4	0.2265	35.10	0.07	35.17	52.58	-17.41	AVG	
5	12.9750	49.80	0.49	50.29	60.00	-9.71	QP	
6 *	12.9750	40.70	0.49	41.19	50.00	-8.81	AVG	
7	19.9320	49.40	0.67	50.07	60.00	-9.93	QP	
8	19.9320	40.50	0.67	41.17	50.00	-8.83	AVG	
9	24.0855	43.70	0.76	44.46	60.00	-15.54	QP	
10	24.0855	34.50	0.76	35.26	50.00	-14.74	AVG	
11	28.5225	43.20	0.79	43.99	60.00	-16.01	QP	
12	28.5225	27.20	0.79	27.99	50.00	-22.01	AVG	

3.2 RADIATION HAZARD MEASUREMENT

3.2.1 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
	Double Ridged				
1	Broadband Horn	Schwarzbeck	BBHA 9120D	9120D-1817	Mar. 03, 2024
	Antenna				
2	MXE EMI Receiver	Keysight	N9038A	MY56400088	Mar. 17, 2024
3	Dynamometer	HIOKI	PW3198	160527667	Mar. 15, 2024
4	Thermometer	SS	TP101	N/A	Jan. 03, 2025
5	Microwave leakage tester	ETS	HI-1710	S81-070-DA	Sep. 26, 2024

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

3.2.2 RADIATION HAZARD MEASUREMENT FOR MICROWAVE

Test Procedure	The EUT was set up according to the FCC MP-5 and FCC Part 18 for Radiation Hazard Measurement. The measurement was using a microwave leakage meter to measure the Radiation leakage in the as-received condition with the oven door closed A 275ml water load in a beaker was located in the center of the oven and the Microwave oven was set to maximum power. While the oven operating, the microwave meter will check the leakage and then record the maximum leakage
Results	There was no microwave leakage exceeding a power level of 0.25 mW/cm² observed at any point 5cm or more from the external surface of the oven. A maximum of 1.0 mW/cm² is allowed in accordance with the applicable FCC standards. Hence, microwave leakage in the as-received condition with the oven door closed was below the maximum allowed.

3.2.3 INPUT POWER

Input power and current was measured. A 1250mL water load was placed in the center of the oven and the oven was operated at maximum output power. A 1250mL water load was chosen for its compatibility with the procedure commonly used by manufacturers to determine their input ratings.

Input Voltage	Input Current	Measured Input	Rated Input	Operation
(V/Hz)	(A)	Power (W)	Power (W)	Mode
120V / 60Hz	12.3	1473	1476	Microwave

3.2.4 LOAD FOR MICROWAVE OVENS

For all measurements, the energy developed by the oven was absorbed by a dummy load consisting of a quantity of tap water in a beaker. If the oven was provided with a shelf or other utensil support, this support was in its initial normal position. For ovens rated at 1000 watts or less power output, the beaker contained quantities of water as listed in the following subparagraphs. For ovens rated at more than 1000 watts output, each quantity was increased by 50% for each 500watts or fraction thereof in excess of 1000 watts. Additional beakers were used if necessary.

- * Load for power output measurement: 1000 milliliters of water in the beaker located in the center of the oven.
- * Load for frequency measurement: 1000 milliliters of water in the beaker located in the center of the oven.
- *Load for measurement of radiation on second and third harmonic: Two loads, one of 700 and the other of 300 milliliters, of water are used. Each load is tested both with the beaker located in the center of the oven and with it in the right front corner.
- * Load for all other measurements: 700 milliliters of water, with the beaker located in the center of the oven.

According to the above content and product power, the water load is 1250 milliliters.

Load used for power output measurement = 1250 milliliters of water

Load used for frequency measurement = 1250 milliliters of water

Load used for harmonic measurement =875 & 375 milliliters of water

Load used for other measurement = 875 milliliters of water

3.2.5 POWER OUTPUT MEASUREMENT FOR MICROWAVE OVENS

The power output is measured by the calorimetric method, using the load specified in FCC MP-5 Section 4.1, computing the power output from the observed temperature rise of the load over a period of time. The measured value of power output is used to determine the allowable out-of-band field strength under the terms specified in Section 18.305 of the Rules.

A cylindrical container of borosilicate glass is used for the test. It has a maximum thickness of 3 mm, an external diameter of approximately 190 mm and a height of approximately 90 mm. The mass of the container is determined.

At the beginning of the test, the ambient temperature is recorded,

The temperature of the water is measured immediately before pouring into the container, and the initial temperature of the test water is 10°C±1°C.

Add 1250g±5g of water to the container to get its actual mass. The container was then immediately placed in the center of the microwave heating area, heated at maximum power until the water temperature reached 20°C±2°C, and the heating time was recorded.

m _w (g)	m _c (g)	T₀ (°C)	T ₁ (°C)	T ₂ (°C)	t (s)
1250	450	18.6	10.5	20.5	45

RF Output Power = (4.187*1250*(20.5-10.5) + 0.55*450*(20.5-18.6))/45=1173.51Watts

P is the microwave power output, in watts;

mw is the mass of the water, in grams;

mc is the mass of the container, in grams;

T₀ is the ambient temperature, in degrees Celsius;

T₁ is the initial temperature of the water, in degrees Celsius;

T₂ is the final temperature of the water, in degrees Celsius;

t is the heating time, in seconds, excluding the magnetron filament heating-up time.

The measured output power was found to exceed 500 watts. Therefore, in accordance with Section 18.305 of Subpart-B, the measured out-of-band emissions were compared with the limit calculated as following:

Field Strength = 25*SQRT (Power Output/500)

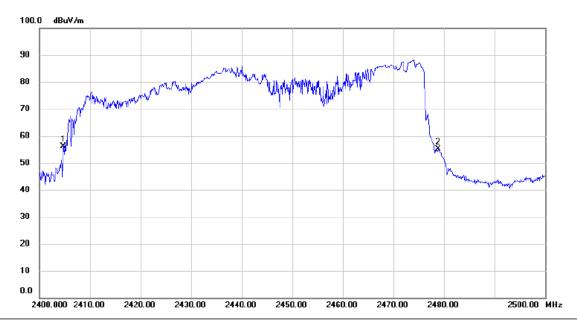
Field Strength = 25*SQRT (<u>1173.51/500</u>)

Field Strength = 38.3 uV/m

Where: LFS is the maximum allowable field strength for out-of-band emissions in μ V/meter at a 300-meter measurement distance. Power Output is the measured output power in watts.

LFS μV/m@300m	dBμV/m@300m	dBμV/m@3m	dBμV/m@10m
38.3	31.66	71.66	61.2

Note: Limit (dB μ V/m@3) Limit (dB μ V/m@300m) + 40(dB)


3.2.6 OPERATING FREQUENCY MEASUREMENT

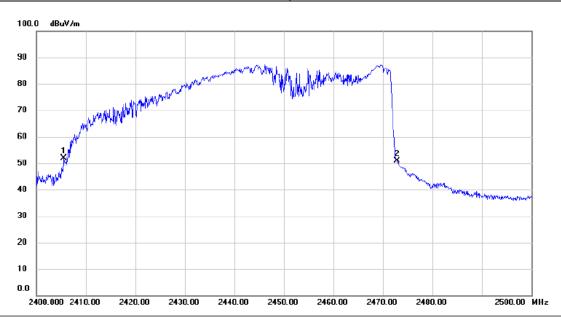
The Variation of frequency with time

The operating frequency was measured using a spectrum analyzer, starting with EUT at room temperature, a 1250ml water load was located in the center of the oven, set a spectrum analyzer with antenna at 3 meters distance from the oven and oven was operated at maximum output power, The fundamental operating frequency was monitored until the water load was reduced to 20 percent of the original load.

The results of this test are as follows:

Low Frequency	High Frequency		
(MHz)	(MHz)		
2404.70	2478.80		

No.	Mk.	Freq.			Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2404.700	56.09	0.00	56.09			peak	
2		2478.800	55.22	0.00	55.22			peak	


The variation of frequency with Line Voltage

The operating frequency was measured using a spectrum analyzer. The EUT was operated/ warmed by at least 10 minutes of use with a 1250ml water load at room temperature at the beginning of the test. Then the operating frequency was monitored as the input voltage was varied between 80 and 125 percent of the nominal rating.

The results of this test are as follows:

Line voltage varied from 96 Vac to 150 Vac.

Low Frequency	High Frequency		
(MHz)	(MHz)		
2405.60	2472.80		

No.	Mk.	Freq.			Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2405.600	51.95	0.00	51.95			peak	
2		2472.800	50.93	0.00	50.93			peak	

3.3 RADIATED EMISSIONS

3.3.1 LIMITS

Operating frequency	Field Strength (uV/m)	Measurement Distance (meters)	F.S Limitation at 3or10m Distance (dBuV/m)
4 . 1014	25*SQRT	200	71.66 at 3m
Any ISM	(Power Output/500)	300	61.2 at 10m

NOTE:

- (1) Operation of ISM equipment within the following safety, search and rescue frequency bands is prohibited: 490–510 kHz, 2170–2194 kHz, 8354–8374 kHz, 121.4–121.6 MHz, 156.7–156.9 MHz, and 242.8–243.2 MHz.
- (2) Emission level (dBuV/m) = 20log Emission level (uV/m); 3or10m Emission level (dBuV/m) = 300m Emission level +20log(300m/3or10m).
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Required highest frequency for radiated measurement

Frequency band in which	Range of frequency measurements				
device operates (MHz)	Lowest frequency	Highest frequency			
Below 1.705	Lowest frequency generated in the device, but not lower than 9 kHz	30 MHz			
1.705 to 30	Lowest frequency generated in the device, but not lower than 9 kHz	400 MHz			
30 to 500	Lowest frequency generated in the device or 25 MHz, whichever is lower	Tenth harmonic or 1,000 MHz, whichever is higher.			
500 to 1,000	Lowest frequency generated in the device or 100 MHz, whichever is lower	Tenth harmonic			
Above 1,000	do	Tenth harmonic or highest detectable emission.			

EMI Test Receiver Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector Type
30MHz-1000 MHz	120khz	300khz	120khz	QP
Abovo 1 CHz	1MHz	3MHz	/	Peak
Above 1 GHz	1MHz	10Hz	1MHz	AVG

3.3.2 MEASUREMENT INSTRUMENTS LIST

	Radiated emission up to 1GHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	787	Mar. 03, 2024			
2	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	788	Mar. 03, 2024			
3	Pre-Amplifier	emci	EMC9135	980412	Mar. 17, 2024			
4	Pre-Amplifier	emci	EMC9135	980413	Mar. 17, 2024			
5	EXA Spectrum Analyzer	Keysight	N9010A	MY56480561	Mar. 17, 2024			
6	MXE EMI Receiver	Keysight	N9038A	MY57150106	Mar. 17, 2024			
7	Test Cable	emci	EMCCFD400- NM-NM-6000	170641	Mar. 16, 2024			
8	Test Cable	emci	EMCCFD400- NM-NM-10000	170642	Mar. 16, 2024			
9	Test Cable	emci	EMC104-SM- NM-2500	170645	Mar. 16, 2024			
10	Test Cable	emci	EMC104-SM- SM-800	170333	Mar. 16, 2024			
11	Test Cable	emci	EMCCFD400- NM-NM-6000	170639	Mar. 16, 2024			
12	Test Cable	emci	EMCCFD400- NM-NM-6000	170640	Mar. 16, 2024			
13	Test Cable	emci	EMC104-SM- NM-2500	170644	Mar. 16, 2024			
14	Test Cable	emci	EMC104-SM- SM-800	170334	Mar. 16, 2024			
15	Measurement Software	Farad	EZ-EMC Ver.BTL-2ANT -1	N/A	N/A			

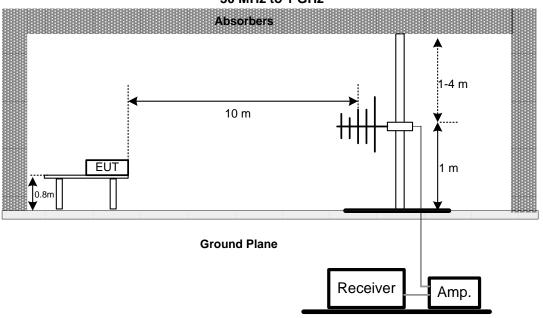
		D. P. L.			
		Radiated ei	mission above 1GHz		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Double-Ridged Waveguide Horn Antenna	ETS-Lindgren	3117	206960	Mar. 03, 2024
2	Pre-Amplifier	emci	EMC012645B	980264	Jul. 21, 2024
3	MXE EMI Receiver	Keysight	N9038A	MY57290116	Jul. 21, 2024
4	Test Cable	RW	RWLPS50-4.0A-SM SM-7M	20220306-001	Nov. 2, 2024
5	Test Cable	emci	EMC104-SM-SM-10 00	181019	Nov. 2, 2024
6	Test Cable	emci	EMC104-NM-NM-3 000	170619	Nov. 2, 2024
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1	N/A	N/A
8	Antenna	Schwarzbeck	BBHA9170	9170-651	Mar. 12, 2024
9	Pre-Amplifier	EMC INSTRUMENT	EMC184045B	980265	Mar. 17, 2024
10	EXA Spectrum Analyzer	Keysight	N9010A	MY56480559	Mar. 17, 2024
11	Test Cable	RW	100% S-Parameter Recorded	F02-150819-039	Oct. 21, 2024
12	Test Cable	emci	EMC104-SM-SM-25 00	170616	Oct. 21, 2024
13	2.4G Filter	HJ	2.4GHz	N/A	Mar. 17, 2024

Remark: "N/A" denotes no model name, serial no. or calibration specified.

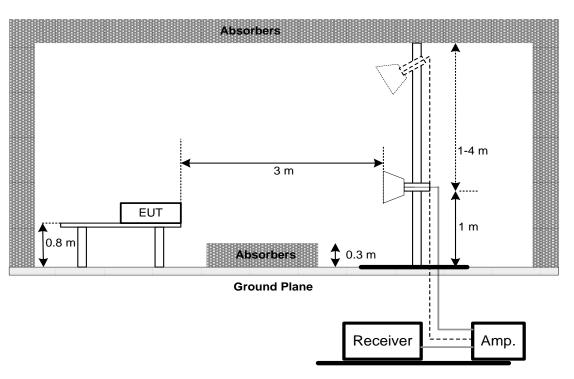
All calibration period of equipment list is one year.

3.3.3 TEST PROCEDURE

- a. The measuring distance of 10 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- d. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.


3.3.4 DEVIATION FROM TEST STANDARD

No deviation



3.3.5 TEST SETUP

30 MHz to 1 GHz

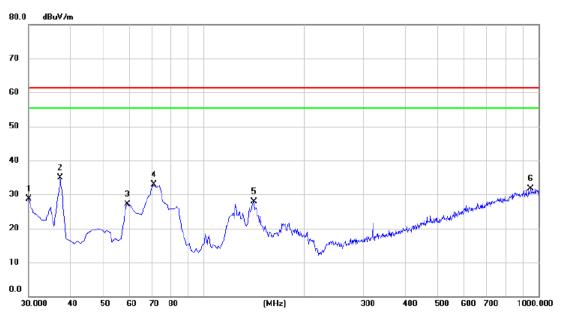
Above 1 GHz

3.3.6 TEST RESULTS-30 MHZ to 1 GHZ

Remark:

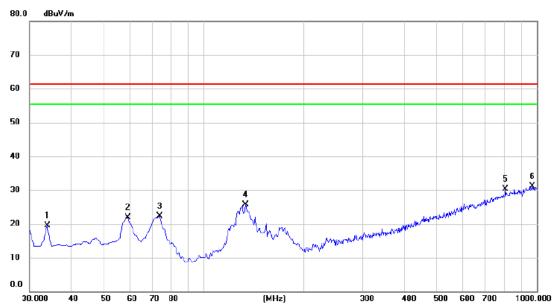
- (1) All readings are Peak unless otherwise stated QP in column of <code>『Note』</code>. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30 MHz to 1000 MHz

Test Result Summary


Accordings to the recorded date in following table, the EUT complied with the FCC PART18, the worst over limit reading as below:

-26.26 dB at 37.275 MHz in the Vertical polarization, 30MHz-1GHz

-30.08 dB at 969.93 MHz in the Horizontal polarization, 30MHz-1GHz


Test Voltage	AC 120V/60Hz	Polarization	Vertical
Test Mode	Max Power		

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	30.0000	47.87	-19.22	28.65	61.20	-32.55	QP	
2 *	37.2750	52.82	-17.88	34.94	61.20	-26.26	QP	
3	59.1000	44.35	-17.28	27.07	61.20	-34.13	QP	
4	71.2250	51.92	-18.99	32.93	61.20	-28.27	QP	
5	141.0650	44.22	-16.27	27.95	61.20	-33.25	QP	
6	945.6800	33.22	-1.56	31.66	61.20	-29.54	QP	

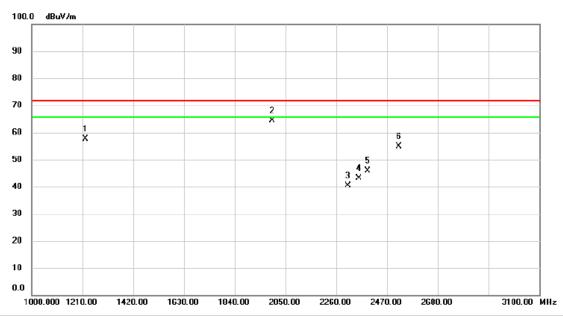
Test Voltage	AC 120V/60Hz	Polarization	Horizontal
Test Mode	Max Power		

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	33.8800	38.18	-18.63	19.55	61.20	-41.65	QP	
2	59.1000	39.38	-17.40	21.98	61.20	-39.22	QP	
3	73.6500	42.12	-19.77	22.35	61.20	-38.85	QP	
4	133.7900	42.69	-16.95	25.74	61.20	-35.46	QP	
5	806.0000	32.94	-2.66	30.28	61.20	-30.92	QP	
6 *	969.9300	31.97	-0.85	31.12	61.20	-30.08	QP	

3.3.7 TEST RESULTS- Above 1 GHZ

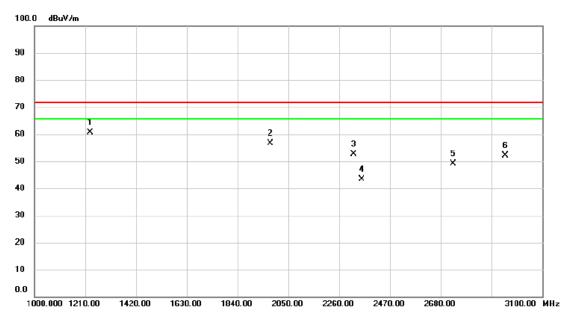
Remark:

- (1) All readings are AVG unless otherwise stated QP in column of [Note].
- (2) Measuring frequency range from Above 1 GHz


Test Result Summary

Accordings to the recorded date in following table, the EUT complied with the FCC PART18, the worst over limit reading as below:

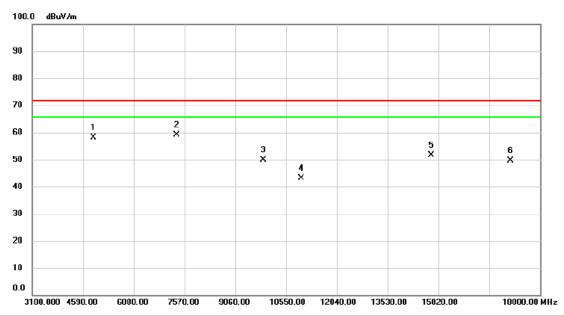
- -7.32 dB at 1996.45 MHz in the Vertical polarization, 1-25GHz
- -11.14 dB at 1229.95 MHz in the Horizontal polarization, 1-25GHz


Test Voltage	AC 120V/60Hz	Polarization	Vertical
Test Mode	Max Power		

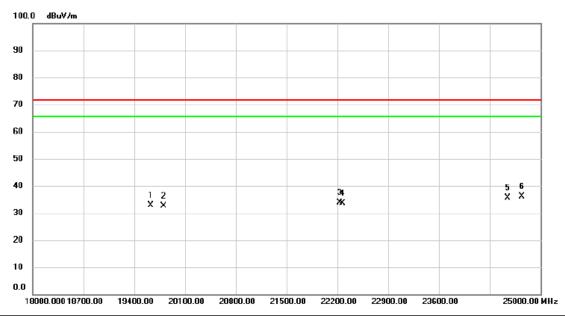
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	1223.650	78.69	-21.18	57.51	71.66	-14.15	AVG	
2 *	1996.450	81.46	-17.12	64.34	71.66	-7.32	AVG	
3	2308.300	56.01	-15.74	40.27	71.66	-31.39	AVG	
4	2353.450	58.64	-15.55	43.09	71.66	-28.57	AVG	
5	2390.200	61.25	-15.39	45.86	71.66	-25.80	AVG	
6	2518.300	69.63	-14.87	54.76	71.66	-16.90	AVG	


Test Voltage	AC 120V/60Hz	Polarization	Horizontal
Test Mode	Max Power		

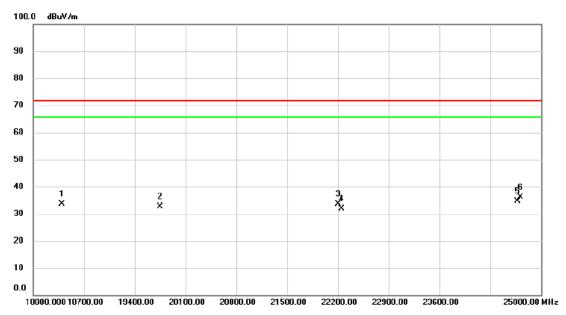
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	1229.950	81.68	-21.16	60.52	71.66	-11.14	AVG	
2	1975.450	73.92	-17.25	56.67	71.66	-14.99	AVG	
3	2319.850	68.36	-15.71	52.65	71.66	-19.01	AVG	
4	2354.500	58.98	-15.55	43.43	71.66	-28.23	AVG	
5	2731.450	63.62	-14.37	49.25	71.66	-22.41	AVG	
6	2947.750	65.91	-13.86	52.05	71.66	-19.61	AVG	


Test Voltage	AC 120V/60Hz	Polarization	Vertical
Test Mode	Max Power		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	4932.700	63.26	-8.93	54.33	71.66	-17.33	AVG	
2		7339.050	43.48	-6.40	37.08	71.66	-34.58	AVG	
3		9894.400	50.91	-2.58	48.33	71.66	-23.33	AVG	
4		11004.450	47.56	-1.26	46.30	71.66	-25.36	AVG	
5		14833.750	42.68	4.36	47.04	71.66	-24.62	AVG	
6		17143.250	39.34	7.97	47.31	71.66	-24.35	AVG	


Test Voltage	AC 120V/60Hz	Polarization	Horizontal
Test Mode	Max Power		

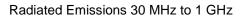
No. Mk.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	4888.000	0 67.22	-9.06	58.16	71.66	-13.50	AVG	
2 *	7346.500	0 65.52	-6.40	59.12	71.66	-12.54	AVG	
3	9886.950	52.45	-2.60	49.85	71.66	-21.81	AVG	
4	11004.450	0 44.31	-1.26	43.05	71.66	-28.61	AVG	
5	14803.950	47.33	4.31	51.64	71.66	-20.02	AVG	
6	17143.250	41.60	7.97	49.57	71.66	-22.09	AVG	

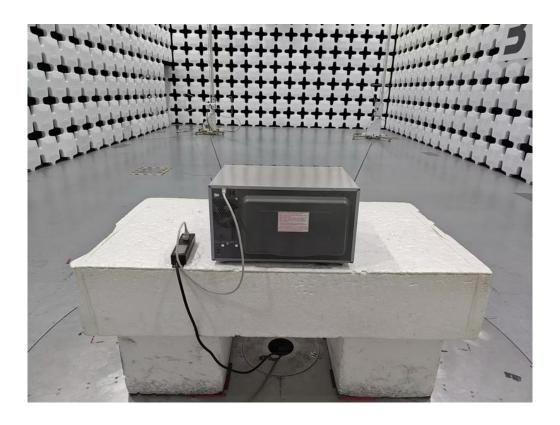

Test Voltage	AC 120V/60Hz	Polarization	Vertical
Test Mode	Max Power		

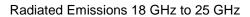
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	19626.80	00 42.36	-9.55	32.81	71.66	-38.85	AVG	
2	19808.80	0 41.87	-9.28	32.59	71.66	-39.07	AVG	
3	22237.10	0 40.86	-6.92	33.94	71.66	-37.72	AVG	
4	22273.85	0 40.58	-6.86	33.72	71.66	-37.94	AVG	
5	24549.55	0 39.15	-3.60	35.55	71.66	-36.11	AVG	
6 *	24745.55	0 39.23	-3.02	36.21	71.66	-35.45	AVG	

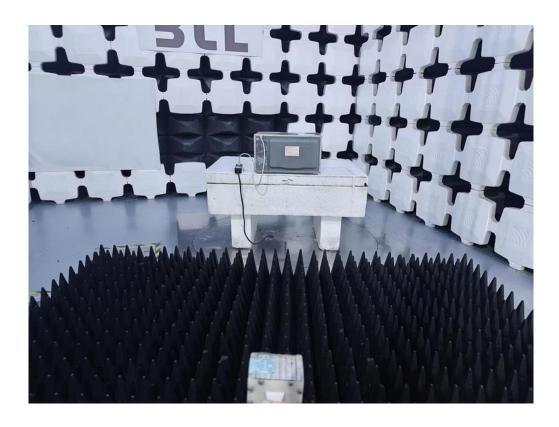
Test Voltage	AC 120V/60Hz	Polarization	Horizontal
Test Mode	Max Power		

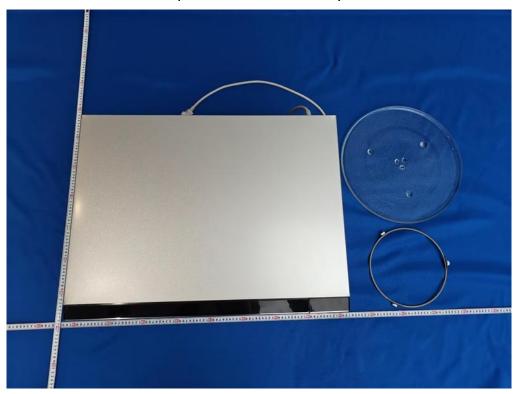

No. Mk.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	18397.950	44.87	-11.14	33.73	71.66	-37.93	AVG	
2	19745.450	41.93	-9.38	32.55	71.66	-39.11	AVG	
3	22209.100	40.61	-6.96	33.65	71.66	-38.01	AVG	
4	22250.050	38.68	-6.89	31.79	71.66	-39.87	AVG	
5	24677.300	37.85	-3.22	34.63	71.66	-37.03	AVG	
6 *	24716.150	39.24	-3.10	36.14	71.66	-35.52	AVG	


4. EUT TEST PHOTO



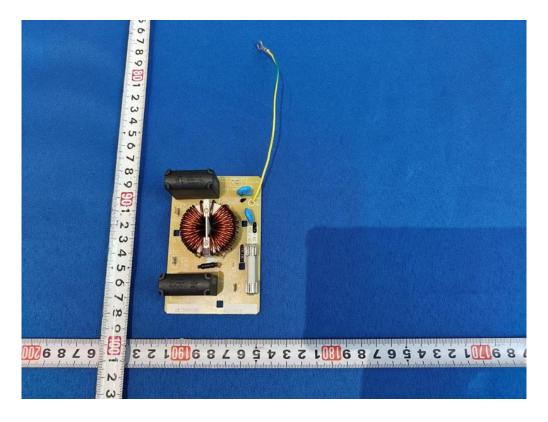


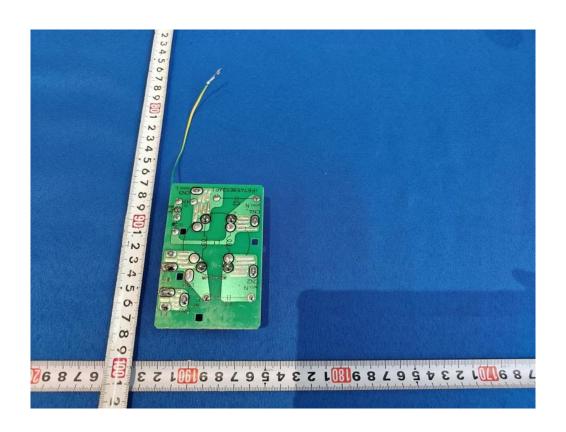


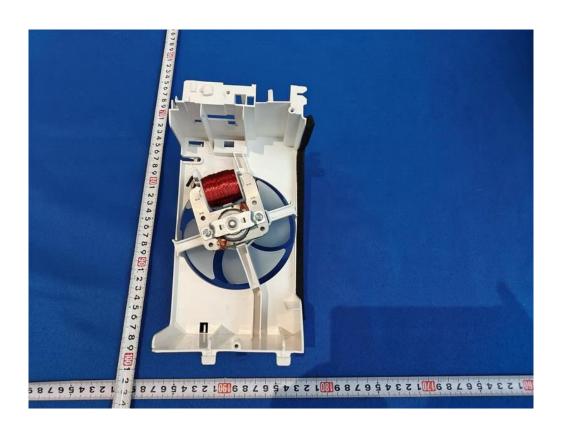


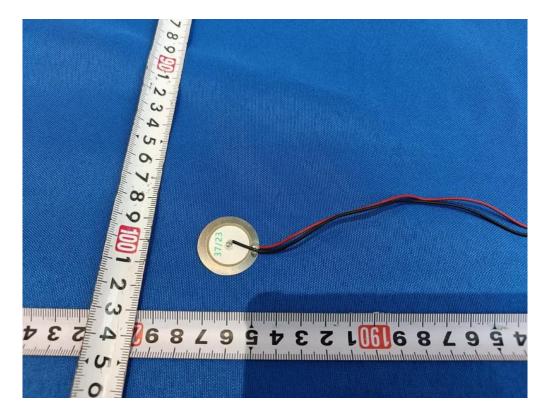
APPENDIX

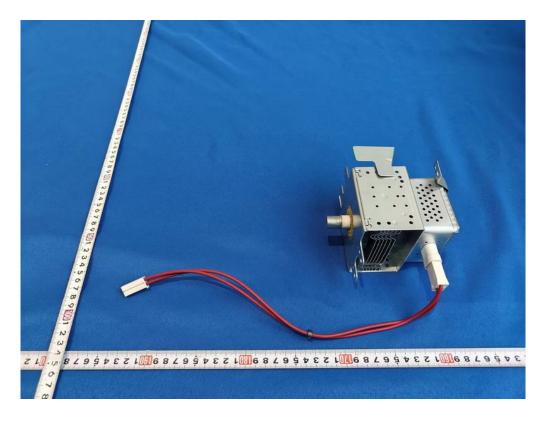
(Photos of EUT)

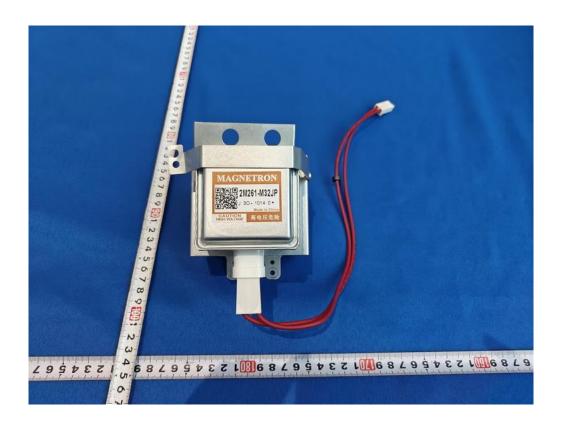


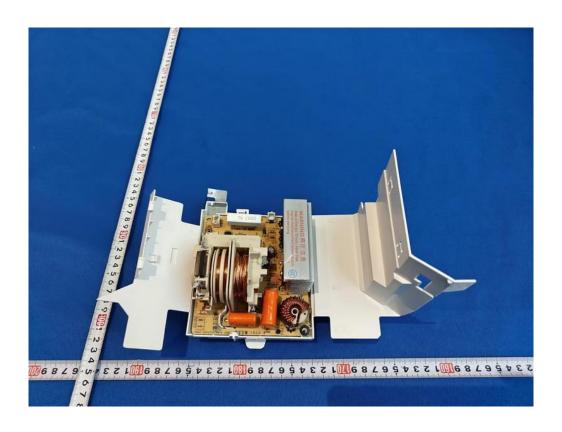


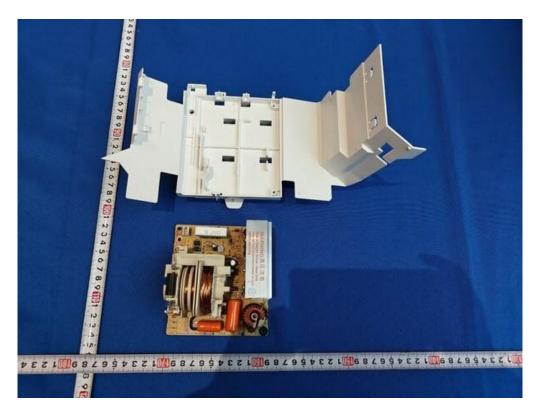




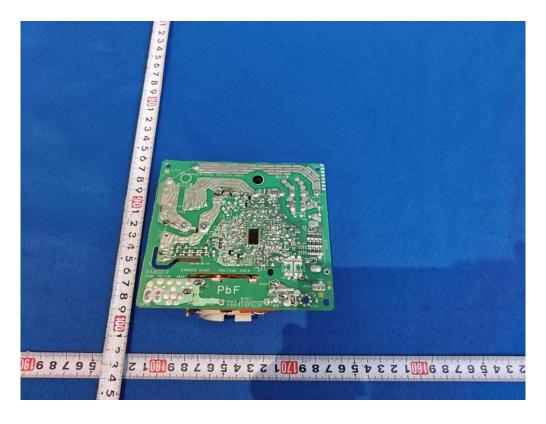


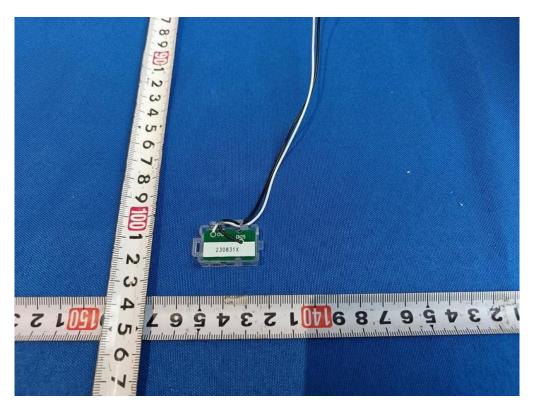


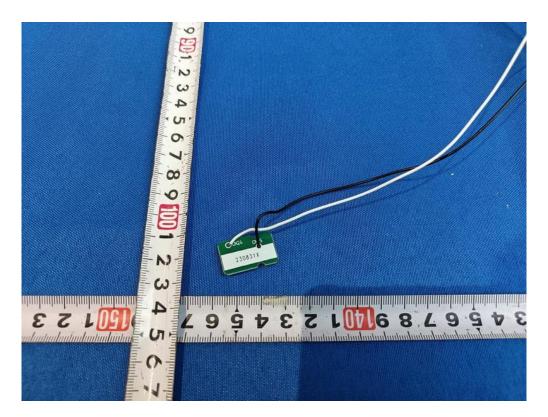


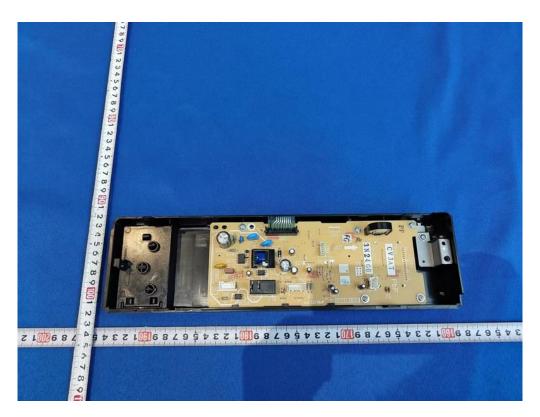


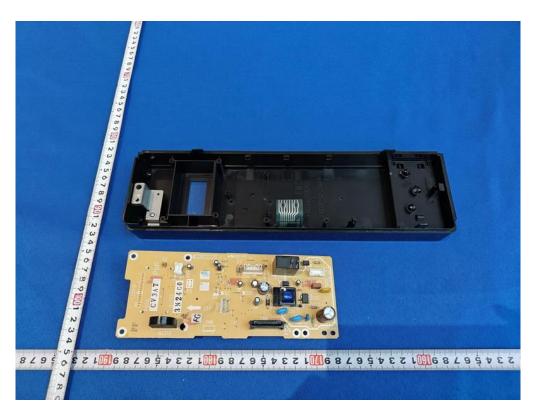












BTL Inc.(Shanghai)

DECLARATION LETTER

Applicant for: Panasonic Corporation of North America

Add: Two Riverfront Plaza, 8th Floor, Newark, NJ07102-5490

TEL: 201-348-7558 FAX: 201-348-7758

DECLARATION

Date:01-12-2024

To:

BTL Inc.(Shanghai)

No. 29, Jintang Road, Tangzhen Industry Park, Pudong New Area, Shanghai 201210, China www.newbtl.com

Dear Sir or Madam:

We, Panasonic Corporation of North America hereby declare that product: Microwave Oven, model: NN-SN95HS, which has been tested by BTL.

The differences between model NN-SN95HS and NN-SD975S/ NN-SN97HS, are appearance color and operation method.

Please contact me if there is need for any additional clarification or information.

Best Regards,

Signature:

Printed name: Jim Wang

Title: Engineering & Quality Manager

*******END OF REPORT******